CHEMISTRY

Cage-size effects on the encapsulation of P_{2} by fullerenes

Enric Sabater ${ }^{1,2}$ © \mid Miquel Solà $^{2} \odot \mid$ Pedro Salvador $^{2} \mid \quad$ Diego M. Andrada ${ }^{1} \odot$

${ }^{1}$ Department of Chemistry, Faculty of Natural Sciences and Technology, Saarland University, Saarbrücken, Germany
${ }^{2}$ Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, Girona

Correspondence

Diego M. Andrada, Department of Chemistry, Faculty of Natural Sciences and Technology, Saarland University, 66123, Saarbrücken, Germany.
Email: diego.andrada@uni-saarland.de Pedro Salvador, Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, C/ M. Aurèlia Capmany 69, 17003, Girona.
Email: pedro.salvador@udg.edu

Funding information

Departament d'Innovació, Universitats i Empresa, Generalitat de Catalunya, Grant/ Award Number: 2017SGR39; Generalitat de Catalunya, Grant/Award Number: 2021 FISDU 00362; H2020 European Research Council, Grant/Award Number: EU805113; Horizon 2020 Framework Programme, Grant/Award Number: HPC-EUROPA3 (INFRAIA-2016-1730897); Ministerio de Ciencia e Innovación, Grant/Award Number: PID2020-113711GB100; Ministerio de Ciencia, Innovación y Universidades, Grant/Award Number:
PGC2018-098212-B-C22

Abstract

The classic pnictogen dichotomy stands for the great contrast between triply bonding very stable N_{2} molecules and its heavier congeners, which appear as dimers or oligomers. A banner example involves phosphorus as it occurs in nature as P_{4} instead of P_{2}, given its weak π-bonds or strong σ-bonds. The P_{2} synthetic value has brought Lewis bases and metal coordination stabilization strategies. Herein, we discuss the unrealized encapsulation alternative using the well-known fullerenes' capability to form endohedral and stabilize otherwise unstable molecules. We chose the most stable fullerene structures from $C_{n}(n=50,60,70,80)$ and experimentally relevant from $\mathrm{C}_{\mathrm{n}}(\mathrm{n}=90$ and 100$)$ to computationally study the thermodynamics and the geometrical consequences of encapsulating P_{2} inside the fullerene cages. Given the size differences between P_{2} and P_{4}, we show that the fullerenes $C_{70}-C_{100}$ are suitable cages to side exclude P_{4} and host only one molecule of P_{2} with an intact triple bond. The thermodynamic analysis indicates that the process is favorable, overcoming the dimerization energy. Additionally, we have evaluated the host-guest interaction to explain the origins of their stability using energy decomposition analysis.

KEYWORDS

bonding analysis, encapsulation, endohedral, energy decomposition analysis, multiple bond

1 | INTRODUCTION

Stable compounds featuring multiple bonds between heavy main group elements have long been thought unrealizable. ${ }^{1}$ Consequently, the so-called "double-bond rule" emerged, formalizing the impossibility of achieving them due to the relative weakness of π-bonds of those p-block elements beyond the second period, providing fundamental instability of compounds. ${ }^{2}$ Eventually, this rule was disproven by synthetic strategies based on sterically crowded substituents and coordination to Lewis bases/acid pairs to provide kinetic and thermodynamic stability. ${ }^{3}$ Thus, experimental achievement recounts compounds containing double and triple bonds
between Groups 13, 14, and 15 tricoordinate and dicoordinate atoms. ${ }^{4}$

The unsaturated Group 15 compounds belong to a captivating chapter of this topic with the classic pnictogen dichotomy. ${ }^{5}$ Although triply bonded diatomic N_{2} species is a ubiquitous inert gas, ${ }^{6}$ its heavier homologues are highly reactive and prone to form oligomers. For instance, the most stable phosphorus species is tetra-atomic $P_{4}\left(T_{d}\right)$ white phosphorus, ${ }^{7}$ whereas P_{2} is only found as free molecules at high temperatures in the gas phase ${ }^{8}$ or in isolation matrices at $17 K .{ }^{9}$ The dimerization process from P_{2} to form P_{4} has been experimentally estimated to be thermodynamically favorable by $53.6 \mathrm{kcal} / \mathrm{mol}{ }^{10}$ This observation has been traditionally explained according to the double

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
© 2022 The Authors. Journal of Computational Chemistry published by Wiley Periodicals LLC.

(A)

(B)

(C)

SCHEME 1 Stabilization approaches of P_{2} triple bond unit: (A) transition metal coordination; (B) Lewis base stabilization; (C) encapsulation approach. Dip $=2,6$-diisopropyl-phenyl; ${ }^{\text {T }} \mathrm{Bu}=$ tertbutyl.
bond rule, suggesting a weak π-bond between the phosphorus atoms. ${ }^{11}$ In contrast, Kutzelnigg discussed that taking into account only the overlap populations, it is expected that the triple bond in N_{2} and P_{2} are approximately equal in strength. ${ }^{12}$ However, he pointed out that the bond strength also depends on how strongly the valence electrons are attached to the elements, and hence, in qualitative terms, the bond energy on N_{2} is significantly stronger than $\mathrm{P}_{2} .{ }^{12}$ Many years later, Jerabek and Frenking brought a quantitative assessment using energy decomposition analysis (EDA). ${ }^{13}$ Notably, they found that the contribution of the π-bonding in $P_{2}(40.5 \%)$ is higher than in N_{2} (34.4\%). Thus, the tendency of P_{2} to dimerize is related to the enhanced stability due to the σ-bonds formed rather than π-bonding lost.

The constant quest for environmentally friendly processes which are of preparative value has triggered many investigations on the introduction of phosphorus atoms under mild conditions. ${ }^{14}$ In this vein, P_{2} is an interesting reagent for producing heterocycles via cycloadditions, for instance. ${ }^{15}$ However, its use in synthesis requires the stabilization preserving the triply bonded $\mathrm{P} \equiv \mathrm{P}$ moiety. Strategies based on transition-metal mediated degradation of the P_{4} into P_{2} units have been extensively explored in the past (Scheme 1A). ${ }^{16}$ The outcome of these reactions is a side-on bridging $M_{2} P_{2}$ coordination mode, yielding a significant decrease in the multiple bond character relative to free $\mathrm{P}_{2} \cdot{ }^{17}$ Nonetheless, a landmark study by Cummins and co-workers demonstrated that nio-bium-based coordination can be used for the thermal transfer of P_{2} to 1,3-dienes. ${ }^{18}$ End-on $\mathrm{M}=\mathrm{P}-\mathrm{P}=\mathrm{M}$ coordination modes are rare cases, and the formation is ascribed to the steric hindrance between the metal moieties. ${ }^{19}$ The center moiety has been described as a $P-P$ single bond given the redox activity of the
metals. ${ }^{20}$ Recently, Schneider, Holthausen, and co-workers reported the use of redox inactive platinum ligands as an unprecedented platform for the stabilization of P_{2} as a neutral, triply bonded unit. ${ }^{21}$ Furthermore, the stabilization by strong σ-donor Lewis bases has been also evaluated, counting N -heterocyclic carbene (NHC), ${ }^{22}$ cyclic(alkyl)amino carbene (CAAC), ${ }^{23}$ and the boryl, ${ }^{24}$ and silylene analogues (Scheme 1B). ${ }^{25}$ Similarly, the loss of the multiple bond character is observed as a result of a strong donor-acceptor interaction between the Lewis base lone pair and the π^{*} orbitals of the P_{2} species. ${ }^{26}$

Strategies based on transition-metal and Lewis bases coordination have been long-standing within the P_{2} feedstock methods. There is, however, an unrealized alternative based on the size change from P_{2} to P_{4} species. In this sense, one could envisage an approach using the ability of fullerenes to encapsulate and form stable endohedral complexes with atoms and small molecules. ${ }^{27}$ The chemistry of endohedral started directly after the seminal discovery of fullerenes with the characterization of La@C $60 .{ }^{28}$ Six years later, endohedral fullerenes (EF) with encapsulated noble gases were synthesized by collision of helium, neon or argon atoms with $\mathrm{C}_{60}{ }^{+}$or of noble gas cations with neutral $\mathrm{C}_{60} .{ }^{29}$ Since then, a plethora of endohedral fullerenes-as well as several synthetic derivatives-have been reported. Classical EFs are those of the type $M @ C_{n}, M_{2} @ C_{n}$, and $M_{3} @ C_{n}(M=L i, C a, \operatorname{Pr}, Y, B a, C e, N d$, and Gd, among others or noble gases and $60<\mathrm{n}<88){ }^{30}$ On the other hand, EFs that involve metal clusters are called endohedral metallofullerenes (EMFs). ${ }^{27}$ Among them, we can distinguish between the following types ${ }^{31}$: (i) metallic nitride EMFs ($\mathrm{M}_{3} \mathrm{~N} @ \mathrm{C}_{\mathrm{n}}$, $M=$ metal and $68<\mathrm{n}<96$); (ii) metallic carbide EMFs ($M_{2} C_{2} @ C_{n}, M_{3} C_{2} @ C_{n}, M_{4} C_{2} @ C_{n}$, and $M_{3} C H @ C_{n}$ with $M=$ metal and $68<n<92$); (iii) metallic oxide EMFs $\left(\mathrm{M}_{4} \mathrm{O}_{2} @ C_{n}\right.$ and $\mathrm{M}_{4} \mathrm{O}_{3} @ \mathrm{C}_{n}$); (iv) metallic sulfide EMFs ($\mathrm{M}_{2} \mathrm{~S} @ \mathrm{C}_{n}$); and (v) dimetallic EMFs ($\mathrm{M}_{2} @ \mathrm{C}_{n}$). The most well-known EMF is $\mathrm{Sc}_{3} \mathrm{~N} @ l_{h}-\mathrm{C}_{80}$ that is the third most abundant fullerene after C_{60} and $\mathrm{C}_{70} .^{32}$ Finally, another group of EFs contain small molecules such as $\mathrm{H}_{2},{ }^{33} \mathrm{H}_{2} \mathrm{O},{ }^{34}$ $\mathrm{CO},{ }^{35} \mathrm{HF},{ }^{36} \mathrm{CH}_{4},{ }^{37} \mathrm{NH}_{3},{ }^{38} \mathrm{~N}_{2}$ and $\mathrm{CO}_{2},{ }^{39}$ and O_{2} and $\mathrm{H}_{2} \mathrm{O}_{2},{ }^{40}$ which are introduced in many cases with a procedure called molecular surgery. ${ }^{41}$ With this procedure, Murata et al. have also introduced H_{2} into C_{70}, observing a relative population of $97: 3$ of $\mathrm{H}_{2} @ \mathrm{C}_{70}$ and $2 \mathrm{H}_{2} @ \mathrm{C}_{70} .^{42}$

It is known that there must be enough space inside the fullerene cage to encapsulate an atom, a cluster, or a molecule. Otherwise, the interaction between the encapsulated atom (molecule) and the fullerene cage becomes energetically unfavorable. ${ }^{27}$ Nonetheless, in some cases, the guest can also modify and define the shape of the host. ${ }^{43}$ The reported van der Waals radii of P and sp^{2} C atoms are both approximately $1.80 \AA,{ }^{44}$ and the P_{2} and P_{4} bond lengths are $1.893 \AA$ and $2.223 \AA$, respectively. ${ }^{45}$ Thus a total ($\mathrm{C} . .$. $\mathrm{P} \equiv \mathrm{P} \ldots \mathrm{C}$) distance of ca. $9.1 \AA$ would be required for encapsulation of P_{2}, while for P_{4} the distance would increase up to ca. $9.4 \AA$. By simple geometrical considerations, a size exclusion effect could be feasible by fullerenes between C_{70} (cage diameter $8.33 \AA$) and C_{90} (cage diameter $10.74 \AA$ Å). However, whether the encapsulation stabilization would be sufficient to overcome the thermodynamic challenge of P_{2} dimerization needs to be evaluated. This systematic
study aims to give a comprehensive overview of the structural and electronic features of endohedral fullerenes $C_{n}(n=50,60,70,80$, 90 , and 100) upon encapsulation of P_{2}, and also the evaluation of the dominating physicochemical factors.

2 | METHODS

All structures were optimized with a combination of Turbomole 7.3.1 software ${ }^{46}$ and Gaussian 16 C. 01 software. ${ }^{47}$ Initial fullerene geometries of a given isomer were extracted from the Fullerene software. ${ }^{48}$ This program uses the face-spiral algorithm of Manolopoulos and Fowler with a force field optimization to generate the fullerene coordinates. ${ }^{49}$ Geometry optimizations were performed at the BP86-D3 (BJ)/def2-SVP level of theory without symmetry constraints. Analytical harmonic frequencies were computed to determine the nature of stationary points and to calculate unscaled zero-point energies (ZPEs) as well as thermal corrections and entropic effects using the standard statistical-mechanics relationships for ideal gas. ${ }^{50}$ Single-point BP86-D3(BJ)/def2-TZVP calculations were also performed at the stationary points to improve the electronic energies. The basis set superposition error (BSSE) has been assessed through single-point calculations with the counterpoise method. ${ }^{51}$

Electronic structure analyses have been performed on the BP86-D3(BJ)/def2-TZVP wavefunction. Natural Population Analysis (NPA) ${ }^{52}$ and the associated Wiberg bond orders have been carried out using GENNBO 7.0 program. ${ }^{53}$ The formal partial charges were obtained using the topological fuzzy Voronoi cells (TFVC) atomic definition ${ }^{54}$ as implemented in APOST3D code. ${ }^{55}$

The nature of the host-guest interaction was investigated by means of the EDA, developed by Morokuma ${ }^{56}$ and by Ziegler and Rauk, ${ }^{57}$ at the BP86-D3(BJ)/TZ2P ${ }^{58}$ level of theory using ADF2019.101. Core electrons were treated by the frozen-core approximation and scalar relativistic effects have been incorporated by the zeroth-order regular approximation (ZORA). ${ }^{59}$

The bonding analysis focuses on the instantaneous interaction energy $\Delta \mathrm{E}_{\text {int }}$ of a bond $\mathrm{A}-\mathrm{B}$ between two fragments A and B in the particular electronic reference state and in the frozen geometry $A B$. This energy is divided into four main components (Equation 1).

$$
\begin{equation*}
\Delta E_{\text {int }}=\Delta E_{\text {elst }}+\Delta E_{\text {Pauli }}+\Delta E_{\text {orb }}+\Delta E_{\text {disp }} \tag{1}
\end{equation*}
$$

The term $\Delta E_{\text {elst }}$ corresponds to the quasiclassical electrostatic interaction between the unperturbed charge distributions of the prepared atoms (or fragments) and it is usually attractive. The Pauli repulsion $\Delta \mathrm{E}_{\text {Pauli }}$ is the energy change associated with the transformation from the superposition of the unperturbed densities of the isolated fragments to the wave function $\Psi_{0}=N \hat{A}\left[\Psi_{A} \Psi_{B}\right]$, which properly obeys the Pauli principle through explicit antisymmetrization (Â operator) and renormalization ($\mathrm{N}=$ constant) of the product wave function. It comprises the destabilizing interactions between electrons of the same spin on either fragment. The orbital interaction $\Delta \mathrm{E}_{\text {orb }}$ accounts for bond pair formation, charge transfer, and polarization effects from the intermediate state to the final $A B$ wavefunction. ${ }^{60}$ In the case
dispersion corrections ${ }^{51 b, 61}$ are introduced, the term $\Delta \mathrm{E}_{\text {disp }}$ is computed and added to Equation 1. Further details on the EDA method can be found in the literature. ${ }^{62}$ In the case of the dimers, relaxation of the fragments to their equilibrium geometries at the electronic ground state is termed $\Delta \mathrm{E}_{\text {prep }}$, because it may be considered as preparation energy for chemical bonding. The addition of $\Delta E_{\text {prep }}$ to the intrinsic interaction energy $\Delta \mathrm{E}_{\text {int }}$ gives the total energy $\Delta \mathrm{E}$, which is, by definition, the opposite sign of the bond dissociation energy D_{e}, in this case associated to the encapsulation energy:

$$
\begin{equation*}
\Delta E\left(-D_{e}\right)=\Delta E_{\text {int }}+\Delta E_{\text {prep }} \tag{2}
\end{equation*}
$$

3 | RESULTS AND DISCUSSION

3.1 | Geometries and energetics

The most stable isomer of C_{60} is the well-known $\mathrm{C}_{60}-I_{h}(\# 1812)$, the only C_{60} isomer obeying the isolated pentagon rule (IPR). ${ }^{63}$ Similarly, for C_{70} the experimentally characterized isomer is the $\mathrm{C}_{70}-D_{5 h}$ (\#8149) one. ${ }^{64}$ There is no IPR structure for C_{50} and previous computational studies point to the $C_{50}-D_{5 h}(\# 271)$ and $C_{50}-D_{3}(\# 270)$ isomers as the most stable ones, ${ }^{65}$ depending on the particular level of theory applied. For C_{80}, the experimentally characterized isomer is the $C_{80}-D_{2}(\# 31919) .{ }^{66}$ Sure et al. computational studied all 31,924 isomers of C_{80} and found several additional isomers close in energy. ${ }^{67}$ In particular, isomer $\mathrm{C}_{80}-D_{5 d}(\# 31918)$ was found the most stable one at PBE-D3/def2-TZVP level of theory, while $\mathrm{C}_{80}-D_{2}(\# 31919)$ was found the lowest energy isomer for DLPNO-CCSD(T)/CBS energies. Finally, Koenig et al. have recently experimentally characterized tubu$\operatorname{lar} C_{90}-D_{5 h}$ and $C_{100}-D_{5 d}$ isomers. ${ }^{68}$

It is worth noting that for C_{80}, the cage of I_{h} symmetry is the most unstable among the seven isomers of C_{80} that satisfy the IPR. ${ }^{69}$ However, this cage leads to the most favored EMFs when two La atoms or $\mathrm{a}_{3} \mathrm{~N}$ unit are present inside $\mathrm{C}_{80}-I_{h}$. This result shows that the relative stability of the different cages can change when atoms or metallic clusters are encapsulated inside the cage. However, as we will show later, interaction of P_{2} with the cage is relatively weak, and, therefore we do not expect major changes in the stability of the cages due to P_{2} encapsulation. Moreover, the determination of the global minima of all $P_{2} @ C_{n}, n=50,60,70,80,90$, and 100 is out of the scope of this work. In addition to the particular C_{n} isomer, one has to take into account that the P_{2} moiety can exhibit different orientations inside the cage. For this reason, we have performed an exploratory study of the $\mathrm{P}_{2} @ \mathrm{C}_{60}$ species. Thus, we have considered first the $\mathrm{C}_{60}-I_{h}$ isomer and up to four different well-defined orientations of the P_{2} unit inside the cage (see Table S3). Note that the encapsulation of P_{2} lowers the symmetry of the pristine cage, depending on its specific position inside. In the $D_{5 d}$ geometry, the internuclear $\mathrm{P}-\mathrm{P}$ bond axis is collinear with the center of opposing pentagon poles. Similarly, a $C_{3 v}$ symmetry is achieved by placing the P-P bond collinear with the center of opposing six-membered rings (6-MRs). The third and the fourth structures were considered where the $\mathrm{P}-\mathrm{P}$ bond axis is collinear with the midpoints of two opposing 6,6- and 5,6-type C-C bonds, with

TABLE 1 Relative energies (in $\mathrm{kcal} / \mathrm{mol}$) of selected C_{n} isomers for pristine cages and upon P_{2} encapsulation. The numbering of the isomers stems from lexicographically ordered face-spiral pentagon indices. The column Symm. Refers to the change of symmetry due to encapsulation. ${ }^{\text {a }}$

	Isomer	C_{n}		$\mathrm{P}_{2} @ \mathrm{C}_{\mathrm{n}}$	
		Symm.	$\Delta \mathrm{E}$	Symm.	$\Delta \mathrm{E}$
C_{50}	271	$D_{5 h}$	3.6	$D_{5 h} \rightarrow C_{2 v}$	0.0
	270	D_{3}	0.0	$\mathrm{D}_{3} \rightarrow \mathrm{C}_{3}$	8.1
C_{60}	1812	I_{h}	0.0	$I_{h} \rightarrow D_{5 d}$	0.0
	1809	$\mathrm{C}_{2 \mathrm{v}}$	36.5	$\mathrm{C}_{2 v} \rightarrow \mathrm{C}_{2 v}$	27.2
	1804	D_{3}	54.4	$\mathrm{D}_{3} \rightarrow \mathrm{D}_{3}$	60.7
C_{80}	31,919	D_{2}	0.6	$\mathrm{D}_{2} \rightarrow \mathrm{D}_{2}$	0.0
	31,918	$D_{5 d}$	2.8	$D_{5 d} \rightarrow D_{5 d}$	1.2
	31,920	$\mathrm{C}_{2 v}$	0.0	$\mathrm{C}_{2 v} \rightarrow \mathrm{C}_{2 v}$	0.5
	31,922	$\mathrm{C}_{2 v}$	5.0	$C_{2 v} \rightarrow C_{2 v}$	6.9
	31,923	$D_{5 h}$	5.7	$D_{5 h} \rightarrow D_{2}$	9.8

${ }^{\text {a }}$ All calculations performed at the BP86-D3(BJ)/def2-TZVP//BP86-D3 (BJ)/def2-SVP level of theory.
symmetries $D_{2 h}$ and $C_{2 h}$, respectively (see Figures $S 1-2$). Both the $D_{5 d}$ and $C_{2 h}$ structures correspond to local minima, while $D_{2 h}$ and $C_{3 v}$ correspond to first- and second-order saddle points at the current level of theory. All stationary points are almost degenerated (i.e., within $0.3 \mathrm{kcal} / \mathrm{mol}$), which would indicate that the host-guest interaction is not directional and essentially the P_{2} moiety exhibits free rotation inside the cage.

Next, we have considered the P_{2} encapsulation into two additional C_{60} cage isomers, namely the $C_{60}-C_{2 v}(\# 1809)$ and $C_{60}-D_{3}$ (\#1804). As shown in Table 1, relative energies with respect to the lowest energy $\mathrm{C}_{60}-I_{h}$ isomer are 36.5 and $54.4 \mathrm{kcal} /$ mol for the pristine cages and 27.2 and $60.7 \mathrm{kcal} / \mathrm{mol}$ for the respective P_{2} endohedral species. The values for the pristine cages are in good agreement with those reported by Sure et al. ${ }^{67}$ For small fullerenes, the effect of P_{2} encapsulation on the relative energies of the C_{60} isomers is not negligible. This effect can be seen in the case of C_{50}, where the (\#271) isomer is lower in energy than the (\#270), which is found to be lower in energy for the pristine cage. However, when considering larger fullerenes such as C_{80}, the relative energies of the isomers are barely affected by the encapsulation of P_{2}. Still, pristine $C_{80}-D_{2}(\# 31919)$ and $\mathrm{C}_{80}-D_{5 d}(\# 31918)$ isomers are found to be within $<1 \mathrm{kcal} / \mathrm{mol}$ at the current level of theory, and upon P_{2} encapsulation the lowest energy structure is $\mathrm{P}_{2} @ \mathrm{C}_{80}-\mathrm{D}_{2}(\# 31919)$ by merely $0.5 \mathrm{kcal} / \mathrm{mol}$ (see Table 1).

Figure 1 depicts the final optimized geometries of all at $P_{2} @ C_{n}$ and $\mathrm{P}_{4} @ C_{n}, \mathrm{n}=50-100$, systems, obtained the BP86-D3(BJ)/def2SVP level of theory together with their symmetry and the $\mathrm{P}-\mathrm{P}$ bond length. On the one hand, in $P_{2} @ C_{n}$ the $P-P$ bond axis is collinear with the center of pentagon poles when possible by the geometry of the cage, as described for the C_{60} cage. This leads to $P_{2} @ C_{70}-D_{5 h}$, $\mathrm{P}_{2} @ \mathrm{C}_{90}-C_{5 v}$ and $\mathrm{P}_{2} @ \mathrm{C}_{100}-C_{5 v}$ structures. In addition, only in the
larger cages (C_{90} and C_{100}) the center of mass of the P_{2} unit is slightly shifted from the geometrical center of the cage. When the cage is C_{50}, the P_{2} unit is almost collinear with two opposing $(5,6) \mathrm{C}-\mathrm{C}$ bonds, leading to a $\mathrm{P}_{2} @ \mathrm{C}_{50}-C_{2 v}$ structure. Finally, in $\mathrm{P}_{2} @ C_{80}-D_{2}$, the P_{2} bond axis is collinear with the center of two opposing $(6,6) \mathrm{C}-\mathrm{C}$ bonds of the cage. On the other hand, $\mathrm{P}_{4} @ \mathrm{C}_{\mathrm{n}}$ endohedrals achieve lower symmetry levels than $P_{2} @ C_{n}$. In this case, the P_{4} tetrahedron edges can point towards the center of the pentagon $\left(\mathrm{P}_{4} @ \mathrm{C}_{50}-\mathrm{C}_{5}\right)$ or the hexagon $\left(\mathrm{P}_{4} @ \mathrm{C}_{60}-C_{3 v}\right.$). Alternatively, one of the $\mathrm{P}-\mathrm{P}$ bonds matches opposing $(6,6) C-C$ bonds furnishing $P_{4} @ C_{70}-C_{2}, P_{4} @ C_{80}-D_{2}$, and $P_{4} @ C_{90}-C_{2}$. In C_{100}, the P_{4} molecule is shifted from the cage center, raising the $\mathrm{P}_{4} @ \mathrm{C}_{100}-C_{s}$.

At the current level of theory, the bond length of free P_{2} and P_{4} are 1.917 and $2.233 \AA$, respectively, in rather good agreement with the experimentally measured for $P_{2}(1.893 \AA)^{45 a}$ and for P_{4} $(2.223 \AA),{ }^{45 \mathrm{~b}}$ and also previous theoretical calculations (1.911, 2.221 A). ${ }^{13}$

The encapsulation of P_{2} into the smaller size cages induces a shortening of $\mathrm{P}-\mathrm{P}$ bond length, down to $1.823 \AA$ in the case of C_{50}. From C_{80} and larger cages the P_{2} distance remains essentially unaffected, already pointing to the absence of electronic effects (e.g. charge-transfer) from the cage.

Encapsulation energies, given by the following equation

$$
\begin{align*}
& \Delta E=E_{P_{2} @ C_{n}}-\left(E_{C_{n}}+E_{P_{2}}\right), \tag{3}\\
& \Delta E=E_{P_{4} @ C_{n}}-\left(E_{C_{n}}+E_{P_{4}}\right), \tag{4}
\end{align*}
$$

provide a hint about the feasibility of the formation of the endohedral species.

Table 2 gathers the electronic and Gibbs energy values obtained for the species considered. A single-point counterpoise correction to estimate the BSSE is also reported. The $\Delta \mathrm{G}$ values become monotonically more negative as the cage size grows up to C_{80}, when it stabilizes. The encapsulation becomes exergonic only from C_{70} on, with $\Delta \mathrm{G}$ values around $-30 \mathrm{kcal} / \mathrm{mol}$.

As mentioned in the introduction, the most stable allotrope of phosphorous is the tetra atomic $\mathrm{P}_{4} .{ }^{7}$

The electronic and Gibbs energy values for the formation of P_{2} from P_{4} (Scheme 2) according to our calculations are +32.8 and $+27.6 \mathrm{kcal} / \mathrm{mol}$, respectively.

Thus, the encapsulation would be thermodynamically favored in the cases where the corresponding $\Delta \mathrm{G}$ values are below $-27.6 \mathrm{kcal} /$ mol. As see in Table 2, $\mathrm{P}_{2} @ \mathrm{C}_{70}$ already reaches this value. However, we estimate a BSSE on the encapsulation energy of around $2 \mathrm{kcal} /$ mol, which would make the $\mathrm{P}_{2} @ \mathrm{C}_{70}$ formation still endergonic. Nonetheless, in the case of the larger endohedrals the BSSE-corrected encapsulation Gibbs energies are negative enough to compensate for dissociation of P_{4}, thus making these species feasible from a thermodynamically point of view.

We have also considered the encapsulation of P_{4} by the fullerenes, to yield the corresponding $\mathrm{P}_{4} @ \mathrm{C}_{\mathrm{n}}$ species. The electronic and Gibbs energies can be also found in the Table 2. Our calculations

FIGURE 1 Optimized geometries of endohedrals $P_{2} @ C_{n}$ and $P_{4} @ C_{n}(n=50,60,70,80,90$, and 100) at the BP86-D3(BJ)/def2-SVP level of theory. Symmetry of the endohedrals and average $P-P$ bond length in [$A \AA$].

TABLE 2 Change of symmetry after P_{2} or P_{4} encapsulation, electronic energy (ΔE), Gibbs energy (ΔG) for the encapsulation of P_{2} and P_{4} by $C_{n}\left(n=50,60,70,80,90\right.$, and 100), and basis set superposition error (BSSE) estimation. ${ }^{\text {a,b }}$

	Isomer	P_{2}				P_{4}			
		Symmetry	$\Delta \mathrm{E}$	BSSE	$\Delta \mathrm{G}$	Symmetry	$\Delta \mathrm{E}$	BSSE	$\Delta \mathrm{G}$
C_{50}	271	$D_{5 h} \rightarrow C_{2 v}$	87.1	2.9	96.1	$D_{5 h} \rightarrow C_{s}$	418.9	7.1	421.8
C_{60}	1812	$I_{h} \rightarrow D_{5 h}$	8.7	2.7	19.2	$I_{h} \rightarrow C_{3 v}$	215.1	4.1	217.1
C_{70}	8149	$D_{5 h} \rightarrow D_{5 h}$	-40.0	2.3	-27.8	$D_{5 h} \rightarrow C_{2}$	71.5	3.9	83.8
C_{80}	31,919	$\mathrm{D}_{2} \rightarrow \mathrm{D} 3_{2}$	-47.8	1.9	-36.4	$\mathrm{D}_{2} \rightarrow \mathrm{D}_{2}$	-7.8	3.6	7.4
C_{90}	99,873	$D_{5 h} \rightarrow C_{5 v}$	-46.3	1.8	-35.0	$D_{5 h} \rightarrow C_{2}$	40.3	3.2	52.8
C_{100}	285,464	$D_{5 d} \rightarrow C_{5 v}$	-44.7	1.8	-33.1	$D_{5 d} \rightarrow C_{s}$	53.7	3.1	66.2

Note: The numbering of the isomers stems from lexicographically ordered face-spiral pentagon indices.
${ }^{\text {a }}$ All values are in in kcal/mol.
${ }^{\mathrm{b}}$ All calculations have been performed at the BP86-D3(BJ)/def2-TZVP//BP86-D3(BJ)/def2-SVP level of theory.

SCHEME 2 Dissociation of P_{4}.
suggest a highly endergonic process in all cases with values well over $+50 \mathrm{kcal} / \mathrm{mol}$, except for the case of C_{80} where the spherical shape helps a better fit of the P_{4} inside the cage. Still, the overall formation of $\mathrm{P}_{4} @ \mathrm{C}_{80}$ is not favored with respect to that of $\mathrm{P}_{2} @ \mathrm{C}_{80}$.

We explored the possible relationship between the energetics of the encapsulation and geometrical parameters of the cages for $P_{2} @ C_{n}$. Two parameters have been introduced to quantify the deformation of the C_{n} cages upon encapsulation. On the one hand, $d_{\max }$ is defined as the difference (in \AA) between the maximum $\mathrm{C}-\mathrm{C}$ distance of the endohedral species and that of the pristine cage. On the other hand, one can also consider, for each C atom of the cage, which is the furthest one. Averaging over all C atoms gives an average maximum distance (the corresponding standard deviation would measure its

FIG URE 2 Encapsulation energy $\Delta E(\mathrm{kcal} / \mathrm{mol})$ for the reaction $P_{2} @ C_{n}(n=50,60,70,80,90$, and 100) with respect to the total geometrical deformation of the host and guest ($\mathrm{d}_{\text {aver }}+\Delta \mathrm{P}_{2}$).

TABLE $3 \quad \mathrm{P}-\mathrm{P}$ bond orders (BO , in a.u.) and partial charges $(\mathrm{Q}$, in a.u.) of the P_{2} and P_{4} unit from Hilbert-space (NAO) and real-space (TFVC) analyses

Endohedral	WBO (NAO)	FBO (TFVC)	Q (NAO)	Q (TFVC)
P_{2}	3.00	3.08	0.00	0.00
$\mathrm{P}_{2} @ \mathrm{C}_{50}$	2.71	2.09	0.19	0.60
$\mathrm{P}_{2} @ \mathrm{C}_{60}$	2.92	2.43	-0.20	0.29
$\mathrm{P}_{2} @ \mathrm{C}_{70}$	2.92	2.57	-0.04	0.26
$\mathrm{P}_{2} @ \mathrm{C}_{80}$	2.92	2.62	-0.02	-0.26
$\mathrm{P}_{2} @ \mathrm{C}_{90}$	2.89	2.58	-0.03	-0.26
$\mathrm{P}_{2} @ \mathrm{C}_{100}$	2.88	2.57	-0.03	-0.27
P_{4}	1.01	1.18	0.00	0.00
$\mathrm{P}_{4} @ \mathrm{C}_{50}$	0.83	0.78	0.52	2.46
$\mathrm{P}_{4} @ \mathrm{C}_{60}$	0.99	0.97	-0.09	0.47
$\mathrm{P}_{4} @ \mathrm{C}_{70}$	0.99	1.00	-0.06	0.46
$\mathrm{P}_{4} @ \mathrm{C}_{80}$	0.99	1.01	-0.03	0.47
$\mathrm{P}_{4} @ \mathrm{C}_{90}$	0.98	1.00	-0.02	0.50
$\mathrm{P}_{4} @ \mathrm{C}_{100}$	0.98	1.00	-0.03	0.51

Note: All calculations have been performed at the BP86-D3(BJ)/def2-TZVP//BP86-D3(BJ)/def2-SVP level of theory.
spherical character). The parameter $d_{a v e r}$ is defined as the difference of that average maximum $\mathrm{C}-\mathrm{C}$ distance between the endohedral and the free cage. Thus, $d_{\text {max }}$ and $d_{\text {aver }}$ have positive values accounting for the cage deformation upon encapsulation. The change in P_{2} bond length, ΔP_{2}, trivially accounts for the guest's deformation.

The values of $d_{\max }$ and $d_{\text {aver }}$ are summarized in Table $S 2$ of the Supporting Information. The encapsulation energies exhibit good correlation with the $d_{\text {aver }}$ parameter, but not quite if one focuses on the larger cages where the $d_{\text {aver }}$ values are much smaller than for C_{50} or C_{60}. Even worst correlation is found between the encapsulation energy and the P_{2} deformation. However, the encapsulation energies do correlate very well with the total host-guest geometry deformation (defined as $d_{\text {aver }}+\Delta P_{2}$), as shown in Figure 2. The smaller the deformation, the better.

4 | BONDING ANALYSIS

4.1 | Frontier molecular orbitals

It is not easy to trace the origin of the deformation of each cage. However, that of the P_{2} moiety should be related to the shape of the molecular orbitals in which the P_{2} unit is primarily involved and the corresponding $P-P$ bond order. In the free P_{2} species, the σ and two π bonding orbitals are occupied, consistent with a formal triple bond. Charge transfer from the cage to the P_{2} host would populate its antibonding orbitals, leading to a decrease of the bond order and a concomitant P-P stretch. Nevertheless, similarly, any charge transfer from the P_{2} moiety to the cage would depopulate $P-P$ bonding orbitals, causing the same effect. This means that the $\mathrm{P}-\mathrm{P}$ bond order
can only decrease upon encapsulation, disregarding the $\mathrm{P}-\mathrm{P}$ distance. A similar analysis involves P_{4} unit, where the frontier orbitals consist of $\sigma\left(e, t_{2}\right)$ and $\sigma^{*}\left(t_{2}\right) P-P$ orbitals. ${ }^{70}$ Thus, the observed compression of the $\mathrm{P}-\mathrm{P}$ bond upon encapsulation on the smaller cages is due to the steric pressure of the cage (this will be more evident from the EDA analysis below).

Table 3 gathers the P_{2} and P_{4} bond orders and partial charges obtained with a Hilbert-space (NAO) and a real-space (TFVC) atomic definitions. The large disagreement between different atomic population analysis in endohedral fullerenes has been pinpointed. For instance, in the endohedral borospherene complex $\mathrm{Cl} @ \mathrm{~B}_{39}$, the charge on Cl changes from -0.62 to 0.76 e depending on the method used. ${ }^{71}$ In that work, the authors found that realspace QTAIM charges are reliable. We use here real-space TFVC charges because they provide similar results to QTAIM charges at much lower cost.

The TFVC method predicts a charge transfer from the P_{2} moiety to the cage up to C_{70}, and the opposite effect from C_{80}. The charge transfer is very modest (ca. 0.3e) except for the smaller cage. On the other hand, NPA charges are usually negative for P_{2}, and much smaller. Such a charge flow is equally distributed over the entire cage (see Figure S3 in the ESI). As mentioned above, any charge transfer (positive or negative) should induce a decrease of the $P-P$ bond order. This is exactly what is observed with both schemes. The predicted effect on the bond order is much more pronounced for the TFVC method, going down to 2.09 for the $\mathrm{P}_{2} @ \mathrm{C}_{50}$ species, where the charge transfer is maximal. However, for the most interesting larger cages the bond order of the $\mathrm{P}-\mathrm{P}$ bond remains similar to that of the free P_{2} unit, indicating that upon encapsulation, the triple bond character of the P_{2} host is maintained. Similarly, P_{4} shows a significant charge transfer for the small cages, which is related to the reduction of the $\mathrm{P}-\mathrm{P}$ bond order. With the size increase, charge transfer becomes smaller, and the bond order approaches the one observed for free P_{4} molecule.

Molecular orbital analysis has been carried out focusing on the σ and π orbitals of the P_{2} fragment at the BP86-D3(BJ)/def2-TZVP level of theory. As shown on Figure 3, the encapsulation induces an inversion of the relative energies of the σ and π orbital of P_{2}. Thus, while for free P_{2} the σ is lower in energy, the contrary is found upon encapsulation for the smaller cages C_{50} and C_{60}. This is likely to be due to the increased Pauli repulsion suffered by the σ electrons that are closer to the cage than the π ones. Also, in the smaller cages (C_{50}, C_{60}), the σ and π orbital of P_{2} orbitals are energetically destabilized for the same reason. In fact, in both cases the σ orbital becomes the HOMO-1. Then, the larger the cage, the more stabilized the σ and π orbitals become. The contrary occurs for the σ^{*} and π^{*} ones (not shown). It is also worth to note that the degeneracy of the π and π^{*} orbitals is lost in the case of $\mathrm{P}_{2} @ \mathrm{C}_{50}$ and $\mathrm{P}_{2} @ \mathrm{C}_{80}$.

4.2 | Energy decomposition analysis

More detailed information about the nature of the interaction between P_{2} and $C_{n}(n=50,60,70,80,90$, and 100) fullerene cages

FIGURE 3 Molecular orbitals (isovalue $=0.04$) with σ and π symmetry for $P_{2} @ C_{n}(n=50,60,70,80,90$, and 100) with their energies in eV at the BP86-D3(BJ)/def2-TZVP//BP86-D3(BJ)/def2-SVP level of theory.

TABLE 4 Energy decomposition analysis for the interaction between the P_{2} / P_{4} and $C_{n}(n=50,60,70,80,90$, and 100) at the BP86-D3(BJ)/ TZ2P//BP86-D3(BJ)/def2-SVP level of theory

	$\mathrm{P}_{2} @ \mathrm{C}_{50}{ }^{\text {a }}$	$\mathrm{P}_{2} @ \mathrm{C}_{60}$	$\mathrm{P}_{2} @ \mathrm{C}_{70}$	$\mathrm{P}_{2} @ \mathrm{C}_{80}$	$\mathrm{P}_{2} @ \mathrm{C}_{90}$	$\mathrm{P}_{2} @ \mathrm{C}_{100}$
$\Delta \mathrm{E}_{\text {int }}$	65.6	2.6	-39.9	-47.1	-44.5	-42.6
$\Delta \mathrm{E}_{\text {Pauli }}$	437.2	220.0	90.4	54.7	53.1	57.6
$\Delta \mathrm{E}_{\text {elst }}{ }^{\text {b }}$	-223.3 (60.1\%)	-116.2 (53.5\%)	-50.9 (39.1\%)	-31.1 (30.5\%)	-28.7 (29.4\%)	-30.7 (30.7\%)
$\Delta \mathrm{E}_{\text {disp }}{ }^{\text {b }}$	-43.7 (11.7\%)	-56.1 (25.8\%)	-60.5 (46.4\%)	-57.9 (56.8\%)	-56.1 (57.5\%)	-55.6 (55.5\%)
$\Delta \mathrm{E}_{\text {orb }}{ }^{\text {b }}$	-104.6 (28.2\%)	-45.1 (20.7\%)	-18.9 (14.5\%)	-12.9 (12.7\%)	-12.8 (13.1\%)	-13.9 (13.8\%)
$\Delta \mathrm{E}_{\text {prep }}$	25.4	9.0	1.7	0.0	0.0	0.0
D_{e}	-91.0	-11.6	38.2	47.1	44.5	42.6
	$\mathrm{P}_{4} @ \mathrm{C}_{50}$	$\mathrm{P}_{4} @ \mathrm{C}_{60}$	$\mathrm{P}_{4} @ \mathrm{C}_{70}$	$\mathrm{P}_{4} @ \mathrm{C}_{80}$	$\mathrm{P}_{4} @ \mathrm{C}_{90}$	$\mathrm{P}_{4} @ \mathrm{C}_{100}$
$\Delta \mathrm{E}_{\text {int }}$	311.8	153.3	37.6	-27.6	13.8	22.7
$\Delta \mathrm{E}_{\text {Pauli }}$	1902.5	735.6	440.6	272.7	339.0	356.0
$\Delta \mathrm{E}_{\text {elst }}{ }^{\text {b }}$	-863.1 (54.3\%)	-358.1 (64.6\%)	-221.4 (54.9\%)	-147.8 (49.2\%)	-166.0 (51.0\%)	-174.2 (52.3\%)
$\Delta \mathrm{E}_{\text {disp }}{ }^{\text {b }}$	-64.8 (4.1\%)	-56.1 (10.1\%)	-94.1 (23.3\%)	-96.4 (32.1\%)	-89.2 (27.4\%)	-87.1 (26.1\%)
$\Delta \mathrm{E}_{\text {orb }}{ }^{\text {b }}$	-662.7 (41.7\%)	-140.6 (25.3\%)	-87.5 (21.7\%)	-56.1 (18.7\%)	-70.0 (21.5\%)	-72.0 (21.6\%)
$\Delta \mathrm{E}_{\text {prep }}$	114.5	65.6	36.9	21.1	28.8	33.4
D_{e}	-426.4	-218.9	-74.5	6.5	-42.5	-56.0

${ }^{\text {a }}$ All energy values are given in $\mathrm{kcal} / \mathrm{mol}$.
${ }^{\mathrm{b}}$ The value in parenthesis gives the percentage contribution to the total attractive interactions $\Delta \mathrm{E}_{\text {elst }}+\Delta \mathrm{E}_{\text {orb }}+\Delta \mathrm{E}_{\text {disp }}$.
are provided by the results of the EDA method. ${ }^{72}$ EDA has proven to be a useful tool to assess the nature of the chemical bond in main group compounds and transition metal compounds, ${ }^{73}$ as well as the interaction in endohedrals. ${ }^{74}$ Nonetheless, a recent discussion has been placed about the path function nature of the energy components. ${ }^{75}$ Within EDA scheme, the interaction formation between two
(or more) fragments is divided into Pauli repulsion, electrostatic interaction, and orbital interaction (for further details, see the computational section).

Table 4 shows the numerical results of the calculations where P_{2} and $C_{n}(n=50,60,70,80,90$, and 100) are both in singlet reference state in each fragment (see also Table S1). Thus, the P_{2} species keeps
the triple bond and the two lone pairs intact, according to the Frontier Molecular Orbitals displayed in Figure 3. The interaction energies $\Delta \mathrm{E}_{\text {int }}$ follows the same trend as the dissociation energy $\left(D_{e}\right)$ for the bigger fullerenes (from $n=70$ to 100). For those cases, the preparation of the fragments ($\Delta \mathrm{E}_{\text {prep }}$) does not carry particular energy penalties as there is no significant deformation of the P_{2} molecule or the fullerene cage upon complexation. This observation is in good agreement with the deformation analysis discussed above. Note, however, that this dissociation energy is negative for the C_{50} and C_{60} fullerenes and the preparation energy is not negligible, that is, 25.4 and $9.0 \mathrm{kcal} /$ mol, respectively.
$\Delta \mathrm{E}_{\text {int }}$ is positive for $\mathrm{C}_{50}(+65.6 \mathrm{kcal} / \mathrm{mol})$ and decreases with the size of the cage until $\mathrm{C}_{100}(-42.6 \mathrm{kcal} / \mathrm{mol})$. The dissection of the $\Delta \mathrm{E}_{\text {int }}$ reveals that the Pauli repulsion is a strongly destabilizing factor for smaller fullerenes cages, as there is not enough space for hosting the P_{2} molecule. As the size increases, the sum of the stabilizing interactions overcome the repulsive interaction. Interestingly, the dispersion interaction dominates the stabilization for C_{70} (46.4\%), C_{80} (56.8\%), C_{90} (57.5\%), and C_{100} (55.5\%). This observation is in good agreement with other reported systems. ${ }^{76}$ The second stabilizing contribution comes from the electrostatic interaction counting for 30% 40% for the stable encapsulations. The orbital interaction contributes with about $\sim 10 \%$ for the attractive interaction and it becomes bigger for the smaller cages, namely 28.2% for C_{50} and 20.7% for C_{60}. This small contribution of the orbital interaction term is in line with the partial charges computed in Table 4, revealing a small charge transfer from P_{2} to the fullerenes.

Table 4 also gathers the EDA results for the encapsulation of P_{4} with $C_{n}(n=50,60,70,80,90$, and 100) in the singlet reference state. As discussed above, this process is thermodynamically unfavorable for all cases, resulting in negative dissociation energy values. The only exception is C_{80}, where the internal space is enough to host P_{4} with a slightly positive D_{e} value of $6.5 \mathrm{kcal} / \mathrm{mol}$. Nonetheless, bigger cages C_{90} and C_{100} yield negative D_{e} values as a consequence of the spheroidal shape. The preparation energy values ($\Delta \mathrm{E}_{\text {prep }}$) suggest high energy penalties upon complexation, going from $114.5 \mathrm{kcal} / \mathrm{mol}\left(\mathrm{C}_{50}\right)$ to $21.1 \mathrm{kcal} / \mathrm{mol}\left(\mathrm{C}_{80}\right)$. In addition, the interaction energy values $\left(\Delta \mathrm{E}_{\text {int }}\right)$ reveal a destabilizing effect by the encapsulation caused by strong Pauli repulsion between the host and the guest.

5 | CONCLUSIONS

The feasibility of the encapsulation of P_{2} in C_{n} fullerenes has been computationally assessed for cages from $n=50$ to $n=100$. We show fullerenes C_{70} to C_{100} are suitable cages to incorporate P_{2} instead of P_{4}, which is the most stable form of phosphorous. Upon inclusion of thermal and entropic effects, only the formation of endohedral C_{80} to C_{100} overcome the energetic penalty for the required P_{4} dissociation into two P_{2} dimers. Orbital analysis indicates that the triple bond in P_{2} remains intact within the endohedral system, with very small hostguest charge-transfer. EDA shows that Pauli repulsion is roughly twice the amount of the (favorable) electrostatic interaction along the series.

The dispersion energy contribution amounts to ca. -55 to $-60 \mathrm{kcal} /$ mol for all cages except the smallest one. From $n=70$ on, the dispersion becomes dominant and accounts for the favorable encapsulation energies of P_{2} in C_{70} to C_{100} cages.

ACKNOWLEDGMENTS

The work at University of Saarland has been supported by the ERC StG (EU805113). E.S. thanks the Generalitat de Catalunya, Fons Social Europeu for the predoctoral fellowship (2021 FISDU 00362) and. P.S. was supported by the Ministerio de Ciencia, Innovación y Universidades (MCIU), grant number PGC2018-098212-B-C22. M. S. is grateful for the financial support from the Spanish MICINN (project PID2020-113711GB-IOO) and the Catalan DIUE (project 2017SGR39). The work has been performed under Project HPCEUROPA3 (INFRAIA-2016-1-730897), with the support of the EC Research Innovation Action under the H2020 Programme. In particular, E.S. gratefully acknowledges the support of M.Sc. Sergi Danés and the computing and technical support provided by HLRS Stuttgart. Open access funding enabled and organized by Projekt DEAL.

DATA AVAILABILITY STATEMENT

Data available in article supplementary material.

ORCID

Enric Sabater (i) https://orcid.org/0000-0002-2879-7627
Miquel Solà (1) https://orcid.org/0000-0002-1917-7450
Diego M. Andrada (D) https://orcid.org/0000-0003-2515-7859

REFERENCES

[1] (a) P. P. Power, Chem. Rev. 1999, 99, 3463. (b) R. C. Fischer, P. P. Power, Chem. Rev. 2010, 110, 3877.
[2] P. Jutzi, Angew. Chem., Int. Ed. 1975, 14, 232.
[3] (a) D. J. Liptrot, P. P. Power, Nat. Rev. Chem. 2017, 1, 1. (b) J. P. Wagner, P. R. Schreiner, Angew. Chem., Int. Ed. 2015, 54, 12274.
[4] V. Nesterov, D. Reiter, P. Bag, P. Frisch, R. Holzner, A. Porzelt, S. Inoue, Chem. Rev. 2018, 118, 9678.
[5] N. N. Greenwood, A. Earnshaw, Chemistry of the Elements, Elsevier, Oxford 2012.
[6] D. E. Canfield, A. N. Glazer, P. G. Falkowski, Science 2010, 330, 192.
[7] F. Bachhuber, J. von Appen, R. Dronskowski, P. Schmidt, T. Nilges, A. Pfitzner, R. Weihrich, Angew. Chem., Int. Ed. 2014, 53, 11629.
[8] H. Bock, H. Mueller, Inorg. Chem. 1984, 23, 4365.
[9] A. Kornath, A. Kaufmann, M. Torheyden, J. Chem. Phys. 2002, 116, 3323.
[10] S. G. Lias, J. E. Bartmess, J. F. Liebman, J. L. Holmes, R. D. Levin, W. G. Mallard, J. Phys. Chem. Ref. Data 1988, $17,1$.
[11] R. S. Mulliken, B. Liu, J. Am. Chem. Soc. 1971, 93, 6738.
[12] W. Kutzelnigg, Angew. Chem., Int. Ed. 1984, 23, 272.
[13] P. Jerabek, G. Frenking, Theo. Chem. Acc. 2014, 133, 1447.
[14] J. S. Figueroa, C. C. Cummins, Dalton Trans. 2006, 2161.
[15] J. Borm, G. Huttner, O. Orama, L. Zsolnai, J. Organomet. Chem. 1985, 282, 53.
[16] (a) B. M. Cossairt, N. A. Piro, C. C. Cummins, Chem. Rev. 2010, 110, 4164. (b) M. Caporali, L. Gonsalvi, A. Rossin, M. Peruzzini, Chem. Rev. 2010, 110, 4178. (c) M. Scheer, G. Balázs, A. Seitz, Chem. Rev. 2010, 110, 4236.
[17] (a) H. Schafer, D. Binder, D. Fenske, Angew. Chem., Int. Ed. 1985, 24, 522. (b) O. J. Scherer, M. Ehses, G. Wolmershäuser, Angew. Chem.,

Int. Ed. 1998, 37, 507. (c) B. Zarzycki, T. Zell, D. Schmidt, U. Radius, Eur. J. Inorg. Chem. 2013, 2013, 2051. (d) S. L. Yao, N. Lindenmaier, Y. Xiong, S. Inoue, T. Szilvasi, M. Adelhardt, J. Sutter, K. Meyer, M Driess, Angew. Chem., Int. Ed. 2015, 54, 1250. (e) S. L. Yao, T. Szilvasi, N. Lindenmaier, Y. Xiong, S. Inoue, M. Adelhardt, J. Sutter, K. Meyer M. Driess, Chem. Comm. 2015, 51, 6153. (f) L. N. Grant, B. Pinter, B. C. Manor, R. Suter, H. Grutzmacher, D. J. Mindiola, Chem. - Eur. J. 2017, 23, 6272. (g) J. Du, D. Hunger, J. A. Seed, J. D. Cryer, D. M King, A. J. Wooles, J. van Slageren, S. T. Liddle, J. Am. Chem. Soc. 2021, 143, 5343.
[18] N. A. Piro, J. S. Figueroa, J. T. McKellar, C. C. Cummins, Science 2006 313, 1276.
[19] (a) E. B. Hulley, P. T. Wolczanski, E. B. Lobkovsky, Chem. Comm. 2009, 6412. (b) L. Liu, D. A. Ruiz, F. Dahcheh, G. Bertrand, R. Suter, A. M. Tondreau, H. Grutzmacher, Chem. Sci. 2016, 7, 2335.
[20] C. Esterhuysen, G. Frenking, Chem. - Eur. J. 2003, 9, 3518.
[21] J. Sun, H. Verplancke, J. I. Schweizer, M. Diefenbach, C. Wurtele, M. Otte, I. Tkach, C. Herwig, C. Limberg, S. Demeshko, M. C. Holthausen, S. Schneider, Chem 2021, 7, 1952.
[22] Y. Wang, Y. Xie, P. Wei, R. B. King, H. F. Schaefer, P. V. R. Schleyer, G. H. Robinson, J. Am. Chem. Soc. 2008, 130, 14970.
[23] (a) O. Back, G. Kuchenbeiser, B. Donnadieu, G. Bertrand, Angew. Chem., Int. Ed. 2009, 48, 5530. (b) O. Back, B. Donnadieu, P. Parameswaran, G. Frenking, G. Bertrand, Nat. Chem. 2010, 2, 369.
[24] (a) S.-S. Asami, M. Okamoto, K. Suzuki, M. Yamashita, Angew. Chem., Int. Ed. 2016, 55, 12827. (b) D. W. N. Wilson, M. P. Franco, W. K. Myers, J. E. McGrady, J. M. Goicoechea, Chem. Sci. 2020, 11, 862.
[25] Y. Wang, T. Szilvási, S. Yao, M. Driess, Nat. Chem. 2020, 12, 801.
[26] N. Holzmann, G. Frenking, Z. Naturforsch. A. 2014, 69, 385-395.
[27] A. A. Popov, S. Yang, L. Dunsch, Chem. Rev. 2013, 113, 5989.
[28] J. R. Heath, S. C. O'Brien, Q. Zhang, Y. Liu, R. F. Curl, F. K. Tittel, R. E. Smalley, J. Am. Chem. Soc. 1985, 107, 7779.
[29] (a) K. A. Caldwell, D. E. Giblin, C. S. Hsu, D. Cox, M. L. Gross, J. Am. Chem. Soc. 1991, 113, 8519. (b) T. Weiske, D. K. Böhme, J. Hrušák, W. Krätschmer, H. Schwarz, Angew. Chem. Int. Ed. Eng. 1991, 30, 884 (c) D. E. Giblin, M. L. Gross, M. Saunders, H. Jimenez-Vazquez, R. J Cross, J. Am. Chem. Soc. 1997, 119, 9883.
[30] (a) Y. Kubozono, H. Maeda, Y. Takabayashi, K. Hiraoka, T. Nakai, S. Kashino, S. Emura, S. Ukita, T. Sogabe, J. Am. Chem. Soc. 1996, 118 6998. (b) J. Ding, S. Yang, J. Am. Chem. Soc. 1996, 118, 11254. (c) K Kobayashi, S. Nagase, M. Yoshida, E. Ōsawa, J. Am. Chem. Soc. 1997 119, 12693. (d) H. Okada, T. Komuro, T. Sakai, Y. Matsuo, Y. Ono, K Omote, K. Yokoo, K. Kawachi, Y. Kasama, S. Ono, R. Hatakeyama, T. Kaneko, H. Tobita, RSC Adv. 2012, 2, 10624.
[31] (a) M. N. Chaur, F. Melin, A. L. Ortiz, L. Echegoyen, Angew. Chem., Int. Ed. 2009, 48, 7514. (b) X. Zhang, Y. Wang, R. Morales-Martínez, J. Zhong, C. de Graaf, A. Rodríguez-Fortea, J. M. Poblet, L. Echegoyen L. Feng, N. Chen, J. Am. Chem. Soc. 2018, 140, 3907. (c) C. ForoutanNejad, J. Vícha, R. Marek, M. Patzschke, M. Straka, Phys. Chem. Chem. Phys. 2015, 17, 24182. (d) A. Jaroš, C. Foroutan-Nejad, M. Straka, Inorg. Chem. 2020, 59, 12608.
[32] R. Valencia, A. Rodríguez-Fortea, A. Clotet, C. de Graaf, M. N. Chaur, L. Echegoyen, J. M. Poblet, Chem. - Eur. J. 2009, 15, 10997.
[33] K. Komatsu, M. Murata, Y. Murata, Science 2005, 307, 238.
[34] (a) K. Kurotobi, Y. Murata, Science 2011, 333, 613. (b) E. E. Maroto, J. Mateos, M. Garcia-Borràs, S. Osuna, S. Filippone, M. Á. Herranz, Y. Murata, M. Solà, N. Martín, J. Am. Chem. Soc. 2015, 137, 1190.
[35] S.-I. Iwamatsu, C. M. Stanisky, R. J. Cross, M. Saunders, N. Mizorogi, S. Nagase, S. Murata, Angew. Chem., Int. Ed. 2006, 45, 5337.
[36] (a) A. Krachmalnicoff, R. Bounds, S. Mamone, M. H. Levitt, M. Carravetta, R. J. Whitby, Chem. Comm. 2015, 51, 4993. (b) S. Vidal M. Izquierdo, S. Alom, M. Garcia-Borràs, S. Filippone, S. Osuna, M Solà, R. J. Whitby, N. Martín, Chem. Comm. 2017, 53, 10993.
[37] S. Bloodworth, G. Sitinova, S. Alom, S. Vidal, G. R. Bacanu, S. J. Elliott, M. E. Light, J. M. Herniman, G. J. Langley, M. H. Levitt, R. J. Whitby, Angew. Chem., Int. Ed. 2019, 58, 5038.
[38] K. E. Whitener, M. Frunzi, S.-I. Iwamatsu, S. Murata, R. J. Cross, M. Saunders, J. Am. Chem. Soc. 2008, 130, 13996.
[39] T. Futagoishi, M. Murata, A. Wakamiya, Y. Murata, Angew. Chem., Int. Ed. 2015, 54, 14791.
[40] Y. Li, N. Lou, D. Xu, C. Pan, X. Lu, L. Gan, Angew. Chem., Int. Ed. 2018, 57, 14144.
[41] M. Murata, Y. Murata, K. Komatsu, Chem. Comm. 2008, 6083.
[42] (a) M. Murata, S. Maeda, Y. Morinaka, Y. Murata, K. Komatsu, J. Am. Chem. Soc. 2008, 130, 15800. (b) Y. Murata, S. Maeda, M. Murata, K. Komatsu, J. Am. Chem. Soc. 2008, 130, 6702. (c) N. J. Turro, A. A. Marti, J. Y. C. Chen, S. Jockusch, R. G. Lawler, M. Ruzzi, E. Sartori, S. C. Chuang, K. Komatsu, Y. Murata, J. Am. Chem. Soc. 2008, 130, 10506.
[43] (a) S. Jalife, J. Arcudia, S. Pan, G. Merino, Chem. Sci. 2020, 11, 6642 (b) S. Jalife, S. Mondal, J. L. Cabellos, S. Pan, M. Á. Méndez-Rojas, I. Fernández, G. Frenking, G. Merino, ChemistrySelect 2016, 1, 2405. (c) M. Garcia-Borràs, S. Osuna, M. Swart, J. M. Luis, M. Solà, Angew. Chem., Int. Ed. 2013, 52, 9275. (d) A. Rodríguez-Fortea, N. Alegret, A. L. Balch, J. M. Poblet, Nat. Chem. 2010, 2, 955. (e) Y. Wang, S. Díaz-Tendero, F. Martín, M. Alcamí, J. Am. Chem. Soc. 2016, 138, 1551.
[44] M. Mantina, A. C. Chamberlin, R. Valero, C. J. Cramer, D. G. Truhlar, J. Phys. Chem. A 2009, 113, 5806.
[45] (a) K. P. Huber, G. Herzberg, Molecular Spectra and Molecular Struc ture: IV, Springer US, Constants of Diatomic Molecules 1979, p. 8. (b) N. J. Brassington, H. G. M. Edwards, D. A. Long, J. Raman. Spectrosc. 1981, 11, 346.
[46] L. C. Ducati, N. Takagi, G. Frenking, J. Chem. Phys. A 2009, 113, 11693.
[47] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. J. A. Montgomery, J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, Gaussian 16, Revision C.01. Gaussian, Inc., Wallingford CT 2019.
[48] P. Schwerdtfeger, L. Wirz, J. Avery, J. Comput. Chem. 2013, 34, 1508.
[49] P. W. Fowler, D. E. Manolopoulos, An Atlas of Fullerenes, Dover Publications, Mineola, New York 2006.
[50] C. Y. Peng, P. Y. Ayala, H. B. Schlegel, M. J. Frisch, J. Comput. Chem. 1996, 17, 49.
[51] (a) A. D. Becke, E. R. Johnson, J. Chem. Phys. 2005, 123, 154101. (b) S. Grimme, S. Ehrlich, L. Goerigk, J. Comput. Chem. 2011, 32, 1456. (c) E. R. Johnson, A. D. Becke, J. Chem. Phys. 2005, 123, 24101.
[52] A. E. Reed, R. B. Weinstock, F. Weinhold, J. Chem. Phys. 1985, 83, 735.
[53] E. D. Glendening, J. K. Badenhoop, A. E. Reed, J. E. Carpenter, J. A. Bohmann, C. M. Morales, P. Karafiloglou, C. R. Landis, F. Weinhold, GENNBO 7.0, Theoretical Chemistry Institute, University of Wisconsin, Madison 2018.
[54] P. Salvador, E. Ramos-Córdoba, J. Chem. Phys. 2013, 139, 71103.
[55] P. Salvador, E. Ramos-Córdoba, M. Gimferrer, Universitat de Girona, Girona 2020
[56] K. Morokuma, J. Chem. Phys. 1971, 55, 1236.
[57] (a) T. Ziegler, A. Rauk, Inorg. Chem. 1979, 18, 1558. (b) T. Ziegler, A. Rauk, Inorg. Chem. 1979, 18, 1755.
[58] J. Krijn, E. J. Baerends, Fit Func. HFS-Method, 1984
[59] E. Van Lenthe, E. J. Baerends, J. G. Snijders, J. Chem. Phys. 1993, 99, 4597.
[60] F. M. Bickelhaupt, N. M. M. Nibbering, E. M. Van Wezenbeek, E. J. Baerends, J. Phys. Chem. 1992, 96, 4864.
[61] S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 2010, 132, 132.
[62] (a) F. M. Bickelhaupt, E. J. Baerends, in Reviews in computational chemistry, Vol. 15 (Eds: K. B. Lipkowitz, D. B. Boyd). Wiley, Weinheim 2000, p. 1. (b) G. te Velde, F. M. Bickelhaupt, E. J. Baerends, C. Fonseca Guerra, S. J. A. van Gisbergen, J. G. Snijders, T. Ziegler, J. Comput. Chem. 2001, 22, 931.
[63] H. Kroto, Nature 1987, 329, 529.
[64] H. Ajie, M. M. Alvarez, S. J. Anz, R. D. Beck, F. Diederich, K. Fostiropoulos, D. R. Huffman, W. Kraetschmer, Y. Rubin, et al, J. Phys. Chem. 1990, 94, 8630.
[65] X. Zhao, J. Phys. Chem. B 2005, 109, 5267.
[66] F. H. Hennrich, R. H. Michel, A. Fischer, S. Richard-Schneider, S. Gilb, M. M. Kappes, D. Fuchs, M. Bürk, K. Kobayashi, S. Nagase, Angew. Chem., Int. Ed. 1996, 35, 1732.
[67] R. Sure, A. Hansen, P. Schwerdtfeger, S. Grimme, Phys. Chem. Chem. Phys. 2017, 19, 14296.
[68] R. M. Koenig, H.-R. Tian, T. L. Seeler, K. R. Tepper, H. M. Franklin, Z.-C. Chen, S.-Y. Xie, S. Stevenson, J. Am. Chem. Soc. 2020, 142, 15614.
[69] T. G. Schmalz, W. A. Seitz, D. J. Klein, G. E. Hite, J. Am. Chem. Soc. 1988, 110, 1113.
[70] S. Evans, P. J. Joachim, A. F. Orchard, D. W. Turner, Int. J. Mass Spectrom. 1972, 9, 41.
[71] A. J. Stasyuk, M. Solà, A. A. Voityuk, Sci. Rep. 2018, 8, 2882.
[72] L. L. Zhao, M. von Hopffgarten, D. M. Andrada, G. Frenking, WIREs Comput. Mol. Sci. 2018, 8, e13450.
[73] (a) T. Sergeieva, D. Mandal, D. M. Andrada, Chem. - Eur. J. 2021, 27, 10601. (b) S. Danés, C. Muller, L. Wirtz, V. Huch, T. Block, R. Pottgen, A. Schäfer, D. M. Andrada, Organometallics 2020, 39, 516. (c) M. K. Sharma, D. Rottschäfer, B. Neumann, H. G. Stammler, S. Danés, D. M. Andrada, M. van Gastel, A. Hinz, R. S. Ghadwal, Chem. - Eur. J. 2021, 27, 5803. (d) G. Frenking, I. Fernández, N. Holzmann, S. Pan, I. Krossing, M. F. Zhou, JACS Au 2021, 1, 623.
[74] C. Foroutan-Nejad, M. Straka, I. Fernández, G. Frenking, Angew. Chem., Int. Ed. 2018, 57, 13931.
[75] (a) D. M. Andrada, C. Foroutan-Nejad, Phys. Chem. Chem. Phys. 2020, 22, 22459. (b) A. Krapp, G. Frenking, Chem. - Eur. J. 2007, 13, 8256. (c) J. Poater, D. M. Andrada, M. Solà, C. Foroutan-Nejad, Phys. Chem. Chem. Phys. 2022, 24, 2344. (d) M. Solà, M. Duran, J. Poater, Theor. Chem. Acc. 2021, 140, 33.
[76] R. Sure, R. Tonner, P. Schwerdtfeger, J. Comput. Chem. 2015, 36, 88.

SUPPORTING INFORMATION

Additional supporting information may be found in the online version of the article at the publisher's website.

How to cite this article: E. Sabater, M. Solà, P. Salvador, D. M. Andrada, J. Comput. Chem. 2023, 44(3), 268. https://doi.org/ 10.1002/jcc. 26884

