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A B S T R A C T   

Automated methods for segmentation-based brain volumetry may be confounded by the presence of white matter 
(WM) lesions, which introduce abnormal intensities that can alter the classification of not only neighboring but 
also distant brain tissue. These lesions are common in pathologies where brain volumetry is also an important 
prognostic marker, such as in multiple sclerosis (MS), and thus reducing their effects is critical for improving 
volumetric accuracy and reliability. In this work, we analyze the effect of WM lesions on deep learning based 
brain tissue segmentation methods for brain volumetry and introduce techniques to reduce the error these lesions 
produce on the measured volumes. We propose a 3D patch-based deep learning framework for brain tissue 
segmentation which is trained on the outputs of a reference classical method. To deal more robustly with 
pathological cases having WM lesions, we use a combination of small patches and a percentile-based input 
normalization. To minimize the effect of WM lesions, we also propose a multi-task double U-Net architecture 
performing end-to-end inpainting and segmentation, along with a training data generation procedure. In the 
evaluation, we first analyze the error introduced by artificial WM lesions on our framework as well as in the 
reference segmentation method without the use of lesion inpainting techniques. To the best of our knowledge, 
this is the first analysis of WM lesion effect on a deep learning based tissue segmentation approach for brain 
volumetry. The proposed framework shows a significantly smaller and more localized error introduced by WM 
lesions than the reference segmentation method, that displays much larger global differences. We also evaluated 
the proposed lesion effect minimization technique by comparing the measured volumes before and after intro
ducing artificial WM lesions to healthy images. The proposed approach performing end-to-end inpainting and 
segmentation effectively reduces the error introduced by small and large WM lesions in the resulting volumetry, 
obtaining absolute volume differences of 0.01 ± 0.03% for GM and 0.02 ± 0.04% for WM. Increasing the ac
curacy and reliability of automated brain volumetry methods will reduce the sample size needed to establish 
meaningful correlations in clinical studies and allow its use in individualized assessments as a diagnostic and 
prognostic marker for neurodegenerative pathologies.   

1. Introduction 

Global and regional volumetry of the brain parenchyma is a prom
ising biomarker that can improve prognosis for multiple sclerosis (MS) 
patients (Bendfeldt et al., 2009; Lansley et al., 2013; Pérez-Miralles 
et al., 2013). Brain volume loss has been shown to be a predictor of 
disease progression and disability status in MS patients (Di Filippo et al., 
2010; Ghione et al., 2020). Moreover, the rate of brain volume loss is 
also used to evaluate the effectiveness of disease-modifying treatments 
in clinical studies as well as for individualized treatment response 

assessment (Sotirchos et al., 2020; Cortese et al., 2022). Magnetic 
resonance (MR) imaging offers a noninvasive way to perform indirect 
volume measurements on the brain parenchyma and its distinct cere
brospinal fluid (CSF), gray matter (GM) and white matter (WM) com
ponents. In non-uniformity corrected T1-w MR images, these tissues are 
characterized by normally distributed intensity profiles with different 
means and variances. However, a characteristic of brain scans from MS 
patients is the presence of WM lesions appearing as a fourth intensity 
distribution that intersects with the brain tissue intensities to be 
measured. The presence of WM lesions can bias the characterization of 
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normal-appearing tissue intensities and interfere with brain tissue 
quantification methods (González-Villà et al., 2017). The error that WM 
lesions introduce is highly dependent on their aspect and size (Battaglini 
et al., 2012), which change over time, introducing varying levels of error 
in images taken at different timepoints. These lesions can especially 
affect the estimation of partial volumes found in the interfaces between 
brain tissues and have been observed to produce a boundary shifting 
effect (Magon et al., 2014). Reducing the error introduced by WM le
sions in brain tissue segmentation is critical for improving the reliability 
and accuracy of cross-sectional and longitudinal brain volumetry 
methods. 

Techniques that minimize the effect of WM lesions in brain tissue 
segmentation usually involve lesion inpainting as a preliminary step 
before segmentation. These techniques fill the lesioned voxels with in
tensities resembling the normal-appearing WM (NAWM) of that image. 
Chard et al. (2010) proposed the use of a Gaussian mixture model to 
characterize and sample the intensity distribution of NAWM in the 
whole image to fill lesioned voxels while also emulating scanner noise 
and nonuniformity. Battaglini et al. (2012) and Magon et al. (2014) both 
proposed similar local inpainting methods for preliminary brain tissue 
segmentation to then fill the lesion voxels with intensities similar to 
those of the NAWM adjacent to the lesioned voxels. Similarly, Valverde 
et al. (2014) also used preliminary tissue segmentation to characterize 
and sample the NAWM intensity distribution but did so on a 
slice-by-slice basis. Prados et al. (2016) proposed a non-local mean 
patch-based inpainting method that can work with longitudinal data and 
for any MR modality. More recently, data-driven methods using deep 
learning have been proposed based on the use of convolutional neural 
networks (CNNs) for lesion inpainting. Armanious et al. (2019) used a 
2D conditional generative adversarial network (cGAN) to synthesize 
realistic looking intensities for a square patch removed from the input 
slice. Xiong et al. (2020) used 2D U-Net with a nonlesion attention 
module to inpaint lesioned voxels, while Zhang et al. (2020) proposed 
the use of 2D U-Net with edge priors as additional input to improve the 
inpainting quality. Manjón et al. (2020) proposed a 3D blind inpainting 
method that automatically inpaints any abnormal-looking voxels 
without requiring prior lesion segmentation, unlike the methods 
described previously that require a preliminary WM lesion mask. Tang 
et al. (2021) proposed an inpainting approach for MS lesions using dy
namic learnable gate masks to improve the morphological and textural 
consistency of inpainted regions and reduce their effect on subsequent 
brain tissue segmentation. Most works cited above have been shown to 
improve the results for brain tissue segmentation methods by reducing 
segmentation differences between healthy and artificially lesioned 
image pairs. However, to the best of our knowledge, the recent deep 
learning-based brain tissue segmentation approaches (Rajchl et al., 
2018; Guha Roy et al., 2019; Henschel et al., 2020) have not evaluated 
the effect of WM lesions. 

In this work, we propose a 3D patch-based deep learning tissue 
segmentation framework for brain volumetry which learns from the 
outputs of a reference classical brain tissue segmentation method. In our 
approach, we improve the robustness on pathological cases having WM 
lesions by using small patches and a percentile-based input normaliza
tion. To further minimize the effect of WM lesions, we also propose the 
use of a multi-task double U-Net architecture performing end-to-end 
inpainting and segmentation. To train the proposed method as well as 
to evaluate the WM lesion effect, we use pairs of lesioned and non
lesioned versions of the same brain image. Since these pairs of images 
cannot be naturally obtained, artificial lesions are introduced into a set 
of scans from healthy subjects to obtain both versions of the same image. 
Our goal is to learn a segmentation model that can minimize the effect of 
WM lesions on the rest of the normal-appearing tissue in the image. 
During training, we use the artificially lesioned brain images as input 
and target the brain tissue probabilities of their originally healthy 
counterpart image as output. In this way, the system is trained to 
minimize the impact of WM lesion voxels on the segmentation of 

neighboring healthy tissue. In the proposed method, a preliminary WM 
lesion mask is used to occlude the lesioned voxels of the input patch by 
masking it with zeros. Then, a double chained U-Net architecture is 
used, where the first network inpaints the occluded lesion voxels and the 
second performs brain tissue segmentation from the inpainted patch. 
Both networks are trained end-to-end so that the inpainter network is 
also trained to aid in the segmentation task. 

We evaluate the effect of WM lesions on our deep learning frame
work as well as on FAST (Zhang et al., 2001), the brain tissue segmen
tation method used to generate the training targets, which is 
implemented in the FSL package of analysis tools for structural MR brain 
imaging data. In the evaluation, we quantify the tissue volume differ
ences between healthy and artificially lesioned versions of the same 
image for each of the considered tissue segmentation methods. Without 
performing lesion inpainting, our deep learning framework already 
shows significantly smaller and more localized volume differences due 
to the presence of WM lesions than the reference method. We then 
evaluate the extent to which the lesion effect minimization techniques 
reduce the error introduced on the measured tissue volumes. The FSL 
package also provides a WM lesion inpainting method (Battaglini et al., 
2012), which is typically used along with FAST (Zhang et al., 2001). The 
FSL pipeline doing WM lesion inpainting and brain tissue segmentation 
is used as a baseline to compare against our deep learning approach. 
Additionally, we also compare against the case where we first inpaint 
the WM lesions with the FSL method and then perform the brain tissue 
segmentation with our deep learning approach. The proposed method 
doing end-to-end inpainting and tissue segmentation is faster and ob
tains significantly lower volume differences, especially when consid
ering larger WM lesions. Even when the FSL_inpainting method is used 
to preprocess the image, our deep learning based tissue segmentation 
model still achieves significantly lower error and better performance on 
large WM lesions than the FSL pipeline. Thanks to the use of data-driven 
techniques, we are able to learn from a reference method while mini
mizing the WM lesion effect on the measured tissue volumes to almost 
negligible levels. The development framework is available to the 
research community at https://github.com/NIC-VICOROB/LITS. 

2. Materials 

Two different kinds of image datasets are used to train and evaluate 
the proposed method, healthy brain scans and lesioned brain scans with 
manually delineated WM lesion masks comprising small and large le
sions from patients with multiple sclerosis (MS) and other pathologies. 
These brain images are used to generate artificially lesioned and healthy 
image pairs for training and evaluation. The location and morphology of 
artificial WM lesions introduced in the T1-w healthy images are taken 
from the WM lesion masks of lesioned brain scans, while their appear
ance is simulated by sampling intensities between the means of GM and 
WM tissue, similar to the work of Battaglini et al. (2012). 

2.1. Healthy brain dataset 

Calgary-Campinas Public Brain MR Dataset (Souza et al., 2018). This 
dataset is composed of 359 T1-weighted brain scans from 359 healthy 
adults with an average age of 53.5 ± 7.8 years, ranging between 29 and 
80 years. Images were acquired on scanners from three vendors (GE, 
Philips, and Siemens) at two different magnetic field strengths of 1.5 T 
and 3 T, approximately 60 scans were obtained per vendor. Most scans 
in this dataset have a voxel size of 1.0 × 1.0 × 1.0 mm3 except for sixty 
scans acquired at 0.89 × 0.89 × 0.89 mm3 and another sixty acquired at 
1.33 × 1.0 × 1.0 mm3. The dataset also includes silver standard brain 
masks generated through a consensus of several state-of-the-art auto
matic skull stripping methods. 
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2.2. Lesioned brain datasets 

MSSEG Challenge (Commowick et al., 2018). The MSSEG Challenge 
hosted at the MICCAI 2016 international conference provided a multi
centric database for training consisting of 15 multimodal (T1-w, T1-w 
gadolinium, T2-w, FLAIR and PD) MR images obtained from MS pa
tients with an average lesion load of 20.8 ± 19.9 ml. Images were ac
quired on three different scanners at different voxel sizes: five images 
from a Philips Ingenia 3 T scanner at 0.7 × 0.74 × 0.74 mm3, five images 
from a Siemens Verio 3 T scanner at 1.1 × 0.5 × 0.5 mm3 and the 
remaining five images from a Siemens Aera 1.5 T scanner at 1.25 × 1.03 
× 1.03 mm3. The MR images were rigidly coregistered to the FLAIR scan, 
which was manually annotated by 7 independent experts, and a 
consensus gold standard WM lesion segmentation approach was built. 

ISBI 2015 Longitudinal MS Lesion Segmentation Challenge (Carass et al., 
2017). This challenge provided a multimodal (T1-w, T2-w, FLAIR and 
PD) training dataset with 21 longitudinal scans from five MS patients 
with an average lesion load of 11.6 ± 10.5 ml. Images were acquired on 
a 3 T MRI Philips scanner with a voxel size of 0.82 × 0.82 × 1.17 mm3. 
Manual delineations were made by two experts identifying and seg
menting white matter lesions on the MR images. The MR images from 
each subject as well as the expert WM lesion delineations were rigidly 
coregistered to the T1-w scan. 

WMH Challenge 2017 (Kuijf et al., 2019). The training set provided 
60 sets of brain MR images (3D T1 and 2D multislice FLAIR) from 60 
subjects of two memory clinics showing cognitive impairment of pre
sumed vascular origin with an average lesion load of 17.5 ± 17.1 ml. 
Images were taken with five different 3 T MR scanners from three 
different vendors (Siemens, Philips and GE) with voxel sizes of 1.0 × 1.0 
× 1.0 mm3 and 0.94 × 0.94 × 1.0 mm3. The FLAIR scans from each 
subject were resampled and coregistered to the 3D T1 scan via an affine 
transform. The provided gold standard was made with manual annota
tions of white matter hyperintensities (WMHs) made by experts in 
accordance with the STandards for ReportIng Vascular changes on 
nEuroimaging (STRIVE) criteria (Wardlaw et al., 2013). 

2.3. Preprocessing 

In the image preprocessing stage, we generate the healthy and 
lesioned image pairs that are used for training and evaluation. The 
location and morphology of artificial WM lesions are obtained from WM 
lesion masks of the three lesioned brain datasets that are registered to 
the healthy dataset scans. In practice, all the available WM lesion masks 
from lesioned datasets are registered to each of the T1-w healthy images, 
allowing the generation of several artificially lesioned scans from a 
single healthy scan. The registered WM masks are then used to generate 
artificial lesions in the healthy T1-w brain scans with the intensities 
located within the GM/WM interface. The preprocessing steps are 
explained in detail in the following sections. 

2.3.1. Skull-stripping 
The healthy scans belonging to the Calgary–Campinas dataset im

ages need to be skull-stripped before segmenting with FAST to consider 
only the intensities corresponding to the intracraneal cavity. For this, we 
use the provided silver brain masks, which are applied to generate the 
skull-stripped images. For the lesioned brain datasets, two of them 
(MICCAI 2016 MS lesion segmentation challenge and ISBI 2015 Longi
tudinal MS Lesion Segmentation Challenge) were already skull-stripped, 
while the WMH Challenge 2017 dataset is processed using ROBEX 
(Iglesias et al., 2011) on the T1-w images. 

2.3.2. Lesion mask registration 
In this step, all the available lesioned scans are linearly registered to 

each of the healthy images, obtaining several artificial WM lesion mask 
instances in the space of each healthy scan. This process is performed 
independently for the training and evaluation image sets. To avoid 

performing a large number of registrations, we first register all the 
healthy and lesioned images to a common space and then combine these 
transforms to obtain the desired transforms. Linear affine registration is 
performed with the skull-stripped T1-w images from both healthy and 
pathological datasets to the MNI ICBM 152 nonlinear 6th Generation 
Symmetric Average Brain template using FSL FLIRT (Jenkinson and 
Smith, 2001; Jenkinson et al., 2002) with default parameters. This re
sults in a linear transform matrix T(I,MNI) for each image I, which can 
also be inverted to obtain T(MNI,I). Then, for any pair of healthy H and 
lesioned L images, we can compute T(L,H) using the previously 
computed transforms to the MNI as follows: 

T(L,H) = T(L,MNI) ∘ T(MNI,H) (1) 

T(L,H) is computed for each lesioned and healthy control image pair 
and then applied to the binary WM lesion mask using nearest neighbor 
interpolation. Finally, we ensure that the registered lesions are intro
duced only to the WM of healthy images. For this, we use FAST (Zhang 
et al., 2001) to obtain a binary WM mask for each healthy image and 
keep only the voxels from registered lesion masks that are also classified 
as WM in the healthy image. 

2.3.3. Artificial WM lesions 
The registered WM lesion masks are then used to generate several 

artificially lesioned images from each healthy image. The artificial 
lesion intensities are filled as in the work of Battaglini et al (Battaglini 
et al., 2012)., which presented and evaluated the lesion inpainting 
method we use as a baseline. In their approach, a preliminary FAST 
(Zhang et al., 2001) tissue segmentation is used to estimate the mean 
intensities of GM and WM and is then used to generate the intensity 
distribution for artificial lesions. These are then filled with intensities 
between the normally appearing GM and WM, with a mean equal to the 
average of the GM and WM means and a standard deviation equal to a 
fourth of the interval between the GM and WM means (Battaglini et al., 
2012). 

During training and inference of the proposed methodology, the 
artificial lesion intensities are effectively ignored as they are occluded by 
filling them with zeros. Hence, the intensities of artificial lesions are 
only useful for evaluating the WM lesion effect of tissue segmentation 
methods when no inpainting is used. 

3. Methods 

The proposed deep learning brain tissue segmentation framework 
consists of a 3D patch-based approach which learns from the outputs of 
FAST (Zhang et al., 2001), an automatic brain tissue segmentation 
method implemented in the FSL package. The backbone of our frame
work consists of a 3D network, depicted in Fig. 1, which is derived from 
the U-Net architecture (Ronneberger et al., 2015) and uses residual 
convolution blocks and skip connections. The convolutional layers use 3 
× 3 × 3 kernels and are always preceded, except for the input and output 
nodes, by a batch normalization (BN) layer (Ioffe and Szegedy, 2015) 
and a parametric rectified linear unit (PReLu) activation (Nair and 
Hinton, 2010). The parameter distribution of the model is asymmetrical 
with respect to the residual blocks of the encoder using two convolu
tional layers, while a single layer is used in the decoder. The network has 
4 resolution levels where the feature maps are downsampled by 2 × 2 ×
2 in each level of the encoder and upsampled by the same factor in the 
decoder. Downsampling is performed by concatenating the result of a 
max pooling operation and strided convolution as proposed by Szegedy 
et al (Szegedy et al., 2016)., while upsampling is performed with a 
transposed convolution that learns the upsampling operator for each 
feature map. 

Within our patch-based deep learning framework, the introduction 
of a WM lesion in a healthy brain scan produces segmentation differ
ences at both global and local levels. Global differences appear when the 
modification of a small part of the input has an effect on the output 
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segmentation of the whole image. On the other hand, local differences 
are those where only the altered region and its neighborhood are 
affected. The main source of global segmentation differences in the 
proposed method is caused by input normalization which is applied to 
the T1-w scan. Input normalization is a technique used to homogenize 
the range and statistics of neural network inputs so that the variation is 
reduced and the model can be more finely tuned to the expected input 
values. Since our aim is to correctly segment the healthy tissue regard
less of any intensity changes caused by the development and evolution 
of WM lesions, we want an input normalization procedure that is 
invariant to these appearance changes. Due to the combinatorial nature 
of neural networks, small perturbations in the input values can cause 
large output differences; thus, a small shift in the normalization pa
rameters could have a measurable effect on the segmented tissue vol
umes. To minimize this, we propose the use of a minmax input 
normalization operation for T1-w MR images that maps intensities be
tween the 0.05% and 99.95% percentiles to the [− 1,1] interval and then 
clamps to that same interval to clip any outliers within the desired range. 
This kind of normalization has much less variability between the healthy 
and artificially lesioned images than other tested techniques, such as z 
score normalization (zero mean and unit standard deviation) or in
tensity rescaling to the 0–1 range. Local segmentation differences due to 
the appearance of WM lesions are introduced not only to the lesioned 
voxels and their neighborhood but also to the whole patch where a 
lesioned voxel appears. Within the proposed patch-based approach, the 
introduction of artificial lesions in part of a patch will affect the output 
probabilities of the whole patch. During inference, the input image is 
sliced into patches to be segmented and then recombined for whole 
image segmentation. A larger patch size means that a larger proportion 
of patches contain lesioned voxels which introduce segmentation dif
ferences further from the lesioned voxels. Consequently, patch size is an 
important parameter for mitigating the local effect of WM lesions in 
patch-based brain tissue segmentation. To select the patch size, we 
empirically tested 5 isotropic patch sizes between 8 × 8 × 8 and 
40 × 40 × 40. The best compromise between tissue segmentation per
formance and reducing the aforementioned differences is achieved by 
using a patch size of 16 × 16 × 16. 

To minimize the WM lesion effect within the proposed deep learning 
segmentation framework, we propose a multi-task double U-Net 

architecture, depicted in Fig. 2, where the first network performs 
inpainting and the second network segments the brain tissues. The aim is 
to obtain a segmentation model that can minimize the effect that a WM 
lesion has on its healthy neighborhood so that it can be correctly 
segmented despite the adjacent abnormal intensities. The proposed 
method takes a skull-stripped brain scan along with its binary WM lesion 
segmentation and outputs a probability distribution of brain tissue (CSF, 
GM and WM) for each input voxel. The lesioned area is occluded with 
zero-valued voxels before input to the network. First, the inpainter 
network inpaints any occluded lesion voxels in the input patch and tries 
to reconstruct the originally healthy intensities. The inpainted patch is 
then masked before tissue segmentation, keeping only the inpainted 
voxels from the first network and taking the original intensities for the 
rest of nonlesioned voxels. Finally, the second U-Net performs brain 
tissue segmentation from the inpainted masked patch and outputs a 
brain tissue probability distribution for each input voxel. During 
training, we input artificially lesioned images and target the tissue 
segmentation of the originally healthy image as output both networks 
are trained simultaneously in an end-to-end manner to allow the seg
mentation loss gradients from the second model to also backpropagate 
through the inpainter. This regularizes the inpainter toward inpainting 
in a way that should also help the tissue segmenter to more accurately 
approximate the healthy tissue probabilities. In this way, the goal of the 
inpainter is not to faithfully and accurately approximate the healthy T1 
intensities, but rather, we want the tissue segmentation model to better 
approximate the healthy tissue probabilities regardless of any occluded 
zero-valued regions. 

In the double chained U-Net configuration, the input of the first U- 
Net is a T1-w patch with WM lesions occluded and the binary WM lesion 
mask. The output of the inpainter is activated by a hyperbolic tangent 
function (tanh) to map the range of output intensities within the same 
[− 1,1] interval of input normalization. The input of the second network, 
the segmenter U-Net, is an inpainted T1-w patch and its output is acti
vated using the Softmax function to obtain a tissue probability distri
bution for each input voxel. 

3.1. Training 

The double U-Net system is trained end-to-end using both the healthy 

Fig. 1. Diagram of the U-Net derived model used as the backbone of our deep learning brain tissue segmentation framework. The network consists of a 3D U-Net 
model using residual convolution blocks and skip connections. The parameter distribution is asymmetrical, with the residual blocks of the encoder using two 
convolutional blocks while a single block is used in the decoder. In the convolutional layers (Conv), Kx Ky Kz@[Sx,Sy,Sz] indicates the kernel and stride dimensions in 
each axis. The gray boxes represent the feature maps with the number of channels indicated above or under it. The numbers of input and output feature maps are 
denoted I and O, respectively. 
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and artificially lesioned images as inputs, targeting the healthy image 
tissue probabilities as output in both cases. For the artificially lesioned 
images, the parameters for input normalization are computed only from 
the nonlesioned brain voxels. To train the proposed patch-based 
method, we first generate patch training and validation sets. From the 
training image set, we use 90% of the subjects to build the training patch 
set and the remaining 10% for the validation patch set. In total, we 
extract 1 million patches, 900,000 for training and 100,000 for valida
tion. These patches are extracted centered on a set of voxels sampled 
using a deliberate strategy to balance the representation of segmentation 
classes as well as the representation of patches with and without lesions 
half of the patches are extracted evenly from the healthy images without 
artificial lesions. For each image, the patch centers are sampled using a 
preliminary FAST (Zhang et al., 2001) tissue segmentation as a guide to 
obtain 10% centered on the background class and 30% each from the 
CSF, GM and WM classes. The other half are taken evenly from all the 
available artificially lesioned images, centered on occluded artificially 
lesioned voxels. A random 3D offset of up to half the patch size is applied 
to the healthy and lesion sampled centers to increase the representation 
of boundaries. The model is then trained end-to-end using the Adadelta 
optimizer (Zeiler, 2012) with a learning rate of 0.2 and a batch size of 32 
patches. To prevent overfitting, early stopping is performed when the 
loss on the validation set does not improve for 8 consecutive epochs. The 
loss function used for training and validation is composed of a recon
struction loss, used to train the inpainter, and a segmentation loss that is 
used to train both the tissue segmenter and inpainter networks. The 
reconstruction loss uses the mean squared error (MSE) between the 
original healthy patch and the patch reconstructed by the inpainter. For 
the segmentation loss, we use a version of the crossentropy loss using 
probabilistic targets, the probabilistic crossentropy (PCE) loss. Given an 
output voxel classification y over C classes and a target probability 
distribution t, the PCE loss is defined as follows: 

PCE(y, t) =
∑C

i=1
− yi⋅ti⋅ln

(
∑C

j=1
exp
(
yj
)
)

(2) 

By using probabilities as targets instead of categorical labels, we 
encourage output segmentation that approximates the partial volume 
probabilities between tissues instead of trying to maximize the proba
bility of the most likely tissue class. Finally, the loss function L is defined 
as follows: 

L( ÎL , ŜL , IH , SH) = MSE(ÎL , IH)+PCE(ŜL , SH) (3) 

where ÎL is the patch reconstructed by the inpainter, ŜL is the tissue 
probability predicted from the inpainted masked patch and IH and SH are 
the originally healthy image intensities and brain tissue probabilities, 
respectively. 

3.2. Inference 

Once the network weights are trained, inference is performed from 
the T1-w MR image and its WM lesion mask by extracting overlapping 
patches sampled uniformly with a step size of 5 × 5 × 5 and the same 
patch size of 16 × 16 × 16 used during training. Performing inference 
on highly overlapping patches helps reduce block boundary artifacts and 
improve the spatial coherence of the output probabilities. These patches 
are then passed through the trained network, obtaining a probability 
distribution of brain tissue type for each voxel in each input patch. The 
probability distributions of overlapping patches are then combined 
through averaging into a common output segmentation space. Finally, 
the output is normalized to ensure that the tissue probability distribu
tions of each voxel add up to one. 

3.3. Implementation details 

The proposed method is implemented with Python, using the Torch 
scientific computing framework (Paszke et al., 2017). All experiments 
are done on a GNU/Linux machine running Ubuntu 18.04 with 128 GB 
of RAM memory and an Intel® Core ™ i7–7800X CPU. Network training 
and inference are performed with an NVIDIA 1080 Ti GPU (NVIDIA 
Corp., United States) with 12 GB of G5X memory. Within our method, 
each U-Net model has approximately 7.03 million trainable parameters, 
which add up to a total of 14.06 million in the multi-task double U-Net 
configuration. In our system, the total training time of the proposed 
method is 22.25 h with an average inference time of 55 s per image in all 
tests performed. The development framework is available to the 
research community at https://github.com/NIC-VICOROB/LITS. 

4. Evaluation and results 

In this section, we evaluate the segmentation performance of the 
proposed methodology as well as the influence of WM lesions with and 
without lesion effect minimization. First, the healthy and pathological 
datasets are randomly split into a training and validation image set to 
train the proposed methodology and a testing set exclusively used for 
evaluation of the reported experimental results. From the Calgar
y–Campinas dataset, 45 scans are used for testing, 15 from each scanner, 
and the remaining 312 are used for training. The 15 WM lesion masks of 
the MSSEG Challenge dataset are split into 12 for training and 3 for 
testing. From the ISBI 2015 Longitudinal MS Lesion Segmentation 
Challenge dataset, 13 WM lesion masks are taken from 3 subjects for 
training and 8 masks are taken from the other 2 subjects for testing. 
Finally, we split the WMH Challenge 2017 dataset into 54 masks for 
training and 6 for testing. In total, the training set contains 312 healthy 
brain scans, each with 79 registered WM lesion masks, which amounts to 
24,648 healthy and artificially lesioned training image pairs. The testing 

Fig. 2. Overview of the proposed patch-based double chained 3D U-Net architecture performing end-to-end inpainting and brain tissue segmentation. The binary 
WM lesion mask is used to occlude the lesion from the input patch with zero-valued voxels and is also input to the inpainter. Inpainted masking takes the inpainter 
output only for lesioned voxels and uses the original intensities for the rest of nonlesioned voxels. The tissue segmenter receives the inpainted masked patch and 
outputs a probability distribution among the background, CSF, GM and WM classes. 
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set is composed of 45 healthy brain scans, each with 17 registered WM 
lesion masks, making a total of 720 healthy and artificially lesioned 
testing image pairs. In this way, we ensure that none of the healthy T1-w 
images or registered lesion masks used during training are used for the 
evaluation. 

To quantitatively evaluate the segmentation differences between 
healthy and artificially lesioned images, we use the absolute volume 
difference metric defined in Eq. (4), which is computed separately for 
the volumes of segmented GM and WM tissues. 

Abs. volume difference (%) = 100⋅
⃒
⃒Vlesioned − Vhealthy

⃒
⃒

Vhealthy
(4) 

Within the proposed methodology, we also evaluate the differences 
that WM lesions introduce at local and global scales. In the proposed 
patch-based method, the introduction of artificially lesioned voxels has a 
local effect by altering the output probabilities of the whole patch in 
which they appear. At the global level, the artificially lesioned voxels 
can alter the input normalization parameters and shift the input values 
for the whole image, which leads to global output segmentation differ
ences. To evaluate these two effects separately, we also compute the 
evaluation metrics in two regions of interest (ROIs) related to the lesion 
neighborhood and patch size. To study the WM lesion effect at a local 
scale, we define the within lesion neighborhood ROI as all the voxels that 
might appear along the artificial WM lesion in an input patch. More 
specifically, we include all normally appearing tissue within a patch side 
length, 16 voxels, of an artificially lesioned voxel in any of the three 
dimensions. To study the global WM lesion effect, we define the outside 
lesion neighborhood ROI that encompasses all normally appearing voxels 
at a distance of a patch side length, 16 voxels, or more from an artifi
cially lesioned voxel in all three dimensions. 

To assess the statistical significance of differences between the seg
mentation differences of the baseline and proposed approaches we 
consider the paired t-test for related samples. 

4.1. Tissue segmentation 

We evaluate the learned tissue segmentation model of the proposed 
approach by comparing it to FAST (Zhang et al., 2001), the reference 
method used during training. For this, we segment the 45 testing set 
images of the healthy dataset without artificially added lesions and 
compute the Dice similarity coefficient (DSC) with respect to the refer
ence segmentations for the same images. The proposed approach obtains 
a DSC of 94.6 ± 2.5% in whole brain tissue (CSF + GM + WM) seg
mentation and a DSC of 99.0 ± 0.1% in parenchyma (GM + WM) seg
mentation. When individual tissues are considered, the DSCs are 94.6 

± 3.4% and 96.9 ± 1.6% for the GM and WM classes respectively. These 
results are in line with those of similar deep learning methods also using 
FAST segmentations as training targets (Rajchl et al., 2018). 

Fig. 3 shows qualitative results of segmentation from FAST and the 
proposed approach as well as the differences between them, which are 
mainly located within tissue interfaces and in the brain mask edges the 
large segmentation differences located in the outer brain border appear 
because FAST assumes every nonzero voxel within the given brain mask 
has to be segmented as one of the tissues, which in this case is CSF. In 
contrast, the proposed approach does not make this assumption and 
mostly classifies voxels in the outer brain border as background instead 
of CSF. Although the interfaces between tissues with a strong partial 
volume effect are also a source of segmentation differences, Fig. 3d 
shows that the changes in classified tissues are due to quite small 
probability shifts that bias the most likely tissue class one way or the 
other. The probability differences are larger in the interfaces between 
WM and CSF, such as the ventricle border and, especially, in its lower 
left part. In these regions, the partial volumes between GM and CSF take 
an intensity value similar to that of the GM class and are mostly classi
fied by FAST as GM, while the proposed deep learning approach tends to 
classify them as mostly WM. 

4.2. Lesion effect 

We evaluate the effect of WM lesions on tissue segmentation when no 
WM lesion effect minimization techniques are used. For this, we segment 
the healthy and artificially lesioned testing image pairs and compute the 
volume differences between each pair for GM and WM tissues. In this 
experiment, the inpainting network of the proposed method is essen
tially turned off, as empty WM masks are used for inference and artificial 
lesions are not occluded in the input images. We also evaluate the WM 
lesion effect on the FAST (Zhang et al., 2001) tissue segmentation 
method from the FSL package. Table 1 shows the absolute volume dif
ferences of GM and WM volumes for FAST and our deep learning seg
mentation method without inpainting. Overall, the proposed method is 
significantly less influenced by the presence of WM lesions at both local 
and global scales than FAST (p < 0.01). The proposed segmentation 
method shows an almost exclusively local influence, as nearly all the 
differences are located within the lesion neighborhood ROI. In contrast, 
the FAST segmentation method has a mostly global lesion influence, 
with high volume differences both within and outside the lesion 
neighborhood ROI. 

Fig. 4 shows the tissue probability differences from a representative 
example of the lesion effect experiment for both tissue segmentation 
methods. In both cases, artificially lesioned voxels display large 

Fig. 3. Comparison of segmentation results of FAST (b) and the proposed approach (c). (d) Absolute probability differences of voxels changing their most likely tissue 
class overlaid with a yellow to red colormap, where yellow corresponds to a difference of 0.02 and red corresponds to a difference of 1.0 or higher in the voxelwise 
sum of absolute probability differences. Differences between both methods are mainly located within tissue interfaces and in the outer brain border. 
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probability shifts caused by their newer darker intensities. The effect is 
not limited to these voxels and spreads to their neighborhood and even 
to the rest of the image. The FAST tissue segmentation method shows a 
large number of sparse small and medium probability differences mainly 
located in the interfaces between GM and WM tissue throughout the 
whole image. In contrast, the proposed patch-based deep learning 
approach displays groups of small probability shifts located around the 
artificially lesioned voxels and nearby structures. The differences are 
exclusively located in the within lesion neighborhood ROI, with no dif
ferences in the rest of the image. In contrast, the segmentation differ
ences of FAST appearing within the whole image add up to a larger 
volume shift. 

4.3. Lesion effect minimization 

In this experiment, we evaluate how well the WM lesion effect 
minimization techniques reduce the GM and WM volume differences 
between segmentations of healthy and artificially lesioned images. In 

Table 1 
Abs. volume differences (%) of the GM and WM of the healthy and artificially 
lesioned testing image pairs. The absolute volume differences of the proposed 
approach are all significantly lower (p < 0.01) than those of the baseline FAST 
method.   

FAST Proposed (without inpainting) 

Tissue mean ± std median mean ± std median 

(i) Whole brain 
GM 0.89 ± 1.14 0.27 0.07 ± 0.09 0.05 
WM 1.22 ± 1.58 0.35 0.10 ± 0.11 0.07 
(ii) Within lesion neighborhood 
GM 0.96 ± 1.23 0.34 0.13 ± 0.11 0.10 
WM 1.10 ± 1.50 0.26 0.13 ± 0.13 0.11 
(iii) Outside lesion neighborhood 
GM 0.70 ± 0.89 0.24 0.01 ± 0.03 0.00 
WM 1.91 ± 2.66 0.54 0.01 ± 0.06 0.00  

Fig. 4. Representative example of the absolute segmentation differences between healthy and artificially lesioned brain tissue segmentations without WM lesion 
effect minimization. Columns 4a and 4b show three axial slices from the healthy and artificially lesioned images that were segmented. In 4c, the artificial lesion mask 
is shown in white, the within lesion neighborhood ROI is shown in green and the outside lesion neighborhood ROI is shown in blue. In 4d and 4e, the absolute probability 
differences are shown overlaid in a yellow to red colormap, where yellow corresponds to a difference of 0.02 and red corresponds to a 1.0 or greater difference in the 
voxelwise sum of both GM and WM absolute probability differences. While the proposed approach shows large clusters of small differences close to the artificially 
lesioned voxels, FAST is affected by a larger number of sparsely distributed differences over the whole image which, overall, add up to a larger shift in measured 
tissue volumes. 
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the proposed approach, we perform end-to-end inpainting and seg
mentation by occluding the artificial lesions with zero-valued voxels and 
providing the WM lesion mask as an additional input to our network. As 
a baseline comparison, we evaluate the WM lesion inpainting algorithm 
(FSL_inpainting) provided in the FSL package (Battaglini et al., 2012) to 
fill the lesion intensities before segmenting the brain tissues with FAST 
(Zhang et al., 2001). We also evaluate the use of FSL_inpainting to 
inpaint the WM lesions prior to performing brain tissue segmentation 
with our deep learning model which, in this case, is provided with empty 
WM lesion masks to avoid using the inpainter network. 

The absolute volume differences of the segmentations of healthy and 
artificially lesioned versions of the same image are summarized in  
Table 2. Compared with the results in Table 1, the use of FSL_inpainting 
and our proposed method significantly reduce the volume differences 
for all methods (p < 0.01). Compared with the FSL_inpainting + FAST 
pipeline, the FSL_inpainting + Proposed method obtains significantly 
lower volume differences in all the considered ROIs (p < 0.001). This 
shows that the proposed deep learn- ing brain tissue segmentation 
framework is more robust to the error introduced by WM lesions even 
when using classical inpainting methods. Compared with FSL_inpainting 
+ FAST, the proposed approach obtains significantly lower volume 
differences in all ROIs (p < 0.001). However, when comparing with the 
FSL_inpainting + Proposed approach, the proposed method obtains 
significantly lower Whole brain and within lesion neighborhood volume 
differences (p < 0.001), but significantly higher outside lesion neighbor- 
hood differences (p < 0.01). In this case, the input normalization pa
rameters are much less affected by the intensities inpainted by FSL_in
painting than by the zeroes that are used to occlude those same voxels 
within the proposed approach. The outside lesion neighborhood ROI dif
ferences of the proposed approach increase significantly compared to 
those without performing inpainting in Table 1 (p < 10− 8). This is due to 
the occlusion with zeroes that we perform to the artificially lesioned 
voxels in the proposed approach, which slightly change the value of 
input normalization parameters and increase the segmentation differ
ences for the whole image. 

Fig. 5 shows the correlation between the artificial lesion volume and 
absolute GM and WM volume differences for the evaluated methods. 
Larger lesion loads tend to increase the segmentation differences for all 
methods, however, the ones using our deep learning based brain tissue 

segmentation model show a much lower error when larger lesion vol
umes are considered. This shows that the poor performance of the FSL 
pipeline on big lesions is not related to FSL_inpainting, since the pro
posed deep learning based tissue segmentation framework also takes in 
images preprocessed with FSL_inpainting and performs much better on 
larger lesion loads. 

In terms of execution time, a brain tissue segmentation done with 
FAST within our system takes an average of 3.25 min per scan, while the 
FSL_inpainting part takes less than a second to complete. In total, the FSL 
pipeline doing WM lesion inpainting and tissue segmentation takes 
7 min to process a scan since it requires two separate FAST executions, 
one to obtain the white matter segmentation mask required by FSL_in
painting and another to obtain the actual brain tissue segmentation from 
the inpainted image. In contrast, the proposed method doing end-to-end 
inpainting and tissue segmentation takes an average of 1 min to process 
a single scan. 

5. Discussion 

In this work, we focused on deep learning methods for brain tissue 
segmentation and performed the first study on the effect of WM lesions 
in this kind of approaches. We have proposed a deep learning based 
framework for brain volumetry which learns from a reference classical 
method and incorporates techniques to deal better with pathological 
cases having WM lesions. We have also proposed a multi-task double U- 
Net architecture, along with a training data generation procedure, to 
embed the WM lesion effect reduction within the brain tissue segmen
tation method itself. In our approach, instead of performing lesion 
inpainting in a previous separate step, we perform end-to-end WM lesion 
inpainting and brain tissue segmentation. By jointly optimizing both 
tasks, the inpainter is also trained to aid in the segmentation task 
through the gradient updates coming from the segmentation loss. In this 
sense, the actual quality or accuracy of inpainting in our framework is 
not important as long as the output segmentation more faithfully ap
proximates the healthy tissue probabilities. 

Without any kind of lesion inpainting, the tissue volumes provided 
by the proposed deep learning based framework are much less affected 
by the presence of WM lesions compared to the reference method used 
for training. Since the introduced artificial lesions affect the tissue 
probabilities of the patches where they appear, the use of a small patch 
size constrains the local effect to a smaller area around the lesion. 
Artificial lesions also change the estimated input normalization pa
rameters which are calculated using all the image intensities. However, 
the proposed input normalization based on image percentiles is quite 
robust against these intensity changes and avoids any global segmen
tation differences in most cases. In comparison, FAST is affected by a 
larger number of sparse segmentation differences spread out over the 
whole image which, overall, add up to a larger shift in measured tissue 
volumes. This is most likely due to the initial k-means clustering step 
that FAST performs over the entire image to estimate the mean intensity 
of each tissue, which is later used during the estimation of partial vol
ume probabilities. The introduction of artificial lesions biases the esti
mated mean intensity of each tissue which in turn biases the estimation 
of partial volume distributions, producing the observed segmentation 
differences in the interfaces between tissues. 

In terms of WM lesion effect minimization, both the FSL_inpainting 
and our proposed approach significantly reduce their effect on the 
measured tissue volumes. However, we obtain significantly lower vol
ume differences than the baseline FSL pipeline, especially when 
considering larger lesion loads. The results in Fig. 5 show that our deep 
learning tissue segmentation framework provides significant improve
ment even when using FSL_inpainting to preprocess the images. 
Furthermore, our proposed deep learning framework is faster, taking 
just under a minute to segment a whole brain scan while the baseline FSL 
pipeline takes an average of 7 min. 

The main limitation of this study is that we cannot assess or evaluate 

Table 2 
Abs. volume differences (%) of the GM and WM of the segmentations of healthy 
and artificially lesioned testing image pairs when using lesion effect minimiza
tion techniques. Compared with the FSL inpainting + FAST method, both the 
Proposed and FSL_inpainting + Proposed approaches obtain significantly lower 
volume differences in all ROIs than the FSL_inpainting + FAST pipeline 
(p < 0.001). When comparing with the FSL_inpainting + Proposed approach, the 
proposed method obtains significantly lower whole brain and within lesion 
neighborhood volume differences (p < 0.01).   

FSL_inpainting +
FAST 

FSL_inpainting +
Proposed 

Proposed 

Tissue mean 
± std 

median mean 
± std 

median mean 
± std 

median 

(i) Whole brain 
GM 0.05 

± 0.09 
0.014 0.02 

± 0.03 
0.009 0.01 

± 0.03 
0.004 

WM 0.08 
± 0.14 

0.020 0.03 
± 0.04 

0.012 0.02 
± 0.04 

0.005 

(ii) Within lesion neighborhood 
GM 0.06 

± 0.10 
0.019 0.04 

± 0.04 
0.021 0.02 

± 0.03 
0.008 

WM 0.08 
± 0.14 

0.018 0.04 
± 0.04 

0.020 0.02 
± 0.03 

0.007 

(iii) Outside lesion neighborhood 
GM 0.04 

± 0.07 
0.011 0.01 

± 0.02 
0.000 0.01 

± 0.03 
0.000 

WM 0.13 
± 0.23 

0.032 0.01 
± 0.04 

0.000 0.03 
± 0.07 

0.000  
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the accuracy and precision of the learned tissue segmentation model and 
its lesion effect minimization performance on real WM lesions. Due to 
the way in which the proposed approach is trained, this requires a large 
database of MR images with manually annotated brain tissue and WM 
lesions of both healthy and pathological subjects. However, there is no 
such database, and our evaluation has therefore been limited to relative 
comparisons with FAST as the gold standard on artificially lesioned 
images. In this sense, our approach presents a lower WM lesion effect 
with and without inpainting with a Dice similarity coefficient of 94.6 
± 2.5% relative to FAST brain tissue segmentations. Unlike supervised 
learning methods using manually annotated segmentations for training, 
a higher DSC compared to that of the FAST segmentation is not indic
ative of better quality or accuracy, just of higher similarity. Unlike FAST, 
deep learning methods suffer from the domain adaptation issue where 
their performance is not guaranteed outside of the image domains used 
during training. In this sense, a different MR scanner or acquisition 
protocol than those used during training would likely lead to a decreased 
segmentation performance. In such cases, training a model from scratch 
on the target image domain only requires a set of healthy MR images 
from that domain to which WM lesion masks from publicly accessible 
pathological scans can be registered to train the proposed method. 
Another option is to use domain adaptation techniques that fine-tune 
pretrained network weights to optimize the model for the target domain. 

In the proposed method, accurate WM lesion segmentation is 
required to obtain optimal results, and over or undersegmentation of the 
WM lesion would still introduce volume errors in the output segmen
tation. This could be an issue since manual lesion delineation or auto
mated lesion segmentation is often performed on FLAIR MR images, 
while brain tissue volumetry is usually performed on T1-w MR images 
(Rovira et al., 2015). In this case, the FLAIR lesion segmentation mask is 
usually registered to the T1 image and might not encompass all abnor
mally appearing voxels in the target modality image. In the case of 
oversegmentation, the method can deal just as well with the inpainting 
and segmentation of larger occluded areas as long as they are to be 
segmented as WM. Due to the way the method was trained, any occluded 

voxel is assumed to be WM in its majority and will be segmented as such. 
If the WM lesion is undersegmented, the lesioned voxels are not 
inpainted, which introduces errors in neighboring tissue segmentation. 
However, the experimental results without inpainting show that the 
effect is still be smaller than that of FAST and confined to the under
segmented lesioned voxels neighborhood. 

6. Conclusions 

In this work, we focus on deep learning based tissue segmentation 
methods for brain volumetry and studied the error introduced by WM 
lesions. We have proposed a deep learning framework for brain tissue 
segmentation which is much less affected by WM lesions than the 
reference method used to train thanks to the use of small patches and a 
percentile-based input normalization. We have also proposed a multi
task double U-Net architecture, along with a training data generation 
procedure, which performs lesion inpainting and tissue segmentation in 
an end-to-end manner and can reduce the WM lesion effect to almost 
negligible levels. Reducing the effect of WM lesions is critical for accu
rate and reliable cross-sectional volumetry or longitudinal brain atrophy 
quantification. Typically, state-of-the-art atrophy quantification ap
proaches are based either on boundary shift integration (Smith et al., 
2002) or Jacobian integration (Boyes et al., 2006), both of which rely on 
prior accurate segmentation of brain tissue which needs to be robust 
against the influence of WM lesions. Automated brain volumetry 
methods are currently only used to evaluate the efficacy of experimental 
therapies and to correlate with treatment outcomes in clinical studies. 
Improving their accuracy would either strengthen the statistical signif
icance of correlations or reduce the sample sizes needed to establish 
them. In routine clinical practice, the use of brain volumetry methods is 
discouraged for prognosis, such as assessing patient progression in MS 
(Rovira et al., 2015). These methods are unreliable when applied to a 
single subject instead of a large population due to the inherent technical 
issues and other confounding factors that severely affect brain volu
metry methods. Improving the accuracy and reducing the error from 

Fig. 5. Correlation of artificial lesion volume and the absolute volume differences (%) of the GM and WM of healthy and artificially lesioned images when using 
lesion inpainting. 
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confounding factors such as WM lesions is critical to unlock brain 
volumetry as an imaging marker for the prognosis of patients with 
neurodegenerative diseases. In this sense, the proposed deep learning 
methodology is significantly less affected by WM lesions and can mini
mize the error they introduce in the measured tissue volumes. 
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