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Abstract

The use of Fibre Reinforced Polymers (FRP) composites has grown in popu-
larity over the last few decades. They offer outstanding mechanical properties
combined with a low density, making them an excellent solution for many
lightweight applications. However, their low fracture toughness translates into
brittle behaviour that often leads to catastrophic failure without prior damage
symptoms. Moreover, there is a lack of reliable tools for the design of FRP
with mitigated brittleness because of the complexity of the micromechanisms
involved and the difficulties of experimental validation. These two factors consti-
tute a serious drawback that limits the application of FRP to a wider engineering
space.

As a result, virtual testing of composite materials emerges as a promising strat-
egy for reducing experimental programs devoted to the characterization of
these materials. Nonetheless, because FRP failure is controlled by microscale
phenomena, there is a need for a multiscale scheme that captures them using
micromechanical models. In this thesis, the capability of computational mi-
cromechanics to make virtual predictions of failure processes in unidirectional
FRP composites is extended with respect to the state of the art. Towards this
end, several computational micromechanics methods are developed, each with
its own challenge and research objective.

A high-fidelity computational micromechanics framework was developed in
order to accurately predict the failure and longitudinal behavior of UD compos-
ites. The fracture of fibers was explicitly reproduced to capture the longitudinal
failure of the microstructure. To accomplish this, a sequence of fracture planes
are introduced in the longitudinal direction of each fiber via cohesive surface-
based interactions. A cohesive zone model with a traction separation law is used
to represent fiber/matrix interface debonding, whereas a pressure dependent,
elasto-plastic model with tensile and compressive damage is used to capture the
nonlinear behavior of the polymer matrix.

Taking advantage of the computational micromechanics models, the failure
process that occurs in each constituent of RVE, including fiber, matrix, and
interface, when a unidirectional ply is loaded under longitudinal tension is
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analyzed beyond the state of the art. For this purpose, a RVE consisting of 107
carbon fibers (D = 7.09) embedded in an 8552 epoxy matrix with dimensions of
25R×25R×113R (R is the radius of fibre) is used. The micromechanics model
output was compared to experimental results from the literature as well as the
manufacturer (Hexcel) data sheet. The predicted tensile strength agreed very
well with the experimental measurements.

Subsequently, stress redistribution and damage phenomena in the vicinity of the
first-fibre break in unidirectional composites under longitudinal tensile loads
were thoroughly studied by means of high-fidelity computational microme-
chanics based on experimentally characterised material constituents. In this
framework, periodic microstructures with statistically representative random
fibre packings were analysed, and transient dynamic analyses were performed to
take into account the progressive failure and recoiling of a breaking fibre. This
study extends our understanding of the mechanisms that govern the longitudinal
tensile failure of unidirectional composites. The findings indicate that dynamic
fiber failure can more accurately reproduce the failure process and provide a
more realistic stress distribution.

Finally, a micromechanical finite element model is employed to investigate the
stress intensity factor of a single fiber with a straight-fronted edge crack embed-
ded in a matrix. Embedding a fibre in an elastic matrix reduced the SIF over the
free fibre case. It was discovered that the presence of the matrix enhances the
apparent strength of the fibers and alters the Weibull strength distribution char-
acteristics, resulting in the fibers failing at higher strains. A modified Weibull
distribution taking into account such effect due to the presence of the matrix was
computed. The progressive failure of a unidirectional carbon composite was
simulated using this Weibull distribution. The fibre break density predicted by
the model became significantly closer to the experimental observations, showing
that the presence of the matrix must be included for obtaining the strength of
the fibres.
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Resum

L’ús de materials compostos de polı́mers reforçats amb fibra (FRP) ha guanyat
popularitat en les darreres dècades. Ofereixen excel·lents propietats mecàniques
combinades amb una baixa densitat, cosa que els converteix en una excel·lent
solució per a moltes aplicacions de pes lleuger. Tot i això, la seva baixa tenacitat
a la fractura es tradueix en un comportament fràgil que sovint condueix a falles
catastròfiques sense sı́mptomes previs de dany. A més, hi ha una manca d’eines
fiables per al disseny de FRP amb fragilitat mitigada a causa de la complexitat
dels micromecanismes involucrats i les dificultats de validació experimental.
Aquests dos factors constitueixen un inconvenient seriós que limita l’aplicació
de FRP a sectors més amplis de l’enginyeria.

Com a resultat, l’assaig virtual de materials compostos sorgeix com una es-
tratègia prometedora per reduir els programes experimentals dedicats a la carac-
terització d’aquests materials. No obstant això, pel fet que la falla de FRP està
controlada per fenòmens a microescala, hi ha la necessitat d’un esquema multi-
escala que els capturi utilitzant models micromecànics. En aquesta tesi s’amplia
respecte a l’estat de l’art la capacitat de la micromecànica computacional per
fer prediccions virtuals de processos de falla en compostos unidireccionals de
FRP. A aquest efecte, es desenvolupen diversos mètodes de micromecànica
computacional, cadascun amb el seu propi desafiament i objectiu de recerca.

Es va desenvolupar un marc de micromecànica computacional d’alta fidelitat
per predir amb precisió la falla i comportament longitudinal dels compostos
UD. La fractura de les fibres es va reproduir explı́citament per capturar la
falla longitudinal de la microestructura. Per aconseguir-ho, s’introdueix una
seqüència de plans de fractura a la direcció longitudinal de cada fibra a través
d’interaccions cohesives basades en la superfı́cie. S’utilitza un model de zona
cohesiva amb una llei de separació per tracció per representar el despreniment de
la interfı́cie fibra/matriu, mentre que s’utilitza un model elastoplàstic depenent
de la pressió amb danys per tracció i compressió per capturar el comportament
no lineal de la matriu polimèrica.

Aprofitant els models de micromecànica computacional, s’analitza més enllà de
l’estat de l’art el procés de falla que passa a cada constituent de RVE, incloent-hi
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fibra, matriu i interfı́cie, quan una capa unidireccional es carrega sota tensió
longitudinal. Per això s’utilitza un RVE compost per 107 fibres de carboni (D =

7,09) incrustades en una matriu epoxi 8552 de dimensions 25R×25R×113R
(R és el radi de la fibra). El resultat del model de micromecànica es va comparar
amb els resultats experimentals de la literatura, aixı́ com amb el full de dades
del fabricant (Hexcel). La resistència a la tracció predita va coincidir molt bé
amb les mesures experimentals.

Posteriorment, la redistribució de tensions i els fenòmens de dany al veı̈nat
del trencament de la primera fibra en materials compostos unidireccionals
sota càrregues de tracció longitudinal es van estudiar a fons mitjançant mi-
cromecànica computacional d’alta fidelitat basada en propietats de materials
caracteritzades experimentalment. En aquest marc, es van analitzar microes-
tructures periòdiques amb empaquetadures aleatòries de fibres estadı́sticament
representatives i es van fer anàlisis dinàmiques transitories per tenir en compte
la falla progressiva i la reculada d’una fibra que es trenca. Aquest estudi amplia
la nostra comprensió dels mecanismes que governen la falla per tracció longi-
tudinal dels materials compostos unidireccionals. Les troballes indiquen que
la falla dinàmica de la fibra pot reproduir amb més precisió el procés de falla i
proporcionar una distribució de tensió més realista.

Finalment, es fa servir un model micromecànic d’elements finits per investigar
el factor d’intensitat de tensions d’una sola fibra amb una esquerda de vora
recta incrustada en una matriu. Incrustar una fibra en una matriu elàstica va
reduir el SIF sobre el cas de fibra lliure. Es va descobrir que la presència de la
matriu augmenta la resistència aparent de les fibres i altera les caracterı́stiques
de distribució de la resistència de Weibull, cosa que fa que les fibres fallin amb
deformacions més altes. Es va calcular una distribució de Weibull modificada
tenint en compte aquest efecte a causa de la presència de la matriu. La falla
progressiva d’un compost de carboni unidireccional es va simular fent servir
aquesta distribució de Weibull. La densitat de trencament de fibres predita pel
model es va acostar significativament a les observacions experimentals, mostrant
que la presència de la matriu s’ha d’incloure per obtenir la resistència de les
fibres.
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Resumen

El uso de materiales compuestos de polı́meros reforzados con fibra (FRP) ha
ganado popularidad en las últimas décadas. Ofrecen excelentes propiedades
mecánicas combinadas con una baja densidad, lo que los convierte en una exce-
lente solución para muchas aplicaciones de peso ligero. Sin embargo, su baja
tenacidad a la fractura se traduce en un comportamiento frágil que a menudo con-
duce a fallas catastróficas sin sı́ntomas previos de daño. Además, existe una falta
de herramientas confiables para el diseño de FRP con fragilidad mitigada debido
a la complejidad de los micromecanismos involucrados y las dificultades de
validación experimental. Estos dos factores constituyen un serio inconveniente
que limita la aplicación de FRP a sectores más amplios de la ingenierı́a.

Como resultado, el ensayo virtual de materiales compuestos surge como una
estrategia prometedora para reducir los programas experimentales dedicados
a la caracterización de estos materiales. No obstante, debido a que la falla de
FRP está controlada por fenómenos a microescala, existe la necesidad de un
esquema multiescala que los capture utilizando modelos micromecánicos. En
esta tesis se amplı́a con respecto al estado del arte la capacidad de la micro-
mecánica computacional para realizar predicciones virtuales de procesos de
falla en compuestos unidireccionales de FRP. Con este fin, se desarrollan varios
métodos de micromecánica computacional, cada uno con su propio desafı́o y
objetivo de investigación.

Se desarrolló un marco de micromecánica computacional de alta fidelidad
para predecir con precisión la falla y el comportamiento longitudinal de los
compuestos UD. La fractura de las fibras se reprodujo explı́citamente para
capturar la falla longitudinal de la microestructura. Para lograr esto, se introduce
una secuencia de planos de fractura en la dirección longitudinal de cada fibra a
través de interacciones cohesivas basadas en la superficie. Se utiliza un modelo
de zona cohesiva con una ley de separación por tracción para representar el
desprendimiento de la interfaz fibra/matriz, mientras que se utiliza un modelo
elastoplástico dependiente de la presión con daños por tracción y compresión
para capturar el comportamiento no lineal de la matriz polimérica.

Aprovechando los modelos de micromecánica computacional, se analiza más
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allá del estado del arte el proceso de falla que ocurre en cada constituyente
de RVE, incluyendo fibra, matriz e interfaz, cuando una capa unidireccional
se carga bajo tensión longitudinal. Para ello se utiliza un RVE compuesto por
107 fibras de carbono (D = 7,09) incrustadas en una matriz epoxi 8552 de
dimensiones 25R× 25R× 113R (R es el radio de la fibra). El resultado del
modelo de micromecánica se comparó con los resultados experimentales de la
literatura, ası́ como con la hoja de datos del fabricante (Hexcel). La resistencia a
la tracción predicha coincidió muy bien con las medidas experimentales.

Posteriormente, la redistribución de tensiones y los fenómenos de daño en la
vecindad de la rotura de la primera fibra en materiales compuestos unidireccio-
nales bajo cargas de tracción longitudinal se estudiaron a fondo mediante micro-
mecánica computacional de alta fidelidad basada en propiedades de materiales
carcaterizadas experimentalmente. En este marco, se analizaron microestructuras
periódicas con empaquetaduras aleatorias de fibras estadı́sticamente representa-
tivas y se realizaron análisis dinámicos transitorios para tener en cuenta la falla
progresiva y el retroceso de una fibra que se rompe. Este estudio amplı́a nuestra
comprensión de los mecanismos que gobiernan la falla por tracción longitudinal
de los materiales compuestos unidireccionales. Los hallazgos indican que la
falla dinámica de la fibra puede reproducir con mayor precisión el proceso de
falla y proporcionar una distribución de tensión más realista.

Finalmente, se emplea un modelo micromecánico de elementos finitos para
investigar el factor de intensidad de tensiones de una sola fibra con una grieta de
borde recto incrustada en una matriz. Incrustar una fibra en una matriz elástica
redujo el SIF sobre el caso de fibra libre. Se descubrió que la presencia de la
matriz aumenta la resistencia aparente de las fibras y altera las caracterı́sticas de
distribución de la resistencia de Weibull, lo que hace que las fibras fallen con
deformaciones más altas. Se calculó una distribución de Weibull modificada
teniendo en cuenta dicho efecto debido a la presencia de la matriz. La falla
progresiva de un compuesto de carbono unidireccional se simuló utilizando esta
distribución de Weibull. La densidad de rotura de fibras predicha por el modelo
se acercó significativamente a las observaciones experimentales, mostrando que
la presencia de la matriz debe incluirse para obtener la resistencia de las fibras.
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1.1 Composite materials
Composite materials are formed by combining two or more different constituents
or phases that remain separate and distinct within the composite microstructure.
The combination of the various mechanical properties of each individual con-
stituent allows for the creation of a specific material with the required properties
for a given application. As a result, composite materials are now playing a
crucial role in technological areas such as aerospace, car, construction, energy,
and biomedical. Good examples of technological applications include ceramic
matrix and metal matrix composites in cutting tools, armors for military vehicles,
disc brakes for sports automobiles, and gas turbine components.

Although composite materials are perceived as the materials of the future, they
are abundant in nature and have been used by humans since the dawn of civi-
lization. Muscles are an example of a fibrous material in the human body. The
arrangement of muscular fibers with varying orientations enables the develop-
ment of a highly adaptable material with exceptional properties in a preferred
direction. Wood is another example of a composite material, in which the
arrangement of cellulose fibres provides the required strength, while the ma-
trix (lignin) provides the necessary connection between the fibres and confers
compressive resistance to the material.

Fibre reinforced polymers (FRP) are the most widely used lightweight structural
materials out of all the high-performance composite materials. FRPs are made
up of a polymer matrix that is reinforced with stiffer and stronger continuous
fibers (carbon, glass, aramid, etc.) that can be woven, knitted, or braided to
create a textile sheet that will make the manufacturing process easier. However,
for high-end applications that require high strength and stiffness, composite lam-
inates made by stacking several unidirectional (UD) plies are still the reference
configuration, because larger fiber volume fractions and thus better properties
can be achieved. Millions of fibers run in a single direction through each ply,
resulting in a highly anisotropic material. The fibers are the load-bearing phase,
while the matrix is primarily used to keep the fibers oriented in the design
direction. The properties of the final laminate will be determined by the stacking
sequence of the individual plies. As a result, specific laminates can be tailored
to achieve the desired properties.
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As an example, the new Boeing 787 Dreamliner and the Airbus A350 XWB are
approximately 80 percent composite by volume, demonstrating the growing use
of FRPs in the modern aircraft industry. In particular, their wings and fuselage
are constructed primarily of carbon fiber reinforced polymers (CFRP). As a
result, predicting the mechanical properties and failure mechanisms of CFRPs
has become necessary in order to demonstrate the safety of structures whose
integrity human lives rely on. This task, however, is enormous in terms of cost,
time, and human resources.

The recent advances in computational techniques have also contributed to the
increased use of composite materials. The ability to simulate a material’s or
component’s behavior without having to fabricate and test it helped reduce the
cost and time of the design process, allowing the development of new and better
materials for specific uses. Computational simulations can be performed at
various scales. Macromechanical simulations required the least computational
effort. These simulations allow the designer to simulate the behavior of a full
component and study the stresses and deformations in the component; however,
the material is assumed to be homogeneous, which is a simplification from the
complex geometry of a composite material.

At a finer scale, mesomechanical simulations can be performed in which the
composite material is considered to be composed of several plies (laminas)
that are homogeneously stacked together with different orientations. Although
the laminas are still considered homogeneous, this type of simulation allows
for a more detailed analysis and study of various failure mechanisms such as
delaminations, providing a better understanding of the behavior of composite
materials.

However, composite materials are non-homogeneous as they made up of multiple
macroscopic material. Micromechanical simulations must therefor be used to
model their microstructure. Micromechanical simulations take into account
the different behaviors of the constituents and allow for accurate simulation of
the interfaces between them. Despite being more computationally demanding,
these simulations provide a comprehensive understanding of the influence of
constituent properties on composite behavior, as well as the mechanisms that
lead to composite material failure.
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1.2 Multiscale modelling approaches
There are currently two main multi-scale modeling strategies in the computa-
tional modeling research field: i) the standard top-down approach long used in
industrial structural engineering, and ii) a relatively new bottom-up approach,
primarily proposed and developed by research centers and university labs.

The hierarchical structure of FRP composite materials makes them ideal candi-
dates for using multiscale strategies in their analysis. It is well understood that
the constituent properties and distribution of the reinforcement fibers, whose
cross section is of the order of micrometers, control their mechanical properties.

1.2.1 Top-down strategy

This strategy tackles multi-scale problems starting from a numerical analysis of
the entire structure, usually through finite element methods, in a global-to-local
approach, where material testing begins studying the composite structure and
identifying the weakest parts (hot spots) where the damage is most likely to
appear. Then, these regions are subjected to further refined analysis using non-
linear constitutive models to predict the material response up to the final fracture.
However, this strategy mainly relies on phenomenological models where the
constitutive relations at certain levels will depend directly on calibration tests
performed on upper scales, where complexity and costs are higher. Due to the
phenomenological nature of these models, input parameters have to be obtained
for each material. This means that the results obtained for a given material
system cannot be extrapolated to materials with different fiber volume fraction,
ply thickness, or laminate stacking sequence.

In conclusion, this multiscale approach requires a large number of parameters
that must be identified and a massive investment on experimental testing in case
of considering different material systems, manufacturing processes, loading
conditions, composite configurations and architectures, etc.
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1.2.2 Bottom-up strategy

Recent developments in multiscale simulations, together with increased compu-
tational power and improvements in modeling tools, are enabling an alternative
strategy that overcomes the limitations of the top-bottom approach. A more
efficient strategy is the bottom-up multiscale strategy [1] which takes the re-
verse way, starting from micro- and nano-mechanical informations (fiber, matrix
and interfaces) and climbing up through the different length scales, each time
using the lower-scale behavior as an ingredient of the constitutive model for
the higher-scale response, as shown in Figure 1.1. In case of clear separation
of length-scales, homogenization schemes can be applied and used to transfer
information from one scale to the other. This transfer of information through the
lengthscales is the main difference with top-down approach where couplings of
different simulation techniques are used instead.

This new multiscale strategy takes advantage from the fact that composite struc-
tures are made up of laminates which in turn are obtained by stacking individual
plies with different fiber orientation. This leads to three different entities (ply,
laminate and component) whose mechanical behavior is characterized by three
different length scales, namely fiber diameter, ply and laminate thickness, re-
spectively. Fiber diameters are of the order of 5-20 µm, while ply thicknesses
are in the range 100-300 µm and standard laminates are several mm in thickness
and above. This clear separation of length scales is very useful to carry out
multiscale modeling by computing the properties of one entity (e.g. individual
plies) at the relevant length scale, homogenizing the results into a constitutive
model, and passing this information to the simulations at the next length scale
to determine the mechanical behavior of the larger entity (e.g. laminate). Thus,
multiscale modeling is carried out through the transfer of information between
different length scales rather than by coupling different simulation techniques.

Virtual testing of composites up to the component level is thus carried out in three
successive steps within the framework of the finite element method, assuming
that continuum mechanics describes the behavior even for the smaller scales. In
the first one, computational micromechanics is used to predict the ply properties
from the thermo-mechanical properties of the constituents (fiber, matrix and
interfaces), together with the volume fraction and spatial distribution of the
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Figure 1.1: Multiscale simulation strategies to carry out virtual mechanical tests of
composite materials and structures [1].

fibers within an individual ply. Fiber properties (stiffness, strength, coefficients
of thermal expansion) are usually provided by the fiber manufacturer, which
carries out a thorough characterization of the fiber properties as part of the
optimization process. On the contrary, matrix and interface properties depend
on the consolidation process (time, pressure and temperature, effect of fiber
dispersion) and have to be characterized in situ by means of nanomechanics.
Starting from the homogenized ply properties and information about the laminate
lay-up as well as the interply behavior, computational mesomechanics is then
used to determine the homogenized behavior of laminates. These results are
finally used within the framework of computational mechanics to obtain the
response until fracture of structural components made of composites.

This thesis focuses on the initial stages of the bottom-up multiscale strategy
(constituent level), in order to develop micromechanical models for the analysis
of various failure mechanisms in UD fiber reinforced composites.
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1.3 Failure in FRP composites
Most structural materials present one dominant physical failure process upon
deformation (e.g., void nucleation, growth and coalescence in ductile metals or
shear bands formation in polymers) and the simulation of failure only has to
include this micromechanism. On the contrary, FRP composites show totally
different and many more failure mechanisms. Despite all existing information
and current knowledge about UD FRPs, the accurate prediction of the failure
stress of composite materials and structures has been a difficult task due to the
complexity of the failure mechanisms involved. In order to predict the failure
of UD composite materials, it is necessary to know which stress state causes
which specific failure mode, respectively. Six different physical uniaxial failure
mechanisms can be identified in UD composites depending on the loading
direction, as shown in Figure 1.2.

Failure due to tensile stresses parallel to the fibers is controlled by the brittle
fracture of the fibers, while compressive stresses along the fibers lead to fracture
by fiber kinking in compression, a mechanism which mainly depends on the
fiber misorientation and the matrix shear strength. Tensile fracture perpendicular
to the fibers is brittle and controlled by the fracture of the polymeric matrix
and of the fiber-matrix interface, while fracture caused by compressive stresses
perpendicular to the fibers or by shear is accompanied by large deformations as
a result of the non-linear response of the matrix when subjected to compression
and/or shear. Finally, interply delamination is another typical failure mechanism
in FRPs due to the thermo-elastic mismatch between adjacent plies with different
orientation. Hence, accurate models of fracture of FRPs have to include all
these micromechanisms and the complex interaction among them because they
coexist in the same laminate subjected to one type of load as a result of the
different orientation of the fibers in each ply. For instance, intraply matrix cracks
(which propagate parallel to the fibers) are very often the origin of interply
delaminations, while it is well known that the compressive strength parallel to
the fibers is severely reduced in the presence of shear stresses.

1.3 Failure in FRP composites 7



(a)

(b)

(c)

(d)

(e)

(f)

Figure 1.2: Schematic of the different failure micromechanisms in unidirectional com-
posite as a function of the loading conditions. (a) Longitudinal tension. (b) Longitudinal
compression. (c) Transverse tension. (d) Transverse compression. (e) Transverse shear.
(f) Longitudinal shear [2].
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1.3.1 Failure criteria in FRP composites

The failure criteria for composites are often used just in the initial calculations to
size a component. Beyond that point, experimental tests on coupons or structural
elements are required to determine the global design allowable. These failure
criteria are made up of the intersection of different smooth surfaces, which
correspond to the different physical failure modes depicted in Figure 1.2. In
order to reduce the manufacturing time and the costs of new components, there
is a need to establish the level of confidence in the methods for failure prediction
of FRPs. To this end, Hinton et al. [3] carried out the worldwide failure
exercise, assessing nineteen different theoretical approaches for predicting the
deformation and failure response of FRPs. The experimental results for the
strength of the FRPs subjected to complex stress states showed significant
differences with the predictions of many theories, even when analyzing simple
laminates.

Failure in composite structures is commonly predicted through phenomeno-
logically based failure criteria implemented in the finite element analysis of
the structure. Hashin [4] in 1980 was the pioneer in the identification of the
different failure mechanisms in unidirectional laminates and incorporate them
separately in a piecewise smooth failure surface. He considered two different
failure mechanisms, one related to the fiber and one for the matrix, assuming
a quadratic interaction between normal and shear traction on the failure plane.
Hashin pointed out that a failure criterion cannot be smooth but piecewise
smooth, consisting of smooth branches each of which models a distinct failure
mode. In addition, he suggested that identifying the failure mode (matrix tension,
matrix compression, fiber tension or fiber compression) was crucial to capture
not only the damage initiation but also its propagation. The criteria assumed
a quadratic interaction between tractions acting on the plane of failure (Figure
1.3). However, Hashin’s model was not able to determine the actual orientation
of the fracture plane for matrix and fiber compression failure modes observed in
the experiments [5].

In 1998, Puck and Schurmann [6] proposed modifications to Hashin’s model
to improve its predictive capabilities and was able to capture the evolution of
the angle of the fracture plane under matrix failure modes. The key element of
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Figure 1.3: Three-dimensional stresses on a UD composite element. The axes 1,2,
and 3 (coordinate system) are fixed to fiber direction (axis 1), transverse (axis 2) and
thickness direction (axis 3). The coordinate system is rotated by the fracture angle θ f p,
against the thickness direction.

Puck’s criteria is the calculation of the angle of the fracture plane in the case
of matrix failure modes. Thus, transverse tension loads produce a fracture in a
plane which is normal to the loading direction and parallel to the fibers. Puck’s
stated that under matrix failure modes, fracture is caused by the combination of
normal and shear stresses acting on a plane parallel to the fibers that he called
the action plane.

The criterion distinguishes between three different failure modes (I, II and III)
for matrix failure cases. For matrix tension, the criterion predicts a failure plane
parallel to the fibers and perpendicular to the loading direction, whereas, under
matrix compression the fracture plane is inclined at an angle of θ f p ranging
between 0◦ and 54◦ depending on the in-plane shear (Figure 1.4).

Puck’s predictions correlated very well with the experimental assessments in the
worldwide failure exercise. However, it still presents some limitations, specially
when dealing with longitudinal compression loading. In addition, Puck’s failure
criterion uses non-physical material parameters (as shown in Figure 1.4) that may
be difficult to determine for non-conventional material systems. To overcome
these limitations, Dávila et al. [7, 8] proposed a non-empirical set of failure
criteria, denoted as LaRC03. It was based on the fracture mechanics analysis of
cracked plies [9] and Puck’s action plane concept.

The LaRC characterizes four different failure modes, as shown in Figure 1.5.
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Figure 1.4: Predictive failure curve derived from Puck’s criterion under matrix failure
modes and their fracture angles.

The longitudinal tensile and compressive failure, are assumed to be fiber depen-
dent modes, whereas the transverse failure modes are controlled by the matrix.
These criteria are able to predict the angle of the fracture plane under matrix
compression (transverse compression loading) as do Puck’s criteria. Neverthe-
less, the criteria are also able to deal effectively with longitudinal compression
loading including the fiber kinking failure mechanism, which is predicted by
calculating the fiber misalignment under load and applying the matrix failure
criterion in the coordinate frame of the misalignment. Originally formulated
for plane stress states, the LaRC predicts effectively the transition between the
different failure modes and hence, the failure envelope. In addition, instead of
using non-physical material parameters, the LaRC failure criteria lead to the
determination of the fracture angle using material properties. In particular, using
the Mohr-Coulomb failure criterion to model the ply behavior under transverse
loading and maximizing the effective shear stresses respect to the angle of the
failure plane.

In addition, instead of using non-physical material parameters, the LaRC failure
criteria lead to the determination of the fracture angle using material properties.
In particular, using the Mohr-Coulomb failure criterion to model the ply behavior
under transverse loading and maximizing the effective shear stresses respect
to the angle of the failure plane. The LaRC criteria were extended by Pinho et
al. [10, 11] for in-plane shear non-linear behavior and further combined with
a pressure-dependent constitutive law to predict tri-axial failure envelopes for
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Figure 1.5: Schematic of LaRC principal failure modes.

different laminated composites, as LaRC04 criteria.

Although both Puck and LaRC failure criteria are able to handle the different
matrix and fiber failure modes, the failure locus are obtained by means of
phenomenological or physically-based parameters, whose accuracy has to be
verified through costly and time-consuming experimental techniques. In addition,
results obtained for a unidirectional ply could not be extrapolated to materials
with different fibre volume fraction or constituent properties. Finally, the failure
of unidirectional plies also depends on the energy dissipated by each damage
mode, which has to be measured by means of complex mechanical tests or
estimated by comparison with experiments [12, 13].

1.4 Thesis motivation
FRPs are now widely used in applications that require good mechanical proper-
ties as well as weight savings. However, their low fracture toughness translates
into brittle behaviour that often leads to catastrophic failure without prior dam-
age symptoms. Moreover, there is a lack of reliable tools for the design of FRP
with mitigated brittleness because of the complexity of the failure micromecha-
nisms involved (due to strong anisotropy and heterogeneity) and the difficulties
of experimental validation. These two factors constitute a serious drawback that
limits the application of FRP to a wider engineering space.

Computational micromechanics and Finite Elements (FE) analysis provide a
novel approach to understanding material deformation and fracture mecha-
nisms. It has demonstrated high accuracy in prediction of mechanical behavior,
including fracture mechanisms, in the case of unidirectional fiber-reinforced
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composites under complex multiaxial loading cases [14–16].

1.5 Objectives of this thesis
Recent advances in computational micromechanics have demonstrated that
numerical simulations of the composite microstructure can be used to obtain
the mechanical behavior of a composite lamina while knowing the mechanical
properties of its constituents. This could be the first step in the development
of a new multiscale modeling strategy for predicting the strength of composite
structures.

The main goal of this research is to develop computational micromechanical
models that can predict the tensile behavior of unidirectional FRP composites.
These numerical models should be consistent with the main deformation and
failure processes that occur at the microscale. However, in order to develop
high-fidelity computational models, a deep understanding of the mechanical
properties of the FRPs constituents (including matrix, fiber, and interfaces) as
well as the failure mechanisms developed in the microstructure is required.

To successfully achieve the main objective, the following specific objectives
have been derived and addressed in this thesis:

A) Development of computational micromechanical models to predict the
tensile behavior of unidirectional FRP composites.

B) Study the deformation micromechanisms and stress redistribution in the
vicinity of the first fibre break in unidirectional composites subjected
to longitudinal tensile loads by means of high-fidelity computational
micromechanics supported by experimentally characterised material con-
stituents. Transient dynamic analyses were adopted to take into account
the progressive failure and recoiling of a breaking fibre.

C) Investigation of effects of embedding dry fibers in a matrix has on the
stress intensity factor and ultimate strength.

D) Evaluation of the in-situ effect of dry carbon fibre embbeded into a epoxy
matrix.
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1.6 Structure of the thesis
This thesis is divided into chapters that address various topics related to the
overall goal of understanding the tensile failure of unidirectional FRP composites.
Each of these chapters focuses on a different topic, each with its own set of
challenges. As a result, each chapter begins with a description of the current state
of the art for that particular topic. The introductory sections, already mentioned
in this chapter, are followed by:

Chapter 2 discusses the state of the art in the tensile failure of UD composite
materials. Various topics are covered, such as size effects in composite materials,
critical cluster size, and matrix effects in tensile failure. The various statistical
distributions to characterize the tensile strength of the fibers, which is important
in the formation of the cluster of broken fibers prior to failure, are also presented.
Furthermore, this chapter addresses the topic of modeling the tensile failure of
UD composites, where different models with different backgrounds are presented
and analysed in order to better understand the controlling factors in the tensile
failure of UD composites.

Chapter 3 presents a computational micromechanics framework in order to
predict the failure and longitudinal behavior of a unidirectional AS4/8552 com-
posite. This chapter discusses in detail the constitutive principles used to simu-
late fiber, matrix, and interfaces, as well as the RVE generation procedure and
boundary conditions. Ultimately, the failure processes in the fibers, matrix, and
interface are analyzed, and the results are compared to experimental observations
from the literature.

Chapter 4 presents a comprehensive study of the deformation micromechanisms
and stress redistribution in the vicinity of the first fibre break in unidirectional
composites subjected to longitudinal tensile loads by means of high-fidelity com-
putational micromechanics supported by experimentally characterised material
constituents. Transient dynamic analyses is adopted to take into account the pro-
gressive failure and recoiling of a breaking fibre. Periodic microstructures with
statistically representative random fibre packings are analysed. The relevance of
several phenomena on the SCF, such as curing residual stresses, fibre–matrix
debonding, matrix inelastic deformation, and their effects are investigated.
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Chapter 5 presents a micromechanical finite element model to analyse the stress
intensity factor of a single fibre with a straight-fronted edge crack. The fibre
is considered elastic and either isotropic or orthotropic, and free or embed-
ded in an elastic material of different stiffness. The study is performed using
non-dimensional variables for the fibre/matrix stiffness ratio and fibre longi-
tudinal/transverse stiffness ratio. The J-integral is used to evaluate the stress
intensity factor. The finite element model results are then used as input to
calculate the Weibull parameters and the rate of change in the ultimate strength
of the embedded fibres compared to the dry fibers. Finally, a semi-analytical
progressive failure analysis is performed to show how these changes affect the
tensile failure and damage development of a unidirectional carbon composite
material.

Chapter 6 extends the findings of Chapter 5 by focusing on the impact of mecha-
nisms such as matrix plasticity and interface debonding on the stress intensity
factor of carbon fibre. This capter presents a computational micromechanics
analysis of the stress intensity factor of a single carbon fibre with a straight-
fronted edge crack. The fibre is considered linear-elastic and either free or
embedded in an epoxy matrix. Carbon fibre reinforced plastic AS4/8552 was
used as the reference material for this study.

Finally, chapter 7 contains the main conclusions of the work carried out during
this thesis as well as proposals for future developments.
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2State-of-the art: Current
understanding of
longitudinal failure in UD
composites
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Modelling of composite materials is a difficult task due to the complexity of its
microstructure and interactions between constituents such as fibre, matrix, and
interface. However, in order to optimize their design, models that can predict the
behavior of these materials are required. The mechanisms of longitudinal failure
of UD composites under longitudinal loadings are well understood. They are
controlled by two main factors: i) statistical fiber strength [17], and (ii) after a
fibre fractures, the stress is redistributed among the intact fibers in a complicated
manner [18].

When a composite is subjected to longitudinal tension, final failure is governed
by the failure of unidirectional plies aligned along the loading direction. Such
failure usually starts with an individual fiber breaking at its weakest location,
leading to the stress redistribution along fiber axis as well as stress enhance-
ment in nearby intact fibers. With the further increase of applied load or load
cycles, more fibers break, along with other forms of damage such as fiber/matrix
debonding and matrix cracking. At this stage, fibres are no longer able to carry
stresses. As the matrix is loaded, it transfer the load back to the broken fibre,
making it able to carry stress away from the point of fracture. The stress is
redistributed to the remaining intact fibres by the matrix, which leads to stress
concentrations in the intact fibres, increasing their probability of failure. At low
applied stresses the fibres break appear in random locations and there is nearly
no interaction between breaks.

The stress along the fiber depends on the applied external stress, but also on
precisely how stress is transferred from a broken fiber to the surrounding intact
fibers and in the matrix environment. This stress transfer is governed by the
elastic properties of the constituents and by the fiber/matrix interface, and is
difficult to obtain in the presence of more than one broken fiber. Afterwards,
the stress concentration in the intact fibres will cause the creation of a cluster of
broken fibres. These clusters will grow, when other fibres fail and, when a cluster
reaches a certain critical size, it will propagate unstably leading to the separation
of the entire composite. The tensile failure of a UD composite is, therefore, of
statistical nature and function of the mechanics of load redistribution around
broken fibres. In this chapter we will review the different models to predict the
tensile failure of UD composites.
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2.1 Statistical distribution for fibre strength
The strength of a single fibre cannot be represented by a single average value.
Due to fibre brittle nature, the tensile strength is governed by surface or volume
flaws [15] and exhibits weak-link characteristics. This means they break as
soon as the weakest link is overloaded. The probability of failure is thus linked
to the presence of weak links. There are several statistical distributions used
to characterize the strength of fibres such as Weibull distribution, proposed by
the Swedish mathematician Waloddi Weibull in 1951 [19]. Weibull is the most
widely used statistical distribution for representing the strength of brittle fibres.
Weibull distribution is available in two forms: standard and modified.

2.1.1 Standard Weibull distribution

The standard Weibull probability distribution as:

P(σ f ) = 1− exp
(
−
(

L
L0

)(
σ f

σ0

)m)
, (2.1)

is the most widely used statistical distribution for representing the strength of
brittle fibres. Where P is the cumulative probability of failure of a fibre of length
L at a stress level of σ f , σ0 is the characteristic Weibull fibre strength, L0 is the
reference gauge length, and m is the shape parameter or Weibull modulus. The
shape parameter (m) is also known as the Weibull slope as it is equal to the slope
of the line in a probability plot. Different values of the shape parameter (m) can
have significant effects on the behavior of the distribution. Very high Weibull
modulus leads to a low strength variability and a low Weibull modulus leads
to high strength dispersion. Moreover, a longer length L reduces the strength,
since the probability of having a weak link is greater.

This distribution is highly dependent on the statistical parameters and usually
leads to the overestimation of the fibre strength at short gauge lengths L [20–27].
The inconsistency between the standard Weibull distribution and the experimen-
tal results for short gauge lengths can be attributed to several reasons including
diameter variation between fibres [24, 28], variations of the Weibull distribution
from fiber to fiber [24, 26, 27, 29] large-scale fluctuation of the density of de-
fects in fibres [28, 30, 31]. According to Curtin [29], this distribution is not the
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most accurate method to describe the strength distribution of fibres, however is
still the most used to characterize the tensile strength of technical fibres. Other
downside of this distribution is that there is no threshold stress below which the
failure probability is zero.

2.1.2 Modified Weibull distributions

As described in the previous section the standard Weibull distribution is not the
most accurate method to describe the strength distribution of fibres as it considers
just one defect population to model the distribution of the fibres strength. Recent
studies, however, have found that the fibres strength is governed by more than
one flaw population [23, 32]. To consider more than one flaw population in
the fibres, multimodal Weibull distributions were developed [23, 32–34], from
which the bimodal Weibull distribution is the most common:

P(σ f ) = 1− exp
(
−
(

L
L0

)(
σ f

σ01

)m1

−
(

L
L0

)(
σ f

σ02

)m2
)
, (2.2)

where σ01 and σ02 are the scale parameters and m1 and m2 the Weibull moduli
for the both populations of flaws. The second population flaw of this bimodal
Weibull distribution characterizes the strength of the fibres with short gauge
lengths. This distribution puts an upper limit into the strength at short gauge
lengths, and thus may be more realistic compared to the traditional Weibull
distribution [35]. The rate at which the strength decreases at short gauge lengths
depends on the magnitude of the Weibull modulus m2 [36]. The main issue with
the bimodal distribution is that many different parameters must be determined.

Another modified version of the Weibull distribution function presented in
the literature [22, 24, 26] is known as the ‘Power Law Accelerated Weibull
distribution’. As mentioned before, the traditional Weibull distribution fails to
characterise the fibre strength at short gauge lengths. This distribution is an
updated version of standard distribution with an extra correction factor (α) which
can characterise the fibre strength at short gauge lengths without overestimating
the strength:

P(σ f ) = 1− exp
(
−
(

L
L0

)α(
σ f

σ0

)m)
, (2.3)
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This equation leads to the traditional Weibull distribution when α equals 1. This
distribution has mainly been employed in micromechanical simulations where
the gauge length, L, tends to be small. The α parameter, usually lower than 1
(commonly varies between 0.6 and 0.9), allows the strength distribution to be
less sensitive to length scaling, therefore, reducing the overestimation usual of
the traditional Weibull distribution at very short gauge lengths. The disadvantage
of this distribution is its physical background since it is based on pure fitting.

As a result, there are several distribution to characterize the failure probability
of fibres, among which the traditional Weibull distribution (Eq. 2.1) is the most
used. The determination of the parameters governing for these distributions is
not simple, meaning that large set of samples need to be tested in order to obtain
representative parameters. The problems in obtaining the statistical parameters
for fibre strength makes it hard to get a single distribution to characterise this
property and, therefore, many statistical parameters can be found in the literature
for the same type of fibre [37].

2.2 Size scaling effects
Size scaling is defined as the change in properties with changing dimensions.
Size scaling influences not only the strength of individual fibers, but also the fail-
ure process and the longitudinal strength of composite structures [38]. Because
the elastic modulus is an average property, it should not change with specimen
size. Strength, on the other hand, is typically determined by the weakest location
or the largest defect. As a result, increasing size increases the likelihood of a
large defect and decreases composite strength. This is especially important for
industrial applications, as most strength predictions are based on small coupon
tests.

The size scaling effect of composite strength is now well established due to the
abundance of experimental evidence [22, 38–40] as well as modelling evidence
[41–44]. Mahesh et al. [43] demonstrated that the size effect is strongly influ-
enced by the Weibull modulus of the fibers. Pimenta and Pinho [41] applied their
hierarchical scaling law to predict the size scaling of the longitudinal strength of
composites with 1 to 1 million fibers. Their model accurately captures the size
scaling effects.
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There are several factors that contribute to this size effect, with most authors
agreeing that fiber strength statistics are essential [38]. The size effect is in-
fluenced not only by statistical factors, but also by deterministic factors such
as the effects of the damage process zone and the change of failure modes
[45]. This means that in order to achieve a good design of composite structures
based on coupon testing, it’s important to remember that the coupons should be
representative of the large-scale component’s manufacturing process, and that
larger structures have lower strength because critical defects are more likely to
occur [38]. Manufacturing contributes to the size effect due to the presence of
larger fibre waviness and overall defects in larger components.

2.3 Stress redistribution around a broken fibre
Once the first weak fibre breaks, the stress in the composite needs to be redis-
tributed. The broken fibre locally loses its load transfer capacity and the nearby
fibres are subjected to stress concentrations. If a global load sharing rule is
considered, then the stress that the fractured fibre carried is transferred equally
to all the remaining intact fibres. This type of load sharing rule is able to predict
the failure of lubricated tows, where the fibre interaction is low [46], but it’s not
accurate for composite materials where the fibres are bonded by a matrix, where
their is high interaction between fibres.

The interaction between the fibres and the matrix results in a non uniform stress
redistribution to the intact fibres, which is highly dependent on the composite
geometry [42]. The models that consider a non uniform stress redistribution
are known as local load sharing rule. The stress redistribution in composite
materials is a complex process that depends on several parameters, including the
fibre/matrix interface, the fibre to matrix moduli ratio, the matrix yield stress,
and the distribution and distance of fibers from each other [47]. This stress
redistribution is often characterised by two parameters: the stress concentration
factor (SCF) and the ineffective length. The stress concentration factor is defined
as the longitudinal stress in an intact fibre due to fibre breaks divided by its
nominal value in the absence of fibre breaks. The SCF can be expressed as an
absolute value or as the percentage by which it exceeds unity.

After a fibre breaks it locally looses the ability to carry stress, even so, away
from the failure plane it is still able to carry loads, which means that a fibre does
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not fully loose the ability to carry stress after it breaks. The ineffective length
is a measure of this stress recovery length of the broken fibre. Typically, this
length refers to the length over which the longitudinal fibre stress is below 90%
of its nominal value [48]. These parameters are crucial in modelling composite
materials as they will affect the stress redistribution and, therefore, the damage
accumulation and the formation of clusters of broken fibres.

The type of fibre packing affects the stress redistribution around fibre breaks.
There are several types of fibre packings based on two important features:
dimensionality and regularity (Figure 2.1).

1D, regular 2D, regular 1D, random 2D, random

(a) (b) (c) (d)

Figure 2.1: Schematic illustration of fibre packings: (a) 1D regular packing, (b) 2D
regular packing (c) 1D random packing and 2D random packing [36].

A 1D packing consists of a single row of fibres that can be equally or randomly
spaced and hence greatly simplifies the analysis. However, 1D packing fails
to give an accurate representation of the composite behaviour and leads to an
overestimation of the stress concentration factors [49, 50]. 2D packings are,
however, a more realistic representation of micro-structure of composite ma-
terials. Batdorf and Ghaffarian [51] noticed a significant discrepancy between
experimental and modelling results of strength of unidirectional composites.
They hypothesised that variations in fibre spacing are the major cause for this
discrepancy. Most models use regular packings and hence have deterministic
fibre spacings. Incorporation of statistical variations in fibre spacing reduced the
discrepancy between experiments and models. A 2D packing with random dis-
tribution of fibres is the model that most accurately represents the microstructure
of a composite material, as it better relates with the real distribution of fibres in
these materials [52].
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Random distribution of fibers instead of regular packing changes the distance
between the fibers and thus changes the stress distribution. Obtaining this
random distributions is more difficult and computationally expensive than regular
ones. Another problem of using random fibre packings especially in FE analysis,
is that the variations of fibre spacing lead to some problems with the meshing.
Nonetheless, the use of a random distribution is essential to have accurate
results, as it translates into more realistic microstructures and behaviour of
fibrous composites.

2.4 Critical cluster size
A UD composite fails under tensile loads due to the unstable propagation of a
cluster of broken fibres. As a result, a proper understanding of cluster formation
is required to model the failure mechanism of UD composites. The clusters
form as a result of stress concentrations in intact fibres that are adjacent to
a broken one. This increase in SCF causes stress to build up in intact fibres,
increasing their likelihood of failure and making it more likely that fibres will
fail in clusters. When one of those clusters reaches the critical cluster size, it
propagates in an unstable manner, resulting in composite failure.

Ibnabdeljalil and Curtin [53] investigated the critical cluster size, assuming
that composites have regions that are intrinsically weaker than others. They
developed equations to predict the likelihood of such weaker regions and the
critical cluster size (ncrit):

ncrit = 403m−1.28 (2.4)

where m stands for the Weibull modulus. For example, the equation predicts
critical clusters of 51 to 28 fibres for typical carbon fibres (m in the range
of 5 to 8) [54]. The presence of a few strong fibers near a group of weak
fibers can significantly slow down the progression of the cluster’s propagation.
This distribution of strong and weak fibers is statistical in nature. As a result,
Ibnabdeljalil and Curtin [53] concluded that significant differences in critical
cluster size can be expected from sample to sample.

Furthermore, several authors have observed that the critical cluster is not con-
strained within a single plane, but rather spans several layers within the inef-
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fective length [55–57]. Therefore, the ability to detect the critical cluster size
experimentally is required for the validation of composite UD strength models.
Unfortunately, such attempts are doomed to fail because the critical cluster
leads to immediate failure. Observing clusters immediately before failure is
challenging since the strength of a composite sample is unknown prior to testing.

Scott et al. [58] discovered a 14-plet cluster size in T700/epoxy composites
using synchrotron computed tomography. This was discovered at 94% of the
final failure strain, implying that the critical cluster size is most likely larger.
Similar research has been conducted by other authors. As an example, Aroush
et al. [59] discovered critical cluster sizes ranging from 9 to 33 for quartz
fiber/epoxy composites with only 125 fibers. However, Aroush et al. did not
specify how close these clusters were to final failure.

Despite massive interest, there is a scarcity of experimental data on the critical
cluster size. Accurately modeling the critical cluster size is also difficult because
it requires an accurate prediction of the SCFs around multiple fibre breaks.

2.5 Effects of matrix and interface properties
The tensile failure of composite materials is a fibre dominated phenomena,
however, the stress recovery in the broken fibre is attributed to shear stress
transfer in the matrix. Most analytical models such as shear lag models typically
neglect the axial stresses carried by the matrix. Xia et al. [60] proved that this
negligence causes a discrepancies between analytical and FE results, especially
for the models with low fibre volume fractions. This decrease could not be
addressed by shear lag models that waives the matrix effect. As a result, these
models were developed by adding the matrix to carry axial stresses and revealed
that SCFs decrease if the matrix stiffness increases [47, 61, 62]. In fact, the SCF
decreases with increased ratio of matrix to fibre modulus and decreased fibre
volume fraction.

Another simplification of analytical models is that they consider the fibres and
matrix to be perfectly bonded, which leads to a infinite stress concentration
factor in the matrix around a fibre break for elastic materials. The matrix and the
interface is unable to support such a high stress. In this case three scenarios or
combinations of them can occur: (1) the matrix yields [49, 63], (2) the interface
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debonds [47, 64], and (3) the matrix cracks in the break plane [65, 66].

Swolfs et al. [67] studied the impact of matrix cracks on both the SCF and the
ineffective length. They used a model with a random distribution of fibres and
concluded that the matrix cracking increases the ineffective length, drastically
changing the stress recovery profile. It was observed in the absence of crack in
the matrix, stress in the broken fibre increases rapidly, however, in the model
with a crack, the stress increases slowly. Swolfs et al. [67] study further showed
that matrix cracks not only increase the ineffective length, but also increase the
stress concentration factor, which leads to a higher failure probability of the
intact fibres.

2.6 Thermal residual stress
Thermal residual stresses are inherent to FRP composites due to the hetero-
geneity of the thermo-mechanical properties of fibre and matrix. These stresses
generate during cooling process from the processing temperature to the test
temperature. Residual stresses will be present in laminates constructed from
layers with different orientations on both the micro- and macro-scales. It is
widely recognised that these stresses can not be neglected because they may be
high enough to initiate delaminations and microcracking inside the matrix even
before loading [68–72].

Thermal residual stresses are able to initiate transverse microcracks in com-
posite laminates. If the thermal residual stress in the matrix exceeds the yield
strength of the resin and/or the fiber–matrix bond strength, matrix cracking or
fiber–matrix shearing will occur. Generally, the polymer matrix is very weak and
consequently after cooling from the curing condition to the room temperature, a
solid composite with several microcracks is formed. Low bond strengths at the
fiber/matrix interfaces lead to crack propagation along the interphase region.

2.7 Tensile failure models of UD composites
This section provides an overview of the most important models presented in the
literature that are able to predict the tensile failure of UD composite materials.
According to Mishnaevsky and Brondsted [73], the modeling approaches can be
classified into four categories: i) analytical models, ii) fibre bundle models, iii)
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fracture mechanics models, and iv) continuum damage mechanics models.

Composite materials can be studied at three levels: micromechanical, mesome-
chanical and macromechanical. At the micromechanical level, the fibre and
matrix are represented separately so that their interaction can be investigated.
However, at the mesomechanical level, the fibres and matrix are considered as
a unique material with homogeneous mechanical properties at the layer level.
This allows the interaction between layers, but not between fibres and matrix, to
be captured. Finally, at the macromechanical level, the full laminate thickness is
homogenized. Since the failure of composite materials is a micromechanical
problem, the focus here is on the different micromechanical models published
in the literature.

2.7.1 Analytical fibre bundle models

Fibre Bundle Models (FBM) take into account a bundle of of parallel fibres
loaded under uniaxial tension and stochastic strength [74]. When one of the
fibers fails, the load is redistributed to the remaining intact fibres. The procedure
is repeated until the final criterion is met. The main difference between the
models is how the load of a broken fibre is redistributed among the intact fibers.
In some models, this is calculated using known data from a finite element
simulation run a priori, while in other models it is calculated either with an
analytical equation, or inherently from the equilibrium equations of the model.
These models can be divided into two types based on the stress distribution rule:
global load sharing (GLS) and local load sharing (LLS).

2.7.1.1 Global load sharing model

In a global load sharing model, once a fiber is broken, the load is redistributed
among all the fibers placed on the fracture plane in an homogeneous way,
neglecting local effects arising around the broken fiber. In other words, the
fracture of a fiber is independent of where previous fractures have taken place.
Under these conditions, the composite failure process can be understood by
studying the failure of a single fiber embedded in the matrix under a uniform
remote stress. First GLS model was developed by Daniels [75] by considering
an RVE consisting of N parallel fibres (uniformly distributed) with length L,
in the absence of matrix. He assumed that the strength of the fibres follows
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a Weibull distribution (Equation 2.1), while the tensile strength of a bundle
with infinite fibres may be represented by a normal distribution. Daniels [84]
determined the stress in the bundle (σ∞) using the following equation:

σ
∞ = E f ε

∞ ·S (σ f ) , (2.5)

where E f is the fibre longitudinal modulus, ε∞ is the applied strain, σ f is the
stress in the intact fibres and S(σ f ) represents survival probability under the
stress σ f of a fibre with length L. He concluded that the tensile strength of a
bundle with a large number of fibres can be represented by a normal distribution,
while the strength of the fibres follows a Weibull distribution, and the strength
of the bundle can be obtained by:

Xb =
σ0

(
L
L0

)− 1
m

m
1
m e

1
m

, (2.6)

σ0, L0 and m are the characteristic parameters of the Weibull distribution.
Daniels model was not accurate due to several shortcomings. Firstly, the contri-
bution of the matrix to the load carrying capacity has been neglected, which is
not realistic. Secondly, the model is based on the regular distribution of fibres. In
real composite, however, the fibers are randomly distributed. Thirdly, it cannot
deal with hybrid composites nor predict the failure curve of composite materials.
Finally, as this model was developed for dry bundles it considers that a broken
fibre is no longer able to carry load, which is not accurate in the presence of a
matrix.

Rosen [48] improved Daniels model further by considering the influence of the
matrix through a shear-lag model. Rosen stated that the the breakage of a single
fiber in a group of N fibres, is enough to trigger the failure of the composite.
According to Rosen’s model, the composite longitudinal strength XT can be
predicted as:

XT =Vf σ0

[
L0

NL

] 1
m

+σ
m
t (1−Vf ) , (2.7)

where σm
t is the matrix tensile strengths and Vf is the fibre volume fraction.

Rosen model considers that when a fibre breaks, the stress is transferred back to
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the broken fibre, by the matrix that is loaded in shear. This means that there is a
stress recovery in the axial direction of the broken fibre. This stress recovery
length is defined as the ineffective length (Line f ) which is equal to the distance
from the break to where the fibre recovers a percentage (e.g. 90%) of the applied
stress. The following expression was formulated by Rosen to calculate the
ineffective length:

Line f =
d f

2

√
1−
√

Vf E f√
Vf Gm

ln
[

1
1−ζ

]
, (2.8)

where E f is the fibre Young’s modulus, d f is the fibre diameter, Gm is the shear
modulus of the matrix and ζ is the percentage of recovered stress.

Rosen model was based on a bundle of parallel fibres with length L divided
into a chain of bundles with lengths L/Line f and assumed that the longer bundle
will fail as soon as one of the sub-bundles fails, according to the weakest link
theory. Rosen reached a similar solution to that obtained by Daniels except that
it accounted for the ineffective length. According to Rosen model, the failure
strength of the bundle with length L is given by:

XT =
σ0

(
Line f
L0

)− 1
m

m
1
m e

1
m

, (2.9)

This means that while Daniels model considers the full length of the bundle (L),
Rosen’s model considers only the ineffective length (Line f ). Although Rosen
model is more realistic and accurate than that of Daniels, it is still not enough to
accurately capture the strength due to the inability to capture size effects.

Curtin [76] developed a model based on chain of bundles with a global redistri-
bution of stress. The matrix was hypothesised to break into short slabs relative
to the fibre fragments lengths. The load of a broken fibre was then transferred
by frictional shear coupling through these matrix slabs into all the surviving
fibres. Curtin’s model states that the broken fibres recover stress linearly along
a distance called the transference length δ , according to the shear lag model
with a constant shear stress τ . This shear stress can be considered in different
ways such as the matrix shear yield stress, the interfacial shear strength, or a
debonded frictional shear stress. Figure 2.2 shows where the fiber is broken, the
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stress increases linearly from zero up to the uniform remote stress value at δ .
The transference length δ has the same meaning as ineffective length and can
be calculated by:

δ =
σ f R f

2τ
, (2.10)

δ

τ

σ
σf

σfσf

Figure 2.2: Demonstration of stress distribution in a broken fiber.

where R f and σ f are the fiber radius and fibre stress, respectively. The average
stress in the broken fiber (σ̄ f ) can be approximated as:

σ̄ f = σ f

[
1− 1

2

(
σ f

σc

) 1
m+1
]
, (2.11)

where the parameter σc is the reference strength:

σc =

[
σm

0 τL0

R f

] 1
m+1

, (2.12)

Considering the overall force equilibrium of the composite material, the fibre
volume fraction and adding the matrix contribution, the composite longitudinal
strength XT can be predicted as:

XT =Vf σc

[
2

m+2

] 1
m+1
[

m+1
m+2

]
+σ

m
t (1−Vf ) , (2.13)

Curtin’s model is more accurate compared to Rosen’s model as it accounts for
the stress of the broken fibres in the tensile strength and considers an ineffective
length that is not constant but scales with the applied stress, allowing the strength
and the entire stress-strain curve of a composite to be estimated. It provides
a simple solution to the fiber fragmentation problem corresponding to a GLS

30 Chapter 2 State-of-the art: Current understanding of longitudinal failure in UD

composites



model and has been successfully applied to predict the longitudinal fracture of
ceramic matrix composites. However, Curtin’s model represents an upper limit
when it is applied to FRPs, where damage is often localized in a narrower band.

The models presented in this section are based on the global load sharing rule,
which is considered to be unaccurate and therefore limits the application of
these models. The main issue of GLS models is that they can not capture the
formation of clusters. Furthermore, the majority of GLS models do not consider
a finite number of fibres, nor the size effects. These drawbacks limits the GLS
models to composites with a very low interaction of fibre breaks. The advantage
of these models is that they require low computing power which makes them
suitable for huge models or for performing multiple parametric analysis.

2.7.1.2 Local load sharing models

In order to improve the longitudinal strength prediction in FRPs, a new type
of methods based on the local load sharing (LLS) model, have been developed.
These models incorporates the influence of a fiber breakage into the failure
probability of the adjacent ones. LLS is used in different approaches including
shear-lag models, FE analysis, variational mechanics and fracture mechanics.

The non-uniform redistribution of stress was addressed first by Hedgpeth [77] in
1961. He calculated the stress concentration factor in the neighbouring fibres as
a function of the number of broken fibres, using a shear lag model and uniformly
distributed parallel fibres. Later, this model was extended by Hedgepeth and
Dyke [49] for a 2D arrangement of fibres.

Harlow and Phoenix [78, 79] developed a fibre bundle model based on local
load sharing. This model considers a bundle consisting of N fibres, with a length
L, in which the fibres strength is characterized by the Weibull distribution. They
calculated the stress concentration factor (SCF) due to a cluster of n broken
fibres as:

SCFn = 1+
n
2
, (2.14)

Then, the probability of bundle failure was obtained by considering all the
different sequences of fibre breaks leading to the failure. This model achieved
the following important results:
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• As the number of fibers increases, the size effects decrease.

• At high loads, the bundle failure probability follows the weakest link
theory, leading to a Weibull distribution with a shape parameter similar to
that of fibre distribution. On the contrary at low loads, the probability of
failure follows a Weibull distribution with a higher shape parameter than
the fibre distribution, resulting in less dispersion of the bundle strength.

• As the bundle size increases, the asymptotic behaviours mentioned begin
to govern the strength distribution.

• By increasing the bundle size, the asymptotic behaviours begin to control
the strength distributions.

• The strength distribution for large bundles conforms the Weibull distribu-
tion, within an appropriate probability range.

• The equivalent single-fibre strength distribution can be determined
through the weakest link theory based on the strength distribution of a
large number of fibres.

Harlow and Phoenix fibre bundle model is one of the most leading LLS models.
The results obtained from this model are extremely accurate and are supported
by many recently developed models.

Later, other LLS models were developed using different stress redistribution
methods than Harlow and Phoenix model. For example, Curtin and Ibnabdeljalil
[53] developed a different LLS model that considers the stress redistribution
based on Green’s function. Curtin and Ibnabdeljalil used a 3D lattice Green’s
function model to calculate the stress field, damage evolution, and failure in
composites under LLS conditions in which the stress from broken fibres is
transferred predominantly to the nearby unbroken fibres.

2.8 Modeling Strategies based on Continuum

Micromechanics
Continuum mechanics or mechanics of continuous media provides an appropri-
ate mathematical framework for continuous and homogeneous materials, where
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the fields vary smoothly over the vicinity of a given material point. Downward
movement in the hierarchical structure of FRPs, it can be realized how con-
sidering the fiber and polymer matrix as the building blocks of the composite
seems to be the first step along the multiscale bottom-up approach. These micro-
constituents, including the fiber, the polymer matrix, and the interfaces between
them represent the smallest FRPs entities described by continuum mechanics.

To study the micromechanical behaviour of a composite, a Representative Vol-
ume Element (RVE) must first be defined. The RVE (also called as the unit cell)
represents the minimum material volume that is statistically representative of the
overall volume. Apparently, for computational efficiency, one will be naturally
interested in the minimum size of the RVE. Any volume of the material of a size
smaller than that will no longer be representative. The minimum size of RVE
may vary from material to material, from discipline to discipline, and sometimes
from one effective property of interest to another.

Once this RVE size has been defined, the effective or macroscopical response of
the composite can be obtained from the mechanical properties of the individual
micro-constituents. This computational homogenization process of the thermo-
mechanical properties of the composite together with the development of new
constitutive equations to study the damage onset and propagation are the main
topics covered by micromechanics of FRPs.

Several micromechanical methods have been developed during the last years to
accomplish such a complex task. According to Bohm [80], micromechanical
methods can be classified into two main categories including analytical and
computational homogenization. Several criteria must be taken into account
when choosing a solution method such as: arrangement and periodicity of
the microstructure, computational cost, desired information on the local
fields, accuracy of the predictions, etc. A brief discussion of the various
micromechanical models is presented in this section.
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2.8.1 Analytical micromechanics

2.8.1.1 Mean-field approaches

Semi-analytical mean-field homogenization schemes are an efficient way to
predict the behavior of heterogeneous materials. These methods are based on
some assumptions for the interaction between constituents and consider that
the stress and strain fields for each constituent of the composite material can
be represented by means of their corresponding volumetric averages. In fact,
mean-field approaches approximate the microfields within each constituents
by their volume phase averages i.e., uniform strain and stress fields on each
phase are used. The main geometrical characteristics of each phase, given by
the volume fraction of each constituent, phase topology, and aspect ratio of
inclusions are considered by using statistical descriptors.

Mean-field homogenization techniques are commonly based on the pioneer work
of Eshelby [81], who analyzed the stress distribution in an elastic and isotropic
ellipsoidal inclusion embedded in an elastic, isotropic and infinite matrix which
is subjected to a remote strain. Eshelby model is valid for ellipsoidal inclusions
only and assume a perfect bonding between constituents. In the case of two-
phase materials such as FRPs, the fields can be named as σ̄ f and ε̄ f for the fibers
and σ̄m and ε̄m for the matrix. Equations 2.15 and 2.16, show the expression of
the stress and strain fields averages over the volume for each individual phase:

σ̄i =
1
Vi

∫
Vi

σi (x)dV (2.15)

ε̄i =
1
Vi

∫
Vi

εi (x)dV (2.16)

where Vi is the volume occupied by each phase, V is the total volume (Vm +Vf )
and x is the vector which indicates the position of a material point. The subscript
i denotes f and m. The average stress σ̄ and average strain ε̄ fields can be
written as:

σ̄ = ξ σ̄ f +(1−ξ ) σ̄m

ε̄ = ξ ε̄ f +(1−ξ ) ε̄m
(2.17)
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where ξ stands for the volume fraction of the fibres and 1−ξ for the volume
fraction of the matrix. By considering the elastic behavior for both phases, the
relation between the average stresses and strains can be described as:

σ̄i = Liε̄i (2.18)

where Li is the fourth-order elastic stiffness tensor for each constituent phase i
(= f ,m). Now, the mean fields of stress and strain of the different phases can be
determined with the average stress and strain fields as:

ε̄i = Aiε̄

σ̄i = Biσ̄
(2.19)

where Ai and Bi are fourth order tensors known as mechanical strain and stress
concentration tensors (or influence functions) [82] and represent the complete
solution of the respective boundary value problems. These concentration tensors
should fulfill the following relations:

ξ Af +(1−ξ )Am = I

ξ Bf +(1−ξ )Bm = I
(2.20)

where I is the fourth-order identity tensor. The effective elasticity and com-
pliance tensors of the composite in the case of a two-phase composite can be
obtained from the phases and from the mechanical concentration tensors. By
replacing the stress and strain fields of the matrix in Equation 2.18, the effective
elasticity (L) and compliance (M) tensors can be obtained as:

L = Lm +ξ [(L f −Lm) : A f ]

M = Mm +ξ [(M f −Mm) : B f ]
(2.21)

In this particular case, only it is necessary to know one concentration tensor
for describing the full elastic behavior of the inhomogeneous material within
the meanfield methods. A and B tensors depend on the volume fraction of
the constituents, the shape and spatial distribution of the reinforcement. These
methods are also known as estimation methods.

Eshelby [81] determined the stress distribution and the average strain in an
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elastic and isotropic ellipsoidal inclusion embedded in an elastic, isotropic and
infinite matrix, determining the exact solution for the strain concentration tensor.
Eshelby’s result show that if an elastic homogeneous ellipsoidal inclusion (i.e.,
an inclusion is made of the same material as the matrix) in an infinite matrix is
subjected to a homogeneous strain, the stress and strain states in the constrained
inclusion are uniform and do not depend on the microscopic coordinate x.

Eshelby’s model makes good predictions under dilute conditions, where the
inclusion volume fraction is below 10%. Further, Eshelby’s result is based on the
assumption of a homogeneous inclusion. However, for mean field descriptions of
dilute matrix-inclusion composites, the interest is focused on the stress and strain
fields in inhomogeneous inclusions that are embedded in a matrix. Such cases
can be handled on the basis of Eshelby’s theory for homogeneous inclusions,
by means of the concept of equivalent homogeneous inclusions. To overcome
this limitation, several new micromechanical models were developed based
on Eshelby’s model with different methods for estimating the stress and strain
concentration tensors such as:

• Classical Self-Consistent model [83] is based on the existence of a suf-
ficient distance among the inhomogeneities embedded in a homogeneous
matrix. This self-consistent method approximates the interaction between
the different phases by assuming that each inhomogeneity is embedded
in an infinite volume of an effective medium, whose properties coincide
with the ones of the composite (which are not known in advance). The
defect is subjected to the macroscopic strain or macroscopic stress and the
boundary problem is computed by solving an implicit nonlinear system
of equations for the unknown elastic tensors, which describe the behavior
of the effective medium.

• Mori-Tanaka model [84, 85] is based on the Eshelby model for a non-
interacting dilute defect distribution. In this case, interactions between
inhomogeneities are introduced by means of approximating the stress
acting on an inhomogeneity by an appropriate average matrix stress.
This method maintains the same approach that was developed for dilute
inhomogeneities and the interactions among the inclusions are considered
through the modification of the stress or strain fields acting on each
inhomogeneity.
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Mori-Tanaka is one of the most used method in micromechanics when
one implements an analytical method, since it is an explicit method that
can be implemented into computer programs in a very straight-forward
way and provides enough accuracy for the effective properties in some
common materials.

• Generalized Self-Consistent model or Three-phase model was devel-
oped by Christensen and Lo [86] in 1979 and it can be considered as an
improved version of the Classical Self-Consistent method. This method,
which cannot be considered strictly as a Mean-Field Analysis (as it is
not based on the volumetric averages of the strains and stresses in each
phase.), was developed to compute the effective properties of a composite
material reinforced with spheroidal inclusions or aligned fibers.

This method is based on an energy approach in which the related elasticity
problem is solved. The model leads to a set of differential equations, which
describe the behavior of the three-phase material and should be solved
in order to obtain the value of the effective properties of the composite.
This method provides excellent results for inhomogeneous materials with
matrix-inclusion topologies and is a highly appropriated method to com-
pute the material characterization of heterogeneous materials reinforced
by spherical or equiaxed particles or aligned continuous fibers.

• Differential scheme is based on a succession of infinitesimal steps and
was developed by Roscoe [87] and Hashin [88]. In each step, small
concentrations of inhomogeneities are added to a composite material
and then homogenized. This differential scheme is not widely used
in the study of the mechanical behavior of composite materials due to
their mathematical complexity compared to other models. Differential
scheme, as is the case with the Self-Consistent methods and Mori-Tanaka
method, does not consider neither the distribution of the inclusions nor
the interaction among them, therefore it provides only accurate results for
low values of the volume fraction of the inhomogeneities.

These methods have been highly successful in describing the elastic response
of homogeneous/inhomogeneous materials. Their use for modeling nonlinear
composites is nowadays a subject of active research [89–92].
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2.8.1.2 Variational bounding methods

These methods use variational principles, based on the principle of a minimum
potential energy, to obtain upper and lower bounds on the overall elastic and
physical properties of inhomogeneous materials. Bounds are important tools for
assessing other micromechanical approaches. Furthermore, in many cases one
of the bounds provides by itself good estimates for the physical property under
consideration.

• Voigt and Reuss bounds

The uniform stress and strain conditions lead to the simplest variational
bounding expressions, which are also known as the Hill bounds [93]. Hill
bounds comprise the isostrain Voigt (principle of minimum potential
energy) lower bound and the isostress Reuss (principle of minimum
complementary energy) upper bound. These bounds, which are based on
simple expressions, do not contain any information on the microgeometry
beyond the phase volume fractions and therefore are too weak for practical
purposes.

• Hashin-Shtrikman bounds

Hashin-Shtrikman bounds [94] are based on a variational principle and
provide much more information since the bounds are tighter. This varia-
tional method narrowed the Hill bounds [93] providing tighter bounds due
to the inclusion of additional information in the microstructure. Hashin-
Shtrikman bounds can also be employed when modeling materials that
do not contain matrix-inclusion topologies, since the method holds for
any phase arrangement of the appropriate symmetry and phase volume
fraction, because is based on energetic principles.

In this context, the bounds obtained through this variational principle
are the tightest bounds that can be obtained using only the geometrical
information provided by the volume fraction and the overall symmetry.
When complex phase patterns are to be considered, numerical methods
must be used in order to evaluate correctly the stress polarization tensor.

• Improved Bounds

Some improved version of the variational methods have been developed
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in recent years. These methods use more complex trial functions and
the required optimization, which is necessary to obtain the bounds of the
effective properties for a inhomogeneous materials, needs some statistical
information on the phase arrangement in the form of n-point correlations.
Using a bigger amount of information allows to generate variational
bounds that are significantly tighter than Hashin-Shtrikman estimates,
although at a significantly larger computational cost.

One of the most important methods is the so-called Three-point bounds
for isotropic two-phase materials, which use the reinforcement volume
fraction (ξ ), as well as statistical information about the distribution of
the different phases in the composite material. This information is incor-
porated to the method by means of some micromechanical parameters
admitting closed-form solutions for some particular cases, such as random
dispersion of hard spherical particles with isotropic and homogeneous dis-
tributions. Among all the three-point bounds available in the literature, it
is worthy to mention the work developed by Torquato [95], whose models
for two phases materials provide most probably the best analytical solu-
tion to calculate the elastic constants of composite materials reinforced
with elastic inclusions.

2.8.1.3 Micromechanics fibre bundle models

This model combines superposition rules and fibre bundle models, which are
derived from the analytical fibre bundle models (as explained in section 2.7.1),
but take into account more precise stress redistribution rules. These models are
based on three elements:

• A deterministic model for stress redistribution to the neighbouring fibres
after a fibre breaks.

• A super-position rule to account for the effect of multiple fibre breaks in
the stress redistribution.

• A Monte-Carlo simulation of the fibre bundle model. These models are
not purely analytical due to the complexity of the stress redistribution.

Several models have been developed using this type of analysis, by considering

2.8 Modeling Strategies based on Continuum Micromechanics 39



different stress concentration factors and different super-position techniques
[55, 64, 96, 97]. Fukuda and Chou [96] proposed one of the first FBM models
for an RVE containing a 1D packing of parallel fibres, that could be used for
both non-hybrid and hybrid composites.

Later, Curtin et al. [97] developed a more advanced model. They considered a
3D RVE with a square or hexagonal fibre packing. The fibres are divided into
elements of length l, provided that l is much smaller than the ineffective length
of the fibers. Then, a stochastic strength is applied to each element according to
their length l. Unlike the model of Fukuda and Chou [96], Curtin’s model [97]
captures the stress recovery of broken fibres. Moreover, since the transverse and
longitudinal directions are decoupled, stress redistribution around breaks can
be changed without having to reformulate the model. Finally, a more realistic
packing of fibres was considered, together with a plastic or debonded matrix.

Behzadi et al. [98] used a finite element model to calculate both the ineffective
length and the SCF around multiple broken fibres, considering the matrix yield-
ing. The FE results were then used as input data in an FBM consisting of parallel
fibres with length equal to the ineffective length. This is an interesting approach
because it allows the accuracy of finite elements to be exploited while still using
a simple, high-efficiency model. They found that matrix yielding reduces the
SCF in the fibres and the presence of an elasto-plastic matrix surrounding the
fibres leads to an increase in the composite failure strain compared to the elastic
matrix case.

The most recent FBM was developed by Swolfs [36, 99, 100]. Swolfs model
uses FE to determine the stress redistribution profiles around a broken fibre.
The FE model consisted of a circular RVE with a broken fibre in the center,
with the remaining fibres arranged in a random packing for either a hybrid or a
non-hybrid composite. The fibres were divided into elements of length l along
the fibre longitudinal direction. The stress concentration factors were studied
as a function of distance to the broken fibre. Swolfs model studied the effect
of various mechanisms including matrix cracks, volume fraction, fibre/matrix
stiffness ratio, isotropic and anisotropic fibres [18, 67]. However, dynamic
effects and thermal residual stresses were ignored. He concluded that the stress
concentration depends mainly on the distance to the broken fibre and the effect
of other parameters is minimal.
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The stress concentration profiles obtained from FE were used as input in the
FBM. Swolfs considered a bi-modal Weibull fibre strength along with a random
fibre packing. The interaction between breaks was taken into account with
an enhanced superposition method, which takes into account the interaction
between all fibre breaks, as can be seen in Figure 2.3. His model first considers
a linear superposition of stress fields due to the broken fibres, which does not
guarantee the force equilibrium. In order to implement this, the stress that the
broken fibers put on each other must be redistributed. This redistribution is
performed proportionally to the original SCF in the linear superposition which
leads to a stress redistribution that ensures the balance of force. Although the
SCF is calculated taking the number of breaks into account, the ineffective
length is not considered. This means that the model neglects the increase of
ineffective length with the increase of cluster size.

(a) (b)
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16.7 16.733.3

20 40 20
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16.7 16.7 0

(c)

Figure 2.3: Schematics of the stress redistribution used by Swolfs [36]: a) stress con-
centration around a single broken fibre, b) SCF around two broken fibres is summed up
by linear superposition and c) SCF around two broken fibres by enhanced superposition.
Black fiber represents broken fiber.

The FE stress redistribution results are then used as inputs to the FBM, based on
Rosen’s approach [48] as explained in section 2.7.1.1, to predict the material
behaviour and failure. This model considers 2000 UD fibres with length of 10
mm, divided into 35 µm segments to which is attributed a strength based on
a Weibull distribution. Failure was assumed to occur when, at least, 10% of
the fibres in the same axial segment with a length of 35 µm had failed. Swolfs
compared the experimental data against the modelling results given by the FBM
and observed some discrepancies. For example, the failure strain predicted by
the model slightly overpredicted the experimental failure strain. The model only
predicted between 20-30% of co-planar clusters, while 70% of the clusters were
co-planar in the experiments (a cluster is assumed to be co-planar if the axial
distance between fibre breaks is less than 3.5 µm, otherwise it is considered to
be diffuse). In addition, the fibre break density was too high compared to the
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experiment.

According to Swolfs [36] the discrepancies are due to several reasons such
as: 1) lack of dynamic effects, 2) errors in the Weibull distribution, and 3)
averaging of the SCFs over the cross section of the fibre. The Swolfs model
offers several good features such as simplicity and computationally efficiency,
and yet it has good accuracy due to the combination with the finite element model.
Nevertheless, it also has its drawbacks. First of all, running the finite element
model to obtain the stress fields is time consuming. Secondly, the ineffective
length does not grow with the applied strain or the cluster size. Third, the model
could not capture the stiffness loss due to broken fibres. Nonetheless, the flexible
formulation of the model allows such missing features to be implemented along
with other phenomena such as dynamic effects.

2.8.2 Spring element models

Spring Element Models (SEM) consider a lattice of nodes that are longitudinally
connected by fibre springs and transversely by matrix springs, as illustrated in
Figure 2.4. Thus in the SEMs, unlike FBMs, the matrix is physically represented
by shear springs. The fibre springs can only support longitudinal load and their
strength is stochastic. Further, the matrix springs are considered to only being
able to support shear stress. The movement of the nodes is limited to longitudinal
displacement, which means that there is only one degree of freedom.

Transverse matrix 
shear springs

Longitudinal fibre 
springs

Figure 2.4: Representation of the node lattice of the spring element model showing the
fibres (green lines) connected by matrix shear springs (grey dashed lines).

The SEM was first developed by Okabe et al. [101, 102]. The model can be
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considered as an evolution of the Green’s function model [56], which is similar
to the quadratic influence superposition technique and shear lag based models.
The Okabe’s model considers a hexagonal arrangement of nodes, connected
longitudinally by N f linear elastic fibre spring elements with a stiffness E f , the
random strength X f and length of l. The stiffness matrix for the fibre elements
(K f ) can then be calculated as a function of the area of fiber cross-section (A f ),
length (l), stiffness of the fibres (E f ) and nodal connectivities by:

K f =
A f E f

l

[
1 −1
−1 1

]
(2.22)

In the transverse plane the nodes are connected by Nm linear elastic shear matrix
springs, which can be arranged into the stiffness matrix (Km), as function of the
matrix properties, including the thickness by:

Km =
Gm (Am2−Am1)(

dc−R1
f −R2

f ln
(

Am2
Am1

)) [ 1 −1
−1 1

]
(2.23)

where Am1 and Am2 are the associated matrix area of the two different fibres con-
nected by the transverse spring and dc is the centre-to-centre distance between
the two fibres. These areas can be estimated as a function of the number of
fibres connected to the two fibres and their respective fibre radius, R1

f and R2
f .

The nodes have only longitudinal displacements which can be arranged in the
matrix u.

The fibre fails when the applied stress reaches its tensile strength, and recovers
stress linearly according to the shear lag models with perfectly plastic matrix. At
a given stress state there are N f b broken fibre elements and N f SL fibre elements
whose stress is lower than the applied stress due to a nearby break in that fibre.
Therefore, the overall equilibrium can be written as:[

∑
N f int

K f +∑
Nm

Km

]
.u+ ∑

N f SL

A f

∫ xi+l

xi

B f σSL (x)dx = f (2.24)

where B f is the deformation matrix of the fibre elements, N f int is the number of
intact fibre elements in the model, and f is the matrix of nodal applied forces.
At each increment of applied stress/strain it is checked if any fibre fractures. If
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so, a new equilibrium is calculated. This process is repeated until failure of the
composite.

The model developed by Okabe is very robust, since it inherently captures the
effect that the different material parameters (such as matrix and fibres) have on
the stress redistribution around breaks from the equilibrium equations. However,
it is limited to regular fibre packings. Compared to experimental results, the
model overpredicted the fibre break density and underpredicted the formation of
larger clusters as well as the number of co-planar clusters.

Later, Tavares et al. [103, 104] developed one of the most robust and advanced
SEM for a random fibre distribution. This model captures the stress fields
around broken fibres inherently from the equilibrium equations, and takes into
account dynamic effects. In addition, it can capture the entire stress-strain curve
and the stiffness loss of a composite material. They found that the maximum
SCF is always larger in the dynamic model than in the static one, this increase
being dependent on the material. It was observed that if an elastic matrix is
considered, the dynamic effects affect the tensile behaviour and final failure of
the material. Nonetheless, with a plastic matrix the effect was not significant.
Including dynamic effects led to an earlier formation of clusters than with the
static model, making the results closer to the experimental ones. The model is
computationally more demanding in comparison with other simpler models. For
example, solving RVEs with a large number of fibres is not feasible unless a
supercomputer is used.

2.9 Computational micromechanics
Extending the analytical models to the non-linear regime, including plasticity,
damage and cracks, can be extremely inaccurate due to the impossibility to
account for large strain gradients in analytical methods. In addition, including
manufacturing conditions, such as thermal residual stresses and porosity, and
dealing with anisotropic microstructures will make the problem almost infeasible.
Computational Micromechanics (CM) has emerged in recent years as a powerful
tool to predict the influence of the constituent properties and complex non-
linear behaviors, such as damage and plasticity as well as finite strains on
the composites behaviour under different loading conditions. This approach
is based on the numerical simulation of the mechanical response of models
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where the constituents of the material are explicitly represented. Computational
micromechanics strategy considers detailed information of the microstructure
and constituent properties, inherited from micromechanical characterization of
the fiber, matrix and interface.

In addition, CM can capture the evolution of the stress and strain microfields,
and thus, it is possible to track the nucleation and growth of damage during the
analysis, which is a key aspect to model the localization of damage and fracture.
Finally, CM can deal with complex multiaxial stress states that is very difficult
to achieve in laboratory conditions or in analytical models, to obtain the failure
spot of the heterogeneous material. For these reasons and thanks to the rapid
advance in computational resources, CM models are becoming more and more
popular these days.

The computational micromechanics modelling uses two different strategies to
simulate the behavior of a discrete microstructure: i) the embedded cell method
and ii) the periodic microfield approach. The former is mainly used to model
the evolution of the stress and strain field when damage is localized along a well
defined region, whereas the latter is devoted to predict the effective response
of the heterogeneous material up to the onset of damage propagation. The
advantages and disadvantages as well as and the specific ranges of applicability
of both methods are outlined along the next subsections.

2.9.1 Embedded cell models

The embedded cell is a method that represents a material or specimen with two
different microstructural descriptions [105, 106]. First, the core region where
the microstructure is resolved with a high level of detail (including the matrix,
fibers and interfaces). This region is embedded in an outer region where the
microstructure is roughly resolved or even considered as a homogeneous domain.
The outer region is responsible for transmitting the far-field loads, applied on
the boundaries, to the core region where the stress and strain fields are resolved
at the microstructure level. Therefore, these models are not devoted to predict
the effective response of the material but the evolution of the stress-strain fields
and damage mechanisms within the fracture process zone. The main advantage
of the embedded cell approach is that the periodicity of the microstructure is
no longer required, simplifying the pre-processing tasks considerably. The
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schematic of an embedded cell for simulation of fracture is plotted in Figure 2.5,
where the high stress and strain region (crack region) is modeled in detail while
the remaining area is considered to be an homogeneous material.

Microstructure region

Homogenized region

Figure 2.5: Schematic of the embedded cell model to simulate the three-point bend test
on a notched beam. The microstructure is considered as the core region with a high level
of detail (including the matrix, fibres and interfaces) embedded in the homogeneous
material (in gray) whose constitutive equation is provided by a suitable homogenization
model.

Bohm [80] classified the embedded cell approaches into three types, based on
the consideration of the outer region:

• First type models which both the core and the outer region are represented
as an heterogeneous material providing a highly detailed description
of the microstructure, but discretized with different element size [107].
This model can easily reproduce a full sample with a refined mesh in
some regions of interest, avoiding the usual layer effects generated at
the interfaces between the core and the outer region. Nevertheless, this
strategy is extremely expensive from a computational point of view, even
with a very coarse mesh in the outer region.

• Second type models which the outer region is modeled as an homogeneous
material whose properties can be approximated using one of the mean-
field methods. These models are specially suited to study the localization
and growth of cracks in inhomogeneous materials [105, 108, 109] or the
stress concentrations near the crack tips [110] or around local defects
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[111]. However, the transition between the core and the outer region is not
always smooth. In FRPs, this strategy is normally limited to 2D intraply
failure studies, unless very large FE models can be used.

• Finally, models which use an homogeneous outer region with unknown
properties and solving the problem in an iterative way, in a similar manner
as for the self consistent method. In a first step, trial properties are
impose to the outer region, the stress and strain fields are computed in
the microstructure of the core. Next, the homogeneous response of the
core is used for the constitutive behavior of the outer region. This process
is repeated until the convergence is achieved. These models have been
mainly employed for material characterization [112, 113]. These models
are easily used in the elastic regime, however, extending this approach to
the non-linear regime is still problematic. Therefore, the second option
is considered as the better balance between predictive capabilities and
computational requirements.

2.9.2 Periodic microfield approaches

In these methods, the inhomogeneous material is modelled by an infinite model
made by a suitable statistically representative periodic RVE to approximate the
mechanical response of an infinite composite lamina. The resulting periodic
microfields are evaluated by analyzing the repeating cells of the microstructure
describing microgeometries ranging from rather simplistic to highly complex
representations of the real microstructure of the composite. Constitutive equa-
tions for composite materials in the nonlinear range are frequently obtained using
periodic microfield approaches. This approach at the microscale can also be
suitable to study the onset and progression of damage within the microstructure
[14, 114].

Several strategies based on periodic microfield have been developed to handle
the analysis of heterogeneous materials at the microlevel. The pioneer approach
was the Method of cells introduced by Aboudi [115]. It enables the computation
of microscopic and macroscopic properties of heterogeneous inelastic materials
subjected to multiaxial mechanical loadings as well as spatially constant thermal
loading. The method divides a repeating unit cell into an arbitrary number of
generic cells, which are then divided into 4 or 8 (rectangular or parallelepipedal)
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Figure 2.6: The periodic microstructure generated by the repetition of the unit cell,
which contains an RVE of 30 fibers, randomly distributed in a square domain.

subcells. Each subcell only contains a homogeneous material, which is different
from one cell to each other. The global response of the material is calculated
using a classical volume average and assuming that the displacement vector on
each subcell varies linearly with the local subcell coordinates.

Some authors have developed improvements of the generalized method of cells
in order to apply it to nonlinear problems, transformation field analysis [116]
and high-fidelity generalized cell methods [117, 118]. The high-fidelity general
method of cells, which employs higher order displacement fields, results in
significantly higher computational costs (though still lower than an equivalent
finite element simulation). Despite the fact that these analytical approximations
use highly idealized microstructures and provide limited information about
microscopic fields, they can be used to obtain constitutive models at a low
computational cost, which is required for the mechanical analysis of large com-
posite structures. Besides the previous simplistic approximations, the analysis
of composites through periodic microfield approaches is usually tackled with
more complex and realistic cells which are solved by numerical tools such as
the finite differences and the finite elements method.
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2.9.3 Concluding remarks

This chapter has presented several models for tensile failure of UD compos-
ites. Each model represents a unique balance of computational efficiency and
simplicity. It is widely acknowledged that the failure of UD composites is
progressive, with the fiber fracturing progressively, forming clusters that grow
until a critical size is reached. As a result, the propagation becomes unstable,
leading to failure. This process is primarily governed by fiber strength statistics
and micromechanical stress redistribution, which has been shown to be affected
by a number of parameters.

Most models fail to account for a cluster’s increased influence area in comparison
to a single broken fiber, as demonstrated by experimental data. The dynamic
effects are another aspect that most models overlook. When a fiber fails, the
dynamic effects are also present, resulting in dynamic stress concentrations
that vary over time. Another important element that most models, especially
analytical ones, overlook is interface debonding.

To choose the best approach for this dissertation, we must keep in mind that the
chosen method should be able to meet the following criteria:

• Capable of extending a comprehensive understanding of the failure in UD
composites.

• Capable of simulating all micromechanical interactions between compos-
ite components and capturing all failures.

• The failure development has to be realistic and accurate.

Considering the foregoing criteria, the computational micromechanics was
chosen as the primary method of investigation in this thesis.
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FRPs are now widely used in applications that require excellent mechanical
properties as well as weight savings. In most cases, their best selling point is
their specific longitudinal properties, and quick ways to determine them are
an advantage in the composite design process. Despite the numerous analytic
models developed to predict longitudinal ply behavior, longitudinal deformation
mechanisms such as fiber distribution, polymer plasticity and damage, as well
as fiber/matrix debonding and friction, are difficult to simulate.

To investigate this problem, micromechanical models that can account for dam-
age mechanisms in the longitudinal failure of composite materials must be
developed. These models must accurately represent the behavior of each con-
stituent of the composite, including fibre, matrix, and fibre/matrix interface. As
the fibers and matrix have different characteristics and behaviors, two damage
models must be implemented to illustrate both fiber breakage and matrix dam-
age. To connect these constituents, the interface must be also defined, as the
interfacial separation is an important failure mechanism.

The goal of this chapter is to develop a reliable and accurate computational
approach to predict the longitudinal failure in UD composites based on the
analysis of a statistically representative volume element of the material.

3.1 Constitutive models of fiber, matrix and

interface
Computational micromechanics models represent explicitly the constituents of
composite materials. Capturing the deformation and damage mechanisms is
difficult and requires proper models. To this end, specific constitutive equations
are used and implemented to model the behavior of each constituent, such as
fibers, matrix, and fiber/matrix interfaces. In this section, all these models are
explained in detail.

3.1.1 Carbon fiber

Carbon fibers, with a measured average diameter D = 7.09µm, were modeled
as linear elastic and transversely isotropic solids. The elastic modulus of AS4
carbon fibers in the longitudinal direction was measured experimentally through
single fiber tensile tests by Herraez et al. [119]. A transverse cracking model
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was used to obtain properties in the transverse direction by Naya et al. [120].
The thermoelastic properties of AS4 carbon fibers used in the computational
models are reported in Table 3.1.

Table 3.1: Mechanical properties of AS4 carbon fiber [119–121]

E1
[GPa]

E2
[GPa]

ν12
[-]

ν23
[-]

G12
[GPa]

G23
[GPa]

α1
[10−6◦C−1]

α2
[10−6◦C−1]

231 13 0.3 0.46 11.3 4.45 -0.9 7.2

3.1.2 Epoxy matrix

Epoxy polymers are strain rate sensitivity solids. Although, as a first approxi-
mation, strain rate effects are usually neglected when dealing with quasi-static
applications, modeling the behavior of polymers in the quasi-static regime is
still a complex task. The yield behavior of polymers depends on temperature
and strain rate. However, the conventional yield criteria can accurately describe
the plastic behavior of polymers by controlling the test conditions. Following
this strategy, many studies of the yield behavior of epoxies have bypassed the
question of strain rate and temperature and sought to establish a yield criterion
[122, 123].

Under tensile loading, epoxy resins usually fail in a brittle manner at very low
strain prior to any yielding, whereas, under compression, they exhibit yielding
and large plastic deformation, even at relatively low temperatures [124]. The
yield stress in these materials is often defined as the point of maximum load,
at which the subsequent deformation occurs without further increase in stress
[125]. In addition, the yield behavior of polymers is pressure-sensitive, which
means that the yield stress decreases with hydrostatic tension and increases with
hydrostatic compression. In view of this, capturing the evolution of the yield
stress requires a proper yield criterion such as the Mohr-Coulomb [126] or the
Drucker-Prager [127]. Originally developed to establish the yield behavior of
soils and rocks, these pressure-dependent yield criteria have been adopted in the
literature [109, 114, 124, 128, 129]. These plasticity criteria are summarized
along the next paragraphs.
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Mohr-Coulomb yield criterion

The Mohr-Coulomb failure criterion relates the shear stress required to produce
material yielding (τt) to the applied normal stress (σn) by means of a linear
relationship that can be mathematically expressed as:

τt = c−σn tanφ (3.1)

where c and φ stand for the cohesion and the friction angle, respectively, two
materials parameters which control the plastic behavior of the material. The
friction angle φ accounts for the influence of the normal stress σn in the evolution
of the yield surface. The material cohesion c corresponds to the intersection of
the failure envelope with the τ axis. The model is based on Coulomb’s friction
hypothesis and relies on Mohr’s theory to determine the combination of shear
and normal stresses producing the material failure. The yield surface of the
Mohr-Coulomb model can be rewritten in terms of principal stresses (σ1, σ2 and
σ3) as:

σ1−σ3 = 2c cosφ − (σ1 +σ3)sinφ (3.2)

The value of c and φ parameters for an epoxy can be approximated from the
tensile (σyt) or compression strength (σyc), and the orientation of the shear bands,
θ , in uniaxial tensile or compression tests by:

σyt = 2c
cosφ

1+ sinφ

σyc = 2c
cosφ

1− sinφ

(3.3)

Under uniaxial compression, the shear band inclination plane of a solid, which
follows the Mohr-Coulomb criterion, forms an angle θ , respect to plane perpen-
dicular to the loading axis, that can be related to φ based on θ = π/4+φ/2
(Figure 3.1).

It should be noticed that when φ = 0 the Mohr-Coulomb model reduces to the
pressure-independent Tresca model while φ = π/2 leads to the tension cut-off
Rankine model.
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Figure 3.1: Schematic of the Mohr-Coulomb failure criterion: shear band created by a
uniaxial compression stress and Mohr’s circle.
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Drucker-Prager yield criterion

The Mohr-Coulomb criterion has been widely used to model the behavior of soils,
sands and, more recently, polymers. However, it has several downside. First, it
does not depend on the intermediate principal stress, which can underestimate
the strength of the material in many cases [130]. Second, the yield surface shows
sharp corners, as shown in Figure 3.2, which leads to numerical issues related
to the evolution of the plastic flow. A common way to avoid such inconvenient
consists of smoothing the yield surface, changing the evolution of the plastic
flow in both the meridian and the deviatoric planes. Among the different failure
criteria devoted to this end, perhaps the Drucker-Prager stands out due to its
relative simplicity and ease matching the Mohr-Coulomb behavior.

Drucker-Prager yield criterion was initially proposed by Drucker and Prager in
1952, to deal with the plastic deformation of soils [127]. However, this yield
criterion and its subsequent modifications have been extensively applied to other
pressure-dependent materials such as rocks [131], concrete [132] or polymers
[133]. This failure criterion is very often formulated in terms of shear and
normal pressure as it was done for the Mohr-Coulomb. However, despite its
close relation to the Mohr-Coulomb, the Drucker-Prager yield criterion can be
seen as an evolution of the popular von Mises criterion, including the effect of
the hydrostatic pressure in the plastic evolution. The linear Drucker-Prager yield
function can be expressed as:

f
(
J1,J′2,α

)
=

√
3
2

J′2 +αJ1−d = 0 (3.4)

where J1 is the first invariant of the stress tensor, J′2 is the second invariant
of the deviatoric stress tensor, d is the yield stress of the material under pure
shear loading, and α is the pressure sensitivity parameter, which, according to
experimental results, is in the range 0.10-0.30 for polymers [123]. The Drucker-
Prager yield criterion can also be rewritten in terms of the principal stresses, as
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in the case of the Mohr-Coulomb criterion:

f (σ1,σ2,σ3) =

√
(σ1−σ2)2 +(σ2−σ3)2 +(σ3−σ1)2

2
+(σ1 +σ2 +σ3)α−d = 0

(3.5)

Mohr-Coulomb yield surface

Drucker-Prager yield surface

Hydrostatic axis

Figure 3.2: Drucker–Prager and Mohr-Coulomb yield surfaces.

Mohr-Coulomb and Drucker-Prager criteria are commonly used to describe the
yield behavior of granular materials. In many cases, the available experimental
data are given for one of such criterion, being necessary to obtain the relation
between them. In this situation, the Drucker-Prager yield surface can be matched
with the Mohr-Coulomb surface by the selection of the parameters α and d as:

α =
−sinφ

cosη− (1/
√

3)sinη sinφ

d =
ccosφ

cosη− (1/
√

3)sinη sinφ

(3.6)

where η is the Lode angle, which is controlled by the relationship of the inter-
mediate principal stress and the major and minor principal stresses, providing
different possibilities to match the Drucker-Prager and Mohr-Coulomb criteria,
as shown in Figure 3.3.
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Drucker-Prager (outer)

Drucker-Prager (inner)

Mohr-Coulomb

Figure 3.3: Matching between the Mohr-Coulomb and Drucker-Prager yield surfaces
in the deviatoric plane

Both the Mohr-Coulomb and the Drucker–Prager are suited to model frictional
materials such as polymers. The former is better to capture the different behav-
ior under tension and compression. However, the latter is more robust when
implemented in a computational code.

Epoxy micromechanics damage

Understanding the nature and origin of damage at the various constituents is nec-
essary while modeling damage in a UD composite. The polymer matrix and the
fiber/matrix interface, in particular, are the weakest parts of the microstructure,
acting as a trigger for composite degradation and failure. Understanding the
concepts of crack initiation and propagation necessitates a solid understanding
of fracture mechanics. For that reason, some fundamental concepts, such as the
concept of quasi-brittle material and the various methods of modeling damage
used in computational micromechanics, are briefly explained in the following
paragraphs.

Inglis [134] made the first mathematical attempt to study material fracture in
1913 by analyzing the case of an elliptical hole in a plate subjected to a remote
tensile stress perpendicular to the major axis of notch. He demonstrated that
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the maximum stress occurs at the vertex of the major axis, where the radius of
curvature is the smallest. Furthermore, when the elliptical notch is collapsed
into a perfect crack, the stress field is singular. Since real materials can only
withstand finite stresses, this result indicated that a cracked component cannot
sustain any loading if the maximum stress criterion is used, which contradicted
the experimental findings.

Griffith [135] investigated the propagation of cracks using energy conservation
principles. Griffith proposed that solids have surface energy, and that in order
for a crack to propagate, the externally added energy must exceed the surface
energy associated with the new area created during crack propagation. Griffith
introduced the concept of fracture energy of a material Gc, which was only
applicable to perfectly brittle materials. Experimental measurements of the
energy required to propagate a crack were orders of magnitude greater than
theoretical estimates. Plastic deformation occurs at the tip of the notch, according
to experimental observations of crack surfaces, even in brittle materials.

This led Irwin [136] followed by Orovan [137] to theorize the theory of the
Fracture Process Zone (FPZ) for the region surrounding the crack tip. This
zone was distinguished by progressive softening, in which stress decreases with
increasing deformation. The FPZ is surrounded by a nonsoftening nonlinear
region characterized by plasticity, with stress remaining constant as deformation
increases. The extension of the FPZ depends on the material microstructure and
nature and was defined by Hilleborg according to a characteristic length:

lFPZ =
EGc

σ2
t

(3.7)

in which E is the elastic modulus and σt is the tensile strength of the material.
There are three types of fracture behavior that can be distinguished based on the
relative size of the FPZ with respect to the plastic zone and to the structure size,
Figure 3.4. In the case of brittle materials, such as ceramics or glass, both the
FPZ and the plastic region are very small, and thus small strain increments cause
the microcracks to quickly coalesce into a macroscopic one that grows. Linear
elastic fracture mechanics (LEFM) is specially suited for this case. The second
type of behavior includes situations in which the nonlinear zone is caused by
the material’s plastic yielding and the size of the actual fracture process zone
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remains small. This type of behavior is common in ductile metals and is typically
treated using elasto-plastic fracture mechanics (EPFM). Finally, the third type
of behavior occurs when a large part of the nonlinear region is damaged due to
material softening caused by crazing, void formation, interface breakages, and
other similar phenomena. This type of behavior is observed in many quasi-brittle
materials [138], such as concrete, rocks, and toughened ceramics.

Linear-elastic

Softening
Hardening

Linear-elastic

Softening
Hardening

Linear-elastic

Softening
Hardening

Figure 3.4: Types of fracture according to the FPZ relative dimensions. From left to
right: brittle, ductile and quasi-brittle material. Stress distribution along the crack line
is shown at the bottom. From Bazant and Planas [138].

The epoxy matrix fails in tension with very limited elongation, and this brittle
behavior has classically been treated with LEFM [123]. Nevertheless, when
considering a perfectly brittle material, theoretical fracture toughness usually
underestimates observations [139]. This was confirmed by fractographic obser-
vations, which revealed massive plastic deformations caused by shear banding
and crazing around the crack tip [140]. These findings confirmed that toughening
mechanisms are involved during the fracture of the epoxy resin and that they can
be treated as quasibrittle materials. Two simplified approaches can accurately
describe the fracture process in these materials: cohesive crack models and
continuum damage models.

Damage-plasticity model

Cracking process in quasi-brittle materials is caused by a continuous nucleation
and coalescence of microcracks, as well as the evolution of microcrack density,
which results in a macroscopical softening of the material [123, 141]. Epoxy,
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like other quasi-brittle materials, behaves differently depending on whether it is
loaded in tension or compression. Although the difference between compression
and tension strength for an epoxy is not as large as it is for other quasi-brittle ma-
terials like concrete, the amount of plastic strain and thus the failure mechanisms
are completely different.

Among the various constitutive equations available in the literature, the damage-
plasticity model has a number of properties that make it highly suitable for
modeling quasi-brittle materials such as epoxy polymers. Lubliner et al. [142]
were the first to use the plastic-damage approach to model the mechanical
behavior of quasi-brittle materials, which was later modified by Lee and Fenves
[143]. The yield function can be expressed in terms of effective stresses and
equivalent plastic strains as:

F(σ , ε̄ pl
c ) =

1
1−α

(√
3J2 +αI1 +β (σI)− γ 〈−σI〉

)
−σyc(ε̄

pl
c ) = 0 (3.8)

where I is the first invariant of the equivalent stress tensor, J is the second
invariant of the equivalent deviatoric stress tensor, α is the pressure-sensitivity
parameter of the original Drucker-Prager yield criterion, σI is the maximum
principal stress and β is a function of the tensile σt(ε̄

pl
t ) and compressive σc(ε̄

pl
c )

yield stresses defined as:

β =
σc(ε̄

pl
c )

σt(ε̄
pl
t )

(1−α)− (1+α) (3.9)

The yield surface under plane stress conditions is plotted in Figure 3.5. This
model is a modified version of the pressure-dependent Drucker-Prager plasticity
yield criterion [144], allowing for the definition of various tension and compres-
sion behavior. However, it employs the concepts of isotropic damaged elasticity
in conjunction with isotropic tensile and compressive plasticity to represent the
quasibrittle material’s inelastic behavior, including the irreversible process that
occurs during fracturing.

For compression loading condition, the quasi-brittle material yields according
to the standard Drucker-Prager yield criterion. However, under tension loads,
the criterion predicts a yielding that is primarily controlled by the maximum
principal stress, similar to the Rankine model used for perfectly brittle materials.
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Figure 3.5: Yield surface in plane stress.

The model assumes two main irreversible deformation mechanisms: tensile
cracking (microcracking coalescence) and compressive shear banding (followed
by compressive crushing). The evolution of the yield surface is governed by two
internal damage variables, (ε̄ pl

t ) and (ε̄ pl
c ), which are determined by the failure

mechanisms under tension and compression loading, respectively.

Under uniaxial tension, the material behaves as an elastic solid until the failure
stress σt0 is reached. This point, corresponds to the onset of material degradation,
in the form of microcracking, as can be seen in Figure 3.6a. Increasing the
displacement causes continuous nucleation and coalescence of microcracks,
resulting in a macroscopic softening of the material by decreasing the yield
stress. Under uniaxial compression the response of the material is linear and
elastic until the value of the compression strength σc0 which corresponds with
the onset of the plastic regime. Typically, material experiences some hardening
until the ultimate compression stress is reached. This point corresponds to the
onset of compression damage (crushing). Typically, some hardening occurs
until the ultimate compression stress σcu is reached. This is when compression
damage begins (crushing), as can be seen in Figure 3.6b.
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Figure 3.6: Response of quasi-brittle material to uniaxial loading in: a) tension and b)
compression.

Epoxy micromechanical modelling

The epoxy matrix is modelled using the isotropic damaged/plasticity model,
named as concrete damaged plasticity included in Abaqus [145]. The main
features of this constitutive model are the pressure dependent yield surface
and the distinction between tensile and compressive damage evolution. This
model requires not only the definition of the uniaxial tensile and compressive
mechanical response, but also the evolution of the yield surface (plasticity) and
material degradation (damage), as described in detail in the Mohr-Coulomb and
Drucker-Prager yield criterion.

Although multiaxial tests are required to calibrate this model, Naya [146] demon-
strated that the representative behavior of the polymer matrix can be captured
using the elastic modulus Em, compression yield limit σm

yc, and internal friction
angle φ m, if the right values are assumed for some of the parameters describ-
ing the yield surface evolution and material damage. The model assumes that
damaged plasticity characterizes the uniaxial tensile and compressive response,
and thus the evolution of tensile plastic strain (ε̄ pl

t ) and compressive equivalent
plastic strain (ε̄ pl

c ). Based on this assumption, the first thing that must be defined
is the epoxy’s uniaxial stress-strain response and damage evolution (Figure 3.7).

Under uniaxial tension, the epoxy behaves as a linear elastic solid. Its tensile
strength corresponds to the onset of material degradation, which manifests as
microcracking. As the displacement is increased, continuous nucleation and
coalescence of microcracks occurs, resulting in a macroscopic softening of the
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material that is visible in the strength decay. In this study, a linear decay in the
tensile stress profile was chosen.

Under uniaxial compression, the the stress-strain relation is linear and elastic
up to the initial compressive yield (σyc). Then, plastic hardening occurs until
the ultimate stress value at the critical plastic strain (σuc) is reached. Material
collapse begins at this point which is modeled by means of stress decay.

Cracking

Crushing

Shear yielding

Figure 3.7: Schematic of the stress-strain curves used to model the epoxy uniaxial
tension and compression response. Damage modes are highlighted in red.

In addition, two linear damage evolution laws in both tension (dt = dt ε̄
pl
t ) and

compression (dc = dcε̄
pl
c ) were specified. Under tension loading, fracture energy

is used to model polymer postfailure behavior. The brittle behavior of concrete
is characterized by a stress-displacement response rather than a stress-strain
response using this approach. In order to implement the stress-displacement
concept in a finite element model, a characteristic length associated with an
integration point must be defined. Abaqus [145] performs this element size
regularization automatically based on the element geometry and formulation.
The equivalent stress-strain relationship is calculated using this element length
and the polymer fracture energy.
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The damaged/plasticity model requires five additional inputs to predict plastic
flow and yield function evolution, including: the dilation angle ψ , the eccentric-
ity parameter ε , the initial biaxial to uniaxial compression strength ratio σb0/σc0,
the tensile and compressive meridian yield condition ratio Kc, and the viscosity
parameter µc. The values selected for these parameters are shown in Table 3.2.

Table 3.2: Input parameters of the matrix damaged/plasticity model for the plastic flow
and yield surface evolution [146].

ψ ε σb0/σc0 Kc µc

29 0.1 1.29 1.0 0.0001

To summarize, the epoxy elasto-plastic behavior is presented in this work using a
damage-plasticity model based on the Drucker-Prager plasticity criterion. Table
3.3 exhibits these parameters. Regarding the parameters, the elastic modulus Em

is used here to model the elastic response, the compression strength σm
yc is used

to determine the onset of the plastic regime under compression loading, and the
polymer internal friction angle ψ is introduced in the yield surface evolution
through the biaxial/uniaxial compression ratio. The remaining parameters are
either taken from the literature or are default Abaqus values.

Table 3.3: Parameters of the damaged/plasticity model of the 8552 epoxy matrix under
uniaxial tension and compression [146].

Em

[GPa]
νm

[ ]
αm

[10−6◦C−1]
σm

t0
[MPa ]

Gm
t

[J/m2]

σm
yc

[MPa]
σm

uc
[MPa]

5.07 0.35 52 121 90 176 180

3.1.3 Fibre-matrix interface

Fibre-matrix interface debonding (decohesion) is one of the main damage mech-
anisms in FRPs because it leads to significant reductions of the strength, ductility
and toughness of the material [147]. Interface damage initiates by the nucleation
of a crack as the stress at the interface exceeds the interfacial strength. Damage
progresses as the crack propagates along the fibre-matrix interface and reduces
the amount of load transferred from the matrix to the reinforcement. Finally,
the fracture of the composite can occur by the coalescence of interface cracks
connected by shear bands in the matrix. For these reasons, the fiber-matrix
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decohesion is considered a key mechanism which should be taken into account
to analyze the overall composite behavior.

Despite the benefits of continuum damage models, cohesive damage models are
well-suited to simulate progressive interface damage at the interface between
dissimilar materials due to the well-defined crack path. Various methods, such as
extended finite elements, cohesive zone model, strong embedded discontinuities,
etc, can be used to implement the cohesive crack in finite element codes.

In this work, fiber/matrix interface failure was taken into account using the
cohesive zone method [148, 149]. The cohesive surfaces are inserted at the
fiber/matrix interface following a mixed-mode traction-separation law. The
cohesive surface has zero or negligible thickness. The traction separation law
considers initial linear elastic behavior, followed by damage initiation and
evolution. The relative displacement along the interface surface is denoted as δ ,
and the traction separation behavior of the cohesive zone can be represented in
Figure 3.8.

Tr
ac
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Separa�on
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t

Figure 3.8: Schematic of the pure-mode bilinear traction– separation law used to model
the cohesive zone interface.
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The elastic behavior can be represented as:

t =


tn
ts
tt

=

Knn Kns Knt

Kns Kss Kst

Knt Ksn Ktt




δn

δs

δt

= Kδ (3.10)

where t denotes the traction vector, K represents the contact stiffness that de-
scribes the linear-elastic behavior of the interface prior to damage initiation,
and under any compressive normal tractions, which are assumed not to cause
damage to the interface. The subscripts n, t, and s depict the normal, tangential,
and shear, respectively. The tractions acting at the interface can be represented
as:

t(n,s,t) = (1−d)t̄(n,s,t) (3.11)

The variable d, represents the irreversible damage, with d = 0 and d = 1 depicting
no damage and completely damage states, respectively. To represent the damage
under the combined mode of loading with both normal and shear components
acting across the interface, an expression for effective separation is defined as:

δ̄ =

√
〈δn〉2 +δ 2

s +δ 2
t (3.12)

Where 〈〉 is the Macauley bracket, δn, δs, and δt represent the normal and the
two shear displacement, respectively. The Macaulay brackets indicate that the
displacement jump in the normal direction is only taken into account when it
leads to crack separation. In other words, normal compression loading has no
effect on the interface damage propagation.

Mixed mode debonding

It is commonly found that a mixture of Mode I and II loading occurs in advanced
composite structures (Figure 3.9). Under mixed-mode loading, damage initiation
and softening behaviour may occur before the respective individual parameters
are reached. Therefore, Abaqus [150] includes various criteria for mixed mode
debonding onset and propagation [148].
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Damage initiation

Damage initiation under mixed-mode loading can be described by a quadratic
interaction function based on the nominal stress ratio:(

〈tn〉
to
n

)2

+

(
ts
to
s

)2

+

(
tt
to
t

)2

= 1 (3.13)

subscript n represents Mode I component while subscripts s and t represents
in-plane shear and out-of-plane shear that is represented together as a Mode II
component, as shown in Figure 3.9.

Damage evolution

The damage evolution is dependent on the energy released during the surface
separation process. The energy dissipated during the process is called fracture
energy and is equal to the area under the traction separation curve (Figure 3.8.
The dependence of fracture energy (Gc) on mixed-mode can be represented
either by a power-law or by the Benzeggagh-Kenane (BK) criterion [148]. We
used BK law [151] to compute the energy dissipation by:

Gc = Gc
n +(Gc

s−Gc
n)

(
GS

GT

)η

(3.14)

where η is the BK power exponent, Gc
n and Gc

s are the normal and shear fracture
energies, respectively, and GS and GT the reciprocal work under mixed mode
propagation.

Interface micromechanical modelling

The debonding between fibers and matrix is modeled by means of the cohesive
zone method coupled with frictional behavior. This coupled cohesive-friction
approach is implemented in the kinematics of surface contact interactions in
Abaqus/Standard [145]. This model is used to account for the significant effect
of friction during and after fibre/matrix debonding. The shear stresses caused
by friction at the interface are ramped up progressively and proportionally to
the degradation of the interface, thus once the interface is fully debonded, the
surface interaction is uniquely governed by a pure Coulomb model. Furthermore,
as shear stresses ramp with the interface damage variable, friction affects the
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Figure 3.9: Schematic of bilinear traction– separation law for mixed-mode loading
based on the BK fracture criterion

cohesive response, as illustrated in Figure 3.10. This increases the interface
shear resistance, which is a function of the normal compressive tractions used.

Damage initiation is implemented by a quadratic interaction criterion (Eq. 3.13)
that is determined by the fiber/matrix interface strength values. Once interface
debonding is initiated, the cohesive tractions transferred through the interface de-
crease linearly to zero using the energy-based BK damage propagation criterion
(Eq. 3.14).

In terms of interface parameters, it will be assumed that the properties in the
transverse shear direction (t) are the same as those in the longitudinal shear
direction (s). As a result, two interface strengths (tn and ts), two interface
energies (Gc

n and Gc
s), two penalty stiffnesses (Knn and Kss ), and the BK exponent

(η) need to be defined. The penalty stiffness, Knn and Kss, are non-physical
parameters that should be large enough to ensure displacement continuity in the
absence of interface damage while minimizing convergence difficulties due to
ill-conditioned stiffness matrix. The interface shear strength, ts, was determined
experimentally from push-in tests [152]. While the normal interface strength is
set to tn = 2ts/3 as stated by Ogihara and Koyanagi [153].

To the best of the author’s knowledge, there are no reliable experimental methods
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Figure 3.10: Schematics of the shear response of the damage-friction model for
fiber/matrix interfaces.

for measuring interface fracture energies. Setting the fracture energy values
according to parametric studies that aim at reproducing macroscopic experimen-
tal results was the approach followed by Canal et al. [105]. Nevertheless, the
fracture energies obtained in this way comprise other dissipation mechanisms
together with the pure interface debonding process, essentially matrix plasticity
and fiber bridging. In the case of the normal separation mode, this could result
in an overestimation of the true interface fracture energy. For instance, assuming
a value of Gc

n = 150 J/m2 and linear softening, the ultimate separation at failure
would be δ f = 2Gc

n/tn ≈ 70 µm, which is around ten times the carbon fiber
diameter. In view of this, the mode I fracture energy is assumed to be Gc

n = 2
J/m2. Similar values are reported in the literature [128, 154].

For the shear fracture energy, Gc
s , a value of 100 J/m2 was assumed such that

the separation at failure was δs = 1 µm. This energy is lower than that of the
matrix, representing the brittle nature of the fiber/matrix interface. Finally, from
Lopes et al. [155], the BK exponent was set to 1.2. The interface parameters
used in the simulations are presented in Table 3.4.
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Table 3.4: Material properties of AS4/8552 fiber/matrix interface [156].

tn
[MPa]

ts
[MPa]

knn

[GPa/µm]
kss

[GPa/µm]
Gc

n
[J/m2]

Gc
s

[J/m2]
η

[ ]
42 63 100 100 2 100 1.2

3.2 Representative volume element
The mechanical behavior of composite materials can be analysed through the
finite elements simulation of a representative volume element (RVE) of the
microstructure. The RVE was first defined by Drugan and Willis [157] as the
smallest material volume element of an heterogeneous material for which the
average stress and strain microfields converge to an asymptotically constant
value which is size independent and represents the effective macroscopic con-
stitutive response. As a result, the RVE should be larger than a certain size
in order to ensure that the simulation results are independent of the size and
spatial distribution of the reinforcements within the microstructure. There are
no procedures for predicting the size of the RVE for a specific composite anal-
ysis, but it should be confirmed by an a posteriori assessment of the statistical
error. If a large RVE was required to represent the composite, performing the
numerical computation would be impossible or costly. Fortunately, it has been
demonstrated that an RVE can accurately simulate the mechanical behavior of
metal matrix composites and FRPs in the elasto-plastic regime with only a few
dozens of fibers [106, 158, 159].

3.2.1 RVE generation

The artificial generation of representative microstructures is a key feature of the
computational micromechanics strategy. In the case of UD fiber-reinforced com-
posites, the microstructure corresponds to the distribution of fiber cross sections.
The fiber arrangement is an important factor in the composite’s behavior. Square
and hexagonal fiber arrangements typically produce unrealistic results [36]. To
overcome this difficulty, it is necessary to generate a Representative Volume
Element (RVE) that is representative of the material, which means having the
correct size and being able to represent the microstructure of the composite
material. Many different approaches have been proposed to achieve this goal.
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Fiber distributions can be directly determined from a micrograph of the com-
posite cross-section to generate real-like microstructures using image-based
reconstruction techniques [160, 161]. Image-based reconstruction techniques
provide the best RVE in terms of fidelity to the real microstructure, capturing
defects, fiber clusters, and so on. Despite the fact that these methods are rapidly
improving, high-quality composite cross-section micrographs are not always
available. Furthermore, sample preparation, image processing, and the export
process to the FE code are time-consuming and resource-intensive tasks. Be-
sides that, periodic microstructures are not easily found in real micrographs, and
enforcing such a condition requires additional effort, rendering the mathematical
work unfeasible. As a result, generating a virtual microstructure statistically
equivalent to the real one using random distributions is still the quickest way to
solve the problem.

Artificial RVE generators based on mathematical algorithms [154, 162–164] are
an alternative to image-based reconstruction techniques. Among the various
mathematical models, two algorithms stand out above the rest: the Random
Sequential Adsorption (RSA) [162, 163] and the Nearest Neighbor Algorithm
(NNA) [154]. The RSA technique was employed in this work to generate
artificial microstructures of FRPs, and the description of this method is given
below.

Rintoul and Torquato [162] developed the RSA algorithm, which was later
improved by Segurado and Llorca [163]. The RSA algorithm is robust and
fast, even when generating large 3D spherical particle distributions. The RSA
generates fiber centers at random and sequentially, and each new fibre is accepted
if the distance between neighboring fiber surfaces is greater than a minimum
distance (0.05D, where D stands for the fibre diameter) to ensure adequate finite
element discretization of this region. In addition, the distance between the fiber
surface and the RVE edges should be greater than 0.15D to avoid distorted
finite elements during meshing. Fibers intersecting the RVE edges were split
and complemented at the opposite sides of the square RVE to create a periodic
microstructure. New fibers were added until the desired volume fraction was
reached. If the desired fiber volume fraction is not reached, the unit cell is
compressed in several steps. At each step, a fiber is adsorbed towards a specific
point, making space for more fibres and eventually increasing the local volume
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fraction (Figure 3.11).
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Figure 3.11: Schematic of the periodic fiber distribution generation based on the RSA
algorithm. The black fibres guarantee the periodicity of the RVE.

3.3 Micromechanics modelling frameworks
The micromechanical model developed in this section is based on a represen-
tative volume element (RVE) containing a periodic and random dispersion of
parallel fibers embedded in a polymer matrix, representing an unidirectional
composite ply. In this work, the volume fraction of fiber reinforcement was set
to 50% in all simulations, a value that is usually attained in manufacturing of
common structural FRPs.

The RVE dimensions were large enough to ensure simulation results were size
independent in a statistical sense [109], without exceeding the computational
resources, to allow fast and efficient computations. The computational mi-
cromechanics framework has been implemented in the simulation environment
Abaqus/Standard [145] as the main FE platform throughout this study.

3.3.1 Boundary conditions

Periodic boundary conditions (PBC) were used instead of other strategies such
as iso-strain or iso-stress approaches to minimize the influence of the boundary
conditions on the mechanical response of the model. PBCs provide a balance

3.3 Micromechanics modelling frameworks 73



between the effective response obtained from imposing displacements (upper
limit) and tensions (lower limit) [165]. PBC were imposed between opposite
faces of the RVE to ensure the displacement continuity with the neighboring
RVEs as a jigsaw puzzle. For a given RVE with dimensions of L×H ×W
(Figure 3.12), PBC are introduced as nodal displacement constraints between
opposite RVE faces using the following equations:

u(L,y,z)−u(0,y,z) = uMx−uMo = ux

u(x,H,z)−u(x,0,z) = uMy−uMo = uy

u(x,y,W )−u(x,y,0) = uMz−uMo = uz

(3.15)

where x, y, z are the coordinates axis (0≤ ux ≤ L, 0≤ uy ≤H, 0≤ uz ≤W ), and
ux, uy, uz are the displacements of the master nodes. As a result, three master
nodes Mx, My, and Mz are defined in the RVE. The relative displacement of a
couple of nodes laying on opposite faces is equal to the displacement between the
corresponding pair of master nodes. The different loading states are introduced,
which include any physical homogeneous deformation state within the unit
cell and impose displacements on these master nodes. Each master node will
contain the reaction force generated by all the nodes laying on its corresponding
face. Uniaxial tension or compression in any directions can be imposed to
the RVE by applying the appropriate displacements to the master nodes. For
example, a uniaxial tension in longitudinal directions (z) is introduced by setting
Mx = (ux,0,0), My = (0,uy,0), and Mz = (0,0,δ ), where ux and uy stand the
resulting lateral Poisson contractions, and δ the applied tensile displacement.

3.3.2 Methodology

In this section, a computational micromechanics methodology based on a peri-
odic RVE approach is proposed to predict the longitudinal tensile strength of a
UD composite using the constituent properties mentioned in section 3.1. The
Weibull parameters, in particular, are critical properties of the model. Depend-
ing on the characteristic Weibull fibre strength (σ0), the size of the RVE must
be scaled in order to obtain a reasonable tensile strength value. When fibers
larger than those used in the single tensile test are used, a lower value of σ0 is
obtained due to a higher probability of fiber defects and, as a result, a lower
value of tensile strength. Using shorter fibers in the tensile test, on the other
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Figure 3.12: Diagram depicting the position of the master nodes used to implement the
periodic boundary conditions within the RVE.

hand, predicts a higher value of σ0 and thus of strength.

The length of the RVE (W) can be defined using the ineffective length obtained
from Equation 2.10. In this equation, by replacing σ f with σ0, the fiber strength
is properly scaled in relation to σ0. To allow for full stress recovery, the RVE
should be at least twice the length of the ineffective length. Then a reasonable
σ0 value is required. If σ0 is too large as a result, the RVEs will be too large,
rendering the computation extremely difficult. Small values of σ0, on the other
hand, will result in small RVEs, where stress recovery cannot be formed.

The length of RVE in the fibre longitudinal direction should be long enough to
ensure that the ineffective length will be well captured. Some studies employed
RVEs with lengths ranging from 15R to 40R [18, 166]. However, an RVE
using these length values does not guarantee a good prediction of the fibre
fragmentation. A congruent RVE length depends on the fibre and matrix elastic
properties, as well the ineffective and debonding lengths. Thus, RVEs lengths
of several orders of magnitude greater than the ineffective length should be
used [99, 167]. Furthermore, size effects may occur. Therefore, the RVE
must be large enough to capture the micro-mechanisms of the damage, the
stress redistribution around the broken fibres during the failure process, and the

3.3 Micromechanics modelling frameworks 75



clusters of fibre breaks on the different planes.

Periodic RVE model

A 2D periodic RVE of the unidirectional composite ply is generated, using
the in–house developed software, employing the random sequential adsorption
(RSA) algorithm to reproduce statistically representative microstructures. The
generated ply section has the dimensions length (L) = height (H) = 25×R, where
R is the average fibre radius, and contains 107 fibers (see Figure 3.13).
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Figure 3.13: Reference RVE section with Vf = 51%, contains 107 fibers. The location
and number of each fiber are specified.

This 2D section is extruded along the fiber direction, to a total width W = 113×R
, to achieve the final 3D RVEs (Figure 3.14). This size is sufficient to provide
full stress recovery inside the RVE after a fiber is broken while maintaining a
local load sharing approach.

The RVE size was selected based on well-informed parametric studies and
the proposed methodology described above that targeted the best trade-off
between computational effort and proper capturing of the relevant deformation
phenomena with minimum interference of model boundaries. The microstructure
of the composite ply is idealized as a dispersion of parallel, circular elastic fibers
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embedded in the polymer matrix.

W

Fracture planes

Z X

Y

δ

Figure 3.14: Extruded 3D RVE model.

To simulate the micromechanical behavior of RVE, proper damage models that
can represent the behavior of the constituents in the RVE must be implemented.
Since the RVE is composed of matrix, fibers, and interfaces, three damage
models have been implemented in FE model to capture the damage associated
with each component. The damage models associated with the matrix and
interface are detailed in sections 3.1.2 and 3.1.3, respectively.

To capture the longitudinal failure of the microstructure, the fracture of carbon
fibers must be explicitly reproduced. In order to achieve this, a sequence of frac-
ture planes, represented by cohesive surface-based interactions, is introduced in
the longitudinal direction of each fiber, as shown in Figure 3.15. The separation
of the contacting surfaces is governed by cohesive behaviour to simulate the
progressive breakage of the fibres. Figure 3.16 depicts a section of the microme-
chanical model detailing the location of cohesive surfaces in the fiber and at the
fiber/matrix interface.

The distance between the fracture planes (d) must be carefully considered so
that the model can capture the stress recovery of the fractured fibre (Figure 3.15).
If d is set to an extremely large value, the model will fail to capture the stress
recovery. It also cannot be ”extremely” small, because the Weibull distribution
would result in extremely large strengths, which would be incorrect.

In this model, the distance between fracture planes corresponds to the length of
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Figure 3.15: An example of the distribution of fracture planes and cohesive surface-
based interactions in a fiber. The parameter d denotes the distance between fracture
planes.
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Figure 3.16: A section of the micromechanical model detailing the location of cohesive
surfaces in the fiber and at the fiber/matrix interface.
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the element (bundle) in the Fibre Bundle Models (FBM). As a result, the size
of d can be considered equal to the length of the element used in the FBMs
[20, 99, 168–170]. According to the literature [20, 99, 168–170], the best value
for this length is in the range of R≤ d ≤ 2R, where R is the radius of the fibre.
For this study, d = 5µm was chosen as the ideal distance between the fracture
planes.

Another essential aspect that must be addressed is the number of fracture planes
in each fibre. It should be sufficient to capture the effect of Weibull distribution
in the fiber fracture strength. To this end, we consider that the fracture planes
are distributed in such a way that they cover a length equal to the ineffective
length. According to Swolfs [36], the effective length of a broken carbon fiber
is ≈ 28×R, where R is the radius of the fibre. As a result, by dividing the
ineffective length by the distance between fracture planes (d), the number of
fracture planes can be estimated. Using this strategy, each fiber requires a total
of 20 fracture planes (Figure 3.14).

The RVE has a total of 2140 fracture planes due to the presence of 107 fibers,
each with 20 fracture planes. The strength of each fracture plane is assigned
randomly using Weibull distribution (Eq. 2.1). The Weibull parameters σ0 =
4.275 GPa and L0 = 12.7 mm [171]. The parameter L is equal to the distance
between two fracture planes d. Figure 3.17 depicts the obtained distributions of
strength for all the fracture planes.

The micromechanical behaviour of FRP can be affected by the occurrence of
post-curing thermo-mechanical residual stresses that arise due to the different
thermal expansion coefficients of the fibres and the matrix. To account for these
effects, this finite element analysis consists of two steps. In the first one, residual
thermal stresses were introduced in the model through an initial elastic thermal
step, in which the temperature was homogeneously reduced from the curing
temperature (T = 180 ◦C) down to the room temperature (T = 20 ◦C) without
external constraints. Due to the mismatch of thermo-mechanical properties
between fiber and matrix, the residual thermal stresses build up. Afterwards, the
longitudinal mechanical loading was simulated in the second step by means of
the displacement in z direction.

The 3D RVE is discretized with fully integrated brick (C3D8) and wedge (C3D6)
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Figure 3.17: Distributions of tensile strength of the 2140 fracture planes in the fibres
of the RVE, based on Weibull distribution.

[145] isoparametric elements with an average characteristic length of 1 µm , to-
talling around 1.1×106 elements. This discretization is judged, after parametric
analysis and convergence study, to be fine enough to capture the stress gradients
around a fibre break. The RVE analyses is extremely demanding and require
around 8 days to complete in an HPC cluster of 50 Intel Xeon E5-2670 cores.

3.4 Results and discussion
Figure 3.18 depicts the longitudinal stress-strain curves for the UD AS4/8552 ply
under longitudinal tension resulting from the RVE simulation. The stress-strain
curve behaves linearly until almost the point of failure. However, in fact, once
the first fiber fracture occurs, the system becomes non-linear and non-linearity
increases as the number of broken fibers increases.

The micromechanical model predicted a maximum strength of 2164 MPa. This
value was compared to the tensile strength of an AS4/8552 composite material
from the literature [172], as well as the supplier product data sheet (Hexcel)
[173]. Table 3.5 shows that the result of the micromechanical model is in very
good agreement with the values obtained experimentally. Minor differences in
the results can be attributed to the following factors:
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Figure 3.18: Stress-strain curves for the AS4/8552 carbon-epoxy matrix under longitu-
dinal tension. The number of broken fibers at various strains is represented. The blue
color represents broken fibers, while the red color represents intact fibers.

• First, the longitudinal tension test is difficult to perform, and there is
significant scattering from one coupon to the next, which corresponds
to the stochastic distribution of defects. This is evident in the disparity
between supplier and literature results.

• Second, the micromechanical analysis prediction corresponds to the value
of a single RVE and a single Weibull distribution. In this case, repeating
the analysis for different microstructures and fiber strength distributions
will result in a more realistic average prediction.

• Finally, the number of fibers in the RVE may not be sufficient to capture
the effect of the Weibull distributions. For example, the number of fibers
used in experimental testing to obtain the tensile strength reported in
the literature, either by Marlett et al. [172] or by the supplier [173],
ranges between 136 and 290. Due to computational resource limitations,
simulation of an RVE with this number of fibers is not feasible.

As it was expected, the RVE fails due to accumulated fiber failure (cluster)
through a plane perpendicular to the loading direction, as shown in Figure 3.18.
Despite the large number of fibers (107 fibers) in the RVE, a closer evaluation
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Table 3.5: Comparison of predicted micromechanical and experimental results for a
AS4/8552 carbon-epoxy.

Micromechanic Experimental [172] Hexcel [173]
Tensile strength (MPa) 2164 1965±83 2205

of the RVE at the time of failure (σ = 2164 MPa and ε = 1.85%) reveals that the
number of broken fibers before reaching the maximum stress is only 16 (Figure
3.18). This means that a fracture in just these 16 fibers could be enough to cause
the RVE composed of 107 fibers to fail. This group of 16 broken fibers is known
as critical fibers, representing only 15% of the total volume fraction of fibers
in the RVE. The number of broken fibers at the end of the simulation (ε = 2%)
reaches 30 fibers (28% of the total volume fraction), see Figure 3.19.

11

(a)

(b)

Figure 3.19: Longitudinal stress and failure at ε = 2%: a) the full RVE, b) the RVE in
the absence of a matrix for better illustration.

The fracture sequence can be visualized by isolating the set of broken fibers.
This process is shown in Figure 3.20, where the stress and fracture evolution of
broken fibres are depicted. For better visualization, the matrix and intact fibres
are hidden. Figure 3.21 shows the cluster evolution at various strains. It can
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be observed that the first fracture occurs in fibres 75-76 at ε = 1.4%. Fiber 21
remains the only broken fiber up to ε = 1.6%, at which fibres 31-32 break. The
breakdown of fibers proceeds with increasing strain until strain of 1.85 percent.
At ε = 1.85%, a total of 16 fibers have been broken, including fibers 5-6, 19, 24,
29, 31-32, 35-36, 39, 54-55, 65, 75-76, 93, 95, 101, 102, 106, and 108. As a
result, RVE reaches its maximum capacity and collapses.

Although all broken fibers contribute to the failure process, some fibers, partic-
ularly those located in the inner region and denser area of the RVE, can play
a more effective role in damage propagation. It is also worth noting that fiber
failure in the RVE can be classified into two types. In the first type, fiber failure
occurs directly as a result of applied stress, with no interference from the fracture
of adjacent fibers, such as failure in fibre 75-76. In this case, the fiber breaks as
soon as the applied stress equals its strength. In the second type, fiber failure
occurs as a result of applied stress and induced stress from adjacent broken
fibers. In this case, the fiber breaks before the applied remote stress equals its
strength. This is due to the fact that when a fiber breaks, it loses its ability to
transfer load. In this case, the stress of the broken fiber is distributed among
neighboring fibers based on their distance from the broken fiber. A parameter
known as the stress concentration factor can be used to calculate the amount of
redistributed stress.

Figure 3.22 depicts a detailed example of this and the RVE model is displayed
exactly before and after the first fiber fails. It can be seen in Figure 3.22a before
any fiber failure, the stress is distributed uniformly across all the fibres. However,
after the failure of the first fiber (periodic fiber 75-76), the stress is no longer
uniformly distributed, as shown in Figure 3.22b. In this case, the nearby fibers
have a higher stress (range 8 to 20%) than the rest of the fibers and applied stress.
This induced stress increases the possibility of failure in these nearby fibers.

The situation is even more complicated for an intact fiber surrounded by several
broken fibers, as it is subjected to induced stress from all of them. For example,
Figure 3.23 represents some sets of intact fibers that are surrounded by two or
more broken fibers. Set A contains an intact fibre surrounded by four broken
fibres (13, 16, 93, and 95). This means that, in addition to the applied stress, fiber
116 receives also induced stresses from those fibers. The following expression
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Figure 3.20: Fracture sequence in the group of broken fibers with respect to longitudinal
strain. The matrix and intact fibres have been removed for better visibility.
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Figure 3.21: The sequence of fiber failure and cluster formation at various strains.
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Figure 3.22: Stress distribution in the RVE prior to and after the first fibre breakage.
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can be used to express this condition:

σ
116 = σ︸︷︷︸

Applied stresses
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(
k13
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Figure 3.23: The superposition effects of stress distribution around several broken
fibres.

It should be noted that not all of the stress carried by the broken fibres (13, 16,
93, and 95) is transferred to fibre 116, but only a fraction of it is transferred.
The parameter k represents the fraction of stress that is transferred to fiber
116. This phenomenon is known as superposition, which means that as the
number of broken fibers surrounding an intact fiber increases, so does the stress
concentration, and the total stress concentration can be calculated by adding the
stress concentrations induced by each broken fiber.

Another critical failure mechanism in UD composites is fibre/matrix interface
debonding, which our micromechanics model can capture in extreme detail. The
fibers, 28, 30, 106 and 116, were chosen for this purpose, and the progression
of fiber/matrix interface damage was plotted at various strains. Two of these
fibers are broken and two are intact in order to investigate the effect of interface
debonding on both broken and intact fibers. Figure 3.24 presents the progression
of damage at the fiber/matrix interface for all four fibers.
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Figure 3.24: The progression of damage at the fiber/matrix interface as a result of
longitudinal strain. a) fibre 28, b) fibre 30, c) fibre 101, and d) fibre 116.
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Interestingly, it was discovered that some intact fibers, even when not broken,
experience interface debonding. Although these fibres do not become com-
pletely debonded, the partial decohesion of their interfaces affects the stress
redistribution. Partial debonding affects the surface sections of the neighboring
fibres facing the broken fibre. The further away the intact fibre is from the
broken one, the less affected its interface is.

Figure 3.25 shows the matrix plasticity in various strains. It reveals that plastic
deformations form around broken fibers and increase significantly as the number
of broken fibers increases (growth in cluster size).

ε = 1.7% ε = 1.8%

ε = 1.9% ε = 2%

Figure 3.25: Evolution of matrix plasticity as a result of longitudinal strain. A section
of the matrix is cut to improve visibility.

The post-curing thermo-mechanical equilibrium resulted in an average longi-
tudinal shrinkage of the RVE of approximately 0.3%. Due to higher thermal
expansion, the resin shrinks more than the fiber during the cooling process. In
this case, the fiber acquires a positive (tensile) strain while the matrix acquires
a negative strain. As a result, when the fibers cool, they become compressed,
and the matrix becomes strained in tension. This causes an increase in the
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deviatoric stress component of the stress, which has a greater influence on the
occurrence of plasticity in the matrix. Nevertheless, this does not sensibly affect
the strain-to-failure of the system in the subsequent mechanical load step, which
keeps being totally controlled by the breakage of the fibres. However, they have
considerable influence on the fibres ineffective lengths and debonding, which
will be explored in detail later in Chapter 4.

3.5 Concluding remarks
This chapter was devoted to the micromechanical modelling of the tensile failure
in a UD AS4/8552 composite. To predict the failure and longitudinal behavior of
UD composites with high accuracy, a computational micromechanics framework
based on experimentally characterised material constituents was developed. An
exclusive damage model has been implemented for each constituent, such as
fiber, matrix, and interface, to capture different types of failure. The models,
boundary conditions, RVE generation, and main driving motivations for each
parameter are all detailed.

The developed micromechanics model can reproduce the experimentally ob-
served ply behavior in great detail. The result obtained by the micromechanics
model was compared with the experimental results from the literature as well
as the manufacturer data sheet (Hexcel). The predicted tensile strength was in
very good agreement with the experimental results. It was demonstrated that
under longitudinal tension, fibre failure is dominated by the presence and distri-
bution of defects in the fibres, and that fibre failure rarely occurs in the same
plane, instead failing in multiple plains based on the locations of the weaker
regions. The microlevel fracture process has a strong local component related to
stress redistribution following fiber breakage. Since the fiber fracture process is
stochastic and heavily influenced by the number of fracture planes and fibers
present in the RVE, simplified models with a limited number of fibers would not
be precise enough.

A micromechanical study was also conducted to investigate the role of the
fiber/matrix interface. Debonding began after the first fiber breakage, explaining
the small non-linear region present in the stress-strain curve before reaching
maximum stress. Some of non-linearity is also related to fibre breakage. How-
ever, it has a minor impact when compared to the fiber strength distribution,

3.5 Concluding remarks 89



which is determined by the Weibull parameters and the number of fibers present
in the RVE. Interestingly, it was discovered that some intact fibers, even when
not broken, experience interface debonding. Although these fibres do not be-
come completely debonded, the partial decohesion of their interfaces affects
the stress redistribution. Partial debonding affects the surface sections of the
neighboring fibres facing the broken fibre. The further away the intact fibre is
from the broken one, the less affected its interface is.

It was discovered that matrix plasticity forms around broken fibers and increases
significantly as the number of broken fibers increases (increase in cluster size).
Furthermore, it was noticed that, due to the large difference in fiber and matrix
tensile strengths, regardless of the fiber strength distribution, the influence of
matrix plasticity in the maximum stress borne by the RVE is low when compared
to the influence of the fiber/fiber (cohesive plane in fibre) and fiber/matrix
interfaces. During the post-peak regime and dynamic effect, matrix plasticity
and damage become significant.

The micromechanics model is extremely accurate but extremely computationally
demanding. This prevents it from being used for large RVEs with a large number
of fibers. As a result, simplified models that still provide accurate results can be
used to improve computational efficiency. In the case of longitudinal tension,
for example, matrix plasticity can be ignored because it adds a significant
computational cost with not much influence on the mechanical behaviour.
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In this chapter, the stress redistribution and damage phenomena in the vicinity of
the first-fibre break in unidirectional composites under longitudinal tensile loads
are investigated by means of high-fidelity computational micromechanics based
on experimentally characterised material constituents. In this framework, peri-
odic microstructures with statistically representative random fibre packings are
analysed, and transient dynamic analyses are performed to take into account the
progressive failure and recoiling of a breaking fibre. The effects of mechanisms
such as curing residual stresses, fibre/matrix debonding and matrix inelastic
deformation on the first-fibre failure process are investigated.

4.1 Introduction
It has been shown that induced stress concentrations from a fibre break can
have a significant influence on the whole process of longitudinal tensile failure
[174, 175]. Therefore, an understanding of the stress distribution mechanisms
associated with fibre breakage is a must to improve the current knowledge of
composites’ failure and improve their performance and applicability.

Along with breakage, a fibre loses its local load-transfer capability. In the pro-
cess, the surrounding matrix is overloaded. Longitudinally, the matrix transfers
the load back to the broken fibre through shear stresses in the fibre/matrix in-
terface along a characteristic distance commonly referred to as the ineffective
or recovery length [74, 76]. This mechanism is known as ‘shear lag’. If the
local shear stresses are sufficiently high they might cause fibre/matrix debond-
ing which further increases the ineffective length. Around the fibre break, the
matrix also transfers stresses to the neighboring fibres. The relative increase in
induced stresses in intact fibres due to a neighboring fibre break is quantified
using stress concentration factors (SCFs). Depending on the magnitude of the
SCFs, additional fibre breaks can be triggered in the vicinity of the first broken
fibre in a runaway mechanism leading to the formation of localised clusters
of fibre breaks. Once a critical cluster size is reached, the fracture process
becomes unstable, causing catastrophic failure of the composite [176]. This
failure propagation scheme shows the importance of the stress redistribution
upon first-fibre breakage.

There are two main approaches to calculate SCFs: i) shear lag modeling (SLM)
and ii) finite element analysis (FEA). The first is an analytical methodology that
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simplifies many complexities while assuming that all axial loads are carried
by the fibres whilst the matrix only carries shear loads. Initially, SLM was
used by Hedgepeth [77] for a 1D fibre packing, predicting a maximum SCF
of 33%. Later, Hedgepeth and Van Dyke [49] extended this approach to 2D
square and hexagonal fibre packings. They calculated a SCF of 14.6% for
square and 10.4% for hexagonal packings. Ohno [177] combined SLM with the
statistical Weibull distribution for the strength of continuous fibres to predict
stochastic failure of unidirectional composites. Ryvkin [178] presented a 3D
periodic analytical approach and used it for extensive parametric studies, such
as various ratios of the fiber-to-matrix stiffness and fiber volume fractions,
to investigate the behavior of a unidirectional FRP containing a broken fiber.
Shear lag methods are very attractive because of their efficiency in terms of
time and cost, allowing the analysis of large fibre clusters, but they have a
significant drawback regarding accuracy because they do not easily account
for realistic microstructures and relevant micro-deformation mechanisms such
as fibre/matrix interface debonding. Several efforts have been undertaken to
mitigate these issues [47, 61, 101] which have led to lower SCF estimations in
comparison to Hedgepeth’s initial prediction [77].

A more accurate approach to calculate SCFs and failure micromechanisms is
FEA, as demonstrated by Xia and Okabe [60]. Three-dimensional FEA is com-
putationally expensive, thus imposing limits on the size of the microstructure
that can be analysed. Therefore, FEA is unpractical to tackle the fully rep-
resentative simulation of the formation of clusters of fibre breaks, and on its
own is insufficient to predict the statistical nature of composite strength. This
problem can be mitigated by combining FEA and analytical SLM. The SCF
profile around the first-fibre break can be numerically predicted based on a small
representative volume element (RVE) of the microstructure and then be used
as an input in an SLM of a sufficiently large RVE to tackle the failure of fibre
clusters [169].

Nedele et al. [179] used FEA on a 2D hexagonal packing of carbon fibres.
They assumed that the matrix remains entirely elastic and that a perfect bonding
exists between the fibers and matrix, predicting a maximum SCF of 5.8% which
is a value much lower than the 10.4% predicted using the SLM approach by
Hedgepeth and Van Dyke[49]. Later, Xia et al.[60] showed that fibre shear
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deformation, which is not considered in SLM, can affect stress redistribution
and be the reason behind this SCF correction.

Van den Heuvel et al. [180] validated the accuracy of the FEA approach to
the calculation of SCFs. Their micromechanical model consisted of a planar
array of five carbon fibres positioned in the centre of an RVE. By taking into
account fibre/matrix interface debonding, they demonstrated that an increase of
the debonded length correlated with a decrease of the SCF. Furthermore, the
effects of elastic–plastic matrix deformation were investigated leading to the
prediction of longer fibre ineffective lengths and higher SCFs as compared with
estimations considering elastically deforming matrices.

All previously mentioned studies, either based on SLM or on FEA, were per-
formed on microstructures with regular fibre packings which are not statistically
equivalent to fibre distributions in real FRP. Swolfs et al. [18, 67, 181] went a
step further by considering random fibre arrangements. They carried out a wide
range of studies in the SCF for both mono-fibre and fibre-hybrid unidirectional
composites. These studies investigated the influences of several parameters, such
as fibre distribution, fibre volume fraction (Vf ) and fibre-to-matrix stiffness ratio,
have on the SCFs, as well as the effects of matrix microcracks. Circular-section
RVEs with random fibre packings, a pre-broken fibre at center and longitudinal
symmetry were studied under static loading conditions. Elastically-behaving
matrices and perfect fiber/matrix adhesion were assumed. The studies reported
SCF values of 16%, 15% and 13%, respectively, for random fibre arrangements
with Vf of 30%, 50% and 70%, which were found to be almost twice as high
as those calculated for square fibre packings and three times as high as those
for hexagonal packings. Moreover, they concluded that Vf and the fibre-to-
matrix stiffness ratio exert a significant influence on the fibre ineffective length,
although SCFs were little affected by the second parameter. The presence
of matrix microcracks was found to have a negligible influence on SCFs and
ineffective length [18, 67, 181].

Generally, SLM investigations on SCFs are based on the analysis of pre-broken
microstructure-embedded fibers under static loading conditions [49, 77, 177,
178]. Curiously, most FEA on the same subject, although allowing for higher
simulation fidelity, consider similar static equilibrium conditions which are
unrealistic because the transient phenomena associated with brittle fiber failure
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are not taken into account appropriately. The sudden fibre failure and elastic
recoil can produce discontinuities in the evolution of stresses and other dynamic
effects. Less than a handful of publications on SCFs and on the effects of fibre
breakage are based on transient dynamic modeling. A remarkable example is
the numerical study of Ganesh et al. [182] which is focused on the analysis of
unidirectional glass FRP with 2D RVEs with regular fibre distributions. The
dynamic analysis predicted a peak SCF of 30% that compared with a lower
value of 13% for the equivalent static case [182].

The present research constitutes a step beyond the state of the art in the in-
vestigations of the effects of first-fibre failure in FRP. It explores the use of
high-fidelity computational micromechanics modeling by means of 3D RVEs
with statistically representative fibre distributions to investigate the transient
effects of dynamic fibre failure on deformation mechanisms and SCFs around a
progressively breaking fibre. The micromechanical analyses herein are based
on a realistic material system, the carbon/epoxy AS4/8552, whose properties
have been thoroughly characterized by means of experimental micromechanics
in previous studies. Periodic boundary conditions (PBCs) [183] are employed to
allow increased model representativeness with reduced computational domains.

In a first set of simulations (Section 4.3.1), the relevant deformation mechanisms
associated with first-fibre failure are investigated and an appropriate baseline
computational framework is established to analyse this phenomenon. To cap-
ture and assess the effects of different micromechanisms, several modeling
approaches are explored: transient dynamic fibre failure, fiber/matrix interface
debonding, matrix inelastic deformation, and curing residual micro-stresses. A
second set of computations (Section 4.3.2) is conducted with the established
modeling approach to study the influence of several microstructural parameters
on failure phenomena and SCFs: fibre volume fraction, fibre failure probability,
fibre-to-matrix stiffness ratio and fibre/matrix interface strength.

4.2 Micromechanics modeling framework
A general computational micromechanics framework, implemented in the com-
mercial software Abaqus/Standard [145], is used throughout the present re-
search.
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4.2.1 Periodic RVE approach

A 2D periodic RVE of the unidirectional composite ply is generated, employing
the random sequential adsorption (RSA) algorithm, as detailed in Section 3.2.1,
to reproduce statistically representative microstructures. The size of the gener-
ated ply section is width (W ) = height (H) = 12×R, wherein R is the average
fibre radius, and contains 34 fibres on average. This section is extruded along the
fiber direction, to a total length L = 84×R, to achieve the final 3D RVEs (Figure
4.1b). The resulting models contain a single fibre allowed to break through a
fracture plane set at z = L/2. The remaining fibres can only deform elastically.
The breaking fibre is always generated at the centre of the RVE, in spite of the
different (random) microstructures (Figure 4.1a). The RVE size was selected
based on well-informed parametric studies that targeted the best trade-off be-
tween computational effort and proper capturing of the relevant deformation
phenomena with minimum interference of model boundaries. In this respect, the
fulfillment of the following conditions was sought: i) L should be large enough
to allow a complete stress recovery in the broken fibre, guaranteeing that the
remote stresses at z = {0,L} are not influenced by the fibre break, and ii) H
and W should be large enough to allow a nearly complete stress redistribution
between the broken fibre and its neighbors. The sectional dimensions were
firstly estimated based on previous studies which concluded that the SCFs decay
to negligible values within distances d > 2R from the broken fibre [18, 181].
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Figure 4.1: a) Reference RVE section with Vf = 60%. The pre-broken or failing
fibre (indicated in black) is always located at the center. Intact neighboring fibres are
numbered, based on the distance from broken fibre, for reference in the text. b) Extruded
3D RVE model with details of boundary and initial conditions. The fracture plane of
the breaking fibre is always located at z = L/2.

Matrix and fibres are modeled as separated geometrical entities that interact by
means of cohesive behaviour and contact kinematics explained in Section 3.1.3.
To this purpose, the penalty-based general contact algorithm in Abaqus/Standard
is coupled with the surface-based cohesive zone method [145]. A similar strat-
egy is used to simulate the breakage of the central fibre which is modeled as
two geometrical rods in top-to-top surface contact. The separation of the ini-
tially contacting surfaces is governed by cohesive behaviour to simulate the
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Figure 4.2: Bi-linear cohesive law used to model progressive fiber breakage. The
maximum traction is a stochastic value given by the Weibull fibre failure probability
distribution function (here σ f = 2.7 GPa).

progressive breakage of the fibre. Appropriate cohesive laws are coupled to the
contact kinematics to simulate either fibre-matrix debonding or fibre breakage.
The complete 3D RVE is discretized with fully integrated brick (C3D8) and
wedge (C3D6) isoparametric elements with an average characteristic length
of 1 µm, totalling around > 195,000 elements. This discretization is judged,
after parametric analysis, to be fine enough to capture the high stress gradients
around a fibre break. Node positions on opposite faces of the RVE are identically
located in order to apply PBCs, and ensure the displacement continuity with the
neighboring RVEs. According to the methodology developed by Segurado and
LLorca [163], PBCs are introduced as nodal displacement constraints between
equivalent nodes at opposite RVE faces, by enforcing the relations:

−→u (0,y,z)−−→u (W,y,z) = 0
−→v (x,0,z)−−→v (x,H,z) = 0
−→w (x,y,0)−−→w (x,y,L) =Uz

(4.1)

through face master nodes MO(0,0,0), MX(W,0,0), MY (0,H,0), MZ(0,0,L)
(Figure 4.1b). Ui (i = x,y,z) are the arbitrary unidirectional displacements
imposed on the master nodes.

Readers are referred to Sádaba et al. [183] for an in-depth description of the
use of PBC in multiscale analyses of composites. A longitudinal tensile load

98 Chapter 4 Effect of first-fiber failure: Deformation Mechanisms and Stress

Concentration Factors



is applied by means of controlled displacement on the front plane master node
(z = L), Uz 6= 0.

An incremental implicit dynamics integration procedure is adopted using
Abaqus/Standard [145] for Moderate Dissipation applications. This option is
available to introduce a small amount of viscous damping (Rayleigh damping)
[184] that enables the numerical convergence of highly nonlinear problems, e.g.
involving contacts, without significantly degrading solution accuracy [185]. It
provides a convenient abstraction to damp lower (mass-dependent) and higher
(stiffness-dependent) frequency range behavior. To this end, a damping matrix
C is added to the system. This damping matrix is linearly proportional to mass
M and stiffness K matrices [184]:

C = αM+βK (4.2)

C matrices are generated for each material in the model. The damping factors
α and β can be estimated using modal analysis [145]. These variables are
defined in Abaqus under the Material Properties subsection. Several sources
of damping naturally exist in material systems but its right amount is difficult
to evaluate. Some simulations were conducted with higher levels of damping
that did not lead to significant changes in the results. However, lower levels
of damping which could be more realistic were not applicable because they
hindered numerical convergence.

Time increment plays a key role in numerical transient dynamic analyses. It
should be selected as small as necessary in order to capture the relevant dy-
namic deformation mechanisms without excessively compromising computation
time. The minimum characteristic time of any dynamic deformation event in
a continuous medium is given by the the speed of the stress wave, which can
be estimated using the Newton-Laplace equation for an equivalent medium of
density ρ and homogenized Young’s modulus E as c =

√
E/ρ . For an AS4

fibre, the critical constituent in the micromechanics model, this translates into
a characteristic time step of tc = D/c = 0.63ns (D is the diameter of fibre).
Such a small time increment is not practical in the present analysis framework.
Fortunately, the shortest relevant event in the present analyses, fibre breakage, is
orders of magnitude slower than stress wave propagation through the composite
medium. By means of preliminary FEA, the characteristic time for complete
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breakage of a microstructure-embedded AS4 fibre was predicted to be around
4 µs. The preliminary model to establish the fibre breakage time was, in all
respects, based on the main RVE modeling approach, albeit with a much smaller
cross section containing a single matrix-embedded fibre which was allowed to
break. Because of its numerical efficiency, it allowed to carry dynamic analysis
with time increments in the order of ns, henceforth simulating the progressive
fibre breakage, matrix debonding and recoil process in a very refined way. To
allow practical multi-fibre RVE analyses while still capturing the progressive
fibre breakage, albeit in a very coarse way, the time increment in those models
is fixed at 1 µs.

The number of stress wave interactions during a fibre break, taking into account
the reflections on model boundaries, is in the order of 103. This means that the
physical process is barely controlled by stress wave propagation and that inertial
effects are expected to be reduced or damped within a localized region. The
process, although transient in nature, is expected to be largely dominated by
the conditions of quasi-static equilibrium. It must be noticed that this condition
is essential to the consistent application of PBC that enforce ‘instantaneous’
kinematic constraints across the RVE.

Set with the above-mentioned parameters, the typical RVE analyses require
around a day to complete in an HPC cluster of 50 Intel Xeon E5-2670 cores and
GPU acceleration.

4.2.2 Model constituents

The aeronautical-grade carbon FRP system AS4/8552, with fibre volume
fraction, Vf ≈ 60%, was chosen as the reference material for the purpose of
demonstrating the methodology. The constitutive models and experimentally-
characterized properties of fibre, matrix and interface constituents for this
material system have been thoroughly presented in Chapter 3. For the sake of
completeness, the essential or distinctive aspects are overviewed herein.

The 8552 epoxy polymer matrix is represented using the isotropic plasticity
model included in Abaqus/Standard [145] which is based on pressure-dependent
Druker-Prager [144] plastic behaviour coupled with tensile damage degradation
to simulate brittle materials [142]. The elasto-plastic-damage properties of the
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8552 epoxy matrix follow literature-available values and in-house experimental
characterization by means of nanoindentation tests [120] (Table 4.1).

The fibre-matrix interface is modeled using the surface-based implementation
of the cohesive zone method in Abaqus/Standard [145] which is coupled with
Coulomb frictional behaviour to simulate the sliding of the fibres upon deco-
hesion. A mixed-mode bilinear traction-separation law is used to define the
cohesive behaviour. Damage initiation is triggered using a quadratic stress-
interactive criterion, and damage propagation is controlled by the Benzeggagh-
Kenane criterion [151]. The strength properties of the AS4/8552 fibre/matrix
interface follow in-house experimental characterization by means of the push-in
tests reported by Naya et al. [120, 156], and are presented in Table 4.1. Without
compromising numerical convergence, the elastic stiffness values of the cohe-
sive law are chosen to be sufficiently high in order to maintain the continuity of
displacements across the cohesive surface until failure is initiated.

The AS4 fibres, with a measured average diameter 2R = 7.09 µm, are modeled
as linear elastic and transversely isotropic solids. Their thermo-elastic properties
were obtained from literature-available data [120] and experimental characteri-
zation performed in-house [119] (Table 4.1). The progressive breakage of the
central fibre in the RVE is enabled at the defined fracture plane located at z= L/2
by means of the surface-based traction-separation behaviour implemented in
Abaqus/Standard [145], in a similar fashion to the modeling of fibre-matrix
debonding. The bilinear traction-separation law is, in this case (Figure 4.2),
governed by the fibre strength and fracture energy values which have been
experimentally characterized in-house [119]. Governed by the cohesive law, the
predefined crack is allowed to start opening at a specified traction value, corre-
sponding to fibre strength, and to develop progressively until the fracture energy
associated with fibre breakage is completely dissipated and the crack surfaces
become fully separated. Except where otherwise stated, the interface strength
adopted is the average value of the statistical fibre strength distribution which
can be described using a two-parameter Weibull probability density function
[19] in the following form:

P(σ f ) = 1− exp
[

L
L0

(
σ f

σ0

)m]
(4.3)
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wherein P(σ f ) is the cumulative probability of failure of a fibre of length L at
a stress level of σ f . The parameters σ0 and m are, respectively, the scale and
shape of the Weibull distribution, and L0 is the reference gauge length. The
Weibull cumulative distribution for the strength of AS4 fibres is plotted in Figure
4.3, and is characterized by P(σ f =2.7GPa) = 50%. The fracture energy (G f ) of
AS4 carbon fibres is 52 J/m2 [119].
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Figure 4.3: Weibull probability of failure distribution of AS4 carbon fibres [119]. Five
discrete values are marked (2.0, 2.4, 2.7, 3.1 and 3.4 GPa) corresponding, respectively,
to probabilities of failure of 10%, 25%, 50%, 75% and 90%. The reference gauge length
is equal to 20 mm.

4.2.3 Post-processing of results

The required data are extracted from the evolving 3D stress field in the RVE
using a python script. The analyses show that stress distributions across fibre
cross-sections are not uniform, and the side of an intact fibre closer to the
broken fibre receives a higher induced longitudinal stress than the opposite side,
as observed in previous research [18]. It is likely that these stress gradients
influence the process of longitudinal tensile failure in unidirectional composites.
However, the study of this effect is not within the scope of the present work.
For simplification, and following previous studies [18, 67, 181], the average
stresses throughout the fibres cross-sections are used. Within each fibre, the
average stresses are calculated at 20 equidistant planes parallel to the fracture
plane, distributed at z∗ coordinates multiple from 2R. The mean stress in each
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Table 4.1: Mechanical properties of materials used throughout the present work: E
is the elastic modulus; ν is the Poisson ratio; α is the thermal conductivity; σt 0 is
the tensile strength; Gt is the fracture energy under tension; σyc is the compression
yield limit; σuc is the compression strength; N and S are the normal and shear interface
strengths; knn and kss are the normal and shear interface penalty stiffness values; Gn and
Gs are the normal and shear interface fracture energies; ηBK is the Benzeggagh Kenane
fitting parameter. In general, superscripts f ,m refer to quantities of the fibre and matrix
respectively, while subscripts 1,2 indicate longitudinal and transverse properties.

AS4 carbon fibre
E f

1
[GPa]

E f
2

[GPa]
ν

f
12 ν

f
23 G f

12
[GPa]

G f
23

[GPa]
α

f
1

[10−6 °C−1]
α

f
2

[10−6 °C−1]
231 13 0.3 0.46 11.3 4.45 -0.9 7.2

8552 epoxy matrix
Em

[GPa]
νm αm

[10−6 °C−1]
σm

t0
[MPa]

Gm
t

[GPa]
σm

yc
[MPa]

σm
uc

[MPa]
5.07 0.35 52 121 90 176 180

AS4/8552 fibre-matrix interface

Interface
N

[MPa]
S

[MPa]
Knn

[GPa/um]
Kss

[GPa/um]
Gn

[J/m]
Gs

[J/m]
ηBK

Standard 42 63 100 100 2 100 1.2
Weak 34 52 100 100 2 100 1.2

S2 glass fibre
E f

1
[GPa]

E f
2

[GPa]
ν

f
12 ν

f
23 G f

12
[GPa]

G f
23

[GPa]
α

f
1

[10−6 °C−1]
α

f
2

[10−6 °C−1]
85 85 0.2 0.2 35.4 35.4 16 16

MTM44-1 matrix
Em

[GPa]
Gm

[GPa]
νm αm

[10−6 °C−1]
4.0 1.43 0.4 40

S2/MTM44-1 fibre-matrix interface
N

[MPa]
S

[MPa]
Knn

[GPa/um]
Kss

[GPa/um]
Gn

[J/m2]
Gs

[J/m2]
ηBK

70 103 100 100 2 100 1.2
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plane is calculated as

σ̄ =
1

∑V e

∫
V e

σ
edV (4.4)

wherein σ e is the longitudinal stress in each cross-sectional finite element of
volume V e. Finally, the SCF at a given fibre plane, at z∗ distance from fracture
plane, is calculated as the relative increase in average stress, σ̄z, normalized by
the remote average stress (z = L) as proposed by Fukuda [186]:

SCF(z∗) =
σ̄z(z = z∗)− σ̄z(z = L)

σ̄z(z = L)
×100% (4.5)

4.3 Results and discussion

4.3.1 Relevant micromechanisms associated with
first-fibre breakage

This section analyses various deformation micromechanisms associated with
first-fibre breakage. To isolate the specific effects of progressive fibre failure,
fibre/matrix interface debonding, matrix inelastic deformation, and post-curing
residual stresses, variations of the reference modeling approach described above
are explored and the respective results correlated. This strategy helps in consoli-
dating the most appropriate computational methodology to predict SCFs and to
capture the relevant physical phenomena at play. For the sake of illustration, the
single microstructure presented in Figure 4.1 is considered in all studies in this
section.

4.3.1.1 Progressive fibre breakage and recoil

This study is based on the comparison between two different modeling and
simulation approaches. On the one hand, the reference approach described
above, wherein the transient dynamic analysis of the full process of progressive
fibre breakage and recoil is simulated and on the other hand, the static analysis
of a composite RVE containing a pre-broken fibre, and subjected to incremental
loads, corresponding to the approach usually adopted in literature-available
investigations. These two cases only differ on the initial integrity state of
the central RVE fibre, intact vs. pre-broken (Figure 4.1), and on the solution
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procedure: whilst the pre-broken fibre case is analysed considering simplified
static equilibrium, the progressive fibre failure analysis is performed by means
of implicit dynamic integration. In both cases, the phenomena of fibre/matrix
interface debonding and of matrix inelastic deformation are considered.

Figure 4.4 plots the evolution with time of stress in the nearest intact fibre
(fibre 1 in Figure 4.1a), for the dynamic case, and compares it with the applied
far-field stress. The static and dynamic evolutions of the SCF in the same
fibre with increasingly applied strains are compared in Figure 4.5a. The line
corresponding to the static analysis shows that the SCF rapidly grows from
the initial load stages up to 14.9% at an applied strain of ε ≈ 0.3% and then
gradually decreases. In contrast, the dynamic SCF is zero until the fibre breaking
strain is reached (ε ≈ 1.2%), at which point it suddenly jumps to a maximum
value of 15.4%; much higher than the static SCF for this level of applied strain.
This peak is short (≈ 15µs) and rapidly fades away (zoom-in box in Figure
4.4). Within 60 µs, and after a few rapidly damped oscillations, the evolution
of the dynamic SCF converges to that of the static analysis. It must be noted
that this oscillatory behaviour is dependent on the amount of damping used in
the dynamic analyses which, in the present work, is not supported by physical
characterization. However, even admitting a reasonable level of uncertainty,
it is safe to state that the processes occurring within this window of transient
behaviour are still much slower than stress wave propagation throughout the
material, allowing for a number of stress wave reflections and interactions in the
order of 104. Therefore, after an initial stress peak where inertial effects play
a significant role, the fibre failure process can be assumed to be dominated by
force equilibrium.

At ε ≈ 2.3%, inflections of the SCF behaviours are observed for both static and
dynamic cases (Figure 4.5a), which denote interference of the model boundaries
with the stress distribution, i.e. the domain affected by the stress redistribution
due to the first-fibre break extends to the model boundaries. Hence, the numerical
predictions beyond this applied strain are considered invalid.

The behaviours of SCFs for the nearest neighboring intact fibres (Figure 4.1a)
are drawn in Figure 4.5b, which gives a broad overview of the SCF discrepancy
between counterpart fibres in dynamic and static analyses. The most notable
phenomenon is the decay of the dynamic stress concentration peak towards the
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Figure 4.4: Evolution with time of average stress in the nearest intact fibre (fibre 1 in
Figure 4.1a) for the dynamic case.

fibres furthest away from the first-fibre break. Fibres that are distanced more
than d from the breaking fibre feel immediate stress increases that converge
to the values expected from static behaviour without overshooting. Another
interesting observation is that the maximum static SCFs at fibres away from the
fibre break occur at higher applied strains, although they decrease in value. This
is because, with increasing applied load, the stress redistribution progressively
involves a larger volume of material around the broken fibre.

The profiles of maximum SCF for each fibre as a function of the distance to
the broken fibre, in the plane containing the fibre break, are plotted in Figure
4.6a for the static and dynamic cases. The presented values correspond to the
occurrence of the peak SCF in each case (ε ≈ 0.3% in the static analysis and
ε ≈ 1.2% in the dynamic analysis). The dynamic SCFs are higher than the
static values but not significantly, specially in the nearest intact fibres where the
difference is only of about 4%. The increasing difference is the result of the
different deformation micro-mechanisms around the broken fibre.

The ineffective length is usually taken as the distance along the broken fibre
required to recover 90% of the applied far-field stress, σL. Figure 4.6b corre-
lates the stress recovery profiles between the dynamic and static cases, at the
respective instants of maximum SFCs. It can be observed that the ineffective
length is 20% higher for the dynamic case i.e. the stress-affected fibre length is
underpredicted with the static analysis. This difference is, again, the result of
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Figure 4.5: a) Evolutions of SCFs with applied strain for nearest intact fibre (fibre
1 in Figure 4.1a) in static and dynamic analyses. b) Behaviour of SCFs for several
neighboring intact fibres in static and dynamic cases. Marks 1 and 2 indicate the strain
levels at which SCF profiles are extracted for static and dynamic cases.
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Figure 4.6: a) SCF profiles corresponding to maximum stress concentrations in static
and dynamic analyses (marks 1 and 2 in Figure 4.5b). Each data point represents one
intact fibre. b) Stress recovery profiles in broken fibres for static and dynamic cases.

108 Chapter 4 Effect of first-fiber failure: Deformation Mechanisms and Stress

Concentration Factors



the different deformation micro-mechanisms around the first-fibre break.

The relevant micromechanisms that affect stress distribution characteristics such
as SCFs and ineffective length, are fibre/matrix interface debonding and matrix
inelastic deformation. Figure 4.7a correlates the predicted interface damage and
interface debonding length in the broken fibre between the static and dynamic
analyses, at corresponding instants of maximum SCF. The fibre debonding
predicted by the dynamic simulation is approximately six times longer than what
is computed with the static analysis. The progresses of fibre debonding with
applied strain are depicted in Figure 4.7b. The growth of debonding is slow but
steady in the static simulation, roughly linearly increasing with applied strain.
In the dynamic case, the fibre/matrix interface is kept intact until the moment of
fibre breakage. At this point the fibre starts to debond very rapidly as it recoils in
the matrix. This instant is equal to the duration of the stress peak (Figure 4.5a).
The debonding process is rapidly arrested and the debonding behaviour with
applied strain converges to the linear evolution predicted by the static analysis.
The linear behaviour is lost for ε ≥ 2.3%, corresponding to inflections in the
evolution of SCFs (Figure 4.5a), because the debond fronts approach the RVE
boundaries (z = 0, z = L). Therefore, the simulation results are not valid at such
high applied strains.

Figure 4.8 shows that whilst the level of matrix plastic deformation predicted
in the static case is negligible, it is quite relevant in the dynamic case, with the
plasticized region spreading towards the neighboring fibres. This is the reason
why the stress-affected volume of matrix around the fibre grows wider in the
dynamic case, requiring longer radial distances for the SCFs to fade (Figure
4.6b). In contrast, the dynamic SCFs in the fibres that interfere with the matrix
inelastic region are relatively lower compared to what they would be in case
where the matrix behaves elastically, hence the small increase in SCF in the
fibres close to the break when compared to the static analysis.

In summary, the static pre-broken fibre analysis leads to a maximum SCF for
an applied remote strain that is lower than that required to break the fibre.
Therefore, the realistic stress redistribution and deformation mechanisms are
only captured when progressive first-fibre breakage is considered by means of
dynamic analysis. The fibre debonding length and matrix inelastic deformation
at the instant of maximum stress concentration are significantly more pronounced
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Figure 4.7: a) Broken-fibre/matrix interface damage predictions by static and dynamic
simulations at respective moments of maximum SCF values (ε ≈ 0.3% and ε ≈ 1.2%
for static and dynamic models, respectively). b) Broken fibre debonding length vs.
applied strain for static and dynamic cases.
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Figure 4.8: Comparison of matrix plasticity levels in the plane containing the fibre
break between (a) static and (b) dynamic analyses, for respective maximum SCF values
(ε ≈ 0.3% and ε ≈ 1.2% for static and dynamic cases, respectively).

in the dynamic case. As a result, the broken fibre ineffective length and the peak
SCF are also higher. The conclusion is that static analysis is an oversimplified
methodology to study the longitudinal failure mechanism and SCFs. Hence,
the following studies on first-fibre breakage are based on dynamic progressive
failure simulations.

4.3.1.2 Fibre/matrix interface debonding

To study the effects of fibre/matrix interface debonding on failure micromech-
anisms and SCFs around a broken fibre, the results of the reference dynamic
modeling approach described above are compared with the ones of equivalent
numerical simulations in which perfect fibre/matrix adhesion is considered.

The SCF distributions for both cases are compared in Figure 4.9a. At similar
distances to the broken fibre, the SCFs are about 50% lower for the case of
perfect interfaces. It is noteworthy that this trend is the opposite to what was
reported in previous publications based on static analyses [180] that concluded
that the SCFs decrease with the occurrence of debonding of the broken fibre.
However, those studies reported a maximum SCF of approximately 14% for
a perfect fibre/matrix interface which is substantially higher than the current
prediction for similar conditions.

The current result can be interpreted by analysing the stress recovery profiles
shown in Figure 4.9b. A perfect interface leads to a much higher gradient of
stress recovery and a substantially shorter ineffective length (about 30%). Hence,
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Figure 4.9: a) Maximum SCF values predicted by simulations considering perfect and
imperfect fibre/matrix interfaces. b) Broken-fibre stress recovery profiles for both cases.
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the stress loss is less pronounced when the interface of the broken fibre is perfect,
and the SCFs in neighboring intact fibres are lower.

Fibre/matrix interface damage in the broken fibre at the moment of maximum
SCFs (ε ≈ 1.2%) is represented in Figure 4.7a. This study reveals that, in
addition to the debonding of the broken fibre, interface damage also occurs in
its neighbors (Figure 4.10). Although these fibres do not become completely
debonded, the partial decohesion of their interfaces affects the stress redistri-
bution. Partial debonding affects the surface sections of the neighboring fibres
facing the broken fibre. The further away the intact fibre is from the broken
one, the less affected its interface is. In the present case, only interface sections
within a distance 2R from the broken fibre are affected (R is the radius of fibre).
The fading effects with distance are both in terms of the arc surface section and
length of the affected fibre. It is remarkable that the partial debond can be as
long as the broken-fibre full-debond length (Figures 4.7a vs. 4.10b).
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Figure 4.10: a) Sectional view of the integrity of the interfaces of broken-fibre neighbors
(fibre debonds indicated in red) at the moment of maximum SCFs (ε ≈ 1.2%). b)
Longitudinal view of fibre debonding on the same fibres (approximate debonding
lengths of 11.2R, 10.8R, 10.6R, 9.2R, 5.4R and 1.1R for fibres 1 to 6, respectively).

Figure 4.11 shows that the extent of the matrix plastic deformation around the
broken fibre is higher when it is allowed to debond. This is the result of the
more pronounced unloading of the broken fibre and the transfer of higher shear
loads to the matrix.

It can be extrapolated from this study that the SCFs would be predicted to
be even lower if, in addition to perfect interfaces, the matrix is considered to
behave elastically. Nevertheless, the major conclusion is that the simulation of
fibre/matrix debonding is essential for the realistic simulation of the effects of
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Figure 4.11: Correlation of matrix plastic deformation levels (ε ≈ 1.2%) for simulations
a) without interface debonding and b) with interface debonding.

first-fibre breakage.

4.3.1.3 Matrix inelastic deformation

To investigate the effect of matrix inelastic deformation, i.e. plasticity and
microdamage, on the consequences of first-fibre breakage, the reference simu-
lation approach is compared with a simplified one wherein the matrix behaves
linear-elastically. All remaining modeling aspects are kept similar.

Figure 4.12a compares the SCF profiles predicted by both approaches. The
simplified model results in SCF values up to 10% higher, especially around the
fibre break. The difference to the reference SCF profile fades out as the distance
to the broken fibre increases. This indicates that matrix inelastic deformation
has a local stress shielding effect, a conclusion that is corroborated by the results
in Figure 4.13 which illustrates the cross-sectional region of matrix plasticity, in
the reference model, just after first-fibre breakage. The stress shielding effect
only affects the nearby fibres, typically those located within d/R 6 1.

The ineffective and debonding lengths are, respectively, about 10% and 12%
higher for the simulations that take into account matrix inelastic deformation
micromechanisms, as represented in Figure 4.12b. It can be concluded that the
higher matrix straining around the broken fibre also contributes to fibre/matrix
debonding, hence elongating its ineffective length.

In summary, an elastic matrix allows the concentration of higher stresses around
the fibre break. This leads to higher stresses in the plane of the breakage but
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Figure 4.12: a) Maximum SCF values for simulations with elastic and inelastic matrices.
b) Ineffective and interface debonding lengths, corresponding to maximum SCFs, for
both cases.
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Figure 4.13: Maximum matrix plasticity levels predicted by the reference simulation
(ε ≈ 1.2%). The numbered fibres are those most affected by matrix inelastic deforma-
tion.

also allows their decay over shorter distances along the longitudinal direction,
resulting in shorter ineffective and debonding lengths. Matrix inelastic deforma-
tion has a stress shielding effect but contributes to longer fibre debonding and
ineffective length.

4.3.1.4 Residual curing stresses

The micromechanical behaviour of FRP can be affected by the occurrence of
post-curing thermo-mechanical residual stresses that arise due to the different
thermal expansion coefficients of the fibres and the matrix.

To account for these effects, the reference numerical procedure is modified
by applying a thermo-mechanical loading step before the standard progressive
longitudinal mechanical loading. In the thermo-mechanical step, the temperature
of the system is varied from the material curing temperature (Tc = 180◦C for
AS4/8552) down to room temperature (Tr = 20◦C). The thermo-mechanical
coupling and equilibrium are governed by the fibre and matrix thermal expansion
coefficients, α . The resulting equilibrium stress state is the baseline for the
application of longitudinal mechanical loading.

In the case of the AS4/8552 micromechanical system, post-curing thermo-
mechanical equilibrium results in an average longitudinal shrinkage of the RVE
of approximately 0.3%. Nevertheless, this does not sensibly affect the strain-to-
failure of the system in the subsequent mechanical load step, which keeps being
totally controlled by the breakage of the central fibre at ε ≈ 1.2%.
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Figure 4.14a shows that the through-the-width SCF profiles resulting from both
simulation procedures are very similar, differing only by 2% at most, and no
significant stress shielding effect is generated. However, the fibre ineffective
and debonding regions are predicted to be, respectively, 11% and 16% longer
when residual stresses are taken into account (Figure 4.14b). The level of
inelastic deformation in the matrix around the broken fibre is also higher in this
case (Figure 4.15). Hence, residual curing stresses affect the matrix inelastic
deformation and fibre/matrix adhesion. This can be explained by the different
thermal expansion coefficients of matrix and fibres, especially in the longitudinal
direction (Table 4.1). Under curing cool-down, the 8552 matrix undergoes
isotropic shrinking while AS4 fibres tend to expand longitudinally because
of their negative thermal expansion coefficient (Figure 4.16). Equilibrium is
established by means of longitudinal fibre compression that counteracts matrix
tensile stress. This mismatch creates residual fibre/matrix interface shear stresses
that decrease its adhesion integrity, and the increase in the deviatoric stress
components that promote the occurrence of plasticity in the matrix.

In summary, residual curing stresses do not significantly change SCFs but have
appreciable effects on fibre ineffective and debonding lengths. Although these
mechanisms should not be neglected, for the sake of computational efficiency,
the reference simulation case, which is the basis for subsequent analysis, does
not include the thermo-mechanical loading step. To mitigate this shortcoming, a
practical and conservative assessment could be to account for the cumulative
effects of residual stresses and other loading mechanisms.

4.3.2 Influence of microstructural parameters on failure
mechanisms and SCFs

This section is dedicated to studying the influence of relevant microstructural
parameters on first-fibre failure mechanisms and SCFs: fibre volume fraction
(Vf ), fibre-to-matrix stiffness ratio, strength of the breaking fibre and fibre/matrix
interface properties. Except where specifically noted, each of these parametric
analysis will follow the reference modeling approach outlined in Section 4.2 and
will be conducted on five statistically representative random volume elements,
hence taking into account the stochastic nature of the microstructure.
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Figure 4.14: a) Maximum SCF values for simulations with and without residual curing
stresses. b) Levels of ineffective and interface debonding lengths, corresponding to
maximum SCFs, for both cases.
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Y

Figure 4.15: Matrix plasticity levels, corresponding to maximum SCFs (ε ≈ 1.2%), in
the absence (a) and inclusion (b) of curing residual stress.

(b)(a)
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Y

Figure 4.16: Longitudinal strain (a) and stress (b) fields, at maximum SCFs, in the case
including residual curing stresses.
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4.3.2.1 Fibre volume fraction

The stochastic simulations for Vf values of 50%, 60% and 70% (Figure 4.17a)
show that denser microstructures result in lower maximum SCFs in all neighbors
of the broken fibre. Average maximum SCFs of 20.6%, 16.1% and 14.2% are
predicted for each of these Vf levels, respectively. The SCF values for Vf = 50%
are roughly 45% higher than for Vf = 70%. This trend, in agreement with the
results obtained by Swolfs et al. [18, 67, 181], is due to the redistribution of the
the stress concentration by a larger number of fibres in denser microstructures.
Previous studies [60, 179, 180], however, led to the opposite conclusion because
they were based on RVEs with regularly distributed microstructures and did not
consider the effect of the distance between intact and broken fibres. In such
regular fibre arrangements, lower Vf values inevitably result in higher distances
between the broken fibre and its neighbors, which led to a lower SCF. Hence,
the conclusion was misguided by the fact that, for typical FRP material systems,
the increasing distance to the fibre break has a stronger softening effect on the
SCF than the enhancing effect of the decrease in Vf . In randomly distributed
RVEs, inter-fibre distance and Vf are less strongly coupled, and the effect of
fibre density can be appreciated.

Statistically representative predictions of broken-fibre ineffective and interface
debonding lengths (Figure 4.17b, average value with standard deviation) show
that both parameters decrease with Vf , although the effect is more pronounced
on the ineffective length. Similar to the decrease in SCFs, a higher number
of fibres available for load redistribution around the fibre break lead to narrow
stress and damage affected regions, and shorter stress recovery lengths.

Figure 4.18 shows that the volume of plasticised matrix around the broken
fibre decreases with Vf . Again, this is due to the stronger load support given
by a larger amount of surrounding fibres. However, due to the tendentiously
thinner matrix ligaments in the microstructure, the local plastic deformation
levels increase with Vf .
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Figure 4.17: a) Maximum SCF values for five statistically representative microstruc-
tures with Vf = 50%, 60% and 70%. b) Corresponding stochastic predictions of
broken-fibre ineffective lengths (z/R = [12±1.1,10.7±1.1,10.2±1]) and debonding
lengths (z/R = [12±1.1,10.7±1.1,10.2±1]), respectively, for Vf = [50%,60%,70%].
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Figure 4.18: Matrix plasticity levels, for maximum SCF values, for representative
microstructures with Vf = 50%, 60% and 70%.

4.3.2.2 Fibre-to-matrix stiffness ratio

To study the influence of the fibre-to-matrix stiffness ratio on the failure phe-
nomena and SCFs, two realistic FRP systems are compared: the carbon/epoxy
AS4/8552 (E f

1 /Em ≈ 46) and the glass/epoxy S2/MTM44-1 (E f
1 /Em ≈ 21). The

respective constituent properties are given in Table 4.1 following experimental
characterisation [156]. In both cases, Vf is 60% and, for the sake of efficiency,
the resin matrices behave linear elastically.

Figure 4.19a reveals that the SCFs on intact fibres close to the broken fibre
are higher for the system with the highest stiffness ratio. This is because the
relatively stiffer fibres attract a higher share of the load redistributed as a result
of the fibre breakage. However, after a certain distance to the broken fibre
(d/R > 1.4) this trend is reversed. This means that, although the SCFs reach
higher levels, the stress-affected section is narrower for material systems with
higher stiffness ratios, likely leading to similar stress concentration resultants
(volume integration of SCFs). Similar to the other previous cases, in this context
the lower SCFs also correlate with shorter ineffective and debonding lengths (up
to 30%), as shown in Figure 4.19b.
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Figure 4.19: a) Maximum statistical SCF values (five outcomes) for first-fibre break-
age in AS4/8552 and S2/MTM44-1 composites (applied strains ε ≈ 1.2% and ε ≈
3.3%, respectively). b) Corresponding predictions of broken-fibre ineffective lengths
(z/R = [14.7± 1.4,9.2± 0.8]) and debonding lengths (z/R = [10.7± 1.1,7.6± 1.4]),
respectively, for [AS4/8552, S2/MTM44-1] material systems.
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4.3.2.3 First-fibre breaking strength

The effects of fibre strength on the failure mechanisms and SCFs associated
with first-fibre failure are analysed herewith by considering five representative
strength values from the Weibull fibre failure probability distribution function
(σ f = 2.0, 2.4, 2.7, 3.1 and 3.4 GPa) corresponding respectively to P(σ f )=10%,
25%, 50%, 75% and 90% (Figure 4.3). Except for different fibre breaking
strengths, which also correspond to distinct strain-to-failure values, the entire
study is based on the reference model of the AS4/8552 material system with the
single microstructure represented in Figure 4.1b (Vf = 60%).

It can be appreciated (Figure 4.20a) that stronger breaking fibres result in lower
peaks in the SCF profiles. Nevertheless, this difference is only as high as 12%
and fades away with the distance to the fibre break (Figure 4.20b).

Figure 4.21a illustrates that both ineffective and debonding lengths increase
roughly linearly with σ f although the increase is steeper for fibre-matrix debond-
ing. Figure 4.22 shows that the volume and maximum levels of matrix plasticity
also increase with σ f , with the evolution being non-linear (Figure 4.21b).

From these results it can be concluded that the decrease in SCFs with the
increase in strength of the breaking fibre is due to the relatively lower increase
in fibre/matrix interface and matrix load transfer capabilities because of the
accumulation of inelastic deformation (plasticity, microdamage and debonding)
in both constituents. This is compensated by longer ineffective lengths and
larger volumes of matrix inelastic deformation.

4.3.2.4 Fibre/matrix interface strength

The effect of fibre/matrix interface strength on micromechanisms and SCFs
is studied by analysing first-fibre break behaviours in AS4/8552 systems with
two different sets of fibre/matrix interface properties. The first is the standard
set used in all previous analyses and corresponds to properties measured at
room temperature and dry conditions. The second set corresponds to interface
properties that have been weakened by high temperature (70°C) and humidity
conditions (85%) [120] (Table 4.1). Other than interface behaviour, it is assumed
that the properties of fibres and matrix are unaffected. A single microstructure
is considered (Figure 4.1b).
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Figure 4.20: a) SCF vs. strain in nearest intact fibre for different fibre strengths. b)
SCF profiles transverse to the broken fibre for different fibre strengths.

4.3 Results and discussion 125



2 2.5 3 3.5
Strength (GPa)

8

10

12

14

16

18

z/
R

Ineffective length Debonding length

z R

(a)

2 2.2 2.4 2.6 2.8 3 3.2 3.4
Strength (GPa)

0.1

0.15

0.2

0.25

P
la

st
ic

 s
tr

ai
n

61%

24%

4%
3%

(b)

Figure 4.21: a) Broken-fibre ineffective and interface debonding lengths as function of
strength. b) Evolution of peak matrix plasticity levels with fibre strength.
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Figure 4.22: Matrix plasticity levels corresponding to maximum SCF values, and for
different fibre strengths : a) σ f = 2.0 GPa, b) σ f = 2.4 GPa, c) σ f = 2.7 GPa, d) σ f =
3.1 GPa and e) σ f = 3.4 GPa

The predicted SCF profiles are similar in both cases, as shown in Figure 4.23a.
The debonding length increases for the weaker interface (Figure 4.23b) while a
decrease of the levels of matrix inelastic deformation is observed (Figure 4.24).
However, the ineffective length is almost unaffected, as shown in Figure 4.23b.

In summary, while the interface strength affects the damage micromechanisms,
it has little influence on the fibre ineffective length and SCFs.

4.4 Concluding remarks
The deformation micromechanisms and stress redistribution in the vicinity of
the first fibre break in unidirectional composites subjected to longitudinal tensile
loads were simulated by means of high-fidelity computational micromechanics
supported by experimentally characterised material constituents. Transient
dynamic analyses were adopted to take into account the progressive failure
and recoiling of a breaking fibre. Periodic microstructures with statistically
representative random fibre packings were analysed. The relevance of several
phenomena on the SCF, such as curing residual stresses, fibre-matrix debonding,
matrix inelastic deformation, and their effects was investigated.

The profiles of SCFs around a progressively failing fibre were demonstrated to
be different from those evolving under static equilibrium around a pre-broken
fibre, although their maximum values were within close range. Moreover, the
deformation micromechanisms are significantly different wherein longer fibre
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Figure 4.23: a) Maximum SCF predictions for weak and strong fibre/matrix interfaces.
b) Corresponding broken-fibre ineffective and debonding lengths.
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Figure 4.24: Matrix plasticity levels, corresponding to maximum SCF values, for a)
weak and b) strong fibre/matrix interfaces.

debondings and higher levels of matrix inelastic deformation are predicted
in realistic dynamic first-fibre failure. Hence, it is relevant to consider the
process of progressive fibre failure and recoil as well as the micromechanisms of
fibre/matrix debonding and matrix inelastic deformation, which have significant
effects on SCFs and on the ineffective lengths of the broken fibre. Moreover, it
was found that interface damage occurs not only in the broken fibre but also in
its intact neighbors. The effects of residual thermal stresses were found to be
negligible.

The transient dynamics computational micromechanics framework was used
to investigate the influences of microstructure parameters such as fibre volume
fraction, stochastic fibre breaking strength, fibre-to-matrix stiffness ratio and
fibre/matrix interface properties. It was demonstrated that weaker breaking
fibres, lower fibre volume fractions, or higher fibre-to-matrix stiffness ratios lead
to higher SCF. Moreover, the effects of these parameters on the deformation
micromechanisms are significant. The fibre/matrix interface strength has a
relatively small influence on the longitudinal tensile failure process.

Overall, this work brings new insights into the mechanisms controlling longitudi-
nal tensile failure of unidirectional composites. Firstly, the current high-fidelity
dynamic analyses do not lead to SCF predictions significantly different from
previous simplified static models reported in the literature. This is essentially
because the progressive breaking of a fibre is slow compared to the stress wave
propagation speed. This means that fibre breakage can be approximated to a
quasi-static process. However, the fact that the maximum SCF’s occur at higher
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strain levels than previously assumed signifies that the resulting over-stresses
on intact fibres are more likely to promote their failure, since they are closer
to their stress limit. This is a second major insight gained in this work. It can
signify a stronger fibre breakage cascading effect than what was previously
predicted, resulting in the rapid failure of neighbouring fibres and larger clusters
of broken fibres. This hypothesis will be tested by feeding efficient shear-lag-
based fibre fragmentation models with a larger number of fibres [169] with the
inputs resulting from the current high-fidelity analyses. Thirdly, the high-fidelity
simulations reveal that the secondary damage micro-mechanisms of fibre/matrix
interface debonding and matrix plasticity have opposite effects on SCF’s. The
former enhances the SCF’s while the later mitigates them, as if matrix plasticity
has a stress shielding effect. Finally, another relevant finding is that the SCF’s
generated by a fibre break depend on its specific stress-to-failure in the strength
probability distribution. The stronger the fibre the lower the generated SCF’s be-
cause of the stronger shielding effect from matrix plasticity. These findings will
also be fed to efficient fibre fragmentation models to evaluate their implications
on the longitudinal tensile failure of unidirectional composites.
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The current analytical or numerical determination of the stress intensity factor
(SIF) in cracked bodies typically assumes that the body is isolated. However,
in fibre reinforced composites, the main load carrying component, the fiber, is
embedded in a matrix. In this chapter, we propose a micromechanical finite
element model of a fibre embedded in an isotropic matrix and compute the
SIF using the J-integral method to clarify the effect of the embedding matrix
on the SIF and ultimate strength of the fiber. A parametric analysis based
on dimensionless variables further investigates the effect of the fibre-matrix
stiffness ratio and the degree of elastic orthotropy of the fibre.

5.1 Introduction
Composites reinforced with technical fibres (carbon, glass, etc.) exhibit the
best mechanical performance among structural materials in terms of specific
properties (stiffness and strength to weight ratio).

In spite of the small diameter of technical fibres, typically below 15 microns,
their very high strength leads to Irwin’s lengths much smaller than the diameter,
that is, they behave like brittle materials. In this scenario, the Stress Intensity
Factor, SIF or KI , which depends on the existing surface flaws, load, geometry
and the fibre toughness (referred to as critical SIF or KIC), governs the fibre
strength [187].

Commonly, the strength of brittle fibres such as glass or carbon is obtained by
means of single fibre tensile tests, where a dry fibre (without being embedded
in a matrix) is tested under tension [20]. A Weibull distribution [19] is then
fitted to characterise the strength scatter, and this is used as input data into
micromechanical strength models to predict the tensile failure of composite
materials [188]. Recent detailed comparison between numerical models and
experimental data shows that models strongly overpredict the fibre break density
at low applied strains compared with experimental data, suggesting that the
Weibull statistics used by the models is not accurate [188]. One possible reason
to explain this gap between models and experiments is that the strength of dry
fibres (without a matrix) may be different than the strength of the fibres in-situ
(embedded in the matrix) [188]. From a theoretical point of view, the matrix
may act as a crack constraint, thus reducing the SIF of the fibre and increasing
the fibre strength.
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The critical SIF of fibres, KIC, has been investigated by combining experimental
methods and some type of numerical approach to determine the SIF [119, 189–
204]. For instance, Ogihara et al. [189] introduced various types of notches
with straight fronts on carbon fibre mono-filaments using a focused ion beam
machining system. Then, the authors used the virtual crack closure method to
calculate the SIF of the free carbon fibre under tensile load in both isotropic
and orthotropic cases to perform the data reduction of the experimental results.
Herraez et al. [119] used a different numerical approach based on the J-integral
to compute the SIF for several crack lengths. Then, they characterized strength
and toughness of carbon AS4, E-glass and Kevlar KM2 via tensile tests on
notched and un-notched fibres. The strength of the un-notched fibres was
characterized in terms of the Weibull statistics, whereas the residual strength of
the notched fibres was used to determine their apparent toughness. In both cases,
the SIF was computed by assuming a free mono-filament, that is, the effect of
the matrix was not considered.

A single fibre in a composite under longitudinal tension can be idealized as
a cylinder loaded axially embedded in a homogeneous material, the matrix.
Currently, there is a large amount of studies investigating the SIF of isotropic
cracked bars, rods or beams with cylindrical cross-sections, loaded in tension or
bending, and either under static or fatigue loading [190–204]. However, to the
authors’ best knowledge, the effect that embedding the fibre in a matrix has on
the SIF and fibre strength has not been explored. Because of that, the present
work makes use of high-fidelity computational micromechanics modelling,
to compute the SIF along the crack front for a straight edge crack in a fibre
subjected to tension loading, while embedded in an isotropic matrix.

First, the numerical approach proposed is verified by comparing the results
for a free isotropic fibre with existing published results. Next, we present a
parametric study to investigate the influence the fibre-matrix stiffness ratio has
on the SIF of an isotropic fibre embbeded in a matrix. After that, we investigate
the influence the fibre orthotropy (longitudinal-to-transverse stiffness ratio)
has on the SIF. Finally, the results of this investigation are used to modify an
existing Weibull distribution dataset of a 34-700 carbon fibre [205] that was
obtained from single fibre tensile tests by other authors. The modified data is fed
into a state-of-the-art micromechanical strength model [168–170, 206] able to
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predict the damage accumulation and failure of composite materials. By using
the modified Weibull distribution data, the fibre break density predicted by the
model becomes significantly closer to the experimental observations. The results
of this investigation prove that the matrix has a significant impact on the SIF and
fibre strength. In addition, the results provided contribute to the understanding
of the fracture of elastic bodies that goes beyond composite materials. Indeed,
the work provides closed-form equations to describe the SIF for cylindrical
shaped cracked elements surrounded by an elastic and homogeneous media.
These equations are relevant for other practical cases such as the glass fibre
composite rebars reinforcing concrete. The remaining of this paper is organised
as follows: firstly, we present the micromechanical model to evaluate the SIF
and secondly, the micromechanical strength model is summarised. Finally, the
results and conclusions are presented.

5.2 Linear elastic fracture mechanics
Many engineering structures contain flaws or crack-like defects arising from
manufacturing and fabrication techniques or initiation during service. Manu-
facturing flaws exist as imperfections in the materials’ microstructure such as
sites of porosity, second phase particles and impurities. Flaws created during
fabrication are often associated with harsh processing procedures such as ma-
chining and drilling. The initial size of flaws may be small, even microscopic,
but have a propensity to grow, or new cracks develop, due to the action of a
variable service load or environmental conditions (moisture and corrosion). The
presence and size of cracks in a component have a profound adverse affect upon
its static (residual) strength. If the residual strength reduces sufficiently then loss
of structural integrity occurs under normal operating conditions. The analysis of
failure in cracked bodies may involve the determination of:

• Crack growth rates (from an initial flaw size to a critical size)

• Residual strength as a function of crack size

• Critical crack size tolerable by a structure

• Appropriate inspection schedules for cracked components

• Size of pre-existing flaws in the manufactured state
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Fracture mechanics is an engineering discipline that assesses the state of cracks
or cracked structures to quantitatively evaluate the phenomena listed above.
A quantitative assessment allows engineering optimisation of many areas of
structural and component management including design, material selection,
inspection schedules, maintenance procedures, and decisions on remedial action.

Engineering materials, such as CFRP, have high fracture toughness, a material
property gauging the resistance to crack propagation. Structures with cracks
made of such materials ultimately fail due to a rapid separation mechanism
known as brittle fracture, as opposed to plastic collapse or rupture. Linear Elastic
Fracture Mechanics (LEFM) assumes that the material may be considered to be
linear and elastic to describe the stress field in the region of a crack embedded in
a loaded body. Though plasticity occurs at the crack tip, the principles of LEFM
remain valid if the plasticity is confined to a zone small in size compared to the
overall dimensions of the crack and cracked body.

Initial attempts to characterise fracture of materials were based on an energy
balance theory, formulated by an English aeronautical engineer, Griffith [135]
during World War I. Thereafter, Irwin [207] developed an energy approach for
cracked systems defining a term for the elastic energy release rate, G quantifying
the energy available for an increment of crack extension as:

G =−dΠ

dA
(5.1)

The energy release rate G is the rate of change of potential energy Π, with crack
growth area A. This crack driving force was used to determine the growth of
stable and unstable cracks. In situations where crack tip plasticity is consid-
erable, Rice’s J-integral method [208], provides a more representative crack
characterising parameter. It may be viewed as an equivalent energy release rate
for cracks that follow a non-linear elastic material behaviour. The J-integral is
suitable for calculating G by numerical methods and hence is useful in LEFM
analysis. Though energy approaches provided great possibilities, subsequent
development focused on a more practicable and tangible stress-field approach.

Cracks embedded in brittle materials can be characterised by a single parameter,
the stress intensity factor, SIF, describing the crack tip stress field. It is a function
of the load on the cracked configuration, crack size and shape and other geomet-
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rical boundaries. The SIF is employed in many aspects of fracture mechanics
such as to quantify critical flaw size, fatigue and stress corrosion cracking. The
application of such analyses to practical problems requires knowledge of the
SIF solution for the given geometrical configuration under the specified loading.
Solutions for many configurations are available from various sources. These
are typically confined to simple, idealised geometries under simple load cases
and are mostly restricted to two-dimensional geometries as three-dimensional
solutions are more difficult to calculate.

Many practical engineering problems are concerned with complex geometries
under complex loading arrangements. The available SIF solutions are often
inappropriate, as their usage invariably constitutes an approximation to the
physical problem, which may incur in unacceptable errors. Contrary to the
judgement of many, that there are sufficient SIF solutions applicable to the vast
range of physical problems, design engineers continually strive to generate new
reliable and accurate SIF solutions. Furthermore, engineering optimisation and
defect assessment requires SIF solutions that have broad limits of validity and
that can be rapidly calculated. The difficulty in calculating SIF solutions that
meet the criteria stated above is widely recognised and constitutes a longstanding
limitation common to many fracture mechanics analyses.

5.2.1 Stress intensity factor

The basis of LEFM theory is the stress intensity factor (K) concept, which
relates the local elastic stress field near the crack tip to the known global stress
or displacement field [209]. It predicts very accurately the stress state (stress
intensity) near the tip of a crack caused by a remote load or residual stress.
SIF is a theoretical construct usually applied to a homogeneous, linear elastic
material and is useful for providing a failure criterion for brittle materials, and is
a critical technique in the discipline of damage tolerance. The concept can also
be applied to materials that exhibit small-scale yielding at a crack tip.

The SIF analysis was carried out by Williams [210] in 1957, taking into account
Westergaard’s work [211]. By using a coordinates system centred in the crack tip
and according to William’s analysis [210], the near crack tip components of the
stress field are proportional to K/r

1
2 , where K is the stress intensity factor. The

crack opening may correspond to one of three basic cases, the opening mode,
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the sliding mode and the tearing mode, or to any of their combination; thus,
there are three basic stress intensity factor values denoted with the subscripts I,
II and III.

For each mode, relations for the SIF can be derived by calculating the stress
or displacement field, in the crack tip local coordinate frame, as functions of
the distance r and angle θ , see Figure 5.1. The stress field in a small region
surrounding the crack tip can be calculated using the expressions [212, 213]:

σ
I
i (r,θ) =

KI√
2πr

fi (µ,θ)

σ
II
i (r,θ) =

KII√
2πr

gi (µ,θ)

σ
III
i (r,θ) =

KIII√
2πr

hi (µ,θ)

(5.2)

where fi, gi and hi are geometrical functions defining the angular dependency
of the stress field. For the anisotropic case the stress field also depends on the
roots µi of the characteristic equation, which is defined below. For example, in
an infinite plate containing a crack with length 2a and loaded by a normal stress
σy and shear stresses τxy and τyz, the stress intensity factors are defined as:

KI = σy
√

πa

KII = τxy
√

πa

KIII = τyz
√

πa

(5.3)

For any situation deviating from this ideal situation (infinite plate) the value of
K is modified by adding a factor β (a) as:

KI = σy
√

πa.β (a) (5.4)

where β (a) is a function of the geometry. A number of handbooks are available
[214–216] in which the function β (a) is supplied for most common problems,
but it can also be obtained from a finite element analysis by comparing the
calculated displacement field with the displacement field around a crack in an
infinite plate loaded in plane tension.

For isotropic materials the functions fi, gi and hi can be related directly to
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Figure 5.1: Definition of the variables r and θ and the crack tip local coordinate frame.

the material properties E and ν . However, for anisotropic materials, they are
functions of the complex roots µi. Sih and Irwin [212] derived this function as:

a11µ
4−2a16µ

3 +(2a12 +a66)µ
2−2a26µ +a22 = 0 (5.5)

where the coefficients ai j are the (compliance) elements of the elastic constitutive
matrix, relating the stresses and strains according to

εi = ai jσ j (i, j = 1, ...,6) (5.6)

The SIF is used to determine the fracture toughness of most materials. Fracture
toughness is an indication of the amount of stress required to propagate a pre-
existing flaw. It is a very important material property since the occurrence
of flaws is not completely avoidable in the processing, fabrication or service
of a material/component. Flaws may appear as cracks, voids, metallurgical
inclusions, weld defects, design discontinuities or some combination thereof.
Since engineers can never be totally sure that a material is flawless, it is common
practice to assume that a flaw of chosen size will be present in some number
of components and use the LEFM approach to design critical components.
This approach uses the flaw size and features, component geometry, loading
conditions and the material property called fracture toughness to evaluate the
ability of a component containing flaw to resist fracture.
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5.2.2 SIF determination methods

The SIF can be calculated using stress and strain analysis or parameters that
measure the energy released by crack growth. The estimation of SIF can be
done by analytical or numerical techniques. Normally, the analytical ones are
more complex but they have the advantage of their applicability to a wide range
of crack lengths. For complex structures, it is difficult to perform an analysis
taking into account all boundary effects near the crack tip, so the numerical
calculation of K has some advantages for these structures. The evolution of
computing hardware and software permit the use of more complex numerical
techniques and to obtain solutions with smaller calculation time. Hence, the
numerical techniques for estimating stress intensity factors are nowadays more
popular than the analytical techniques. The following are some of the numerical
methods for determining SIF.

5.2.2.1 Compounding method

The compounding method was proposed by Cartwright and Rooke in 1974 [217].
This method is used for determining SIF in complex structures starting from
available solutions for simpler solutions. This method consists of decomposing
a cracked structure with N boundaries into N ancillary configurations, each
one containing one boundary and for which stress intensity factor solutions
are available. The SIF for a crack tip can be expressed as a function of the N
ancillary by:

K1N = K0 +
N

∑
n=1

(Kn−K0)+Ke (5.7)

where K0 is the SIF for the same body without the boundaries, Kn is the SIF
for the cracked body having only the n− th boundary and Ke is a SIF term
corresponding to boundary-to-boundary interaction. Ke term takes action when
boundaries interact one to another. In this case, stresses at the location of
these boundaries will be different, leading to an increase or decrease of stress
intensity factor values. The compounding technique give reasonable results for
relatively simple geometries, however, it becomes excessively time consuming
for geometries of great complexity or when interaction between their boundaries
exists.
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5.2.2.2 Displacement extrapolation

The displacement extrapolation method was developed by Paris and Sih [218], in
order to obtain crack tip singular stresses and SIF using only nodal displacements
of elements around the crack tip. The near crack tip displacement field may be
expressed as a series in function of the SIFs, distance to the crack tip and the
angle with the propagation direction. The displacements for mode I, II and III
can be determined by

ux =
KII

2G

√
r

2π
(1+ k)

uy =
KI

4G

√
r

2π
(1+ k)

uz =
KIII

G

√
r

2π

(5.8)

where G is the shear modulus, r is a variable distance from the crack tip along
the x axis, ux, uy and uz are the displacements in the x , y and z directions,
respectively (refer to Figure 5.1). The parameter k is:

k =

3−4ν in plane stress
3−ν

1+ν
in plane strain

(5.9)

From these equations, a relationship between displacements and the apparent
stress intensity factor K0 is obtained. Using a linear extrapolation to r = 0, the
stress intensity factor at the crack tip can be estimated with a high accuracy. The
extrapolation method produces consistent results with reasonable accuracy and
is highly efficient in terms of computational effort, however it is better suited for
the models with simple geometry.

5.2.2.3 Force method

The force method is an alternative to the displacement method. It uses nodal
reactions obtained in a finite element model. This method was first developed
by Raju and Newman [219] in 1977. Based on the first term of Williams series
expansion of the stress, it is possible to estimate the SIF value using extrapolation
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as:

σxx =
KI√
2πr

σyy =
KI√
2πr

τxx =
KII√
2πr

(5.10)

Analyzing the forces along a distance r, the following expressions for the forces
transmitted along the x and y direction, are obtained by:

Fx =
∫ xc

0
τxydy = KII

√
2xc

π

Fy =
∫ xc

0
σyydy = KI

√
2xc

π

(5.11)

Finally, the Modes I and II SIF values can be determined as a function of the
distance r by:

KI
′ =

√
π

2xc

n

∑
i=1

Fy,i

KII
′ =

√
π

2xc

n

∑
i=1

Fx,i

(5.12)

where xc is the distance from the crack tip to the intermediate location between
the node under consideration and the next node. Fx and Fy are forces in x and
y direction, respectively, obtained from the finite element results at various xc

locations. The force method produces accurate results, however, it necessitates
the preparation of a suitable finite element mesh in the crack front.

5.2.2.4 J-integral

The J-integral is a contour integral that characterizes the strain energy release
rate of an elastic non-linear material. The theoretical concept of J-integral was
developed in 1967 by Cherepanov [220] and independently in 1968 by James
R. Rice [208], who demonstrated that an energetic contour path integral was
independent of the path around a crack. The stress field is related to the strain
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energy density as follows:

σi j =
∂W
∂εi j

(5.13)

where σ is the stress, ∂W is the strain energy density and ε is the strain. Based
on the definition of potential energy along a contour, work theorem and the
previous equation, Rice [208] defined an integral independent of the integration
contour Γ around the crack tip as:

J =
∫

Γ

(
Wdy− t · ∂u

∂x
ds
)

(5.14)

where W is the strain energy density, x, y are the coordinate directions, t = [σ ]n
is the surface traction vector, n is the normal to the curve Γ, [σ ] is the Cauchy
stress tensor, and u is the displacement vector.

For linear or non-linear elastic materials, the J-integral is equal to the strain
energy release rate (G) [209] for a crack in a body subjected to monotonic
loading. This is generally true, under quasistatic conditions, only for linear
elastic materials. For materials that experience small-scale yielding at the crack
tip, J-integral can be used to compute the energy release rate under special
circumstances such as monotonic loading in mode III (antiplane shear). The
strain energy release rate can also be computed from J for pure power-law
hardening plastic materials that undergo small-scale yielding at the crack tip.

5.2.2.5 Finite crack extension method

The finite crack extension method [221] relies on calculation of the strain energy
release rate, using the energy variation under an infinitesimal crack length
extension:

G =
∂U
∂a

(5.15)

This method can be divided into two categories:
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i) Crack closure technique

This technique was first presented by Rybicki and Kanninen [222] in 1977. This
method is also called two-step crack closure technique, as it requires two steps
FE analysis in order to calculate the strain energy release rate for a specific crack
length. The crack is physically extended, or closed, during two complete FE
analyses as shown in Figure 5.2. The crack closure technique (CCT) is based on
Irwin’s crack closure integral [223, 224]. The method relies on the assumption
that the energy ∆E released when the crack is extended by ∆a from a (Figure
5.2a) to a+∆a (Figure 5.2b) is identical to the energy required to close the crack
between location i and j. For a crack modeled with two-dimensional four node
elements (5.2) the work E required to close the crack along one element side
can be calculated as:

∆E =
1
2
[X1i .∆u2i + Y1i .∆w2i] (5.16)

where X1 and Y1 are the shear and opening forces at nodal point i to be closed
and ∆u2 and ∆w2 are the differences in shear and opening nodal displacements at
node i as shown in Figure 5.2. The crack closure method establishes the original
condition before the crack was extended. Therefore, the forces required to close
the crack are identical to the forces acting on the upper and lower surfaces of the
closed crack. The forces X1 and Y1 may be obtained from a first finite element
analysis where the crack is closed. The displacements u2 and w2 are obtained
from a second finite element analysis where the crack has been extended to its
full length a+∆a.

ii) Virtual crack closure technique

The Virtual Crack Closure Technique (VCCT) is based on the same assumptions
as the crack closure method [222]. However, it is assumed that a crack extension
of ∆a from a+∆a (node i) to a+2∆a (node j) does not significantly alter the
state at the crack tip, as seen in Figure 5.3. This implies that the displacements of
a region close to the crack tip, when the tip is at specific node, are approximately
the same as the displacements at the same location when the tip is at the previous
node. Using Figure 5.3 as an example, it is assumed that the displacements at
node i will be approximately equal to the displacements at node l when the crack
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(a) First FE analysis step: crack closed
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(b) Second FE analysis step: crack extended

Figure 5.2: Two steps crack closure technique.
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extends from node i to node j.

Further, the energy E released when the crack is extended by ∆a from a+∆a to
a+2∆a a is identical to the energy required to close the crack between location
i and k, and can be calculated by:

∆E =
1
2
[Xi .∆ul + Yi .∆wl] (5.17)

where Xi and Zi are the shear and opening forces at nodal point i and ∆ul and ∆wl

are the shear and opening displacements at node l. Therefore, the information
required for the calculation of the energy variation is obtained from a single
finite element analysis. After obtaining the energy variation, the energy release
rate G is calculated as:

G =
∆E
∆A

(5.18)

where ∆A is the surface area created by a crack propagation of; in the case of
plates with a thickness b, this area is ∆a.b. The VCCT is a more straightforward
calculation than CCT, just requiring that the two elements behind and in front
of the crack tip are identically. However, this method is not suitable for models
with several domains.

a ∆a

x

∆u

∆a

y

∆w

crack closed

i

Yi

Xi

j

l

l

l

Figure 5.3: FE model with details of the boundary conditions and finite-element
meshing of the crack tip region.

In summary, and based on the following requirements, the j-integral was chosen
to compute the SIF: K values are consistent when using the J-integral method;
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the presence of plasticity in the model; the J-integral is an appropriate method
to determine accurate K values for both 2D and 3D cracks. Local errors are
minimized because J-integral is domain independent and can be applied to a
domain with multiple elements.

5.3 Methodology

5.3.1 Numerical evaluation of SIF

To compute the SIF of fibres embedded into a matrix, this work relies on a
micromechanics finite element simulation performed in Abaqus Standard 2020
[150]. The model consisted of a notched fibre embedded in an isotropic matrix,
subjected to a tensile axial force (Figure 5.4a), while the lateral surface area was
free from stresses. The fibre included a straight-fronted edge crack at x1 = L/2,
with varying depth (a), as indicated by the grey area in Figure 5.4b. Matrix
and fibres are modelled as elastic materials with a perfect fibre/matrix adhesion
using tie constraints at the interface.

The size of the model was decided based on a parametric study that targeted
the best trade-off between computational effort and accuracy. The axial length,
L, had to be long enough to guarantee that the remote stresses at the upper and
bottom faces, were not influenced by the presence of the crack. This led to
L = 10D, where D is the fibre diameter. We selected a large enough thickness
of the surrounding matrix, t, to avoid severe deformation in the boundaries of
the matrix around the crack region. This criterion prevailed over achieving a
realistic fibre volume fraction for the composite (not the purpose of this study),
and led to t = D.

To reduce the computational costs, only one-quarter of the model was simulated
by taking advantage of the symmetry boundary conditions along the x1 and x3

axes (Figure 5.5). A uniform normal traction stress, σ , was imposed in the upper
part of the model. The fibre and matrix were meshed separately. We used a
swept and structured mesh around the crack tip to enrich the discretization and
capture the high stress gradients therein (Figure 5.5). The element size, after a
convergence study, varied in the range of D/1500 (at crack tip) to D/100 (in
far-field). To account for the stress singularity, quadratic isoparametric elements
(C3D20) with the inverse square root singularity were used at the crack tip.
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Figure 5.4: A notched fibre with straight-fronted edge crack (indicated in grey) embed-
ded in a matrix. a) 3D geometry of the model and b) the fibre cross-section at crack
plane.
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Figure 5.5: FE model with details of the boundary conditions and finite-element
meshing of the crack tip region.
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The stress intensity factor evaluation was carried out by means of the J-integral
method, as described in Section 5.2.2.4. In this approach, the energy release rate
is obtained by integration along the contour Γ around the crack tip (Figure 5.6)
with

J =
∫

Γ

(
Wdx1− t · ∂u

∂x2
ds
)

(5.19)

where x1 and x2 are rectangular coordinates to the crack front, x1 being perpen-
dicular to the crack surface, W is the elastic strain density, t is the traction vector,
u is the displacement vector, and ds is an increment of arc length along any
contour Γ. Due to the geometry of the model, the J-integral values are not con-
stant along the crack front. Thus, this work concentrated on the maximum value
attained at the crack tip (point A in Figure 5.4b). For linear elastic problems of
crack opening in mode I, the J-integral equals the energy release rate (GI). The
path independence [208] of J-integral was checked and a total of 21 concentric
contours surrounding the crack tip were used, as shown in Figure 5.5 (magnified
area).

x1

x2

Crack tip

Crack faces

ds

L

n

Figure 5.6: Definition of the contour path around the crack tip to compute the J-integral.

For an isotropic material, the stress intensity factor in mode I, KI , can be
calculated from the J-integral by

J =
K1

2(1−ν2)

E
(5.20)

where E is the fibre Young’s modulus and ν the Poison’s ratio. For an orthotropic
material, the J-integral and the KI are related through the following equation
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[212]

J = KI
2
√

a11a22

2

[√
a22

a11
+

2a12 +a66

2a11

]1/2

(5.21)

where ai j stands for the compliance tensor of the orthotropic solid under plane
strain

a11 =
1

E11
, a22 =

1
E22

, a66 =
1

G12
, a12 =−

ν12

E11
(5.22)

and E11 and E22 are the fibre Young’s modulus in longitudinal and transverse
directions, respectively, and G12 is the fibre shear’s modulus. Finally, the non-
dimensional stress intensity factor ( f ) is calculated by

f =
KI

σ
√

πa
(5.23)

where σ is the far-field stress, and a is the crack length.

5.3.2 Non-dimensional Parametric Analysis

A parametric non-dimensional analysis was defined to investigate the effect of
embedding a fibre in a matrix for different material parameters.

For an embedded isotropic fibre, the independent elastic constants that have an
effect on the SIF are the modulus of elasticity and the Poisson’s ratio of the
fibre, E f and ν f , and of the matrix, Em and νm. The non-dimensional analysis
is based on the definition of the parameter α , representing the fibre-to-matrix
stiffness ratio:

α =
E f

1 −Em

E f
1 +Em

(5.24)

with α ranging between α =−1 (stiffness of the fibre negligible with respect
to that of the embedding material, E f � Em) and α = 1 (E f � Em, which
corresponds to the free fibre). For α = 0, the fibre and matrix have the same
modulus of elasticity, so this case corresponds to an homogeneous cylindrical
material with an internal crack.

In an orthotropic fibre, the number of elastic constants increases to nine: modulus
of elasticity (E f

1 ,E
f
2 ,E

f
3 ), Poisson’s ratios (ν f

12,ν
f

13,ν
f

23) and shearing moduli
(G f

12,G
f
13,G

f
23). The subscripts 1, 2 and 3 refer to longitudinal and the two
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transverse directions, respectively. For the sake of simplification, the fibre was
considered transversely isotropic (E f

2 = E f
3 , ν

f
12 = ν

f
13, G f

12 = G f
13), and some of

the elastic constants took a fixed value (ν f
12 = 0.3, ν

f
23 = 0.4, G f

12 = 11.3, ν
f

12 =

νm = 0.3) [121]. Therefore, the elastic constants involved in the parametric study
were E f

1 ,E
f
2 and Em, which were combined in the non-dimensional parameters

α , defined above in Eq. 5.24, and β :

β =
E f

1 −E f
2

E f
1 +E f

2

(5.25)

where β ranges between β = −1 (E f
1 � E f

2 ) to β = 1 (E f
1 � E f

2 ). The case
β = 0 corresponds to the isotropic fibre.

Due to the positive-definiteness of the strain energy, the elasticity tensor (compli-
ance matrix) in linear elastic materials must be positive-definite [225]. To assure
this, some constraints must be applied to the engineering elastic constants:

E > 0,G > 0,−1 < ν < 0.5 (5.26)

for isotropic elasticity, and

E1,E2,E3,G12,G13,G23 > 0

|ν12|<
(

E1

E2

)1/2

|ν13|<
(

E1

E3

)1/2

(5.27)

|ν23|<
(

E2

E3

)1/2

1−ν12ν12−ν23ν32−ν31ν13−2ν21ν32ν13 > 0

for the orthotropic elastic case. These constrains arise due to thermodynamic
admissibility; their violation leads to a non-positive strain energy for certain
load cases. Based on the linear elastic conditions, stability restricts β to −0.5 6

β < 1.
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5.3.3 Micromechanical Progressive Failure Model

To investigate the effect that a modified Weibull distribution fibre strength dataset
(taking into account the presence of the matrix) has on the tensile failure and
damage development of composite materials, the Progressive Failure Model
(PFM) developed by J. M. Guerrero et al. [168–170] is employed. The PFM
[21, 168–170, 206] is a micromechanical strength model that considers an RVE
of width a, height b and length L containing a random distribution of fibres of a
certain radius. The fibres are split into elements (tensile springs) of length l along
the longitudinal direction, thus leading to a succession of springs that work in
series with the other elements of the same fibre and in parallel with the elements
of the surrounding fibres. Figure 5.7 presents a schematic representation of the
model.

a) b)

l L

b

a

(p,q)

Y

XZ

p     
[1, ...

,    
 ]  

 Np

q     [1, ...,     ]   Nq∈∈
Y

X

ε0

Figure 5.7: Schema of the progressive failure model. a) 3D view and b) cross-section
view. Fibres are denoted by q ∈ [1, ..., Nq], while planes are denoted by p ∈ [1, ..., Np],
where Nq and Np are the number of fibres and planes, respectively.

At the beginning of a new simulation, a stochastic strength is assigned to each
element, p,q of the model, following a statistical distribution representative of
the fibres (usually a Weibull distribution). Following this, a uniaxial strain is
slowly applied by increasing the strain, ε0, in steps. At each step, the stress of
an element p,q is computed with [21, 168, 170, 206, 226]

σp,q =
SCFp,q

Ωp
Eq (1−Dp,q)

(
εp + ε

r
q
)

(5.28)

where SCFp,q is the Stress Concentration Factor (SCF) supported by element
p,q, Eq is the Young’s modulus of fibre q, Dp,q is a damage factor which is
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equal to 0 for intact elements, equal to 1 for broken elements and in between for
elements in any stress recovery, εp is the mechanical strain of plane p, ε r

q is the
fibre’s thermal residual strain resulting from the curing of the matrix, and Ωp is
a stress ratio to enforce load equilibrium [21, 168–170, 206].

After computing the element stresses, these are compared with the strength. If no
element fails, a new step starts and the applied strain, ε0, is increased. Otherwise,
if a new element breaks, a damage factor equal to 1 is assigned to the failed
element. Moreover, this damage is progressively decreased from 1 (at the plane
of the breakage) down to zero at the end of the ineffective length of the broken
fibre. This approach simulates the loss of stiffness due to the break. In addition,
the stress loss through all this region is redistributed to the surrounding intact
fibres in form of stress concentration. All this stress redistribution is computed
with analytical equations [21, 168–170, 206]. After this, the element stresses are
recalculated and the model checks if new elements fail. This iterative process
continues until failure is triggered either due to the unstable propagation of a
cluster or because all fibres in a plane are broken.

The PFM captures the progressive fragmentation of fibres and the formation of
clusters of broken fibres. Thanks to the use of analytical equations, the model is
computationally efficient, allowing the simulation of RVEs with thousands of
fibres. Deep details of the model formulation can be found elsewhere [21, 168–
170, 206].

5.4 Finite element model validation
The numerical approach presented in Section 5.3.1 was verified using two cases
of isolated cylindrical bars for which the corresponding SIF has been previously
published (free isotropic bar with a surface crack [189, 190, 227] and a bar with
internal crack [215]). This verification is described in detail in this section.

5.4.1 Free fibre model

First, the SIF results of the FE model for a single isotropic free fibre (no
mesh/material surrounding it) were compared with the literature (Astiz and
Elices [227], Daoud et al. [190] and Ogihara et al. [189]), obtaining a good
agreement (Figure 5.8). Our dimensionless SIF data was fitted using the follow-
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ing equation:

KI

σ
√

πa
= 1.023+0.4448

( a
D

)
−1.4

( a
D

)2
+13.23

( a
D

)3
(5.29)

Figure 5.8: Comparison of the non-dimensional stress intensity factor of an isotropic
free fibre subjected to uniform tension obtained in this work (FEM), with Astiz [227],
Daoud et al. [190] and Ogihara et al. [189].

5.4.2 Embedded fibre model with very low stiffness matrix

Second, the complete computational model, including fibre and the embedding
matrix, was used to reproduce the free fibre case. To that purpose, the stiffness
of the matrix was defined to be close to 0 (α = 0.999999). Notice that an exact
value of zero cannot be given since the finite element material model needs a
non-zero stiffness. Figure 5.9 compares the results of the computational model
(dots) with the equation 5.29 and demonstrates that the embedded fibre model
captures this case well.
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Figure 5.9: Non-dimensional SIF of an isotropic free fibre resulting from a computa-
tional model of the isolated fibre (line) and with embedding material of nearly zero
stiffness (dots).

5.4.3 Comparison with an analytical model

The third verification case consisted of a cylinder with an internal circular crack
under axial tension, for which an analytical model exists [215]. To reproduce
this case, the computational model was defined so that the fibre and the matrix
had the same elastic properties and the whole fibre cross-section acted as the
crack (grey area in Figure 5.10).

The analytical SIF solution for this crack geometry is given by [215]

KI =
2
π

6
√

πaF (a/b) (5.30)

where

F (a/b) =
1−0.5(a/b)+0.148(a/b)3√

1−a/b
(5.31)

where a is the crack radius and b is the radius of the cylinder. The SIF and Crack
Opening at Center (COAC) were calculated for both analytical and FE models
and compared, showing a good agreement (SIF = 2.59 and COAC = 0.051 for
analytical model, whereas SIF = 2.53 and COAC = 0.051 for the FE model).

These three verification cases demonstrate the reliability of the proposed compu-
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Figure 5.10: Geometric illustration of a model consisting of a broken fibre embedded
in a matrix as a solid cylinder with central circular crack. The fibre is broken in the
middle (x1 = L/2) and shown as the grey area.

tational approach.

5.5 Results and discussion

5.5.1 Isotropic fibre embedded in a matrix

Figure 5.11 plots the evolution of the non-dimensional SIF for an isotropic fibre
embedded in a matrix for different fibre/matrix stiffness ratios (α equal to -0.95,
-0.5, 0.0, 0.5, 0.8, 0.95 and 0.98) and relative crack lengths (a/D equal to 0.07,
0.1, 0.2, 0.3, 0.4, and 0.45). The SIFs of an isotropic free fibre (grey continuous
line) were added as a baseline, for comparison. For better visualization, Figure
5.12 shows a 3D surface plot of non-dimensional SIF.

The trend is that an increase in matrix stiffness (decrease in α) leads to a
significant drop in the SIF of the cracked fibre, especially for longer cracks.
Even for a low stiffness matrix (α = 0.98 or Em = 0.01E f ), the SIF is reduced
by 7% when a/D = 0.2 or by 25% when a/D = 0.4, with respect to the free fibre
case. Figure 5.13 depicts the percentage change of SIF for different fibre/matrix
stiffness ratios (α), compared to the free fibre.

Figure 5.14 shows the maximum non-dimensional crack mouth opening dis-
placement (CMOD) for the embedded fibre with α being equal to 0.98 and -0.95,
as well as that of the free fibre (grey continuous line) for reference. The trends of
the curves are very similar to those of the SIF, and indicate that the surrounding
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Figure 5.11: Non-dimensional SIF for an isotropic fibre embedded in a matrix for
different fibre/matrix stiffness ratios, α . The dots refer to the FEM results and the
dashed lines to the fitting curves according to Equation 5.32. The continuous grey curve
corresponds to the SIF for a free fibre (α = 1).

Figure 5.12: 3D surface plot of non-dimensional SIF for an isotropic fibre embedded
in a matrix for different fibre/matrix stiffness ratios (α) and crack lengths (a/D).
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Figure 5.13: Relative reduction of the non-dimensional SIF for an isotropic fibre
embedded in a matrix with respect to the free fibre (continuous grey line).

material restricts the crack opening even in the case of a low stiffness matrix. In
fact, the CMOD is negligible when the matrix stiffness is large compared with
that of the fibre (α =−0.95, Figure 5.14).

The non-dimensional SIF for an isotropic fibre embedded in a matrix, as a
function of the α parameter, can be approximated by the following equation,
which was obtained by fitting the results of this investigation:

KI

σ
√

πa
= A+B

( a
D

)
+C

( a
D

)2

A = A1 +
A2

(1−α)A3

B = B1 +
B2 α

(1−α)B3

C =C1 +
C2

(1−α)C3

(5.32)

The use of Equation 5.32 produces data that deviates by less than 2.8% from
any of the FE data points we have examined. The values of the coefficients of
Equation 5.32 are listed in Table 5.1. The usefulness of this equation extends
to elastic cylindrical cracked bars surrounded by a homogeneous and isotropic
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Figure 5.14: Non-dimensional CMOD for an isotropic fibre embedded in a matrix for
different fibre/matrix stiffness ratios, α . The continuous grey curve corresponds to the
CMOD for a free fibre (α = 1).

material, provided that the elastic constraints specified in the previous section
are obeyed.

Table 5.1: Coefficients for the fitting equation given in Equation 5.32.

A1 1.187 B1 -0.4268 C1 -0.4647

A2 -0.4349 B2 -0.1893 C2 0.7246

A3 -0.3255 B3 -0.07555 C3 0.4295

5.5.2 Orthotropic free fibre

Figure 5.15 shows the non-dimensional SIF for an orthotropic free-fibre, for
different longitudinal/transverse stiffness ratios (β equal to -0.5, 0.0, 0.5, 0.8,
0.9, and 0.99) and relative crack lengths (a/D equal to 0.07, 0.1, 0.2, 0.3, 0.4,
and 0.45). The case β = 0 corresponds to the free fibre with isotropic modulus
(the fibre is not completely isotropic as ν23 = 0.4 and ν12 = ν13 = 0.3). The
explored range of β involves transverse modulus, E f

2 , ranging from 3 times the
axial one (β = −0.5) to being negligible (β = 1). Figure 5.16 depicts a 3D
surface plot of non-dimensional SIF for better readability.

The curves indicate that the degree of orthotropy has a strong influence on the
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Figure 5.15: Comparison of non-dimensional stress intensity factor of an orthotropic
free fibre for different longitudinal/transverse stiffness ratio, β . The dots refer to the
FEM results and the dashed lines indicate the fitting results.

Figure 5.16: 3D surface plot of non-dimensional SIF for an orthotropic free fibre for
different longitudinal/transverse stiffness ratios (β ) and crack lengths (a/D).
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SIF, and that the trend is opposite depending on whether the transverse modulus
is smaller (β > 0) or higher (β < 0) than the axial modulus. For example, for
β = −0.5 (E f

2 = 3E f
1 ) the SIF is increased by +30% over the isotropic case;

while β = 0.5 (E f
2 = 0.33E f

1 ) involves a decrease of -25%. The relative change
in the SIF of orthotripc fibres with respect to the isotropic case does not depend
significantly on the crack length (Figure 5.17).

Figure 5.17: Percentage of non-dimensional stress intensity factor changes of an or-
thotropic free fibre for different longitudinal/transverse stiffness ratio, β . The percentage
change was calculated with respect to the model with β = 0 (E1 = E2) as the reference.

The finite element results of the non-dimensional SIF for an orthotropic free
fibre were fitted to the following equation:

KI

σ
√

πa
= 0.9257+A+B

( a
D

)
+C

( a
D

)2
+D

( a
D

)3

A = A1β +A2β
2 +A3β

3 +A4β
4

B = B1 +B2β
1 +B3β

2 +B4β
3

C =C1 +C2β +C3β
2

D = D1 +D2β

(5.33)

The fitting employed with Equation 5.33 produces data that deviates by less
than 2.0% from any of the FE data points we have examined. The values of
the coefficients of Equation 5.33 are listed in Table 5.2. The application of this
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equation can be extended to elastic cylindrical cracked bars with orthotropic
properties, provided that the elastic constraints specified in Equation 5.27 are
met.

Table 5.2: Coefficients for the fitting of equation given in Equation 5.33.

A1 -0.9022 B1 0.932 C1 -4.647 D1 17.67

A2 0.3677 B2 -0.7516 C2 4.415 D2 -10.7

A3 1.833 B3 1.81 C3 -1.928

A4 -1.993 B4 -1.727

5.5.3 Orthotropic fibre embedded in a matrix

This subsection presents the effect a surrounding material has on the SIF of an
orthotropic cracked fibre. This study involves both parameters α and β (β equal
to -0.5, 0.0, 0.5, 0.8, and 0.9). We investigated two cases of fibre/matrix stiffness
ratios: α equal to -0.95 and 0.95.

The outcome of this study (Figure 5.18) reinforces the trends presented in the
previous cases: i) the presence of the matrix reduces the SIF and this effect
scales with the stiffness of the matrix, and ii) the degree of orthotropy of the
fibre has a strong influence on the SIF, increasing or decreasing it depending on
whether the transverse stiffness is higher or lower, respectively, than the axial
stiffness.

The strong observed effect of the surrounding material on the SIF should be
attributed to the constrain imposed by the matrix on the opening of the crack
(Figure 5.14).

The complete set of presented results have a direct application to the under-
standing of failure in unidirectional fibre reinforced composites. For instance,
a widely-used structural carbon composite combines an AS4 carbon fibre with
an epoxy matrix. For that case, α = 0.95 and β = 0.89 (carbon fibres are
non-isotropic [228]). An expoxy reinforced with glass fibres (i.e., S2/MTM44-
1) corresponds to the case α = 0.91 and β = 0.0 (glass fibres are elastically
isotropic). For example, the finite element results of the non-dimensional SIF for
a carbon fibre embedded in an elastic epoxy matrix were fitted to the following
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(a) α = 0.95

(b) α =−0.95

Figure 5.18: Comparison of non-dimensional stress intensity factor of an orthotropic
fibre embedded in a matrix, for different fibre longitudinal/transverse stiffness ratios (β )
and fibre/matrix stiffness ratios (α). a) α = 0.95 and b) α =−0.95.

162 Chapter 5 Implications of matrix on fibre failure mechanisms: Stress Intensity Factor

and Ultimate Strength



equation:

KI

σ
√

πa
= 0.4411−0.2258

( a
D

)
+0.5661

( a
D

)2
(5.34)

However, the computational model relies on a strong simplification of the physics
of the real problem. Fibre (albeit not carbon fibres) and matrix are considered
homogeneous elastic materials. The fibre is assumed to be surrounded by a
homogeneous material with the mechanical properties of the matrix. In reality,
the fibre is surrounded by a heterogeneous material including nearby fibres
which will lead to a higher equivalent stiffness of the embedding material,
accentuating the crack opening constraint we have described and, thus, further
reducing the SIF. Therefore, we can presume that the presence of neighbouring
fibres in the vicinity of the cracked fibre affects the SIF. However, it should
not alter the overall trends derived from Figure 5.11. Studying the effect of
adding intact fibres surrounding the cracked fibre is challenging due to the
increased complexity in the geometry and all the possible combinations of
material properties that may affect the outcomes of the results. Hence, this case
will be considered separately in a future study. Further to this, the matrix is
assumed to surround the fibre, while in reality, it will not only surround the fibre
but it will also penetrate the small surface notches or defects present in the fibres
and thus, further constraining the crack opening and reducing the SIF.

Another key-point is that the model assumes that the matrix is elastic and the
fibre-matrix interface cannot debond. However, typical polymer matrix com-
posites exhibit matrix yielding and fibre-matrix debonding [20]. The developed
finite element model can be sophisticated for a more accurate modelling of
micromechanisms by introducing fibre/matrix interface debonding and/or matrix
plasticity. The effect of these phenomena will be studied in a future paper. In ad-
dition, the situation described in this investigation, a cylindrical surface-notched
specimen surrounded by a material of different stiffness, goes beyond the field
of fibre reinforced composites, since we provided the equations to predict the
SIF of a cracked cylindrical fibre for different material properties.

In spite of all simplifications, analytical or numerical models of fibre failure
and/or fragmentation in a composite, relying on the stress intensity factor, will
benefit from the information presented. For example, current fragmentation
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models rely on the experimental characterization of the fibre strength using a
Weibull distribution [188]. This characterization is commonly performed on dry
isolated fibres [20]. The present work demonstrates that this characterization
can not be transferred to the fragmentation model while ignoring the effect
of the matrix, since the expected strength of dry fibres will be different than
that of the fibres in-situ as proven by the SIF. These findings may explain
why the current fragmentation models predict an incorrect fibre break density
evolution compared with experimental data [188]. This issue is explored in
detail following in sections 5.5.4 and 5.5.5.

5.5.4 Effect on the fibre strength

In this section, the effect that embedding the fibre on a matrix has on the
ultimate strength of the fibre is investigated and compared with the free fibre
(i.e. without being embedded in the matrix). For this purpose, the experimental
data of 34-700WD carbon fibres from Breite et al. [188, 205] is used. This
experimental set provides information on the strength (σu) and diameter (D)
of each fiber. In Breite et al. [188, 205], the strength of 34-700WD fibre was
measured experimentally by means of single fibre tensile tests, and a Weibull
distribution was then fitted onto the data. Therefore, we will use the same data,
but we will modify the fibre strengths based on the SIF difference between dry
and embedded fibres obtained in the previous sections. With this modifications,
we will approximate the actual strength of the fibres in-situ (being embedded
onto the matrix), and fit a new Weibull distribution to this data. The idea is to
compare how different is the fibre strength distribution of the ‘embedded’ fibres
compared with the ‘free’ fibres.

The approach assumes that the measured fibre strength is related to surface defect
in the fibre. From the knowledge of the fibre toughness and individual strength,
we compute the critical defect size that caused failure. Then, we assume that the
same defect will be the critical one for the failure of the embedded fibre.

To do this, first, the crack length in free fibers is computed when failure occurs.
The failure of the fibre is triggered when the stress intensity factor (KI) reaches
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the critical SIF (KIC):

KI = KIC

σ
u
i · f (ai/Di) ·

√
πai = KIC i : the i fibre

(5.35)

where σu is equal to the experimental strength of free fibre given in Breite et al.
[188, 205], f (a/D) is the non-dimensional SIF for free carbon fibre obtained by
Eq. 5.34, and the critical SIF (KIC) is taken equal to 2.12 MPa

√
m, as calculated

by Herraez et al. [119]. By solving Equation 5.35, the critical crack length (ai)
that supposedly broke the free fibres is obtained. In the next step, the objective
is to calculate the strength (σ ) of the embedded fibres. To do so, Eq. 5.35 is
solved with the following inputs: f (a/D) given by Eq. 5.32 (which corresponds
to the non-dimensional SIF for an embedded fibre), the critical crack length (ai)
is the same as that obtained for free fibers, and KIC is again 2.12 MPa

√
m.

The approach proposed assumes that the crack length that broke the fibre is
the same for the dry and embedded fibre. In addition, the critical SIF used (=
2.12 MPa

√
m) was computed for a fibre different than the one used in this work.

Nevertheless, the authors believe that this approach is representative enough to
study the implications of embedding the fibre or not on the fibre strength.

Figure 5.19 depicts the strength distribution histogram for both free fibre and
embedded fibre. It is observed that the strength of the fibres embedded in the
matrix is increased (on average, 11%) compared to the free fibres, so that both
diagrams are shifted one in respect to the other. Further to this, a unimodal
Weibull distribution [19] was fitted onto both datasets using the maximum
likelihood estimator. The Weibull plots for both free and embedded fibers
are shown in Figure 5.20, together with the scale parameter (σ0) and Weibull
modulus (m).

Results show that the scale parameter of the embedded fibres is larger than that
of the dry fibres, which is coherent with the observations seen with the SIF.
We also note that there is a slight increase in the Weibull modulus, indicating
a narrower strength scatter. With the embedded Weibull distribution, we can
expect that the fibre break density evolution will be delayed compared with the
Weibull distribution obtained from the dry fibers. This will be studied next in
Section 5.5.5.
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Figure 5.19: The histograms of the tensile strength distribution of the fibres: (a) free
fibres, (b) fibres embedded in an elastic matrix.

Figure 5.20: Logarithmic Weibull plot diagram (P is the probability of failure), for
eighty-nine 34−700WD carbon fibers being either free or embedded in a matrix.
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5.5.5 Progressive failure and cluster development

The PFM (Section 5.3.3) is used to investigate the impact of using the Weibull
distribution modified with the SIF (i.e. embedded fibres), compared with the
Weibull distribution without this modification (i.e. measured from dry fibres).
To do so, the unidirectional 34-700WD carbon fibre composite material with
736LT epoxy matrix is simulated under longitudinal tension using each Weibull
distribution, and the results are compared against experimental data of this
material from Breite etal. [188]. Table 5.3 presents the material properties of the
fibre. The matrix Young’s modulus Em, Poison’s ratio νm, and shear yield stress
τm, are 3.15 GPa, 0.39 and 60.4 MPa, while the fibre volume fraction, Vf, is
48.32%. Notice that in Breite etal. [188], we already simulated such composite
with the PFM using the unmodified Weibull distribution from dry fibres and
compared the results with the experimental data. Therefore, only the results
using the modified Weibull distribution are new. Details of the experimental
campaigns are provided in depth in Breite etal. [188], while all experimental
data can be found in a data-in-brief paper [205].

Table 5.3: Material properties for the 34-700WD carbon fibre.

Engineering constants and geometrical properties Weibull parameters (free / embedded fibres)
E11

[GPa]
E22 = E33

[GPa]
G12 = G13

[GPa]
G23

[GPa]
ν

[-]
R f

[µm]
σ0

[MPa]
L0

[mm]
m
[-]

234 15 13.7 6 0.25 3.26 4306 / 4700 12 / 12 5.1 / 5.67

Figure 5.21 shows the average failure strain and strength, as well as the average
stress-strain curve from 50 simulations with each Weibull distribution, compared
against the experimental measurements. There is little difference in the predicted
failure strain and strength by using the modified Weibull distribution or not.
The modified Weibull shows larger strength since the strength distribution was
shifted to larger strengths (see Fig. 5.19), but the effect is small. In this regard
the model is very far from the experimental result as previously outlined in
[188].

On the other hand, Fig. 5.22 illustrates the fibre break density evolution as a
function of the applied stress. The fibre break density was computed as the
number of element breaks divided by the material volume [168]. While the
modelling predictions using the original Weibull distribution are extremely off
from the experimental data, the results using the Weibull distribution modified
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Figure 5.21: Ultimate average failure strain and stress, and stress-strain curve predicted
by the PFM from 50 runs (using the Weibull distribution from single fibre tests, and the
distribution modified by SIF), compared with the experimental data.

by the SIF is significantly closer to the experimental data points.
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Figure 5.22: Average fibre break density as a function of the applied stress predicted
by the PFM from 50 runs (using the Weibull distribution from single fibre tests, and the
distribution modified by SIF), compared with the experimental data of two specimens
(indicated as Exp1 and Exp2).

These findings suggest that testing dry fibres to obtain the Weibull distribution
is not appropriate, since the strength of the fibres in-situ (i.e. embedded into the
matrix) is not the same. The difference that still occurs between the model and
experiments can be attributed to different things. Firstly, the Weibull distribution
modified to account for the matrix was obtained using the fracture toughness of
an AS4 carbon fibre, which is different than the 34-700WD fibre simulated here.
Secondly, our equations to compute the SIF of the fibre assume the presence
of a straight-fronted edge crack in the fibre. In reality the critical crack in the
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fibre may have much more complex shapes. The strong difference in strength
is probably due to the presence of defects in the experimental samples that
were not accounted for in the models. The fibre is considered an homogeneous
material, despite the fact that the real microstructure is far more complex [229].

Finally, as outlined previously in Section 5.5.3, simplifications in the FE model
such as the omission of matrix plasticity or fibre-matrix debonding may affect the
computation of the SIF. For instance, adding matrix plasticity will tend to lower
the stress transfer in the matrix, thereby lowering further the SIF and shifting the
fibre break density predictions of the PFM even closer to the experimental data.

Finally, Figure 5.23 shows the maximum cluster size of broken fibres, and the 2-
plet and 3-plet density as a function of the applied stress. In this work, two fibres
are part of the same cluster if their centre-to-centre radial distance was equal to
or lower than two fibre diameters and the axial distance was equal to or lower
than fifteen fibre diameters [188]. The maximum cluster size is therefore, the
number of broken elements contained by the largest cluster. The ‘i-plet’ density
can be understood as the number of clusters containing ‘i’ broken elements
and divided by the RVE volume [170]. Results show that using the modified
Weibull distribution causes the cluster size and the i-plet density to increase later
than when using the unmodified distribution. However, the trends are the same,
hence there is no clear worsening or improvement of the predictions compared
with the experimental data. Besides this, we also monitored the formation of
co-planar clusters (clusters where all breaks are in the same plane) and found
no difference by using one Weibull distribution or the other. Currently, this is
one of the weakest points of strength models, since these show a tendency to
underestimate co-planarity compared with experimental data [188].

In summary, the change of the fibre strength distribution only affected the point
of failure initiation. Using the modified Weibull distribution, accounting for the
presence of the matrix, caused the fibres to start failing later, therefore, the break
density got considerably closer to experimental data. The cluster formation was
not altered significantly, and thus the results did not change in this regard. It is
worth noting that the failure strain and strength increased slightly compared to
the original weibull distribution.
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Figure 5.23: Average max cluster size, formation of 2-plet and 3-plet as a function of the
applied stress predicted by the PFM from 50 runs (using the Weibull distribution from
single fibre tests, and the distribution modified by SIF), compared with the experimental
data of two specimens (indicated as Exp1 and Exp2).

5.6 Concluding remarks
In this work a micromechanical finite element model was developed to analyse
the stress intensity factor of a single fibre with a straight-fronted edge crack.
The fibre was considered elastic and either isotropic or orthotropic, and free or
embedded in an elastic material of different stiffness. The study was performed
using non-dimensional variables for the fibre/matrix stiffness ratio and fibre
longitudinal/transverse stiffness ratio. Only the modulus of elasticity of fibre
and matrix were explored, the rest of the elastic parameters were kept constant
throughout the study. The stress intensity factor evaluation was carried out using
the J-integral. Then, the results obtained from the finite element model were
used as input to calculate the Weibull parameters and the rate of change in the
ultimate strength of the embedded fibres compared with the dry fibres. Finally,
a semi-analytical progressive failure analysis was conducted to illustrate the
impact of these changes on the tensile failure and damage development of a
unidirectional carbon composite material.

Embedding the fibre in an elastic matrix reduced the SIF over the free fibre case
(i.e. without being embedded into a matrix). The higher the matrix stiffness
was, the more substantial the decrease in SIF. This effect is due to the constraint
of the matrix over the crack opening. For instance, for the model with a very
low stiffness matrix (Em = 0.01E f ) the SIF is reduced by -7% at a/D = 0.2
or by -25% at a/D = 0.4, with respect to the free fibre case. We proposed a
general non-dimensional equation for the non-dimensional SIF as a function
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of the non-dimensional crack length and the ratio between the stiffness of the
cracked cylinder and that of the surrounding material.

The elastic orthotropy of the fibre greatly affected the SIF in that it increased for
the case of a transverse stiffness higher than that of the axial, and decreased for
the opposite case. For example, for a fibre with E f

2 = 3E f
1 , the SIF is increased

by +30% over the isotropic case (E f
2 = E f

1 ); while a fibre with E f
2 = 0.33E f

1

involves a decrease of -25%. An equation obtained by fitting was also provided
for this case.

It was found that the presence of the matrix enhances the strength of the fibers
and alters the Weibull strength distribution parameters, resulting in the fibers
failing at higher strains. A modified Weibull distribution taking into account
such effect due to the presence of the matrix was computed. The progressive
failure of a unidirectional carbon composite was simulated using this Weibull
distribution. The fibre break density predicted by the model became significantly
closer to the experimental observations, showing that the presence of the matrix
must be accounted for obtaining the strength of the fibres.

Although the study presented here was motivated by an interest in improving
the understanding of fibre failure in fibre reinforced composite materials, the
findings and the equations provided also contribute to the general field of SIF in
elastic cracked bodies.
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This chapter expands the content of Chapter 5 by focusing on carbon fibers
and to account for material non-linearities. The aeronautical-grade carbon fibre
reinforced plastic AS4/8552 was chosen for the purpose of demonstration of
the methodology. This study proposes a high fidelity micromechanic modelling
approach to predict the in situ SIF of a single carbon fibre with an edge crack,
embedded in an epoxy matrix. Beyond that, the effects of fibre/matrix interface
debonding and matrix plasticity have on the SIF were studied.

6.1 Introduction
In CFRP composites, the carbon fibres are surrounded by a matrix which acts
as a binder, maintains the orientation of the fibres and protects them from en-
vironmental destructive effects. Hence, the properties of CFRP composites
are essentially controlled by the corresponding properties of their constituents,
including fibre, matrix and fibre/matrix interface. Nevertheless, current numer-
ical and experimental studies commonly determine the SIF of fibres without
considering a matrix, therefore being the fibre isolated [119, 189–192, 194–
197, 199, 202, 204, 215]. This is not realistic in CFRP composites since the pres-
ence of the matrix could modify the stresses around the crack tip, thereby affect-
ing the SIF. In line with this, the strength of fibres, which is usually employed by
micromechanical strength models to predict failure [20, 103, 167, 168, 170, 230–
232] is commonly obtained from single fibre tests, without the fibre being
embedded into a matrix. If the SIF of a fibre embedded into a matrix differs
from the free fibre, one could expect that the strength is also different. This could
have major consequences for the micromechanical modelling of composites.

In the previous Chapter, we carried out a comprehensive parametric study of the
SIF of a single generic fibre embedded in an isotropic matrix. The effect that
several parameters, including the fibre/matrix stiffness ratio and fibre orthotropy
(fibre longitudinal/transverse stiffness ratio), have on the SIF were investigated.
It was found that the matrix diminishes the SIF of a cracked fibre and the
magnitude of this effect is directly related to the fibre/matrix stiffness ratio. For
instance, an increase in the matrix stiffness severely reduced the fibre SIF. Further
studies revealed that elastic orthotropy (longitudinal/transverse stiffness ratio) of
a fibre greatly affected the SIF. The SIF increased when the transverse stiffness
was higher than the axial one, and decreased for the opposite case. Based on
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these findings, it can be expected that the SIF of carbon fibres embedded in a
matrix differs from the free fibre, and consequently, the presence of the matrix
cannot be neglected in fibre fragmentation studies of composites. This however,
remains to be proven.

In addition to the parameters studied previously in Chapter 5, failure mechanisms
in fiber composites also depend on other parameters such as matrix inelastic
deformation and interface debonding [121]. These phenomena play an important
role in composite crack propagation and failure [169], however, their influence
on the SIF of a fibre are unknown. A deeper understanding about the SIF could
improve the prediction of the strength of unidirectional CPRF composites in the
direction of the fibres, which is crucial for the design and analysis of composite
materials.

To further elucidate the knowledge in this topic, the present study proposes a
high-fidelity computational micromechanics finite element model to compute the
SIF for a straight edge crack in a carbon fibre subjected to tension loading, while
embedded in an epoxy matrix in the presence of matrix plasticity and interface
debonding. Unlike Chapter 5, the micromechanical analyses herein are based on
a realistic material system, the carbon/epoxy AS4/8552, whose properties have
been thoroughly characterized by means of experimental micromechanics in
Section 3.1. This study is organized as follows. First, we investigate the impact
of considering a carbon fibre as an isotropic or orthotropic material on the SIF.
Next, the effect that embedding the carbon fibre in an epoxy matrix has on the
SIF is investigated. Finally, we study the influence the fibre/matrix interface
debonding and matrix plastic deformation have on the SIF. The results indicate
that the SIF of an embedded carbon fibre is lower than the free fibre. Taking into
account matrix plasticity increases the SIF compared with a perfectly elastic
matrix, but still reduces the SIF compared with a free fibre. The presence of
debonding had a similar effect. Results demonstrate that the surrounding matrix
cannot be neglected.
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6.2 Methodology

6.2.1 Finite element micromechanics modelling

The computational micromechanics simulations were performed in
Abaqus/Standard [150]. The model is based on the one presented in
Chapter 5, which has been validated through various approaches. The
micromechanical finite element model consisted of a notched carbon fibre
embedded in an isotropic epoxy matrix, subjected to a remote tensile axial
force, while the lateral surface was stress free (Figure 6.1a). The carbon fibre
included a straight-fronted edge crack at x1 = L/2 as indicated by the grey
area in Figure 6.1a, with changeable crack length (a). Matrix and fibre were
modelled as elastic materials in the reference model, with a perfect fibre/matrix
adhesion using tie constraints at the interface. Depending on the phenomenon to
study, more complex models, including matrix plasticity and/or fibre-matrix
debonding are simulated as well as later clarified. The matrix is modelled as
isotropic, whereas the carbon fibre is orthotropic. We will however also perform
one case with an isotropic carbon fibre to observe the effect of the carbon fibre
orthotropy.

The length of the model (L) had to be long enough to guarantee that the remote
stresses are not affected at the upper and bottom faces, by the presence of the
crack. This prerequisite led to L = 10D, where D is the fibre diameter. The
thickness of the surrounding matrix (t) was selected large enough to avoid severe
deformation in the boundaries of the matrix around the crack region. This
criterion prevailed over achieving a realistic composite fibre volume fraction,
and led to t = D. Although this thickness of the surrounding matrix can be
seen as unrealistically large for common carbon/epoxy composites, this is not a
significant issue for the purpose of this study. In any case, we will also show
results for different thicknesses to assess its effect. The size of the model was
decided based on parametric studies that targeted the best trade-off between
computational cost and precision.

To reduce the computational costs, only one-quarter of the model was simulated
by taking advantage of the symmetry boundary conditions along the x1 and x3

axes as shown in Figure 6.1a. A uniform normal traction stress σ was applied in
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Figure 6.1: Geometrical illustration of the finite element model. a) A notched carbon
fiber with a straight-fronted edge crack (indicated in grey) embedded in an epoxy matrix
and b) the FE model with details of boundary conditions and finite-element meshing.

6.2 Methodology 177



the upper part of the model.

The fibre and matrix were meshed separately to achieve an optimal meshing. A
combination of swept and structured meshes were used around the crack tip to
enrich the discretization and capture the high stress gradients therein (Figure
6.1b). The size of the elements were selected in the range of D/1500 (around
crack tip) to D/100 (in far-field), based on a convergence study. To account for
the stress singularity (infinite stress), quadratic isoparametric elements (C3D20)
with the inverse square root singularity were used at the crack tip.

6.2.2 Numerical evaluation of SIF

The stress intensity factor evaluation was carried out using the J-integral [208]
method, which is the standard approach in characterizing the energy release rate
associated with a potential crack growth. In this approach, the energy release
rate is obtained by integration along the contour Γ around the crack tip with

J =
∫

Γ

(
Wdx2− t · ∂u

∂x1
ds
)

(6.1)

where x1 and x2 are rectangular coordinates to the crack front, x1 being per-
pendicular to the crack surface; W is the elastic strain density, t is the traction
vector, u is the displacement vector, and ds is an increment of arc length along
any contour Γ. Although the J-integral is path independent, a total of 21 concen-
tric contours surrounding the crack tip were used to increase the accuracy (see
Figure 6.1b). In addition, due to the geometry of the model and crack, J-integral
values are not constant along the crack front, thus the finite element model is
focused on the maximum value attained at point A (Figure 6.1a). For linear
elastic problems, J-integral equals to the energy release rate (GI) under a single
mode condition. The stress intensity factor in mode I, KI , was calculated from
J-integral by employing Eq.(6.2) and Eq.(6.3) for the isotropic and orthotropic
cases, respectively.

JISO =
K1

2(1−ν2)

E
(6.2)
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JORT = KI
2
√

a11a22

2

[√
a22

a11
+

2a12 +a66

2a11

]1/2

(6.3)

In the isotropic case, the SIF depends only on the fibre Young’s modulus E and
the Poison’s ratio ν , while in the case of orthotropic, the compliance tensors ai j

are also involved. The reader is referred to Chapter 5 for in-depth details.

6.2.3 Model constituents

The aeronautical-grade CFRP system AS4/8552, which has a wide application
in industries, was chosen as reference material for the purpose of demonstrating
the methodology. Table 6.1 presents the constitutive models and experimentally-
characterized properties of the fibre, matrix, and interface constituents for this
material system, which have been thoroughly discussed in Chapter 3. For the
sake of completeness, the essential or distinctive aspects are overviewed herein.

Table 6.1: Mechanical properties of materials used throughout the simulations.

AS4 carbon fiber
E f

1
[GPa]

E f
2

[GPa]
ν

f
12 ν

f
23 G f

12
[GPa]

G f
23

[GPa]
231 13 0.3 0.46 11.3 4.45

8552 epoxy matrix
Em

[GPa]
νm αm

[10−6 °C−1]

σm
yt

[MPa]
Gm

t
[GPa]

σm
yc

[MPa]
σm

uc
[MPa]

5.07 0.35 52 121 90 176 180
AS4/8552 fiber-matrix interface

N
[MPa]

S
[MPa]

Knn

[GPa/um]
Kss

[GPa/um]
Gn

[J/m]
Gs

[J/m]
ηBK

42 63 100 100 2 100 1.2

6.2.3.1 Fibre and matrix

The AS4 fibre is modeled as linear elastic and transversely isotropic solid.
The 8552 epoxy polymer matrix is represented using the isotropic plasticity
model included in Abaqus/Standard [145], which is based on pressure-dependent
Druker-Prager [144] plastic behaviour, coupled with tensile damage degradation
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to simulate brittle materials [142].

6.2.3.2 Fibre/matrix interface

The fiber-matrix interface is modelled using the surface-based implementation of
the cohesive zone method which is coupled with Coulomb frictional behaviour
to simulate the sliding of the fibres upon decohesion. A mixed-mode bilin-
ear traction-separation law is used to define the cohesive behaviour. Damage
initiation is modeled using a quadratic stress-interactive criterion and damage
propagation occurs under the Benzeggagh-Kenane law [151]. Matrix and fibres
are modelled as separated geometrical entities which interact by normal and
sliding contact kinematics. To this purpose, the penalty-based general contact
algorithm is used. Cohesive laws are coupled to the contact surface relations to
simulate fibre-matrix debonding.

6.3 Results and discussion

6.3.1 Effect of isotropy and orthotropy

Figure 6.2 illustrates the non-dimensional SIFs for an isotropic and orthotropic
free AS4 carbon fibre (i.e., without being embedded into a matrix) for different
relative crack lengths (a/D equal to 0.07, 0.1, 0.2, 0.3, 0.4, and 0.45). In the
case of isotropic, E f

2 = E f
1 and ν

f
23 = ν

f
12.

The results indicate that considering a carbon fibre as an orthotropic or isotropic
material has a strong influence on the SIF. In the orthotropic carbon fibre, the
SIF is reduced by 54% compared to the isotropic case. The relative change in
the SIF of orthotripc fibre with respect to the isotropic case does not depend
significantly on the crack length as it is approximately equal to 54% for all the
crack lengths. The results are consistent with our previous study in Chapter
5, which demonstrated that the degree of orthotropy (longitudinal/transverse
stiffness ratio) has a strong influence on the SIF. These results therefore prove
that simplifying the fibre as isotropic instead of orthotropic is not correct when
the SIF is to be taken into account. This is an important fact, since many
modelling works simplify the fibres as isotropic [103, 168, 232].

The non-dimensional SIF for an isotropic free carbon fibre can be approximated
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Figure 6.2: Non-dimensional SIF of a free carbon fibre with isotropic or orthotropic
elastic properties.

by the following equation, which was obtained by fitting the results of this
investigation:

KI

σ
√

πa
= 1.023+0.4448

( a
D

)
−1.4

( a
D

)2
+13.23

( a
D

)3
(6.4)

and for the orthotropic case as:

KI

σ
√

πa
= 0.458+0.4709

( a
D

)
−2.296

( a
D

)2
+8.774

( a
D

)3
(6.5)

where a is the crack length and D is the diameter of carbon fibre. Equations 6.4
and 6.5 can therefore be used to estimate the SIF for a free carbon fibre with an
error of 6 1.0%.

6.3.2 Orthotropic carbon fibre embedded in a matrix

Figure 6.3 plots the evolution of the non-dimensional SIFs for an orthotropic
carbon AS4 fibre embedded in an 8552 elastic epoxy matrix for different relative
crack lengths (a/D equal to 0.07, 0.1, 0.2, 0.3, 0.4, and 0.45). The model was run
for different matrix thicknesses (t equal to D/4, D/2, and D). Perfect adhesion
is considered between the fibre/matrix interface. The SIFs of an orthotropic free
fibre (grey line) were added as a baseline, for comparison.
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A drastic drop in the SIFs can be seen in the embedded carbon fibre compared
to its free counterpart, especially in the larger cracks. For instance, for the
embedded case with matrix thickness t = D, the SIF is reduced by 11% with a
crack length a/D = 0.1 and by 55% with a crack length a/D = 0.45, compared
with the free fibre case. This SIF reduction is directly dependent on the thickness
of the matrix. It can be seen that the embedding effect is intensified by increasing
the thickness of the matrix, especially in larger cracks. The thickness of the
matrix significantly affects the SIF, but only up to a certain value. For thicknesses
larger than the fibre diameter (D) the effect was seen to be negligible.

The fact that embedding the fibre into a matrix reduces the SIF was already
observed in Chapter 5 with a fictitious fibre, and can be attributed to the fact
that the matrix constraints the fibre crack opening, reducing the SIF. Further, the
influence of crack length on the SIF is reduced significantly in the presence of
the matrix unlike the free fibre which increases exponentially with crack length.
Results prove that omitting the presence of the matrix to compute the SIF is not
appropriate.

Figure 6.3: Comparison of the non-dimensional SIFs of an orthotropic carbon fibre
embedded in a linear-elastic matrix for different matrix thicknesses (t). The results of a
free carbon fibre are added as the reference for comparison. The parameter D is the fibre
diameter. The markers represent the FE results and dashed lines represent the fitting
results.

It is also worth remarking that these findings are obtained by embedding a single
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carbon fibre into a matrix. In reality, a composite material contains millions of
fibres. Therefore, we can presume that the presence of fibres neighbouring the
cracked fibre will influence the SIF, but it should not alter the trends derived
from Figure 6.3. Studying the effect of adding fibres surrounding the cracked
one is challenging due to the increased complexity in the geometry and all the
possible material properties combinations that may affect the outcomes of the
results. Consequently, this will be studied separately in future work.

By fitting onto the finite element model results, the non-dimensional SIF for an
orthotropic carbon fibre embedded in an elastic matrix with thickness of D, with
perfect fibre/matrix adhesion, can be approximated by the following equation

KI

σ
√

πa
= 0.4411−0.2258

( a
D

)
+0.5661

( a
D

)2
(6.6)

This equation produces data that deviates by less than 1.0% from any of the FE
data points we have examined.

6.3.3 Fibre/matrix interface debonding

Figure 6.4 depicts the results of the non-dimensional SIFs for an orthotropic
AS4 carbon fibre embedded in an elastic 8552 epoxy matrix for different relative
crack lengths (a/D equal to 0.07, 0.1, 0.2, 0.3, 0.4, and 0.45), in the presence of
interface debonding. The fibre/matrix interface debonding was modelled based
on the cohesive zone model approach, as described in section 6.2.3. The results
are compared with the ones obtained previously in section 6.3.2 considering
perfect fibre/matrix adhesion.

The carbon fibre with interface debonding presents higher SIFs compared to the
model with perfect interface adhesion. The difference is minimal with smaller
cracks, while it becomes more pronounced as the crack length increases. This
is due to the separation of the fibre/matrix interface in the vicinity of the crack,
which reduces the matrix constraint on the fiber crack opening. As a result of the
debonding, the fibre and the matrix separate, and consequently the fiber crack
opening is allowed to move more independently than the matrix, behaving more
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similar to a free fibre and leading to an increase of the SIF. This fact is proved by
Figure 6.5, which shows the comparison of the non-dimensional Crack Mouth
Opening Displacement (CMOD) for both cases. The CMOD in the model with
interface debonding grows faster and has a linear correlation with crack length
compared to the model without debonding. Therefore, in this respect, stronger
interfaces are preferable since they will decrease the possibility of debonding
and decrease the SIF. Nevertheless, we note that, even for the largest crack
length used in this work, the SIF with debonding is still considerably smaller
than the free fibre, proving again the importance of taking into consideration the
presence of the matrix.

Figure 6.4: Comparison of the non-dimensional SIFs of an embedded orthotropic
carbon fibre with interface debonding and perfect adhesion. Free fibre curve added for
comparison reference.

Figure 6.6 depicts the evolution of the maximum interface debonding length (i.e.,
the length extension between fibre and matrix that has debonded) with respect
to the relative crack length (a/D). Results show that the interface debonding
length grows with an increase in the crack length. It is worth noting that the
half of the interface debonding is depicted since the model is symmetrical. This
fact explains why the SIF with debonding interface increases with larger crack
lengths. Since increasing the crack length increases the debonding length, there
is a larger region between the fibre and matrix that separates. Consequently,
as the debonded length increases, the matrix restrains less the crack opening,
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Figure 6.5: Evolution of non-dimensional CMOD for the model with interface debond-
ing and the model without interface debonding, as a function of the relative crack length
(a/D).

increasing the SIF. Since the debonding length is generally small (about few
times the fibre radius), the presence of the matrix is still significant, hence
leading to much smaller SIF than the free fibre.

A further interesting point is that the SIF trends do not seem to correlate with
the observations found regarding the Stress Concentration Factor (SCF) around
broken fibres seen in the literature [121]. While the SCF in intact fibres around
broken fibres is known to decrease when debonding appears, the opposite occurs
with the SIF. Even though both properties are different, they are both related with
the failure of composites. This can be important for micromechanical strength
models that attempt to model the failure of composite materials [18, 103, 169,
181, 231], especially if such models attempt to combine fracture mechanics
approaches with strength-based failure criteria.

The non-dimensional SIFs for an orthotropic carbon fibre embedded in an elastic
matrix, with interface debonding can be approximated by
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)2
(6.7)
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Figure 6.6: Evolution of the interface debonding as a function to the relative crack
length (a/D). Only half of the interface debonding is depicted as the model is symmetric.
The approximate debonding lengths (relative to the fibre radius) are 0.11R, 0.17R, 0.35R,
0.56R, 0.82R, and 1R from left to right, respectively.

6.3.4 Fibre/matrix interface strength

Due to the importance of the debonding effect found in previous section 6.3.3,
this section studies the effect the fibre/matrix interface strength has on the SIF.

Figure 6.7 shows the evolution of the SIFs for an orthotropic AS4 carbon fibre
embedded in a elastic 8552 matrix for different interface strength including
standard, weak and strong. The standard refers to the reference model based
on the properties listed in Table 6.1. The weak and strong employ half and
double the strength of the standard case, respectively. The rest of the modelling
parameters are left unchanged.

The results show that an increase in interface strength leads to a small drop
in the SIF of the cracked fibre, especially for shorter cracks, although the
difference between the three SIFs is generally small. The difference in the SIF
levels are more prominent for small cracks and then progressively decrease
as the crack lengths deepen. Figure 6.8 plots the non-dimensional length of
interface debonding for each case. It can be seen that interface debonding length
decreases significantly with increasing interface strength, since an increase in
interface strength reinforces the matrix constraints on the fibre crack opening.
The reason why the SIF predicted with the three interface strength becomes
more similar with an increase in crack length is because the relative difference
in debonding length between the three interface strength decreases as the crack
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length increases (see Figure 6.8). For example, the debonding length relative
difference between the weak and strong interfaces is equal to 400% for a/D =

0.1, but reduces to 180% for a/D = 0.4.

Figure 6.7: Comparison of non-dimensional SIFs of an orthotropic carbon fibre embed-
ded in a elastic matrix for different interface strengths including strong, standard, and
weak interface.

6.3.5 Matrix plasticity

Figure 6.9 shows the results of the non-dimensional SIFs for an orthotropic AS4
carbon fibre embedded in a non-linear inelastic 8552 epoxy matrix. The model
with matrix yielding is compared against the model assuming a perfect elastic
matrix, shown in earlier section 3.2. All remaining modeling aspects are kept as
previously, except that perfect adhesion is considered between fibre and matrix.

The carbon fibre embedded in an inelastic matrix results in a higher SIF com-
pared to the one with a linear-elastic matrix (Figure 6.9). The higher is the crack
length, the larger the difference becomes. Thus, the elastic or inelastic behavior
of a matrix, directly affects the scale of the matrix constraints (shielding effect)
on fibre crack opening. This can be understood as follows. In the model with
an inelastic matrix, when the matrix reaches the yield stress, it undergoes a
larger deformation than the perfectly elastic matrix, specially around the crack
zone. This larger deformation reduces the matrix shielding effect on the crack,
and allows the crack to move more freely apart from the constraints imposed
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Figure 6.8: Non-dimensional interface debonding length for an orthotropic carbon fibre
embedded in a matrix for the different interface strength. Where parameter z is the
debonding length and R is the fibre radius.

by the matrix, effectively causing the fibre to behave closer to the free fibre.
Consequently, this increase in the fibre crack opening leads to the increase in
the SIF. Still, we note that the SIF with an inelastic matrix is much smaller than
the free fibre.

Figure 6.10 depicts the evolution of the matrix plastic strain around the crack
area. It is observed that the plastic strain increases significantly with the growth
of the crack and covers a larger area around the crack zone. This explains why
the difference in the SIF increases between the elastic and inelastic matrices
with longer crack lengths as follows. If the crack length is longer, the area of the
matrix that undergoes plastic deformation increases. Effectively, this means that
the matrix has a lower capacity to constraint the crack opening, hence, reducing
the efficiency of embedding the fibre and increasing the SIF.

Similar to previous section 6.3.3, results obtained in this section are opposite
to the trends of the stress concentration factor in the literature. While the SCF
has a tendency to decrease with matrix yielding [103, 231], the SIF shows the
opposite. Again, this is an important fact for the micromechanical modelling of
composites.

The non-dimensional SIF for an orthotropic carbon fibre embedded in an inelas-
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Figure 6.9: Non-dimensional SIFs of an orthotropic carbon fibre embedded in an
elasto-plastic epoxy matrix. The results of a model with linear-elastic matrix is added
as the reference for comparison.

Matrix

Fibre

(a) (b)

(c) (d)

(f)

Symmetry 

plane

(e)

x2

x3
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(f)

Crack growth direction
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Figure 6.10: Evolution of the matrix plastic strain around the cracked area, with respect
to the relative crack length: a) a/D = 0.07, b) a/D = 0.1, c) a/D = 0.2, d) a/D = 0.3,
e) a/D = 0.4, and f) a/D = 0.45. Due to the symmetry of the model, only half of the
model is presented.
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tic matrix, with perfect adhesion, can be approximated by
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6.3.6 Matrix yield stress

The effect that the matrix yield stress has on the SIF is here investigated. Three
models with different matrix yield stress were simulated. Firstly, the standard
model with the default yield stress (σyt) presented in Table 6.1, and secondly,
two models which have a yield stress equal to σyt/2 and σyt ×2, respectively.
Perfect adhesion is considered between fibre/matrix interface for all the cases.

Figure 6.11 depicts the non-dimensional SIFs for an orthotropic carbon fibre
embedded in an inelastic matrix for different matrix yield stresses. The results
show that an increase in the matrix yield stress leads to a decrease in the SIFs.
This outcome can be related to the correlation of the matrix yield stress and
shielding effect. A matrix with lower yield stress reaches the yield stress much
faster and hence, loses its shielding effect around the crack area easily which
ultimately leads to larger fibre crack openings and larger SIF.

Figure 6.11: Comparison of non-dimensional SIFs for an orthotropic carbon fibre
embedded in an non-linear inelastic matrix for different matrix yield stress (σyt ).
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6.3.7 Matrix plasticity and interface debonding

This section investigates the simultaneous effect both matrix plastic deformation
and interface debonding have on SIF. To do so, the AS4/8552 carbon/epoxy
composite is simulated including an inelastic matrix and cohesive interface
properties altogether using the default material data presented in Table 6.1.

Figure 6.12 shows the simultaneous effects of both matrix plasticity and interface
debonding on the SIF, also compared with the case that considers an inelastic
matrix with perfect cohesion (without debonding). At the beginning, a slight
difference is observed in which the model without interface debonding has a
slightly higher SIF over the model with interface debonding. The difference
fades away gradually with longer crack lengths, so that both curves end up
overlapping. Therefore, this discloses that simultaneous presence of interface
debonding and matrix inelastic deformation do not enhance the effects on the
SIF. It can be concluded that accounting for matrix plasticity includes the effect
of debonding in some way. As a result, to save computational cost, simply
including matrix plasticity in the model is sufficient; debonding is not required
if the matrix yields.

Further to this, it was observed that the matrix yields after the start of interface
debonding. To further understand this phenomenon, Figure 6.13 depicts a visual
representation of the interface debonding and matrix plasticity scale for a relative
crack length (a/D) of 0.45. Results show that the area of the interface debonding
(indicated in dark grey) has completely dominated the area of the matrix inelastic
deformation. Hence, the addition of matrix yielding is negligible. Nonetheless,
it is worth mentioning that these findings could be different with other material
properties, depending whether the interface debonds before or after the matrix
yields, and whether the matrix yield stress is large compared with the interface
strength and viceversa.

6.4 Concluding remarks
This study presented a computational micromechanics analysis of the stress
intensity factor of a single carbon fibre with a straight-fronted edge crack. The
fibre was considered linear-elastic and either free or embedded in an epoxy
matrix. Furthermore, the effect micromechanical failure mechanisms such as
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Figure 6.12: Non-dimensional SIFs of an orthotropic carbon fibre embedded in a non-
linear inelastic matrix in the presence of interface debonding. The model is compared
with a model with perfect interface adhesion.
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Figure 6.13: Comparison of the size of the interface debonding and matrix inelastic
deformation area around the crack region for a/D = 0.45.
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the fibre/matrix interface debonding and matrix plasticity have on the SIF was
investigated. Carbon fibre reinforced plastic AS4/8552 was used as the reference
material and stress intensity factor evaluation was carried out using the J-integral
method.

Considering a carbon fibre as an orthotropic or isotropic material affects signifi-
cantly the SIF. Taking into account the orthotropic behaviour of the carbon fibre
led to a 55% lower SIF than the isotropic case. Moreover, embedding the carbon
fibre in a matrix reduced the SIF drastically over the free fibre case. When the
fibre was embedded in an elastic epoxy matrix, the SIF was reduced by 11%
with a relative crack length a/D = 0.1 and by 55% with a/D = 0.45, with respect
to the free fibre case. This effect is due to the constraint of the matrix over the
crack opening.

Further study revealed that the constraint of the matrix on the fibre crack varies
depending on whether it is considered as an elastic or inelastic material. If the
fibre is embedded in an inelastic matrix, and the load is high enough to cause
matrix yielding, the constraint on the fibre crack opening is reduced due to a
larger deformation of the matrix around the crack tip. This leads to a larger
crack opening and an increase in the SIFs compared to an elastic matrix. Since
the matrix plastic deformation is controlled by the yield stress, any increase in
matrix yield stress reduces the SIFs and vice versa.

In addition, the presence of debonding between the fibre/matrix interface also
has a notable effect on the SIF of carbon fibre. Similar to the effect of matrix
yielding, the presence of debonding led to higher SIF compared with a perfect
fibre/matrix adhesion. This is because the matrix constraint on the fibre crack
opening is reduced as the interface separates. An increase in the interfacial
strength reduces the SIFs and vice versa. Further to this, combining matrix
yielding and debonding altogether did not further affect the SIF than considering
both phenomena separately.

Overall, this work brings new insights into the mechanisms controlling the SIF
of a carbon fibre embedded in a matrix and, in consequence, fibre failure. In
addition to improving the understanding of fibre failure in carbon fibre reinforced
composite materials, this study also provided the non-dimensional equations
which can be used to approximate the SIF of a carbon fibre in different situations.
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Future work will expand this study by embedding the fibre in a composite with
several surrounding fibres.
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7Conclusions and future work
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This chapter summarizes the thesis’s main conclusions, as well as reporting the
main developments and results obtained. Future research to extend knowledge
in the field of micromechanical modeling is also proposed.

7.1 Conclusions
• A high-fidelity computational micromechanics framework was developed

in order to accurately predict the failure and longitudinal behavior of UD
composites. The result obtained from the micromechanics model was
compared to experimental results from the literature and to the manufac-
turer data sheet (Hexcel). The predicted tensile strength was in very good
agreement with the experimental results.

To accurately capture the mechanisms of failure, each constituent of the
composite (fibers, matrix, and interfaces) was modeled. The fracture of
carbon fibers was explicitly reproduced to capture the longitudinal failure
of the microstructure. To accomplish this, a sequence of fracture planes
were introduced in the longitudinal direction of each fiber via cohesive
surface-based interactions. The epoxy polymer matrix was represented
using the isotropic plasticity model included in Abaqus/Standard which
is based on pressure-dependent Druker–Prager plastic behaviour cou-
pled with tensile damage degradation to simulate brittle materials. The
fibre–matrix interface was modeled using the surface-based implementa-
tion of the cohesive zone method in Abaqus/Standard which was coupled
with Coulomb frictional behaviour to simulate the sliding of the fibres
upon decohesion.

• Stress redistribution and damage phenomena in the vicinity of the first-
fibre break in unidirectional composites under longitudinal tensile loads
were comprehensively studied by means of high-fidelity computational mi-
cromechanics based on experimentally characterised material constituents.
In this framework, periodic microstructures with statistically representa-
tive random fibre packings were analysed, and transient dynamic analyses
were performed to take into account the progressive failure and recoiling
of a breaking fibre. The effects of mechanisms such as curing residual
stresses, fibre/matrix debonding and matrix inelastic deformation on the
first-fibre failure process were investigated.
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The results showed that dynamic fiber failure can better reproduce the
failure process in a real fibre and provides more realistic stress distribution.
Increases in fibre volume fraction decrease the SCF and ineffective length,
but increase the debonding length and matrix damage-plasticity.

• The stress intensity factor of a single fibre with a straight-fronted edge
crack and embedded in a matrix was studied using a micromechanical
finite element model. The fibre was considered elastic and either isotropic
or orthotropic, and free or embedded in an elastic material of different
stiffness. The study was performed using non-dimensional variables for
the fibre/matrix stiffness ratio and fibre longitudinal/transverse stiffness
ratio. The J-integral was used to calculate the stress intensity factor.

Embedding the fibre in an elastic matrix reduced the SIF over the free
fibre case. The higher the matrix stiffness was, the more substantial the
decrease in SIF. This effect is due to the constraint of the matrix over the
crack opening. The elastic orthotropy of the fibre greatly affected the SIF
in that it increased for the case of a transverse stiffness higher than that
of the axial, and decreased for the opposite case. It was discovered that
the presence of the matrix enhances the strength of the fibers and alters
the Weibull strength distribution characteristics, resulting in the fibers
failing at higher strains and slightly narrowing the distribution. A modified
Weibull distribution taking into account such effect due to the presence
of the matrix was computed. The progressive failure of a unidirectional
carbon composite was simulated using this Weibull distribution. The fibre
break density predicted by the model became significantly closer to the
experimental observations, showing that the presence of the matrix must
be included for obtaining the strength of the fibres.

To summarize, the computational micromechanics models developed in this
thesis shed light on the characterization of the damage and fracture processes of
FRPs.
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7.2 Future work
In this section various research lines to further extend the research conducted in
this thesis are presented:

• The dynamic fibre failure phase needs to be explored deeper. Towards
that end, the use of a proper characteristic time increment is critical to
capture the essentials of dynamic fiber failure mechanisms.

• Modeling the fracture in the fiber, matrix, and material heterogeneities
using a micromechanics model based on the Extended Finite Element
Method (X-FEM). In comparison to standard finite element, X-FEM
would produce less computationally expensive, more accurate, and mesh-
independent results.

• The use of continuum damage mechanics (CDM) to model the failure in
fibre at the micro level, since it is less computationally demanding. In this
case, CDM can be used instead of cohesive planes to capture the fracture
in fibre.

• Computational micromechanics models, as noted, are very accurate but
extremely demanding. These models must be optimized in order to
achieve a balance between accuracy and computational efficiency. One
approach is to combine them with some analytical models such that the
finite element can be used for a small model to collect data with high
accuracy, and then fed it into the analytical model to simulate a larger
model. Similar to the scenario in Chapter 5, where the Finite Element
model results were utilized as inputs for a semi-analytical progressive
damage model.

• Formulation of meso-scale models based on the results obtained with
the micromechanical simulations. These models should encompass both
elastic and damage behavior.

• Determine the SIF of a cracked fibre when surrounded by other fibres,
reproducing the microstructure of a composite.
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