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Abstract: The analytical or numerical determination of the stress intensity factor (SIF) in cracked
bodies usually assumes the body to be isolated. However, in fibre-reinforced composites, the fibre,
which is the main load-carrying component, is embedded in a matrix. To clarify the effect the
embedding matrix has on the SIF of the fibre, we propose a 3D computational model of an orthotropic
fibre embedded in an isotropic matrix, and compute the SIF using the J-integral method. A parametric
analysis based on dimensionless variables explores the effect of the fibre–matrix stiffness ratio as well
as the effect of the degree of elastic orthotropy of the fibre. The results show that the SIF is strongly
influenced by both factors, and that the matrix reduces the SIF by limiting the crack opening.

Keywords: stress intensity factor; finite element method; fibre-reinforced polymer; micromechanics
modelling; linear elastic fracture mechanic

1. Introduction

Composites reinforced with technical fibres (carbon, glass, etc.) exhibit the best me-
chanical performance among structural materials in terms of specific properties (stiffness
and strength-to-weight ratio) and are currently used in many industries such as aerospace
or wind turbines. However, their low fracture toughness translates into brittle behaviour
that often leads to catastrophic failure without prior damage symptoms [1]. Understanding
the strength and toughness of composites is the subject of current research. In particu-
lar, how the tensile strength of fibres translates into that of the composite still requires
clarification [2].

In spite of the small diameter of these technical fibres, typically below 15 microns, their
very high strength leads to Irwin’s lengths much smaller than the diameter; that is, they
behave like brittle materials. In this scenario, the stress intensity factor, SIF or KI , which
depends on the existing surface flaws, geometry, and fibre toughness (referred to as critical
SIF or KIC) governs the fibre strength [3].

The critical SIF of fibres has been investigated by combining experimental methods
with some type of numerical approach to determine the SIF [4–20]. For instance, Ogi-
hara et al. [4] introduced various types of notches with straight fronts on carbon fibre
mono-filaments using a focused ion beam machining system. Then, the authors used the
virtual crack closure method to calculate the SIF of the free carbon fibre under tensile load
in both isotropic and orthotropic cases to perform the data reduction in the experimental
results. Herraez et al. [5] used a different numerical approach based on the J-integral to
compute the SIF for different crack lengths. Then, they characterised the strength and
toughness of carbon AS4, E-glass, and Kevlar KM2 via tensile tests on notched and un-
notched fibres. In both cases, the SIF was computed assuming a free mono-filament, so the
effect of the matrix was neglected.

A single fibre in a composite under longitudinal tension can be idealised as a cylinder
embedded in a homogeneous material, the matrix, which is loaded axially. Currently,

J. Compos. Sci. 2023, 7, 22. https://doi.org/10.3390/jcs7010022 https://www.mdpi.com/journal/jcs

https://doi.org/10.3390/jcs7010022
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jcs
https://www.mdpi.com
https://orcid.org/0000-0002-7134-7146
https://orcid.org/0000-0002-2652-0691
https://orcid.org/0000-0002-0724-138X
https://doi.org/10.3390/jcs7010022
https://www.mdpi.com/journal/jcs
https://www.mdpi.com/article/10.3390/jcs7010022?type=check_update&version=1


J. Compos. Sci. 2023, 7, 22 2 of 14

there are numerical and analytical results available in the literature concerning the SIF of
isotropic cracked bars, rods, or beams with cylindrical cross-sections, loaded in tension
or bending, and either under static or fatigue loading [6–20]. Nonetheless, to the authors’
best knowledge, no previous work has been carried out that accounts for the effect an
embedding material may have on the SIF.

As a result, this current study employs high-fidelity computational micromechanics
modelling to compute the SIF along the crack front of a straight-edge crack in a fibre
subjected to tension loading while embedded in an isotropic matrix. First, the method
is validated by comparing the results of a free isotropic fibre with previously published
results. Following that, a parametric study is carried out to investigate the effect of the fibre–
matrix stiffness ratio on the SIF. Finally, we investigate how the longitudinal-to-transverse
stiffness ratio of the fibre influences the SIF. The findings presented in this paper contribute
to a better understanding of the fracture of elastic bodies that extends beyond composite
materials. Furthermore, this work provides closed-form equations to describe the SIF for
cylindrical-shaped components with a crack surrounded by an elastic and homogeneous
medium. These equations are applicable in other practical cases, such as the glass fibre
composite rebars reinforcing concrete.

2. Methodology
2.1. Numerical Evaluation of SIF

This work relies on a computational micromechanics simulation performed in Abaqus
Standard [21]. The model consisted of a notched fibre embedded in an isotropic matrix
subjected to a tensile axial force (Figure 1a), while the lateral surface area was free from
stresses. The fibre included a straight-fronted edge crack at x1 = L/2, with varying depths
(a) as indicated by the grey area in Figure 1b. Matrix and fibres are modelled as elastic
materials with a perfect fibre/matrix adhesion using tie constraints at the interface.

D
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σ

σ
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tD Matrix
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Figure 1. (a) 3D geometry of a notched fibre with straight-fronted edge crack (indicated in grey)
embedded in a matrix; (b) fibre cross-section at crack plane.

The size of the model was decided based on a parametric study that targeted the
best trade-off between computational effort and accuracy. The axial length, L, had to be
long enough to guarantee that the remote stresses at the upper and bottom faces were
not influenced by the presence of the crack. This led to L = 10D, where D is the fibre
diameter. We selected a large enough thickness of the surrounding matrix, t, to avoid
severe deformation in the boundaries of the matrix around the crack region. This criterion
prevailed over achieving a realistic fibre volume fraction and led to t = D.
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To reduce the computational costs, only one-quarter of the model was simulated by
taking advantage of the symmetry boundary conditions along the x1x2 and x2x3 planes
(Figure 1a). A uniform normal traction stress (σ = 1) was imposed in the upper part of
the model. Since the model is linear, SIF and remote stress are proportional. The fibre
and matrix were meshed separately. We used a swept and structured mesh around the
crack tip to enrich the discretization and capture the high stress gradients therein (Figure 2).
The element size, after a convergence study, varied in the range of D/1500 (at crack tip) to
D/100 (in far-field). To account for the stress singularity, quadratic isoparametric elements
(C3D20) with the inverse square root singularity were used at the crack tip.

Symmetry plane

x1

x2

x3

σ

Crack front

Fibre

Matrix

Symmetry plane

J-integral
contours

Figure 2. FE model with details of the boundary conditions and finite-element meshing of the crack
tip region.

The stress intensity factor evaluation was carried out using the J-integral [22] method.
In this approach, the energy release rate is obtained by integration along the contour Γ
around the crack tip (Figure 3) as follows:

J =
∫

Γ

(
Wdx1 − t · ∂u

∂x2
ds
)

(1)

where x1 and x2 are rectangular coordinates to the crack front, x1 being perpendicular to
the crack surface, W is the elastic strain density, t is the traction vector, u is the displacement
vector, and ds is an increment of arc length along any contour Γ. Due to the geometry of
the model, the J-integral values are not constant along the crack front. Thus, this work
concentrated on the maximum value attained at the crack tip (point A in Figure 1b).

x1

x2

Crack tip

Crack faces

ds

L

n

Figure 3. Definition of the contour path around the crack tip to compute the J-integral.

For linear elastic problems of crack opening in mode I, the J-integral equals the
energy release rate (GI). The path independence [22] of J-integral was verified and a
total of 21 concentric contours surrounding the crack tip were used, as shown in Figure 2
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(magnified area). For an isotropic material, the stress intensity factor in mode I, KI , can be
calculated from the J-integral as follows:

J =
K1

2(1− ν2)

E
(2)

where E is the fibre Young’s modulus and ν the Poisson’s ratio. For an orthotropic material,
the J-integral and the KI are related through the following [23]:

J = KI
2
√

a11a22

2

[√
a22

a11
+

2a12 + a66

2a11

]1/2

(3)

where aij stands for the compliance tensor of the orthotropic solid under plane strain

a11 =
1

E11
, a22 =

1
E22

, a66 =
1

G12
, a12 = − ν12

E11
(4)

and E11 and E22 are the fibre Young’s modulus in longitudinal and transverse directions,
respectively, and G12 is the fibre shear’s modulus. Finally, the non-dimensional stress
intensity factor (K̂I) is calculated as follows:

K̂I =
KI

σ
√

πa
(5)

where σ is the far-field stress.

2.2. Non-Dimensional Parametric Analysis

For an embedded isotropic fibre, the independent elastic constants that have an effect
on the SIF are the modulus of elasticity and the Poisson’s ratio of the fibre, E f and ν f , and of
the matrix, Em and νm. We performed a non-dimensional analysis based on the definition
of the parameter α, representing the fibre-to-matrix stiffness ratio:

α =
E f

1 − Em

E f
1 + Em

(6)

with α ranging between α = −1 (stiffness of the fibre negligible with respect to the matrix,
E f � Em) and α = 1 (E f � Em, which corresponds to the free fibre). For α = 0, the fibre
and matrix have the same modulus of elasticity, so this case corresponds to a homogeneous
cylindrical material with an internal crack.

In an orthotropic fibre, the number of elastic constants increases to nine: modulus of
elasticity (E f

1 , E f
2 , E f

3 ), Poisson’s ratios (ν
f
12, ν

f
13, ν

f
23), and shearing moduli (G f

12, G f
13, G f

23).
The subscripts 1, 2, and 3 refer to longitudinal and the two transverse directions, respec-
tively. For the sake of simplicity, the fibre was considered transversely isotropic (E f

2 = E f
3 ,

ν
f
12 = ν

f
13, G f

12 = G f
13), and some of the elastic constants took a fixed value (ν f

12 = 0.3,

ν
f
23 = 0.4, G f

12 = 11.3, ν
f
12 = νm = 0.3) [24]. Therefore, the elastic constants involved in

the parametric study were E f
1 , E f

2 , and Em, which were combined in the non-dimensional
parameters α, defined above in Equation (6), and β:

β =
E f

1 − E f
2

E f
1 + E f

2

(7)

where β ranges between β = −1 (E f
1 � E f

2 ) and β = 1 (E f
1 � E f

2 ). The case β = 0
corresponds to the isotropic fibre.
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Due to the positive definiteness of the strain energy, the elasticity tensor (compliance
matrix) in linear elastic materials must be positive definite [25]. To ensure this, some
constraints must be applied to the engineering elastic constants:

E > 0, G > 0,−1 < ν < 0.5 (8)

for isotropic elasticity, and

E1, E2, E3,G12, G13, G23 > 0

ν12 <

(
E1

E2

)1/2

ν13 <

(
E1

E3

)1/2

ν23 <

(
E2

E3

)1/2

1− ν12ν12 − ν23ν32 − ν31ν13 − 2ν21ν32ν13 > 0

(9)

for the orthotropic elastic case. These constrains arise due to thermodynamic admissibility;
their violation leads to a non-positive strain energy for certain load cases. Based on the
linear elastic conditions, stability restricts β to −0.5 6 β < 1.

3. Results and Discussion

The numerical approach was verified using two cases of isolated cylindrical bars
for which the corresponding SIF has been previously published (free isotropic bar with a
surface crack [4,6,26] and a bar with internal crack [27]). This verification is described in
the Appendix A.

3.1. Isotropic Fibre Embedded in a Matrix

Figure 4a plots the evolution of the non-dimensional SIF for an isotropic fibre embed-
ded in a matrix for different fibre/matrix stiffness ratios (α equal to −0.95, −0.5, 0.0, 0.5,
0.8, 0.95, and 0.98) and relative crack lengths (a/D equal to 0.07, 0.1, 0.2, 0.3, 0.4, and 0.45).
The SIFs of an isotropic free fibre (grey continuous line) were added as a baseline, for com-
parison. The trend is that an increase in matrix stiffness (decrease in α) leads to a significant
drop in the SIF of the cracked fibre, especially for longer cracks. Even for a low stiffness
matrix (α = 0.98 or Em = 0.01E f ), the SIF is reduced by −7% when a/D = 0.2 or by −25%
when a/D = 0.4, with respect to the free fibre case. Figure 4b depicts the relative change in
SIF for different fibre–matrix stiffness ratios (α) compared to the free fibre.

Figure 5 shows the maximum non-dimensional crack mouth opening displacement
(CMOD) for the embedded fibre with α being equal to 0.98 and −0.95, as well as that of
the free fibre (grey continuous line) for reference. The trends of the curves are very similar
to those of the SIF and indicate that the surrounding material restricts the crack opening
even in the case of a low stiffness matrix. In fact, the CMOD is negligible when the matrix
stiffness is large compared with that of the fibre (α = −0.95, Figure 5). Note that the CMOD
shown in Figure 5) corresponds to a unit remote stress.
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(a)

(b)

Figure 4. (a) Non-dimensional SIF for an isotropic fibre embedded in a matrix for different fibre–
matrix stiffness ratios, α. The dots refer to the FEM results and the dashed lines to the fitting curves
according to Equation (10). The continuous grey curve corresponds to the SIF for a free fibre (α = 1).
(b) Relative reduction of the non-dimensional SIF for an isotropic fibre embedded in a matrix with
respect to the free fibre (continuous grey line).

Figure 5. Non-dimensional CMOD for an isotropic fibre embedded in a matrix for different fibre–matrix
stiffness ratios, α. The continuous grey curve corresponds to the CMOD for a free fibre (α = 1).
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The non-dimensional SIF for an isotropic fibre embedded in a matrix as a function of
the α parameter can be approximated by the following equation, which was obtained by
fitting the results of this investigation as follows:

K̂I = A + B
( a

D

)
+ C

( a
D

)2

A = A1 +
A2

(1− α)A3

B = B1 +
B2 α

(1− α)B3

C = C1 +
C2

(1− α)C3

(10)

The use of this equation produces data that deviate by less than 2.8% from any of
the FE data points we have examined. The values of the coefficients of Equation (10) are
listed in Table 1. The usefulness of this equation extends to elastic cylindrical cracked bars
surrounded by a homogeneous and isotropic material, provided that the elastic constraints
specified in the previous section are respected.

Table 1. Coefficients for the fitting equation given in Equation (10).

Coefficients of Equation (10)

A1 1.187 B1 −0.4268 C1 −0.4647

A2 −0.4349 B2 −0.1893 C2 0.7246

A3 −0.3255 B3 −0.07555 C3 0.4295

3.2. Orthotropic Free Fibre

Figure 6a shows the non-dimensional SIF for an orthotropic free fibre for different
longitudinal/transverse stiffness ratios (β equal to −0.5, 0.0, 0.5, 0.8, 0.9, and 0.99) and
relative crack lengths (a/D equal to 0.07, 0.1, 0.2, 0.3, 0.4, and 0.45). The case β = 0
corresponds to the free fibre with isotropic modulus (the fibre is not completely isotropic as
ν23 = 0.4 and ν12 = ν13 = 0.3). The explored range of β involves transverse modulus, E f

2 ,
ranging from three times the longitudinal modulus (β = −0.5) to being negligible (β = 1).
The curves indicate that the degree of orthotropy has a strong influence on the SIF, and that
the trend is opposite depending on whether the transverse modulus is smaller (β > 0) or
larger (β > 0) than the axial modulus. For example, for β = −0.5 (E f

2 = 3E f
1 ), the SIF is

increased by +30% over the isotropic case; while β = 0.5 (E f
2 = 0.33E f

1 ) involves a decrease
of −25%. The relative change in the SIF of orthotripc fibres with respect to the isotropic
case does not depend significantly on the crack length (Figure 6b).

The finite element results of the non-dimensional SIF for an orthotropic free fibre were
fitted to the following equation:

K̂I = 0.9257 + A + B
( a

D

)
+ C

( a
D

)2
+ D

( a
D

)3

A = A1β + A2β2 + A3β3 + A4β4

B = B1 + B2β1 + B3β2 + B4β3

C = C1 + C2β + C3β2

D = D1 + D2β

(11)

This equation produces data that deviate by less than 2.0% from any of the FE data
points we have examined. The values of the coefficients of Equation (11) are listed in
Table 2. The application of this equation can be extended to elastic cylindrical cracked bars



J. Compos. Sci. 2023, 7, 22 8 of 14

with orthotropic properties provided that the elastic constraints specified in Equation (9)
are met.

(a)

(b)

Figure 6. (a) Comparison of non-dimensional stress intensity factor of an orthotropic free fibre for
different longitudinal/transverse stiffness ratios, β. The dots refer to the FEM results and the dashed
lines indicate the fitting results. (b) Percentage of non-dimensional stress intensity factor changes
of an orthotropic free fibre for different longitudinal/transverse stiffness ratio, β. The percentage
change was calculated with respect to the model with β = 0 (E1 = E2) as the reference.
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Table 2. Coefficients for the fitting of equation given in Equation (11).

Coefficients of Equation (11)

A1 −0.9022 B1 0.932 C1 −4.647 D1 17.67

A2 0.3677 B2 −0.7516 C2 4.415 D2 −10.7

A3 1.833 B3 1.81 C3 −1.928

A4 −1.993 B4 −1.727

3.3. Orthotropic Fibre Embedded in a Matrix

This subsection presents the effect a surrounding material has on the SIF of an or-
thotropic cracked fibre. This study involves both parameters α and β (β equal to −0.5, 0.0,
0.5, 0.8, and 0.9). We investigated two cases of fibre–matrix stiffness ratios: α equal to −0.95
and 0.95.

The outcome of this study (Figure 7a,b) reinforces the trends presented in the previous
cases: (i) the presence of the matrix reduces the SIF and this effect scales with the stiffness
of the matrix, and (ii) the degree of orthotropy of the fibre has a strong influence on the
SIF, increasing or decreasing it depending on whether the transverse stiffness is higher or
lower, respectively, than the axial stiffness. The strong effect of surrounding material on
the SIF should be attributed to the constraints imposed by the matrix on the crack opening
(Figure 5).

The complete set of results presented is directly applicable to the understanding of
failure in unidirectional fiber-reinforced composites. For instance, a widely-used structural
carbon composite combines an AS4 carbon fibre with an epoxy matrix. For that case,
α = 0.95 and β = 0.89 (carbon fibres are non-isotropic [1]). An epoxy reinforced with glass
fibres (i.e., S2/MTM44-1) corresponds to the case α = 0.91 and β = 0.0 (glass fibres are
elastically isotropic).

However, the computational model relies on a significant simplification of the physics
of the problem. Fibre (albeit not carbon fibres) and matrix are considered homogeneous
elastic materials. The fibre is considered to be surrounded by a homogeneous material
with the mechanical properties of the matrix. In reality, the fibre is surrounded by a
heterogeneous material including nearby fibres which will lead to a higher equivalent
stiffness of the embedding material, accentuating the crack opening constraint we have
described and, thus, further reducing the SIF. The matrix is assumed to surround the fibre
while most probably penetrating the small surface notches or defects in the fibres, thus
further constraining the crack opening and reducing the SIF.

In spite of these simplifications, analytical or numerical models of fibre failure and/or
fragmentation in a composite, relying on the stress intensity factor, will benefit from the
information presented. For example, current fragmentation models rely on the experimental
characterization of the fibre strength using a Weibull distribution. This characterization is
performed on dry isolated fibres. The present work demonstrates that this characterization
cannot be transferred to the fragmentation model while ignoring the effect of the matrix.

In addition, the situation described in this investigation, a cylindrical surface-notched
specimen surrounded by a material of different stiffness, goes beyond the field of fibre-
reinforced composites.

The computational FEM model developed here can be extended to include material
non-linearities. In particular, the model can be refined to allow for more accurate modelling
of micro-mechanisms by introducing fibre–matrix interface debonding and/or matrix
plasticity. The impact of these phenomena will be explored in a future paper.
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(a)

(b)

Figure 7. Comparison of non-dimensional stress intensity factor of an orthotropic fibre embedded in
a matrix, for different fibre longitudinal/transverse stiffness ratios (β) at fibre–matrix stiffness ratios:
(a) α = 0.95 and (b) α = −0.95.

4. Conclusions

This work presented a computational micromechanics analysis of the stress inten-
sity factor of a single fibre with a straight-fronted edge crack. The fibre was considered
elastic and either isotropic or orthotropic, and free or embedded in an elastic material
of different stiffness. The study was performed using non-dimensional variables for the
fibre–matrix stiffness ratio and fibre longitudinal/transverse stiffness ratio. Only the mod-
ulus of elasticity of fibre and matrix were explored, the rest of the elastic parameters were
kept constant throughout the study. The stress intensity factor evaluation was carried out
using the J-integral.

Embedding the fibre in an elastic matrix reduced the SIF over the free-fibre case.
The higher the matrix stiffness was, the more substantial the decrease in SIF. This effect is
due to the constraint of the matrix over the crack opening. For instance, for the model with a
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very low stiffness matrix (Em = 0.01E f ), the SIF is reduced by−7% at a/D = 0.2 or by−25%
at a/D = 0.4, with respect to the free-fibre case. We proposed a general non-dimensional
equation for the non-dimensional SIF as a function of the non-dimensional crack length and
the ratio between the stiffness of the cracked cylinder and that of the surrounding material.

The elastic orthotropy of the fibre greatly affected the SIF in that it increased for the
case of a transverse stiffness higher than that of the axial, and decreased for the opposite
case. For example, for a fibre with E f

2 = 3E f
1 , the SIF is increased by +30% over the isotropic

case (E f
2 = E f

1 ); while a fibre with E f
2 = 0.33E f

1 involves a decrease of −25%. An equation
obtained by fitting was also provided for this case.

Although the study presented here was motivated by an interest in improving the
understanding of fibre failure in fibre-reinforced composite materials, the findings and the
equations also provide a contribution to the broader field of SIF in elastic cracked bodies.
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Appendix A. Verification of the Finite Element Model

We verified the computational approach to determine the SIF described in the Method-
ology section using two cases with previously published results [4,6,26,27].

Appendix A.1. Free Fibre Model

First, the SIF results of the FEM model for a single isotropic free fibre (no mesh/material
surrounding it) were compared with the literature (Astiz and Elices [26], Daoud et al. [6],
and Ogihara et al. [4]), obtaining a good agreement (Figure A1). Our dimensionless SIF
data was fitted using the following equation:

KI

σ
√

πa
= 1.023 + 0.4448

( a
D

)
− 1.4

( a
D

)2
+ 13.23

( a
D

)3
(A1)
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Figure A1. Comparison of the non-dimensional stress intensity factor of an isotropic free fibre
subjected to uniform tension obtained in this work (FEM), with Astiz [26], Daoud et al. [6], and
Ogihara et al. [4].

Appendix A.2. Embedded Fibre Model with Very Low Stiffness Matrix

Second, the complete computational model, including fibre and the embedding matrix,
was used to reproduce the free fibre case. To that purpose, the stiffness of the matrix was
defined to be close to 0 (α = 0.999999). Notice that an exact value of zero cannot be given
since the finite element material model needs a non-zero stiffness. Figure A2 compares the
results of the computational model (dots) with Equation (A1) and demonstrates that the
embedded fibre model captures this case well.

Figure A2. Non-dimensional SIF of an isotropic free fibre resulting from a computational model of
the isolated fibre (line) and with embedding material of nearly zero stiffness (dots).

Appendix A.3. Comparison with an Analytical Model

The third verification case consisted of a cylinder with an internal circular crack
under axial tension, for which an analytical model exists [27]. To reproduce this case,
the computational model was defined so that the fibre and the matrix had the same elastic
properties and the whole fibre cross-section acted as the crack (grey area in Figure A3).
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L

σ

σ

x1 x3

x2

a
b

Figure A3. Geometric illustration of a model consisting of a broken fibre embedded in a matrix as a
solid cylinder with central circular crack. The fibre is broken in the middle (x1 = L/2) and shown as
the grey area.

The analytical SIF solution for this crack geometry is given [27] as follows:

KI =
2
π

6
√

πa F(a/b) (A2)

where

F(a/b) =
1− 0.5(a/b) + 0.148(a/b)3

√
1− a/b

(A3)

in which a is the crack radius and b is the radius of the cylinder. The SIF and crack opening at
center (COAC) were calculated for both analytical and FE models and compared, showing a
good agreement (SIF = 2.59 and COAC = 0.051 for analytical model, whereas SIF = 2.53 and
COAC = 0.051 for the FE model). These three verification cases demonstrate the reliability
of the proposed computational approach.
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