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A B S T R A C T

Given a set of irregularly sampled 3D polygonal curves representing composite fibres within a micro-computed
tomography volume, a new approach based on the Frenet–Serret formulas is proposed to measure the point
curvature and waviness along a polyline even when its oscillations are not coplanar. However, a direct
computation of the measures would lead to ill-formed results depending on variant externalities across
acquisitions such as noise, sampling, resolution, fractality, etc. Consequentially, we also propose a decoupling
mechanism employing a low-pass Gaussian frequency filter to gradually discard features smaller than a certain
user-specified 𝜎 wavelength referenced in actual space units. This proposal has been tested, characterized
and visualized using both real and synthetic datasets contemplating complex waveform features to assess the
filter selectivity and convergence across varying sampling frequencies (i.e. polyline resolution). The C++ VTK
implementation, alongside an extra amount of supplementary materials encompassing the execution results
and synthetic datasets is provided.
. Introduction

In the last years, 3D X-ray micro-computed tomography (𝜇CT) has
ecome an extensively used technique in materials science as is able to
on-destructively capture detailed and precise information of materials
omposition as a stack of X-ray CT images defining a three-dimensional
olume [1,2]. Depending on the use case, in order to explore and
btain information from these volumetric datasets, specific methods
ave to be designed; a design that can be challenging depending on
he application, specially, when pure 3D-based approaches want to
e considered. In this paper, our interest has been focused on the
uantification of fibre waviness: a geometrical defect in fibre reinforced
olymer composites with direct implications on mechanical properties
s exposed in reviews such as [3,4].

Generally, fibre waviness evaluation methods consider a 𝜇CT in-
ut volume, and analyse it with a two step process, where first, an
pproximation of the fibres is obtained and then measurements over
he reconstructed fibre orientations are performed. They define (or
mplicitly assume) a set of cutting planes over the 𝜇CT volume, ideally,
erpendicularly oriented to the principal fibre directions. Then, some
valuate the fibre sections which will be circular in case of normally
ligned fibres and elliptical otherwise [5,6]. This is usually comple-
ented by the more generalist approach of detecting the centres and

hen knitting or correlating them between slices in order to obtain their
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in-plane (the deviation of fibre from the normal fibre direction in a
plane of the lamina) and out-plane (bending of a single or multiple fibre
separated from the laminate fibrous layer) deviations [7–14]. There
are also alternative methods such as [15,16] capable of reconstructing
fibres. Other approaches quantify the waviness directly at every voxel
avoiding the complexities of producing polygonal fibre trackings. These
voxel-based methods, generally, after a fibre segmentation process,
analyse the neighbourhood around each voxel using kernels and apply-
ing the tensor or similar strategies in order to obtain the directions of
least image diffusion (collinear with the fibres) [16–22]. Others trans-
form the volume using Hough, Fourier, Radon, or similar approaches to
detect the fibre directions and distributions [23–26]. A key advantage
of these voxel-based methods is their ability to perform measurements
on challenging or low resolution datasets where individual fibres are
not distinguishable. Unfortunately, they usually lack the ability to treat
fibres as separate entities.

In any case, once the fibre orientation can be determined, in-plane
and out-plane misalignment angles can be obtained as 𝛼 = arctan

(

𝑢
𝑙

)

and 𝛽 = arctan
(

𝑣
𝑙

)

, respectively, where 𝑙 is the distance between two
consecutive slices (or samples), with 𝑢 and 𝑣 corresponding to the two
out-plane and in-plane local displacement vectors [7,9,23,25,27,28].
From these, measures such as the severity factor [29], waviness, or
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Fig. 1. Two fibres of similar scale, shape and length producing the same 𝜃𝑚𝑎𝑥 angle
espite being different.

avelength ratios [3,4,28,30–35] can be computed. These approaches
ave extensively been used to evaluate the effect of misalignments
o mechanical properties. They have been applied not only on 𝜇CT
ata but also on other imaging modalities such optical microscopy [12,
3,25]. Despite its advantages, most approaches reduce the 3D fibre
nformation to 2D counterparts by emphasizing on the angles or si-
usoid shapes. However, as performed by [8] there is the possibility
o consider a more fundamental measurement for 3D curves such as
he Frenet–Serret [36,37] 𝜅 curvature formula. This approach assumes
hat each polygonal fibre of length 𝑙 is a continuous function where
t any arc-position location ℎ a 𝐏ℎ point can be obtained by an 𝐅(ℎ)

interpolating function. In [8], fibre data obtained by the confocal
laser scanning microscopy (CLSM) technique was fitted by polynomial
space curves, from which the curvature of the fibres was derived.
But as the greater the size of the data, the higher the degree of the
polynomial curves, this approach is not suitable for high-resolution
micro-computed tomography data. Building upon this continuous cur-
vature definition, the first proposal of this paper is a new measurement
to summarize the whole fibre into a single scalar which can serve as an
indicator to determine the misalignments relevance.

Unfortunately, varying aspects such as the scale of imaged fibres,
noise, resolution, sampling, etc. will have an impact on the measure-
ments if these are directly computed over the input data. When one
considers the fractal nature [38] of the noisy imaged fibres, then, a
more finely sampled polygonal curve will inevitably consider more
roughness and thus overestimate the measure. As this dependence on
acquisition parameters is troublesome, a second proposal of this paper
is a method to decouple it by smoothing the fibre trackings using
a low-pass Gaussian convolution and binding its standard deviation
𝜎 parameter to the underlying dataset space units, i.e. nm, μm, etc.
Note that most of the discussed methods, including the voxel-based
ones do not take into account the aforementioned issue. Our approach
overcomes these limitations by smoothing and interpolating respect
physical space units, to achieve a decoupling from acquisition and/or
reconstruction parameters.

The proposed measure and method have been tested using real
and synthetic datasets to properly assess the behaviour and filtering
capabilities. These synthetic cases were produced from exact definitions
of curves swept using Gaussian splatters in order to generate slices
mimicking real acquisition while controlling the morphological details
from a signal processing point of view.

2. Material and methods

2.1. A new measure for waviness evaluation

As mentioned, the waviness of a 2D fibre 𝐅 has been usually
estimated by the maximum misalignment angle 𝜃𝑚𝑎𝑥 defined by:

𝜃𝑚𝑎𝑥 = max
𝑥

∡(𝐅′(𝑥), �⃗�),

where �⃗� represents the vector (1, 0). However, in real composite mate-
ials, fibre-axis are ideally assumed to have a sinusoidal shape. That is,
ibre-axes are modelled by

(𝑥) =
(

𝑥,𝐴 sin
( 2𝜋𝑥)) 𝑥 ∈ [0, 𝜆],
2

𝜆

where 𝐴 and 𝜆 correspond the amplitude and wavelength, respectively.
n this case, the waviness severity is measured by the ratio 𝐴∕𝜆. Hsiao

and Daniel in [31] made the following observation 𝜃𝑚𝑎𝑥 = arctan (2𝜋𝐴∕𝜆),
nd concluded that in unidirectional composites the major Young’s
odulus is severely degraded as the ratio 𝐴∕𝜆 increases. From this work,

t can be derived that any measure of a fibre also increasing with
espect to 𝐴∕𝜆 or 𝜃𝑚𝑎𝑥 (for instance), can be employed to assess the
aviness severity. However, this 𝜃𝑚𝑎𝑥 parameter may not be sufficient

o describe a fibre and its behaviour, sometimes, can be misleading.
For instance, in Fig. 1 the axes of two different fibres with the

ame 𝜃𝑚𝑎𝑥 are illustrated, however the blue one is less wavy than the
ed. Consequently, it seems necessary to make use of more geometric
arameters to obtain a real description of the fibre characteristics. For
his reason, in order to obtain a new measure of the waviness we
ropose using the total curvature 𝐾 along the fibre as in Eq. (1), and
hen study how it is related with the 𝜃𝑚𝑎𝑥 parameter.

= ∫𝐅
𝜅 𝑑𝐅 (1)

First, let us study how the angle 𝜃𝑚𝑎𝑥 behaves under the assumption
f a fibre shaped as a circular arc. In Fig. 2a one can observe that

𝑚𝑎𝑥 = 𝑙
2𝑅

= 𝑙
2
𝜅,

with 𝜅 = 1∕𝑅 being the curvature of this circular arc. If this arc were
to be composed by a finite number of sub-arcs of lengths 𝑙𝑖 and central
angles 𝜃𝑖 (see Fig. 2b), 𝜃𝑚𝑎𝑥 could be computed as follows:

𝑚𝑎𝑥 = 1
2
∑

𝑖
𝜃𝑖 =

1
2
∑

𝑖
𝑙𝑖𝜅 = 1

2 ∫

𝑙

0
𝜅 𝑑ℎ = 𝐾

2

Therefore, it seems that the total curvature is related with the fibre
waviness severity. To further check this idea if we assume a fibre
modelled by a sinusoid, the following must hold:

𝐅(𝑥) =
(

𝑥,𝐴 sin
( 2𝜋𝑥

𝜆

))

, 𝐅′(𝑥) =
(

1, 𝐴 cos
( 2𝜋𝑥

𝜆

) 2𝜋
𝜆

)

,

𝐅′′(𝑥) =
(

0,−𝐴 sin
( 2𝜋𝑥

𝜆

)(2𝜋
𝜆

)2)

.

Then,

𝐾 = ∫𝐅
𝜅𝑑𝐅 = ∫

𝜆

0

| det(𝐅′(𝑥),𝐅′′(𝑥))|
‖𝐅′(𝑥)‖3

‖𝐅′(𝑥)‖𝑑𝑡

= 2∫

𝜆∕2

0

𝐴 sin
(

2𝜋𝑥
𝜆

)(

2𝜋
𝜆

)2

1 + 𝐴2 cos2
(

2𝜋𝑥
𝜆

)(

2𝜋
𝜆

)2
𝑑𝑥 = 4 arctan

( 2𝜋𝐴
𝜆

)

= 4𝜃𝑚𝑎𝑥.

So, if the fibre was made up of 𝑛 periods of 𝜆 wavelength, we would
ave 𝐾 = 4𝑛𝜃𝑚𝑎𝑥. In this way, the blue fibre in Fig. 1 would have
aviness of 4𝜃𝑚𝑎𝑥, while the red one 8𝜃𝑚𝑎𝑥. For this reason, it can be

Fig. 2. Maximum misalignment angle of a circular fibre arc.
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Fig. 3. Method pipeline starting from the input slices (top left) up to the final measurements (right) with a detailed overview of the convolution state at two different 𝜎 and step
sizes as seen from a single point (dark arrow) which is convolved according to the Gaussian distribution 𝑔𝜎 weights (coloured bars) until a 𝜎𝑚 distance (green dots) is reached.
Fine black lines show the orientation of the first derivative. The curvature is computed for each fibre position (bottom right) or can be integrated into a single waviness scalar for
the whole fibre (top right).
concluded, that the total curvature is a better descriptor of the waviness
in fibres.

However, note that the fibres depicted in Fig. 1 have similar length.
So, in order to produce a more intuitive scalar for the whole fibre
indicating the waviness independently of the fibre length; we propose
to consider the waviness as the average curvature 𝐾 along the fibre, as
in Eq. (2) where 𝑙 corresponds to the fibre length.

𝐾 = 𝐾
𝑙

= 1
𝑙 ∫𝐅

𝜅𝑑𝐅 (2)

2.2. Algorithm

Given a set of polygonal trackings representing real fibres we want
to obtain a continuous curvature indicator 𝜅 along the fibre, and a
single 𝐾 waviness scalar summarizing the whole fibre itself. To com-
pute these, as illustrated in Fig. 3 (dashed box), a preliminary step to
reconstruct the fibres to polygonal paths is required. Although different
methods can be applied, in our case we used the Julià et al. [16]
method. This considers the input volume as a whole, employs an
uniformly behaving 3D reconstruction algorithm, and is capable of
seamlessly tracking complex curves using variable step sizes.

Irrespective to the reconstruction algorithm employed, the method
assumes the input fibres as a set of 3D curve functions, each in-
dependently represented by a chain of irregularly sampled points
{𝐐0 ,… ,𝐐𝑖 ,… ,𝐐𝑛} conforming a path of 𝑛 − 1 linked segments up
to length of 𝑙 space units mapped by a function 𝐅 which given a
parametric coordinate ℎ ∈ [0, 𝑙] produces an interpolated 𝐅(ℎ) point
between the neighbouring 𝐐𝑖 samples. In what follows, ℎ𝑖 will denote
the arc-position parameter snapped to a discrete sample, thus satisfying
𝐅(ℎ𝑖) = 𝐐𝑖. With these definitions, the curvature at any position 𝐅(ℎ) in
a fibre can be defined by the 𝜅 parameter extracted using the Frenet–
Serret formulas [36,37] as in Eq. (3). Moreover, the average curvature
𝐾 along the fibre, that is, the new measure of the waviness proposed,
can be computed as in Eq. (4).

𝜅(ℎ) =
‖𝐅′(ℎ) × 𝐅′′(ℎ)‖

‖𝐅′(ℎ)‖3
(3)

𝐾 = 1
𝑙 ∫

𝑙

0
𝜅(ℎ)‖𝐅′(ℎ)‖ 𝑑ℎ (4)

Note that these measures, if applied directly, will overestimate the
results depending on undesired factors such as the input volume noise
level, sampling, etc. For this reason, as illustrated in Fig. 3 (filled grey
boxes) the following four steps are applied: (i) the first derivative is
computed; (ii) curvatures below a certain size are attenuated; (iii) the
second derivative is computed; and (iv) the aforementioned curvature
and waviness formulas are calculated for every tracked fibre. In the
next sections we describe each one in more detail.
3

2.2.1. First derivative (tangent vector)
The algorithm begins by computing at each discrete 𝐐𝑖 sample an

approximation 𝐅′(ℎ𝑖) of the first derivative respect the arc distance ℎ in
space units. When three samples are available (i.e. 0 < 𝑖 < 𝑛), the first
derivative at ℎ𝑖 is computed using the second order Lagrange interpo-
lating polynomial using the pairs (ℎ𝑖−1,𝐐𝑖−1), (ℎ𝑖,𝐐𝑖) and (ℎ𝑖+1,𝐐𝑖+1).
Otherwise, at 𝐐0 and 𝐐𝑛 extremes, the approximation is similarly
computed using two samples and a first order interpolating Lagrange
polynomial. Note that the results of this step, despite being valid vary
upon undesired external factors such as the volume resolution, fibre
scale, sampling frequency (i.e. step size), etc.

2.2.2. Low-pass filtering
As ignoring the aforementioned externalities will lead to ill-formed

measurements, the first derivative is convolved (Eq. (6)) using a Gaus-
sian distribution (Eq. (5)) whose 𝜎 parameter smoothly adjusts (in space
units) the scale below which perturbations and thus high frequency in-
formation shall be attenuated, and thus decoupled from the underlying
sampling and/or acquisition parameters.

𝑔𝜎 (𝑥) =
1

𝜎
√

2𝜋
e−

𝑥2

2𝜎2 (5)

�̃�′(ℎ) = 𝐅′ ∗ 𝑔𝜎 = ∫

+∞

−∞
𝐅′(𝑠) 𝑔𝜎 (𝑠 − ℎ) 𝑑𝑠 (6)

This smoothed derivative �̃�′ needs to be approximated at each
discrete sample 𝐐𝑖. To do this, the integration interval (i.e. convolution
window size) is restricted to have at most a reach of 𝜎𝑚 space units,
with the 𝑚 parameter being a user-adjustable setting trading off perfor-
mance versus accuracy. In parametric coordinates, this [𝑎, 𝑏] interval is
determined by:

𝑎 = max
(

0, ℎ𝑖 −
𝜎𝑚
2

)

, 𝑏 = min
(

𝑙, ℎ𝑖 +
𝜎𝑚
2

)

.

Then, for each discrete sample 𝐐𝑗 whose parameter ℎ𝑗 lies in [𝑎, 𝑏], a
weight 𝑊𝑗 is computed by:

𝑊𝑗 = ∫

ℎ𝑗+ℎ𝑗+1
2

ℎ𝑗−1+ℎ𝑗
2

𝑔𝜎 (𝑠 − ℎ𝑖) 𝑑𝑠.

Finally, �̃�′(ℎ𝑖) is approximated as follows in Eq. (7a). In addition,
one can refer to Eq. (7b) for a more generalized definition.

�̃�′(ℎ𝑖) ≃
∑

𝑗 𝐅′(ℎ𝑗 )𝑊𝑗
∑

𝑗 𝑊𝑗
(7a)

�̃�′(ℎ𝑖) ≃
∫ 𝑏
𝑎 𝐅′(𝑠 − ℎ𝑖)𝑔𝜎 (𝑠 − ℎ𝑖) 𝑑𝑠

𝑏 , 𝑑𝑠 = variable step size (7b)

∫𝑎 𝑔𝜎 (𝑠 − ℎ𝑖) 𝑑𝑠
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Fig. 4. Each curve definition is sampled at discrete points (magenta) which are then radiated outwards in order to produce a coaxial tube where at each of its surface vertex
(blue) a Gaussian blur is splattered, and then sampled into the resulting synthetic slices (right).
Fig. 3 illustrates how the reach (green dots) and weights (bars) of
the convolutions become independent from the underlying sampling.
In addition the smoothing effect in tangent vectors (thin lines) when 𝜎
is increased can be observed by visually comparing between the four
examples.

2.2.3. Second derivative (normal vector)
In this third step, and with the undesired high frequency informa-

tion removed, the method proceeds to calculate the second derivative
�̃�′′(ℎ𝑖) from the smoothed first derivative �̃�′(ℎ𝑖) results by applying the
same method explained in Section 2.2.1. Note that the normal vector
produced will have an unstable direction when the fibre travels straight
as illustrated by the ribbons normals in Fig. 6 (right) and Fig. 9
(bottom row).

2.2.4. Computing the curvature and waviness
In this last step, as our implementation employs the VTK (Visu-

alization ToolKit) and each fibre is represented by a polyline, data
values can be associated at two levels: (i) for every 𝐐𝑖 sample (point
data), (ii) or to the whole line 𝐅 (cell data). Consequently, the tangent
�̃�′(ℎ𝑖) and normal �̃�′′(ℎ𝑖) vectors are stored as point data, alongside
the curvature measurement 𝜅(ℎ) defined by Eq. (3) and computed as
expressed by Eq. (8).

𝜅(ℎ𝑖) =
‖�̃�′(ℎ𝑖) × �̃�′′(ℎ𝑖)‖

‖�̃�′(ℎ𝑖)‖3
(8)

Finally, this point curvature can be integrated using the trapezoidal
rule into a scalar summarizing the average waviness 𝐾 (see Eq. (9)) and
stored as cell data information (i.e. single value assigned to the whole
fibre).

𝐾 ≃ 1
ℎ𝑛

𝑛−1
∑

𝑖=0

𝜅(ℎ𝑖)‖�̃�′(ℎ𝑖)‖ + 𝜅(ℎ𝑖+1)‖�̃�′(ℎ𝑖+1)‖
2

(ℎ𝑖+1 − ℎ𝑖) (9)

2.3. Experiments and testing datasets

The proposed method has been tested using the real cfrp_i17 dataset
with three straight fibre orientations and acquired with the European
Synchrotron Radiation Facility’s ID19 Beamline (ESRF, Grenoble) at 26
keV, and pixel size of 650 nm. It has been cropped in two different
250 × 250 × 250 and 500 × 500 × 500 sub-volumes named cfrp250
and cfrp500 respectively and made available in Supplementary Material
1. However, in order to properly assess the invariance and filtering
capabilities of the proposed algorithms, six synthetic datasets named
harmonics, hifreq, mixed, polarized, helix, and helixnoise have been gen-
erated in order to produce a set of complex fibre paths by morphing
and combining characteristics (frequencies) at different scales.
4

2.3.1. Synthetic fibre generation
As illustrated by Fig. 4, synthetic datasets are generated using a

three-phase process which begins by: (i) discretely mapping (in our case
along the Z slicing axis) a medial axis curve 𝐂 in order to obtain a
finite set of high resolution points (pink dots); (ii) sweeping a coaxial
tube around it to produce a new surface (white); and (iii) splatting
Gaussian blurs of 𝜎 size at each surface vertex (blue dots). These steps
are repeated for each input 𝐂 such that a diffuse cloud of intensities
is then quantized into a finite resolution volume where random white
noise is mixed before producing the image slices. Depending on the
relationship between the 𝜎 and the tube diameter �, the central inten-
sity decay will be more or less accentuated; a useful feature mimicking
beam-hardening artifacts [1] (Section 6.1).

2.3.2. Synthetic cases
With the ability to produce synthetic fibres from an exact 𝐂 func-

tion, the next step is defining and arranging several of them in a
volume. Most of our synthetic datasets are organized in 4 different
blocks of 4 × 4 fibres, where each position corresponds to a unique
combination of the three 𝑤𝑎, 𝑤𝑏, and 𝑤𝑐 weighting variables in order
to obtain 64 unique (but similar) 𝐂𝑤𝑎 , 𝑤𝑏 , 𝑤𝑐

fibres exhibiting different
amplitudes for each tunable feature. Every fibre function is sampled
along the 𝑍-axis, and shifted on the X-Y plane as illustrated in Fig. 5 in
order to achieve the aforementioned arrangement. These volumes have
a size of 512 × 128 × 512 voxels and a dynamic range of 8 bits.

While all synthetic datasets can be expressed as a mathematical
equation, the simpler harmonics case is expressed in Eq. (10) where
a fibre combines three circular oscillations: (i) a lower frequency one,
turning once from start to end; (ii) a mid frequency revolving twice; and
(iii) a higher one oscillating four times. Each is respectively adjusted
according to the 𝑤𝑎, 𝑤𝑏, and 𝑤𝑐 weights and arranged in rows, columns
and blocks as disposed in Fig. 5 obtaining a total of 4×4×4 = 64 fibres
as different 4 values for each weight are combined. In this way, one can
easily analyse and isolate each variable; for instance, the effects of high
frequencies are perceived observing the differences between blocks.

𝐂𝑤𝑎 , 𝑤𝑏 , 𝑤𝑐
(𝑧) = (0, 0, 𝑧) + (sin(2𝜋𝑧∕𝑍𝑚𝑎𝑥), cos(2𝜋𝑍∕𝑍𝑚𝑎𝑥), 0)𝑤𝑎

+ (sin(4𝜋𝑧∕𝑍𝑚𝑎𝑥), cos(4𝜋𝑍∕𝑍𝑚𝑎𝑥), 0)𝑤𝑏
+ (sin(8𝜋𝑧∕𝑍𝑚𝑎𝑥), cos(8𝜋𝑍∕𝑍𝑚𝑎𝑥), 0)𝑤𝑐

,

⎧

⎪

⎨

⎪

⎩

𝑤𝑎,𝑏,𝑐 ∈ {8∕1, 8∕4, 8∕9, 8∕16}
𝑍𝑚𝑎𝑥 = 512
𝑧 ∈ [0, 𝑍𝑚𝑎𝑥]

(10)

The polarized dataset is characterized by its oscillations in a single
plane. It employs the same methodology for arranging the 𝑤𝑎, 𝑤𝑏, and
𝑤𝑐 weights as in Fig. 5 in order to: (i) encode a lower frequency turn
from start to end in the rows 𝑤𝑎; (ii) a high frequency (8 turns) in the
columns 𝑤𝑏; and (iii) a 𝑍-axis rotation of the oscillating plane between
blocks 𝑤 .
𝑐
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Fig. 5. Arrangement as seen from the X-Y plane of the three weighting variables: 𝑤𝑎 (red, columns), 𝑤𝑏 (green, rows), and 𝑤𝑐 (blue, blocks); with circles colour-mapping them
in RGB respectively; combined with an overlay and a thumbnail of the produced curves. The polarized (top) and harmonics (bottom) cases are illustrated.
The hifreq dataset reuses the same low 𝑤𝑎 and mid 𝑤𝑏 frequency
components of the harmonics case, but regarding the very high fre-
quency 𝑤𝑐 feature varied for each block, is a more complex combi-
nation of circular and linear oscillations whose amplitude gradually
decays to zero as one of the fibre extremes is reached. With it, the local
curvature (i.e. point curvature) can be properly tested as is expected to
significantly change within the polyline.

Complementing these, and in order to ease the posterior validation
of the method, two datasets denominated helix and helixnoise were
created from the single wavelength (i.e. only one frequency) functions
Eq. (11a) and Eq. (11b) respectively. The latter raises the noise level by
adding a uniform error of ±2 to the 𝑋 and 𝑌 medial-axis coordinates.

𝐂helix(𝑧) =
(

10 cos
( 20𝜋𝑧

512

)

, 10 sin
( 20𝜋𝑧

512

)

, 𝑧
)

, 𝑧 ∈ [0, 512] (11a)

𝐂helixnoise(𝑧) =
(

10 cos
( 20𝜋𝑧

512

)

+ 𝑥err (𝑧), 10 sin
( 20𝜋𝑧

512

)

+ 𝑦err (𝑧), 𝑧
)

,

𝑥err (𝑧), 𝑦err (𝑧) ∼ 𝑈 (−2, 2) 𝑧 ∈ [0, 512] (11b)

Finally, the mixed dataset combines and exaggerates the features
of the aforementioned cases in order to produce complex shapes at
different scales.

3. Results and discussion

The proposed measurement algorithm has been implemented in
C++ as the VTK [39] filter presented in Supplementary Material 2,
which has been integrated in the Starviewer [40] platform as illus-
trated in Fig. 12. In Supplementary Material 1 the results, slices,
figures, extra visualization, plots, and the code to produce the syn-
thetic cases alongside its ground truth is made available to ensure the
reproducibility.

3.1. Scale selectivity

A key distinctive feature of the proposed algorithm is its ability
to suppress fibre variations below a certain size employing a low-
pass Gaussian filter. Its behaviour is better understood when a 𝐅 fibre
curve is observed in the frequency space (i.e. Fourier-transformed) as a
signal where high frequencies shall be eliminated. With the advantage
of avoiding computationally intensive transformations; the Gaussian
5

convolution employed behaves as a low-pass filter suppressing fibres
below a user-specified 𝜎 wavelength in space units. These capabilities
are demonstrated in Fig. 6 using the hifreq dataset containing an
increasing amount finer variations at each block from left to right (refer
to Section 2.3.2 and Fig. 5). When the 𝜎 parameter is smaller than
the wavelength (first rows) the waviness measurements are distributed
across blocks and the filter has little effect. But, as 𝜎 increases, as
expected, these higher frequencies are attenuated, the waviness is
decreased, and its relative distribution shifts from the blocks to the
top rows (which have a mid-frequency). Then (in this example) at
𝜎 > 30, the lowest frequencies (columns) become more dominant and
distinguishable.

If one observes the remaining comparative figures in Supplementary
Material 1 the following key features of each dataset are fulfilled: (i) in
harmonics a gradual and smooth transition from blocks to the upper-
right corners where more curvature is present; (ii) in polarized, as
expected the blocks present the same curvature, although with slight
asymmetries in the intermediately rotated middle blocks; (iii) in mixed
the desired selectivity is visually appreciated; and (iv) in the crfp cases,
the outliers can be properly detected by their curvatures, and its main
slightly curved regions can be identified at big 𝜎 values (see dashed
circles in Fig. 9).

3.2. Definition of the signal and noise

From a signal processing perspective, the highest frequencies will
not describe the actual shape of physical fibres, but instead manifest
varying acquisition parameters such as voxel size, scale of the fibres,
resolution, dynamic range, noise characteristics of the imaging device,
etc. Hence, choosing a proper 𝜎 parameter to decouple these from our
measurements is crucial to obtain comparable and non-overestimated
measures across acquisitions. However, as illustrated in Fig. 6 (rows)
and Fig. 3 (left vs right tangent thin lines) employing a 𝜎 well above
the acquisition noise is also useful to discard smaller but physically
present features from the curvature calculus. So, the 𝜎 parameter
(arbitrarily set by the user) defines boundary between what shall be
considered noise (higher frequencies), and signal (lower frequencies).
As it specifies a wavelength in space units, it can be employed as
an invariant reference value across different acquisitions. For these
reasons, values below the sampling size and/or fibre diameter shall be
discouraged.
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Fig. 6. On the right, a 3D visualization of the waviness (tube colour), normal vectors (ribbon orientation), and point curvature (ribbon colour) at three different 𝜎 values. On
the left side, a matrix of slices comparing the waviness at different 𝜎 (rows) and sampling step sizes(columns). The waviness of each fibre (circle colour) is represented using the
same scale to ease the comparison. Perimeter lines around circles RGB map the tangent vectors components.
3.3. Sampling

While the Gaussian convolution method is able to cut high frequen-
cies, these must exist in the first place. In practice, fibres will never be
infinitely sampled, consequently, they will be band-limited due to the
Whittaker–Nyquist–Shannon sampling theorem [41–43]. This is an ob-
servable fact in Fig. 6 where the smaller 𝜎 in coarser cases do not have
any effect until its value is greater than the sampling spacing. However,
once exceeded, the curvature measurements converge irrespective of
the sampling as illustrated by Fig. 8 with the values approaching
to 1. In practice, these ratios arise from the median curvature of the
1.7 and 16.7 step size cases. In the employed Julià et al. [16] recon-
struction method, steps sizes are user adjustable and may vary within
a user-defined range. But, most reconstruction algorithms discussed
in Section 1 implicitly set their sampling frequency by design choices
such as snapping to integer voxel locations, reconstructing in a slice-by-
slice approach, etc. In any case, all reconstruction methods, in addition
to the ones performing measures voxel-wise, will have their highest
frequencies capped according to the input volume resolution. However,
relying on the sampling alone or other non-space referenced smooth-
ing techniques (e.g. moving average of discrete samples) undermines
the meaning of the measurement across different dataset acquisitions
leading to a disparity in the results as observable in Fig. 7 when our
method is set at 𝜎 = 0 (i.e. filtering disabled). For this reason, when
one considers the fractal nature [38] of the noisy imaged fibres, then,
a more finely sampled polygonal curve will inevitably consider more
roughness and thus overestimate the measure.

3.4. Numeric stability and edge behaviour

One of the first aspects to consider is the finite lengths of the fibres;
this approach was tackled by normalizing the vectors of the smoothed
6

first derivatives in order to take in account the otherwise missing
weight at the limits. Due to the nature of the curvature formula, its
results are numerically stable even when a fibre travels straight (i.e. it
also approaches zero), however, as future work we plan to further
extend our measurements and provide more advanced visualizations.
Also, relying on a pure Frenet–Serret frame is troublesome due to its
abrupt changes in the normal vectors direction (see last row in Fig. 9).
We plan to build upon slightly altered approaches such as [44] to miti-
gate these aforementioned issues, or by employing rotation minimizing
frames such as [45].

3.5. Datasets and testing

The usage of datasets whose ground truths curves were analytically
defined in terms of frequencies has been crucial to assess whether
the theoretical expectations matched the actual measurements of the
algorithm. Although these curves alone could have been directly fed
into the measurement algorithm for testing purposes, this would have
ignored the effect of white pixel noise, whose maximum frequency is in
turn band-limited by the volume resolution. This noise affects the Julià
et al. [16] tracking algorithm and it is manifested as small variations
when a finer step size is employed (an expected behaviour). Despite the
availability of datasets such as [6] with richer features better mimicking
aspects such as beam hardening, we opted for a more conservative
approach using Gaussian splatters in order to ensure an isotropic noise
behaviour as the complex shapes are sampled into finite resolution
slices. In addition to the volume and ground truths; in Supplementary
Material 1 one will encounter the generative pipeline implemented in
Paraview [46] to ensure the reproducibility by anybody and ease the
creation of new datasets.

As illustrated in Fig. 9 visualizations, the method has been tested
using a real dataset, and while the results and behaviour are co-
herent with synthetic cases, as future work we plan to extend the
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Fig. 7. For every dataset (boxes), a comparison of the mean waviness results (Log10 Y-axis) for each combination 𝜎 (X-axis) and step size (colours) values. Confidence intervals
(semi-transparent colours) up to the 99th percentile.
testing by combining specimens with varied fibre diameters and alter-
ing acquisition parameters affecting resolution, contrast, noise levels,
etc.

3.6. Validation

The implementation of the proposed algorithm can be validated
against the simpler mathematical ground truth for the synthetic helix
dataset of the unfiltered case (i.e. 𝜎 = 0) as expressed by Eq. (12)
based on the fact that the curvature of a helix parameterized by
(𝐴 cos(𝐵𝑧), 𝐴 sin(𝑧), 𝑧) is 𝐴𝐵2∕(1 + 𝐴2𝐵2). The experimental results as
hown in Table 1, indicate a deviation of just 0.6% respect the ex-
ected theoretical curvature, and while in the case of helixnoise slightly
ncreases to 0.7%, the major differences regarding effects of noise are
bservable in the standard deviation. As illustrated in Figs. 10 and 11
he noise follows normal distribution which is narrowed and offset as
he filtering sigma increases.

(ℎ ) = 𝐴𝐵2
, 𝐴 = 10 , 𝐵 = 20 𝜋 (12a)
7

helix 𝑖 1 + 𝐴2𝐵2 512
𝜅helix(ℎ𝑖) =
𝜋2125

𝜋21250 + 8192
≃ 0.060095 (12b)

3.7. Cost

The algorithm cost grows linearly respect the overall number of
samples within a volume, but the amount of operations required at
each one will depend on the amount of discrete neighbours convolved
in a 𝜎𝑚 arc distance. While similar to discrete convolution kernels
(e.g. Gaussian blur of an image), our kernel size cannot be precisely
known nor allocated beforehand. As illustrated in Fig. 3, the active
voxel (upwards black arrow) must access its discrete neighbours (green
points) around a 𝜎𝑚

2 arc distance in space units. As by definition the
spacing is irregular (even within a polyline), a reasonable way to
quantify the cost is applying Eq. (13) using estimative averages of the
fibre step sizes 𝑑𝑠, samples 𝑛 and length ℎ.

Operations per arc unit length ≃ ℎ𝜎𝑚 (13)

𝑛 𝑑𝑠
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Fig. 8. For each case (colours), ratio (X-axis) between the maximum and minimum median values at different 𝜎 (Y-axis) of the whole volume waviness (labels, bar size) grouped
by each step size tested. In practice, it is the ratio between the 1.7 and 16.7 steps sizes. Values approaching 1 indicate convergence of the measurement irrespective the sampling.
Cases from 𝜎 = 1 to 𝜎 = 9 were only available for the helix and helixnoise datasets.

Fig. 9. Results and visualizations for the crfp500 real dataset. Each column in the matrix corresponds to a different 𝜎 value. Colour scales are not rescaled within a row. The first
row maps the curvature 𝜅 using semi-transparent lines; the second one also maps 𝜅 employing 3D tubes around the reconstructed curves; the third one maps the waviness 𝐾 as
a single colour for the whole fibre; and the last one employs ribbon surfaces to express the second derivative �̃�′′ orientation combined with an RGB colour mapping of the first
derivative �̃�′. The dashed circles pinpoint a properly identified region of interest where the curvature increases slightly.
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Fig. 10. Point curvature histograms of the helix dataset at different filtering levels (from 𝜎 = 0 to 𝜎 = 9) employing a fine 1.7 step size.
Fig. 11. Point curvature histograms of the helixnoise dataset at different filtering levels (from 𝜎 = 0 to 𝜎 = 9) employing a fine 1.7 step size.
While this linear behaviour is comparable to the more straight-
forward approaches discussed in Section 1, in practice, larger con-
volutions in our method will severely impact the runtime. However,
with larger 𝜎 values respect the step size, one may voluntarily use
coarser step sizes in order to reduce them, and thus indirectly pre-
filter the highest frequencies as discussed in Section 3.3. Finally, the
implemented VTK filter in Supplementary Material 2, although useable,
does not support multithreading yet, and as future work we plan to
parallelize it at a fibre level, i.e. by polydata cells.

4. Conclusions

In this paper we have presented a method to assess the point cur-
vature and overall waviness of fibres represented as polygonal curves
9

reconstructed from 𝜇CT slices. While the required input is independent
respect the underlying tracking methodology, we used an inherently 3D
one with the ability to produce irregularly spaced samples in order to
ensure a high level of compatibility should any other state-of-the-art
tracking method be used in-place.

Our Frenet–Serret based measurements ensure an inherent 3D be-
haviour which has been proven numerically stable for the measurement
of fibre misalignments. Additionally it has the advantage of being a
decoupled measure from the world-orientation of the dataset; in this
way, there is no need to perform fine realignments to the specimens
across acquisitions thus avoiding the introduction of further error.
Also, we have demonstrated the relation of our proposal with common
waviness measurements approaches which assume the fibres as simpler
waveforms coplanar to a plane. This ability to address more complex
cases with a more intuitive or expected behaviour makes our results
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Table 1
Curvature statistics at different 𝜎 for the helix and helixnoise synthetic datasets.

Case 𝜎 SD Mean Median

Helix 0 0.005252 0.060089 0.060466
Helix 1 0.005695 0.059847 0.060306
Helix 2 0.005625 0.059482 0.060033
Helix 3 0.005556 0.058945 0.059601
Helix 4 0.005545 0.058262 0.059014
Helix 5 0.005572 0.057400 0.058252
Helix 6 0.005597 0.056367 0.057336
Helix 7 0.005607 0.055152 0.056210
Helix 8 0.005588 0.053791 0.054918
Helix 9 0.005511 0.052192 0.053360
Helix 10 0.005370 0.050395 0.051584
Helixnoise 0 0.017702 0.060680 0.060499
Helixnoise 1 0.016580 0.060328 0.060512
Helixnoise 2 0.014307 0.059770 0.060193
Helixnoise 3 0.011831 0.059043 0.059700
Helixnoise 4 0.009813 0.058231 0.058941
Helixnoise 5 0.008365 0.057302 0.058100
Helixnoise 6 0.007407 0.056247 0.057052
Helixnoise 7 0.006787 0.055041 0.055901
Helixnoise 8 0.006372 0.053709 0.054629
Helixnoise 9 0.006044 0.052155 0.053125
Helixnoise 10 0.005745 0.050415 0.051431

Fig. 12. The measurement method has been integrated in Starviewer [16,40]. All
algorithm parameters are exposed to the end user (left sidepanels) who can later
interactively explore and validate the results using fused volume renders of the
underlying datasets. The crfp500 (top) and mixed (bottom) cases are illustrated.

differ numerically from other measurements; however its mechanical
implications can be deemed equivalent.

A key concept introduced in this paper is the importance of setting
a limit to the smaller curvatures, and considering only the ones above
a certain size. In our case, this scale selectivity is attained using a
Gaussian low-pass frequency filter with an user-adjustable sigma pa-
rameter corresponding to a wavelength in space units. However, most
state-of-the-art measurements in composite fibres ignore this fact, rely
10
only on the fibre resolution (i.e. sampling frequency) to limit the over-
estimative effect of high frequencies, or may employ more advanced
techniques, such as moving averages or polynomial interpolations not
bound to actual space units making the results variant respect the
acquisition parameters. Solving these issues and attaining coherent
measurements across datasets can be challenging, especially with vary-
ing factors such as noise, resolution, sampling, etc. Our method attains
convergence of results for fibres sampled at different resolutions when a
sufficiently large sigma above the sampling frequency is employed. This
adjustable low-pass filter, while a valuable tool to suppress the afore-
mentioned fractality effects of high frequencies, can also be used to
suppress smaller but undesired curvatures already present in the physi-
cal fibres deemed irrelevant for a particular case of study. Additionally,
the algorithm has been validated against the mathematical ground truth
(i.e. gold standard) which is properly matched by the experimental
result when no smoothing is employed. Increasing the amounts of
smoothing, as expected, the noise is reduced and the normal curvature
distribution deviation narrowed. Smoothing values are recommended
to be kept at least above 1 to 3 times the fibre diameter, taken to the
extreme, the whole-volume curvature progressively decays to zero as
all curvatures become suppressed. While advantageous, this effect must
be considered and hence comparisons at different smoothing levels
avoided as they are not directly comparable.

Although the behaviour is explainable by well established signal
processing fundamentals, these have been experimentally tested using
one real and several synthetic datasets. For this reason, we also in-
troduced a methodology to generate synthetic volumes from a given
ground truth defined as a composition of several oscillations. Although
these synthetic slices do not reflect the richness of defects present in
real acquisitions, their uniform behaviour and wave-based definition
have been valuable tools to validate the theoretical expectations with
actual results.

Our future work will be focused on further improving the algo-
rithm performance and visualizations while combining it with other
measurements employing rotation minimizing frames; performing the
analysis at multiple scales; or expressing the curvature as an spectrum
by binning the spectrum of spatial frequencies composing the fibre
shapes.
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Appendix A. Supplementary data

1. finalresults.tar.xz Contains the code to generate synthetic vol-
umes, the actual datasets, results for all tested combinations,
code, figures, and extra visualizations.
https://www.starviewer.org/papers/curvature/finalresults.tar.xz
https://starviewer.udg.edu/papers/curvature/finalresults.tar.xz

bfd6adba2867f5be0c5c4d3be54712503d931954024301727ef47173a2a22edb (SHA256)

6d19e2a0b488713878781cfeeb304fffa3e59f4d (SHA1)

2. vtkfilter.tar.xz C++ code of the measurement algorithm imple-
mented in the form of a VTK polydata filter. It is released under
a BSD license compatible with VTK.
https://www.starviewer.org/papers/curvature/vtkfilter.tar.xz
https://starviewer.udg.edu/papers/curvature/vtkfilter.tar.xz
096081b24182d6ef747d7a75079d196162cacec85d8548b91cd6a4db81b24649 (SHA256)
07597a780286c2336eb6a41d27af1ee0b1b43503 (SHA1)

3. video.mkv Video of the implemented solution. The .mkv files
are encoded in VP9 and contain a subtitle track with comments.
We recommend visualizing them with https://www.videolan.
orgVLC media player.
https://www.starviewer.org/papers/curvature/video.mkv
https://starviewer.udg.edu/papers/curvature/video.mkv

d26304f991087a1a32bd63602b3da26857371f70231e54f64641eda60c756b58 (SHA256)

b65a5960f37d478ca723bff7ecff823ddbcf22a2 (SHA1)

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.measurement.2022.112223.
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