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Abstract: This paper presents a novel algorithm to dock a non-holonomic Autonomous Underwater
Vehicle (AUV) into a funnel-shaped Docking Station (DS), in the presence of ocean currents. In
a previous work, the authors have compared several docking algorithms through Monte Carlo
simulations. In this paper, a new control algorithm is presented with a goal to improve over the
previous ones to fulfil the specific needs of the ATLANTIS project. Performance of the new proposed
algorithm has been compared with the results of the previous study, using the same environemnt on
the Stonefish hardware-in-the-loop simulator.
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1. Introduction

The AUV technologies presented a significant improvement during the last years.
Several autonomous missions were developed in the field [1,2]. Nowadays, the common
operating procedure of the AUVs is to deploy them (usually with a ship), develop the mis-
sion, and, finally, recover; in most of the cases during the same operational day. The natural
next development for the consolidation of this technology is the creation of DSs, which can
allow the AUVs to extend the operational time in the field. The DS have to offer protection,
high-bandwidth communication channels, and the capacity to recharge the vehicle’s batter-
ies. In the literature, several examples of DS systems can be found [3–8]. Each DS concept
was tailored to a specific AUV and used its own perception and docking strategies. Several
descriptive surveys about docking can already be found in the literature: [9–11].

Previously, the team from the University of Girona developed a prototype of a funnel-
shaped DS that relied on an acoustic transponder and light beacons, in order to localize
it from the vehicle [12]. The conclusions of those experiments have shown the need of
developing a controller that considers the ocean currents. Moreover, in turbid water
scenarios, the vision system was not appropriate. In the ATLANTIS project [13], one of the
technologies that must be demonstrated is the semi-permanent deployment of the Sparus
II AUV, using a docking station on the seabed. With this motivation, the authors have
developed the following study.

In a previous publication [14], several algorithms were studied to cope with the
autonomous docking, using a non-holonomic AUV, in the presence of ocean currents: the
Pursuit Guidance with current compensation controller presented by [4,15], the Cross-track
controller used in [3,16], the Fuzzy controller used in [17,18], the Touchdown alignment
controller described in [19], the Sideslip controller based on [20], and the Sliding path
controller described in [21]. None of the studied solutions offers satisfactory behavior when
dealing with ocean current velocities higher than the docking velocity. Thus, a proposal of
a novel control algorithm is presented in this work.

The paper is organized as follows: Section 2 presents the novel algorithm. Section 3
presents the experimental setup used in order to test the algorithm. Section 4 analyses the
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performance of the algorithm in different scenarios. Obtained results and the comparison
with the other methods are presented in Section 5, discussed in Section 6, and finally,
the conclusions are drawn in Section 7.

2. Proposal: Managed Surge Controller

This section presents the novel method to deal with the ocean currents controlling a
non-holonomic AUV. The proposed method is called Managed Surge Controller (MSC).

2.1. Assumptions
2.1.1. Assumption 1

We assume that the AUV motion is described using two degrees of freedom: surge
and yaw. This is a consequence of the commonly adopted strategy of neglecting sway for
under-actuated vehicles, maneuvering at low speed.

2.1.2. Assumption 2

The inner loop controllers can track the desired surge velocity (ud) and the desired
yaw (ψd) with good accuracy.

2.1.3. Assumption 3

The velocity of the ocean currents is constant, irrotational, and bounded.

2.1.4. Assumption 4

The vehicle can measure its surge velocity, yaw angle, and the ocean current velocity.

2.1.5. Assumption 5

The vehicle can measure its relative position with respect to the DS.

2.2. Concepts

Inspired by the analysis done in [14], the present method improves the results obtained
with the previously studied methods because it can deal with ocean currents, the velocity
of which are larger than the velocity of the docking of the AUV.

Figure 1 presents the basic variables involved in the process. Two different reference
frames are presented, the {D} frame located at the position of the DS, and the {B} frame
attached to the AUV body. The velocity in the {D} frame are symbolised by ẋ and ẏ with
respect to the ground, and the velocities in the {B} frame are represented by u and v with
respect to the water.

Figure 1. Geometrical representation of basic variables. Two different reference frames are presented,
the {D} frame located at the position of the DS, and the {B} frame attached to the AUV body.
The velocity in the {D} frame are symbolised by ẋ and ẏ with respect to the ground, and the velocities
in the {B} frame are, with respect to the water, represented by u and v.

Figure 2 shows the velocities involved in the controller: (1) the ground speed (Dη̇1B
Dη̇1B
Dη̇1B = [ẋ ẏ]T),

and (2) the through water velocity (Bν1B
Bν1B
Bν1B = [u v]T). Finally, the ocean current vector
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(Dη̇c
Dη̇c
Dη̇c = [ẋc ẏc]T) as well as the desired docking velocity (Dη̇1D

Dη̇1D
Dη̇1D = [ẋD 0]T) are represented

in the inertial {D} frame.

Figure 2. Geometrical representation of basic velocities.

2.2.1. Model of the System

The kinematic system is represented by the following equations, recall Figure 1 and
Figure 2:

D η̇1B
D η̇1B
D η̇1B = DRB

DRB
DRB · Dν1B

Dν1B
Dν1B + D η̇c

D η̇c
D η̇c (1)[

ẋ
ẏ

]
=

[
cos(ψ) − sin(ψ)
sin(ψ) cos(ψ)

]
·
[

u
v

]
+

[
ẋc
ẏc

]
(2)

This equation, assuming a negligible sway velocity (Assumption 1 ), simplifies to:

ẋ = u cos(ψ) + ẋc, (3)

ẏ = u sin(ψ) + ẏc. (4)

2.2.2. Docking Scenarios

According to Figure 3, three docking scenarios can be defined, depending on the robot
(Dν1
Dν1
Dν1), current (Dνc

Dνc
Dνc) and docking (Dν1D

Dν1D
Dν1D

) velocities in the xD axis:

• Scenario A (ẋc ≤ 0): The current opposes to the robot speed. Therefore, a higher
through water robot speed is required to achieve the desired inertial docking velocity.

• Scenario B (ẋc > 0 and ẋc < ẋD ): The current speed, being smaller than the desired
docking velocity, adds to the through water robot velocity to achieve the inertial
docking speed.

• Scenario C (ẋc ≥ ẋD ): A current speed higher than the docking velocity, requires a
backward through-water robot velocity to achieve the desired inertial docking velocity.

In scenarios A and B the surge velocity will normally be positive and the AUV heading
will be opposite to ẏc. In contrast, in scenario C, the surge velocity will normally be negative
and the heading will be in the direction of ẏc.
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Figure 3. Possible docking scenarios.

2.2.3. Crab Angle

To be able to compensate the lateral ocean current (ẏc) with a non-holonomic AUV it
is necessary to use a crab angle (ψc). This crab angle has the goal of aligning the robot to
the axis of the DS (ẏ = 0), while keeping the desired docking velocity (D η̇1D

D η̇1D
D η̇1D ). Therefore (2)

can be rewritten as: [
ẋD

0

]
=

[
cos(ψc) − sin(ψc)
sin(ψc) cos(ψc)

][
u
0

]
+

[
ẋc
ẏc

]
. (5)

Solving the system, the crab angle can be expressed as:

tan(ψc) =
−ẏc

ẋD − ẋc
, (6)

assuming ẋD − ẋc 6= 0.
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2.2.4. Entrance Problem

The problem of making a torpedo-shaped AUV enter a funnel-shaped DS can be
modeled with the simplification that the DS is represented by an isosceles triangle and the
AUV by a straight line directed along its main axis (see Figure 4).

Figure 4. Geometrical problem simplification.

If the symmetry of the system is taken into account, there are only three successful
docking scenarios (Figure 5):

• Scenario I: It represents the ideal entrance, where the AUV enters in a straight line
with the same heading as the DS and aligned with its origin DS.

• Scenario II: The robot heading is not aligned to the xD axis, but misaligned to the right.
• Scenario III: The robot heading is not aligned to the xD axis, but misaligned to the left.

In Scenario II and III, the AUV completes the docking thanks to the geometrical
properties of the system. Both scenarios differ in the energy lost during the collision,
Scenario III being the one with the highest losses. Following the analysis of energy lost
during the collision (reported in [14]), the AUV should try to perform Scenario I if possible,
targeting Scenario II alternatively, and using Scenario III as the last resort. It is worth noting
that Scenario I is not easy to perform with Sparus II AUV, in presence of ocean currents,
due to its non-holonomic nature.

Figure 5. Successful entrance scenarios.
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2.2.5. Path

A crab angle is needed to compensate for the ocean currents, therefore the method
creates a path parallel to the DS axis at an appropriate distance from it, to take advantage
of the torpedo-like shape of the AUV and the funnel-shaped DS, see Figure 6.

Figure 6. Path concept representation.

The path is created calculating a gap (yg), with respect to the axis of the DS using the
crab angle, the DS and the AUV geometry. In order to calculate this gap, let us consider the
geometry of the problem when the AUV reaches the DS in scenarios II and III (Figure 7).
For the entrance in Scenario II, the gap can be calculated as:

yg,I I = (F + l/2) sin(−ψc). (7)

Figure 7. Gap calculus concept.

The maximum crab angle admissible to enter to the DS in Scenario II is computed
using the simplified funnel shape:

ψcI I = atan(Fy/Fx), (8)

This allows to calculate the maximum gap as:

yg = (F + l/2) sin(atan(Fy/Fx)). (9)

For crab angles larger than ψcI I , the system needs to perform the entrance Scenario
III. The maximum crab angle for the entrance Scenario III, in case of 2 Fy < l/2 (that fulfils
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the mechanic characteristics of the system presented), can be calculated as (see Figure 8,
and recall Figure 5):

ψcI I I =
π

2
− atan

(
Fy/Fx

)
, (10)

Figure 8. Maximum entrance Scenario III gap calculus concept.

in order to guarantee that the AUV does not hit a disfavoured part of the DS. In this
case the ygI I I is fixed to be equal to Fy/2 (see Figure 7). In summary, (11) sets the value of
yg for all the cases as:

yg =

{
−(F + l/2) sin(ψc), −ψcI I ≤ ψc ≤ ψcI I

−sign(ψc) Fy/2, |ψc| > ψcI I .
(11)

2.2.6. Path Following

The Sparus II AUV has direct control over the surge velocity (i.e., u) as well as over
the heading (i.e., ψ). Let the cross-track path error be defined as:

e = y− yg (12)

With this notation, the objectives of the path following the controller are to achieve:

lim
t→∞

e(t) = 0 (13)

lim
t→∞

ψd(t) = ψc (14)

lim
t→∞

ud(t) =
ẋD − ẋc

cos(ψc)
, (15)

2.3. Control Law

The control law regulates the desired heading (ψd) and the desired surge (ud). The
desired heading is defined as:

ψd = ψc + β, (16)

where β is a correction term depending on the look-ahead distance (∆) and the cross-track
error (e), see Figure 9:
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tan(β) = − e
∆

, (17)

where ∆ is defined by a constant value (k∆ > 0) and a sign criteria (21):

∆ =
k∆

sign(ẋss)
, (18)

being ẋss the through water velocities of the AUV in the steady state in the {D} frame (i.e.,
when e is zero).

Figure 9. Beta concept representation.

The desired surge velocity is given by:

ud =
ẋss

cos(ψ)
− c, (19)

where c is a correction term, introduced to adjust the response of the system:

c = k1 atan(k2 e) sign(ψ); k1, k2 > 0 (20)

The correction modifies the basic velocity representation from Figure 2 into the one
shown in Figure 10. The steady state inertial velocities can be calculated as:

ẋss = ẋ− ẋc, (21)

ẏss = −ẏc, (22)

where ẋ is set as ẋD .

Figure 10. Geometrical representation of corrected velocities. Here, ẋss, and ẏss are through water
velocities of the AUV in the steady state in the {D} frame (i.e., when e is zero); uss the through water
velocity of the AUV in the steady state in the {D} frame; and ẋC , ẏC , and uC the velocities due to c.

2.3.1. State Space Formulation

The system evolution is represented by the cross-track error (12), which, according to
(4), has the following time derivative:

ė = u sin(ψ) + ẏc. (23)
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Now, assuming u = ud and ψ = ψd, the error dynamics are given by:

ė =
[

ẋss

cos(ψd)
− k1 atan(k2 e) sign(ψd)

]
sin(ψd) + ẏc (24)

2.3.2. Equilibrium Points

An equilibrium point is reached when ė = 0, i.e., when ψd = ψc. If this condition
is applied to (24), it follows that eeq = 0 if ẋc 6= ẋD , ∆ 6= 0, k1 > 0, and k2 > 0. In order
to fulfill this condition, and because ẋD is a value that we can set, in the case of having
ẋD = ẋc the ẋD will be increased according to:

ẋD =


ẋD , ẋss ∈ R \ (−0.2, 0.2)
ẋc + 0.2, ẋss ∈ [0.0, 0.2)
ẋc − 0.2, ẋss ∈ (−0.2, 0.0)

(25)

2.3.3. Setting the Gains

The definition of k1 and k2 corresponds to the maximum velocity and acceleration that
the correction c (20) will impose on the system. Considering the characteristics of the Sparus
II, a maximum correction velocity of 0.7 m/s, and a maximum correction acceleration of
0.5 m/s2 are desirable.

In order to set k1, the function y = atan(x) is analysed. This function has a hori-
zontal asymptote at y = π/2 and in y = −π/2. Taking into account the performance
of Sparus II, the horizontal asymptote of (20) must be set to y = 0.7 m/s, consequently
k1 = 0.7 · 2/π ≈ 0.4456 m/s. To compute the maximum rate of change of the correction,
both k2 and k∆ must be known. For this reason, in a first step k2 is set as 1 m−1.

The parameter k∆ is computed in the Appendix A, assuming k2 = 1 m−1, in order to
fulfil the stability conditions formulated in Section 2.3.5.

2.3.4. Domain of the Controller

In order to evaluate the controller presented in this paper, a certain domain is set:
X = {ẋc | − 0.5 ≤ ẋc ≤ 0.5}[m/s]
Y = {ẏc | − 0.5 ≤ ẏc ≤ 0.5}[m/s]
E = {e | − 10 ≤ e ≤ 10}[m]

(26)

Ocean current velocities must be within the range of those that the Sparus II AUV
can withstand. Since the docking maneuver begins after a homing process, we can ensure
that the cross-track error of the AUV position belongs to the stability domain. If during
the maneuver, the cross-track error falls outside of the domain, the docking maneuver is
cancelled and the whole process is repeated.

2.3.5. Stability

In order to demonstrate the stability of the system using the Lyapunov Direct Method,
the following Lyapunov candidate is proposed:

V(e) =
1
2

e2, (27)

that fulfills the first and second Lyapunov conditions: V(0) = 0, and V(e) > 0 ∀e 6= 0 .
The first order time derivative of the Lyapunov candidate can be expressed as:

V̇ = e ė. (28)
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To demonstrate exponential stability, we show that the system fulfills the condition
(following [22]):

V̇ ≤ −λ V, (29)

for some λ > 0. The mathematical proof of stability is given in the Appendix A.

2.3.6. Maximum Acceleration Verification

In Section 2.3.3, a k2 = 1 m−1 was assumed to be able to calculate a k∆ that fulfils the
stability conditions. In order to verify that the obtained gains do not result in surpassing
the assumed capabilities of the Sparus II, for the presented controller, an optimization
problem was formulated. In the problem, a maximum rate of change of the correction (c) is
searched for, to check that it is not exceeding the maximum assumed acceleration of the
robot ċ = 0.5 m/s2. First, we simplify (20) as:

c′ = k1atan(k2e), (30)

to avoid deriving the signum function, and because the maximum value of ċ is not affected.
The rate of change of c′ is given by:

ċ′ =
k1k2

k2
2e2 + 1

ė. (31)

The optimization problem is formulated as follows:

max
ẋc ,ẏc ,e

ċ′

s.t. ẋc ∈ X
ẏc ∈ Y
e ∈ E

(32)

Considering the domain set for the controller (Section 2.3.4), the parameters:
ẋD = 0.3 m/s
k1 = 0.4456 m/s
k2 = 1 m−1,

(33)

and together with (25), it can be deduced that three optimization problems must be solved for
three subsets of the ẋc domain: X1 = [−0.5, 0.1], X2 = [0.1, 0.3] and X3 = [0.3, 0.5], and the
maximum of these three problems is the solution in the whole domain (26). The problem (32)
was solved using the IPOPT [23] solver and yielded a result of (0.44979 m/s2).

2.3.7. Minimum Docking Distance

With the control laws defined, the minimum necessary distance to successfully perform
docking, from a kinematic point of view, can be calculated, by solving (24). The domain of
Section 2.3.4 is considered together with the follwoing parameters:

ẋD = 0.3 m/s
k1 = 0.4456 m/s
k2 = 1 m−1

k∆ = 6 m,

(34)

applying the correction presented in (25). The maximum time to reach the equilibrium
(|e| ≤ 0.05 m) can be calculated. This time applied to the desired docking velocity gives an
approximation of the minimum necessary docking distance:



Sensors 2023, 23, 241 11 of 23

Dmin = ẋD t. (35)

The minimum distance necessary to dock, in the worst case scenario, is close to 25 m.
Note that the maximum velocity and acceleration in yaw have not been taken into account,
because (for the set parameters) it has a low influence when the working yaw angle is
reached. Note also that this is a controller defined for the docking maneuver (starting
at ±10 m in yD, with a heading favourable to the DS, i.e., −1.5 > ψ < 1.5), the homing
maneuver will require its own additional distance.

3. Experimental Setup

In order to do a consistent comparison, the same experimental setup, as presented
in [14], was used.

3.1. Hardware

The non-holonomic auv! used for this test was the torpedo-shaped Sparus II [24,25],
see Figure 11. The AUV comes equipped with three thrusters, one vertical and a pair of
horizontal, allowing for control in the surge, heave, and yaw. The control system supports
inputs in force, velocity, and position. In this study we chose to control the vehicle in
velocity, for the surge and heave, and in position, for the yaw.

Figure 11. Photography of the Sparus II.

The funnel-shaped DS developed by the Univeristy of Girona [12] (see Figure 12) was
represented in simulation.

3.2. Simulation

In this research an advanced open-source marine robotics simulator, called Stone-
fish [26], was used. Full dynamics and hydrodynamics of Sparus II were simulated, includ-
ing ocean current influence, together with a complete suite of its sensors, see Figure 13.
Moreover, the docking station model was recreated in the simulation, with a high attention
to detail, allowing for realistic assessment of docking performance. Specifically for this
research, the simulator was extended to support acoustic communication and positioning
devices. More details can be found in the previous work [14].
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Figure 12. Photography of the docking station.

Figure 13. Conceptual representation of the hardware-in-the-loop simulation. The Sparus II architec-
ture is in communication with the Stonefish simulator, which disposes of a model of the DS, the AUV
with its sensors and thrusters [25], and the representation of the underwater environment.

4. Performance

The objective of this section is to show the performance of the algorithm in the
simulated scenario. The concept utilized to develop the high-level controller presented
in this paper is to use the strong features of the Sparus II, to achieve maximum possible
performance. The Sparus II AUV, as a non-holonomic robot without a rudder, requires a
combined action of its two horizontal thrusters, in order to control the heading. This fact
added to the non-symmetric behavior of the thrusters makes a notably lower response in
the heading input than in the surge velocity.
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The controller presented utilizes mainly the surge in order to correct the position of
the AUV and reduce e, see Figure 14.

Figure 14. Conceptual performance representation.

4.1. Docking Scenarios A and B

For the docking scenarios A and B, see Figure 3, the heading of the AUV is opposite
to ẏc, it can be seen in the video [27]. It can be understood, analyzing the velocity vectors,
i.e., ẋD is bigger than ẋc, that the surge velocity has to be positive; this being the case (and
taking into consideration that we have a non-holonomic AUV), the surge has to point in
the opposite direction to the ẏc, in order to be able to compensate for it.

A set of initial conditions are simulated (36), for kinematics (solving (3) and (4)),
and plotted in Figures 15 and 16. They are also simulated in dynamics (using Stonefish)
and plotted in Figure 17 in order to compare both results.

ẋD = 0.3 m/s
ẋc = 0.2 m/s
ẏc = 0.2 m/s
e ∈ [−10 : 2 : 10] m
k1 = 0.4456 m/s
k2 = 1 m−1

k∆ = 6 m,

(36)

Figure 15. Kinematic simulation for the conditions (36) relative to position. The colored lines
represent the different simulations and the green discontinuous line the acceptance tolerance.
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Figure 16. Kinematic simulation for the conditions (36) relative to time. The colored lines represent
the different simulations and the green discontinuous line the acceptance tolerance.

Figure 17. Dynamic simulation for the conditions (36). The colored lines represent the different
simulations and the green discontinuous line the acceptance tolerance.

4.2. Docking Scenario C

For the docking scenario C, the heading of the AUV is the same as the direction of
ẋc, see the video [28]. Again, analyzing the velocity vectors, i.e., ẋD is smaller than ẋc,
the surge velocity has to be negative, so the surge has to point in the same direction as the
ẏc, in order to be able to compensate for it.

A set of initial conditions are simulated (37) for kinematics (solving (3) and (4)) and
plotted in Figures 18 and 19. They are also simulated in dynamics (using Stonefish) and
plotted in Figure 20 in order to compare both results.
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ẋD = 0.3 m/s
ẋc = 0.5 m/s
ẏc = 0.5 m/s
e ∈ [−10 : 2 : 10] m
k1 = 0.4456 m/s
k2 = 1 m−1

k∆ = 6 m,

(37)

Figure 18. Kinematic simulation for the conditions (37) relative to position. The colored lines
represent the different simulations and the green discontinuous line the acceptance tolerance.

Figure 19. Kinematic simulation for the conditions (37) relative to time. The colored lines represent
the different simulations and the green discontinuous line the acceptance tolerance.
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Figure 20. Dynamic simulation for the conditions (37). The color line represent the different simula-
tions and the green discontinuous line the acceptance tolerance.

4.3. Entrance Scenario II

An example of the performance achieved in the entrance scenario II can be found
in [29], see Figure 5.

4.4. Entrance Scenario III

An example of the performance achieved in the entrance scenario III can be found
in [30], see Figure 5.

5. Results

In order to compare the new algorithm with the state-of-the-art, the data obtained in
the article [14] are used. In this previous article, different algorithms, already published in
the literature, were compared at different levels. Being that level 3 is the most representative
for the authors’ needs, the data from this level are used to compare with the proposed
algorithm, since they were tested at the same level.

As it was presented in [14], in order to estimate the quality of the docking process in a
funnel-shaped DS, a novel technique based on the geometrical analysis of the entrance of
the AUV was used. With this technique, we can evaluate the methods with a ’score’ that
ranges from 0 to 1, with 1 being the perfect docking.

In order to represent the comparison, a Boxplot is presented in Figure 21.

Figure 21. Score summary comparison between the different methods, taking the results of [14],
using a box plot.
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The 3d! plot of the results is presented in Figure 22, and the 2d! plot in Figure 23.

Figure 22. 3D Geometrical analysis for the Managed surge controller.

Figure 23. 2D Geometrical analysis for the Managed surge controller.

A table with the numerical results compared can be seen in Table 1.

Table 1. Score results comparison between the different methods, taking the results of the level 3
of [14].

Method
Score

Mean Std

Managed surge controller 0.891 0.013

PGCC controller 0.224 0.008

Cross-track controller 0.403 0.019

Fuzzy controller 0.128 0.014

Touchdown alignment
controller 0.345 0.022

Sideslip controller 0.311 0.021

Sliding path controller 0.790 0.025
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6. Discussion

The Managed Surge Controller achieved a mean score of 0.891, being the highest value
for the proposed conditions. The controller is able to dock the robot in all the ocean current
conditions tested in the previous study (e.g., from -0.4 m/s to 0.4 m/s on both axis). As it
can be seen in Figure 21, it not only has the best mean scores, but also a low standard
deviation, showing that the results are consistent.

As the score indicates and as can be further appreciated in Figures 22 and 23, a good
performance in all the ocean current conditions tested during the exercise was achieved.
Ocean current velocity values larger than the ones studied in the previous paper were also
studied in simulation, also presenting good results. However, it is not recommended to
operate the Sparus II in more harsh conditions.

The Sparus II is a torpedo-shaped AUV equipped with three thrusters. It is designed
to perform extended surveys, where the precision of the position is not crucial, implying
that it is not capable of performing complicated maneuvers with high precision. One of
the facts that is not reflected in the score is the simplicity of the maneuver, from a practical
point of view. The simpler the maneuver, the easier it is to perform it, using the real vehicle.
In the docking maneuver, the msc! (msc!) follows a straight-line, focusing on utilizing the
horizontal thrusters optimally to work against the ocean current forces and correcting the
cross-track error.

If the msc! is compared with the Sliding path controller (presented in [21] and im-
plemented in [14]), that achieved a mean score of 0.790, one of the main differences is
the developed maneuver. The Sliding path controller implies a notable precision in the
maneuver to be able to enter exactly in the desired position, which is hard to achieve using
the Sparus II. It is also not capable of minimizing the cross-track error when the ocean
current velocity is favorable and close to or larger than the docking velocity, when it is
in the approaching path. However, during the sliding path, it still can compensate for
the error.

7. Conclusions

This paper has presented a novel controller to dock with a non-holonomic AUV, in a
funnel-shaped DS, dealing with ocean currents. The paper proves the stability of the
controller and the the expected behavior is further confirmed using a very realistic dynamic
simulator. In a previous work [14], after exhaustive survey, several algorithms to face
the same problem were implemented and tested in the context of the ATLANTIS project,
using the Stonefish simulator. This previous work concluded with a problem to study:
how to minimize the cross-track error when the ocean current velocity is favorable and
close to or larger than the docking velocity. In this article, the authors have developed an
algorithm capable of dealing with this problem while maintaining or improving the rest of
the evaluated criteria.

The novel proposal was compared with the state-of-the-art algorithms, with the
criteria developed in [14], presenting the best results. In future work, this controller will
be implemented in Sparus II and tested in real scenarios. Also, a new funnel-shaped DS
will be designed and built, in order to meet the requirements of the ATLANTIS project.
The authors expect to be able to achieve docking without the use of vision systems; and,
if it is the case, with the presence of ocean currents in the context of the project.
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Abbreviations
DηDηDη = [x y ψ]T AUV position in the {D} frame (see Figure 1)
Dν1B
Dν1B
Dν1B = [u v]T Robot velocity in the {B} frame with respect to the water
D η̇1B
D η̇1B
D η̇1B = [ẋ ẏ]T AUV velocity in the {D} frame with respect to the ground
D η̇1D
D η̇1D
D η̇1D = [ẋD 0]T Desired velocity of the robot when it impacts to the DS
D η̇c
D η̇c
D η̇c = [ẋc ẏc]T Ocean current velocity in the {D} frame
ud Desired surge velocity of the AUV
uss Surge velocity of the AUV in the stationary state
ẋss, ẏss Robot velocities in the {D} frame with respect to water in the stationary

state
u̇C Surge velocity of the AUV due to c
ẋC , ẏC Robot velocities with respect to water in the {D} frame due to c
ψd Desired yaw angle of the AUV
ψc Crab angle of the AUV to compensate the ocean currents
ψcI I Maximum crab angle admissible to enter to the DS in Scenario II
ψcI I I Maximum crab angle admissible to enter to the DS in Scenario III
β Relation between a look-ahead distance and the cross-track error
F Longitud of the twin sides of the isosceles triangle that represents

the DS, see Figure 4
Fx Height of the isosceles triangle that represents the DS, see Figure 4
Fy Base (half) of the isosceles triangle that represents the DS, see Figure 4
l Longitude of the AUV
yg Distance between the maneuver path and the axis of the DS
yg,I I Distance between the maneuver path and the axis of the DS in Scenario

II
ygI I I Distance between the maneuver path and the axis of the DS in Scenario

III
yg,M Maximum distance that can be set between the maneuver path and

the axis of the DS
∆ Look-ahead distance
k∆ Gain of the look-ahead distance
e Cross-track error
ė Time derivative of e
eeq Cross-track error in the equilibrium
c Velocity correction of the controller
k1 Gain to set the maximum velocity of the correction
k2 Gain to set the maximum acceleration of the correction
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V Lyapunov candidate
V̇ Time derivative of V
λ Parameter to control the exponential stability
Dmin Approximation of the minimum necessary docking distance
t Time
A1 Declared variable for a better comprehension of the mathematical

expressions
A2 Declared variable for a better comprehension of the mathematical

expressions
A3 Declared variable for a better comprehension of the mathematical

expressions

Appendix A. Exponential Stability Proof

Computing the time derivative of the Lyapunov function candidate

V(e) =
1
2

e2 (A1)

yields
V̇ = e ė, (A2)

where

ė =
[

ẋss

cos(ψd)
− c
]

sin(ψd) + ẏc, (A3)

In what follow we show that
V̇ ≤ −λ V, (A4)

where λ > 0, leads to exponential stability. Substituting (A3) into (A2)

V̇ = (ẋss tan(ψd) + ẏc) e− c sin(ψd) e, (A5)

where
ẏc = −ẏss, (A6)

ẏss = ẋss tan(ψc), (A7)

c = k1 atan(k2 e) sign(ψd), (A8)

ψd = ψc + β. (A9)

Substituting (A6), (A7), (A8), and (A9) into (A5) yields

V̇ = (ẋss tan(ψc + β)− ẋss tan(ψc))e

− k1atan(k2 e)sign(ψd) sin(ψd)e. (A10)

If the trigonometrical relation tan(x + y) = tan(x)+tan(y)
1−tan(x) tan(y) is applied to (A10), then

V̇ = ẋss e
[

tan(ψc) + tan(β)

1− tan(ψc) tan(β)
− tan(ψc)

]
− k1atan(k2 e)sign(ψd) sin(ψd)e, (A11)

V̇ = ẋss e
tan(β) + tan2(ψc) tan(β)

1− tan(ψc) tan(β)

− k1atan(k2 e)sign(ψd) sin(ψd)e, (A12)
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V̇ = ẋss e
tan(β)

1− tan(ψc) tan(β)
[1 + tan2(ψc)]

− k1atan(k2 e)sign(ψd) sin(ψd)e, (A13)

where

tan(β) =
−e sign(ẋss)

k∆
, (A14)

tan(ψc) =
ẏss

ẋss
. (A15)

Applying (A14) and (A15) to (A13) one obtains

V̇ = − e2 ẋss sign(ẋss)

k∆ + ẏss
ẋss

e sign(ẋss)

[
1 +

ẏ2
ss

ẋ2
ss

]
− k1atan(k2 e)sign(ψd) sin(ψd)e. (A16)

Inserting (A16) in condition (A4) yields

− e2 ẋss sign(ẋss)

k∆ + ẏss
ẋss

e sign(ẋss)

[
1 +

ẏ2
ss

ẋ2
ss

]

− k1atan(k2 e)sign(ψd) sin(ψd)e ≤ −
λ e2

2
, (A17)

and, rewriting |x| ≡ x sign(x), the following condition is obtained:

λ ≤ 2 |ẋss|
k∆ + ẏss

|ẋss | e

[
1 +

ẏ2
ss

ẋ2
ss

]

+
2 k1 atan(k2 e)

e
| sin(ψd)|. (A18)

In order to fulfil the exponential stability condition, λ > 0, (A18) can be simplified to

0 <
2 |ẋss|

k∆ + ẏss
|ẋss | e

[
1 +

ẏ2
ss

ẋ2
ss

]

+
2 k1 atan(k2 e)

e
| sin(ψd)|, (A19)

from which it can be obtained that

k∆ > − ẏss

|ẋss|
e− |ẋss|

k1 atan(k2 e) | sin(ψd)|
e

− ẏ2
ss

|ẋss| k1 atan(k2 e) | sin(ψd)|
e, (A20)

is the new condition that must be fulfilled in order to ensure exponential stability. For the
sake of clarity, the following variables are defined:

A1 , − ẏss

|ẋss|
e, (A21)

A2 , − |ẋss|
k1 atan(k2 e) | sin(ψd)|

e, (A22)
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A3 , − ẏ2
ss

|ẋss| k1 atan(k2 e) | sin(ψd)|
e, (A23)

and consequently
k∆ > A1 + A2 + A3. (A24)

Being sign(x) ≡ sign(atan(x)), implies A2 ≤ 0 and A3 ≤ 0. Assuming | sin(ψd)| = 1
is a conservative solution, consequently, the expression

k∆ > − ẏss

|ẋss|
e− |ẋss|

k1 atan(k2 e)
e

− ẏ2
ss

|ẋss| k1 atan(k2e)
e (A25)

still represents the condition to fulfill the exponential stability for the controller. In order to
calculate k∆ a nonlinear optimization problem of the following form was solved:

max
ẋc ,ẏc ,e

A1 + A2 + A3

s.t. ẋc ∈ X
ẏc ∈ Y
e ∈ E

(A26)

Considering the domain set for the controller:

X = {ẋc | − 0.5 ≤ ẋc ≤ 0.5}[m/s]
Y = {ẏc | − 0.5 ≤ ẏc ≤ 0.5}[m/s]
E = {e | − 10 ≤ e ≤ 10}[m]

ẋD = 0.3 m/s
k1 = 0.4456 m/s
k2 = 1 m−1

(A27)

together with (25), it can be deduced that three optimization problems have to be solved,
for three subsets of the ẋc domain: X1 = [−0.5, 0.1], X2 = [0.1, 0.3] and X3 = [0.3, 0.5],
and the maximum of these three problems is the solution in the whole domain (A27).
The problem (A26) was solved using the IPOPT solver and yielded a result of 5.1441.
Consequently, for this domain, the controller is guaranteed to achieve exponential stability if

k∆ > 5.1441, (A28)

where k∆ is a value that can be set by the designer.
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