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ABSTRACT: Pathological pain subtypes can be classified as either
neuropathic pain, caused by a somatosensory nervous system lesion or
disease, or nociplastic pain, which develops without evidence of
somatosensory system damage. Since there is no gold standard for the
diagnosis of pathological pain subtypes, the proper classification of
individual patients is currently an unmet challenge for clinicians. While
the determination of specific biomarkers for each condition by current
biochemical techniques is a complex task, the use of multimolecular
techniques, such as matrix-assisted laser desorption/ionization time-of-
flight mass spectrometry (MALDI-TOF MS), combined with artificial
intelligence allows specific fingerprints for pathological pain-subtypes to
be obtained, which may be useful for diagnosis. We analyzed whether the
information provided by the mass spectra of serum samples of four
experimental models of neuropathic and nociplastic pain combined with
their functional pain outcomes could enable pathological pain subtype classification by artificial neural networks. As a result, a simple
and innovative clinical decision support method has been developed that combines MALDI-TOF MS serum spectra and pain
evaluation with its subsequent data analysis by artificial neural networks and allows the identification and classification of
pathological pain subtypes in experimental models with a high level of specificity.
KEYWORDS: neuropathic pain, fibromyalgia, mass spectrometry, artificial intelligence, MALDI-TOF MS, diagnostics

■ INTRODUCTION
Pain is a major health concern as it is one of the most common
reasons for people to visit primary care settings,1 and chronic
pain has long been known to be a main source of human
suffering and disability.2−4 Pathological pain, which is
maladaptive rather than protective, is a common complaint
that results from the abnormal functioning of the nervous
system.5 This pain can be classified as either neuropathic pain
(NP), which is a disabling condition resulting from a lesion or
disease of the somatosensory nervous system, or nociplastic
pain, which is caused by altered nociception without evidence of
somatosensory system damage.6 While stroke, nerve and central
nervous system traumas, or neuropathies are examples of NP,7

fibromyalgia syndrome (FMS) stands out as a prototypical
nociplastic pain condition.
NP and FMS are both clinically diagnosed using a patient’s

history�assessed using different scales and questionnaires�
and physical examination.8−10 In general, pathological pain is
characterized by three main sensory symptoms: hyperalgesia
(increased pain from a stimulus that normally provokes pain),
allodynia (pain due to a stimulus that does not normally provoke

pain), and spontaneous pain (pain that does not originate in
response to a stimulus).11,12 It is not uncommon for both NP
and FMS patients to experience similar sensory phenomena, and
hyperalgesia and allodynia are commonly seen in patients
suffering from both conditions.8,13 Hence, pain responses alone
are not usually helpful in discriminating between pathological
pain subtypes, and considering that other nonreflexive pain
responses such as anxiety and depression have also been
considered core symptoms of both FMS9,14 and NP,15,16 the
proper classification of individual patients is still an unmet
challenge for clinicians.16 Furthermore, since there is no gold
standard for the diagnosis of pathological pain subtypes, it is not
surprising that these conditions remain difficult to treat, and the
combination of the lack of suitable tests and efficient treatments
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leads to pain chronicity17 together with associated mood

disorders that negatively affect patients’ quality of life. In this

context, given the importance of finding a gold standard

diagnostic for pathological pain subtypes that may also improve
treatment chances, novel diagnostic approaches are needed.
The development and validation of pain biomarkers for

diagnostics has become a major issue in pain research.18

Figure 1. Time-course assessment of thermal hyperalgesia and mechanical allodynia. (A,E) Reserpine-induced myalgia (RIM) model; experimental
groups: CNT (n = 15) and RIM (n = 15). (B,F) Acid-saline induced myalgia (ASI) model; experimental groups: Control (n = 15) and ASI (n = 15).
(C,G) Spinal cord injury (SCI) model; experimental groups: Sham (n = 14) and SCI (n = 15). (D,H) Chronic constriction injury (CCI) model;
experimental groups: Sham (n = 15) and CCI (n = 15). Each point and vertical line represent the mean ± SEM. ***p < 0.001 significant withdrawal
latency decrease vs corresponding control. *p < 0.05; **p < 0.01; ***p < 0.001 significant withdrawal threshold decrease vs corresponding control.
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However, despite much effort having been focused on the
discovery of a specific biomarker for each pathological pain
condition, no biomarkers for chronic pain have been validated
by the Food and Drug Administration in the USA or the
European Medicines Agency.19 For many decades, most of the
studies designed to analyze biomarkers have used a traditional
antibody-based immunoassay approach such as immunohisto-
chemistry, enzyme-linked immunosorbent assay, and western
Blot.20,21 Nevertheless, these approaches have several limita-
tions, including the fact that only known molecules can be
studied and there must be a specific antibody against these
molecules for detection to be possible.22,23 The ability to study
multiple biomarkers involving a wide variety of molecules would
certainly be advantageous given the complexity of NP and
FMS.24,25 In this respect, the high speed, sensitivity, selectivity,
and versatility of mass spectrometry (MS), a technique widely
used in analytical chemistry, offer robust and precise tools for the
discovery of potential biomarkers.26,27 Among these MS
techniques, matrix-assisted laser desorption/ionization time-
of-flight (MALDI-TOF) MS is particularly suited to this
objective given that it is able to determine several molecules
simultaneously even at very low concentrations. Furthermore,
MALDI-TOF can cover a wide mass molecular range with a high
throughput and can easily be automated to screen a large
number of samples.28−30 For the diagnosis of pathological pain,
we understand the best currently known strategy to be the use of
an untargeted fingerprint approach that aims to reveal changes in
the general pattern through the identification of a combination
of different identities.23,25,30 Moreover, new approaches related
to nanoparticle-assisted laser desorption/ionization mass
spectrometry (LDI MS) allow high-throughput detection of
metabolomic fingerprints for disease classification.31−34

Although discrimination of disease-specific molecular pat-
terns can be difficult due to the inherent biological complexity of
the samples and instrumental variability,35,36 it can be solved by
applying artificial neural networks (ANNs) to the fingerprint
analyses. ANNs are a mathematical representation of human
neural architecture and try to reflect the brain’s capacity for
learning and generalization. ANNs have the capacity to model
nonlinear systems in which the relationship between the
variables is highly complex or even unknown without being
significantly affected by signal noise. Therefore, ANNs are well
suited for pattern recognition and classification and, hence, for
clinical diagnosis.35−38 In fact, we have previously demonstrated
that the use of MALDI-TOF MS to obtain mass profiles of
biological samples combined with artificial intelligence tools
allows the discrimination of diseased and healthy blood samples
in the case of multiple myeloma and COVID-19 diseases.39,40

MALDI-TOFMS methods have also been previously applied to
determine potential peptide biomarkers of specific pathological
pain,41−44 and only a few studies have coupled artificial
intelligence methods for diagnostics or prediction of patho-
logical pain.45−50 However, to our knowledge, there are no
studies focused on fingerprint discrimination of different
subtypes of pathological pain, which can be used to develop
diagnostic tools for health practitioners.
In the light of the above, this study aimed to analyze whether

the information provided by the mass spectra of different
pathological pain samples could be used to allow ANNs to
classify mass spectral profiles of different subtypes of
pathological pain and control samples in animal experimental
models. Peripheral neuropathic pain (sciatic nerve chronic
constriction-injured mice, CCI),51 central neuropathic pain

(spinal cord-injured mice, SCI)52,53 and nociplastic pain
conditions (reserpine-induced myalgia mice, RIM6, and intra-
muscular acid saline solution injected mice, ASI) were the
models used in this study.54 Furthermore, the capacity of ANNs
to discriminate between the different subtypes of pathological
pain was assessed in order to evaluate the potential suitability of
MALDI-TOF MS and ANN analysis methodology as a clinical
decision support tool for the diagnosis and monitoring of
pathological pain conditions.

■ RESULTS AND DISCUSSION
All Pathological Models Developed Significant Re-

flexive Pain Responses When Compared with the
Corresponding Healthy Control Groups. Before any
serum analysis, the animals of the four pathological pain models
were examined to see whether they had developed reflexive pain
responses (thermal hyperalgesia and mechanical allodynia).
Thermal hyperalgesia data followed a normal distribution in all
models at all the functional assessment time-points (Kolmogor-
ov−Smirnov, all p values were above 0.05). Further analysis of
variance (ANOVA) tests showed significant differences between
the model�RIM, ASI, SCI, and CCI groups�and their
respective control groups (p < 0.001 in all cases) with the
models having significantly decreased paw withdrawal latency to
thermal stimulation at all the time-points (Figure 1). With
regard to mechanical allodynia, given that the distribution was
not normal, nonparametric tests were applied (Kolmogorov−
Smirnov, with p < 0.05 in all cases). The Mann−Whitney U test
revealed significant differences (with p < 0.01 in all cases)
between models and control groups after both the lesion and
induction, and these remained significant until the end of the
experimental period. Specifically, a significant reduction in the
paw withdrawal mechanical thresholds was observed in the
models when compared to the corresponding controls (Figure
1). It is worth mentioning that following a protocol for animal
welfare supervision,55 the general aspect of the animals included
in the four animal models was normal, and no changes in coat
and skin, vibrissae of nose, nasal secretions, signs of autotomy,
weight, or aggressiveness were detected at any time during the
experimental period. Hence, it can be concluded that functional
data obtained were not related to animal discomfort that might
interfere with the functional evaluation.
Taken together, these findings indicate that four pathological

pain subtypes were correctly developed, and consequently,
specific serum samples from the animal models for peripheral
neuropathic pain (CCI), central neuropathic pain (SCI),
fibromyalgia-like central nociplastic pain induced (RIM), and
fibromyalgia-like peripheral nociplastic pain induced (ASI) were
able to be collected to assess the proposed methodology based
on the analyses of MALDI-TOF MS fingerprints coupled with
ANN. All the models developed reflexive pain responses until
the end of the experimental protocol in comparison with their
corresponding controls, and these results were consistent with
those found in the literature.51−54,56

Mass Spectrum Data Provide Information That May
Allow Animals Experiencing Pathological Pain To Be
Distinguished from Those That Are Healthy. Collected
serum samples from mouse models and controls were analyzed
using aMALDI-7090 TOFmass spectrometer in order to obtain
mass spectra and determine whether they provide useful
information to discriminate between pathological samples and
their corresponding controls. The mass spectra fingerprints
obtained for all pathological pain models in the positive mode of
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the injured mice and control mice were similar, and no single
peaks seemed to correspond to classmarkers, suggesting that
there was no specific biomarker. However, differentm/z regions
containing multiple peaks with varying signal intensities
between mouse groups were detected (Figure 2).

These results are consistent with current suggestions that the
identification of an ideal pain biomarker is still far away.23 In fact,
establishing a threshold concentration for a specific serum
molecule as an endpoint is difficult in these diseases since the
molecule concentrations vary significantly depending on the

Figure 2. Representative serum mass spectra obtained by MALDI-TOFMS of the different pain animal models. (A) RIMmodel. (B) ASI model. (C)
SCI model. (D) CCI model. Differences between injured�RIM, ASI, SCI, CCI�and non-injured mice can be observed. The stars indicate the group
with the highest intensities of some of the signals (in each model). M indicated the peaks from the matrix (M = matrix).

Figure 3. PCA analyses of serummass spectra obtained with MALDI-TOF of the different pain animal models. (A) RIMmodel; experimental groups:
CNT (n = 15) and RIM (n = 15). (B) ASI model; experimental groups: saline (n = 15) and ASI (n = 15). (C) SCI model; experimental groups: Sham
(n = 14) and SCI (n = 15). (D) CCI model; experimental groups: Sham (n = 14) and CCI (n = 15).
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etiology of the particular pain state. In this context, the proposed
strategy of measuring several compounds at the same time to
identify general patterns,25 rather than just single biomolecules,
seems to be the most appropriate one to follow. The results
obtained indicated that the main differences were in the low
mass range (<1000 Da), suggesting potential sample-dependent
fingerprints (Figure 2). In this mass range, the peaks are likely to
correspond to biomolecules with a low molecular weight or
metabolites that could be released from pathophysiological
processes of the nervous system that excite nociceptive neurons,
and, in turn, cross the blood brain barrier reaching the
circulatory system, so allowing their detection in serum samples.
These low-molecular-weight molecules may provide important
information for the understanding and monitoring of biological
processes in disease and other physiological conditions.57

Metabolites are the last step in the cascade of omics since
these molecules are directly related to the phenotype,58 and
metabolomics are considered to be the most functional ones.57

Changes in low-molecular-weight molecule expression have
been reported as possibly being involved in different types of
pathological pain. For instance, a decline in antioxidant
molecules such as glutathione (307 Da) induces mechanical
allodynia and thermal hyperalgesia after CCI,59−61 the L-lactate
(89 Da) overload resulting from aberrant spinal astrocyte
neuron lactate shuttle, has been associated with neuropathic
pain maintenance,62 and levels of tetrahydrobiopterin (BH4;
241 Da) are dramatically increased in sensory neurons after
peripheral nerve damage increasing pain hypersensitivity.63,64

Hence, considering that the MALDI TOF MS technique can
detect low-molecular-weight biomolecules that may play a

pivotal role in pathological pain development and maintenance,
a deeper study into low-range peak intensities was performed,
finding that this technique generated a large amount of data in
which hundreds of m/z signals were detected in all models.
These data were first analyzed using principal component
analysis (PCA) to identify potential specific metabolomic
patterns underlying the different pathological pain animal
models. The samples were plotted using the generated principal
components (PCs) on a 3D score to improve visualization and
determine whether score plots revealed trends and outliers.65

This chemometric study suggested that most pathological
pain samples were able to be grouped and distinguished quite
clearly from their corresponding controls. Specifically, SCI,
RIM, and ASI models were clearly grouped into different
clusters although an overlapping area of variable size was
observed in all the models (Figure 3A−C). Regarding the CCI
model, although CCI samples were grouped in a single cluster,
the sham samples were dispersed and did not form a cohesive
unit (Figure 3D). Overall, these findings indicate that mass
spectrum data provide information that can be used to
distinguish animals experiencing pathological pain from those
that are not, suggesting also that metabolomic patterns may be
present in these mass spectra.

Serum Fingerprint Analyses by ANNs Discriminate
between Samples of Pathological Pain Mouse Models
and Their Corresponding Controls. Following on from the
previously described results, a new step was performed
consisting of combining fingerprints obtained through ANN
analyses with the aim of developing a methodology for potential
classification and diagnosis. After preparing the database as

Figure 4. Summary of the ANN classification output. Results of the ANN classification output using the databases built for the different models: (A)
RIMmodel; (B) ASI model; (C) SCI model; and (D) CCI model. Only the correct samples are represented in the plot, and the success percentage is
given at the top of each column. The vertical axis indicates the information included from the different database analyzed. MSD =mass spectrum data;
PTD = plantar test data; VFD = von Frey test data.
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described in the methodology (Section 2.7 Mass spectrometry
data analysis�Artificial neural networks), the characteristic
fingerprints were used to optimize the neural network
architecture for each model. Since the serum fingerprint of

each animal model was different, it is not surprising that the
number of relevantm/z included in their respective datasets was
not the same. A total of 53 peaks (m/z) were included in the
CCI-model database while 63, 43, and 73 were included in the

Figure 5. Serum mass spectra and the comparison of all pathological pain experimental models. (A−D) Differences in the serum spectra can be
observed between groups. The ASI and CCI mice have with the highest intensity signals which are indicated with stars. (E) Score plot obtained after
PCA analysis of the database containing mass spectrum data. (F) Results of the ANN classification output using the different databases built for the
comparison of the four pathological groups. Only correctly classified samples are represented in the plot and the success percentage is included at the
top of each column. The “x” axis shows the different included information in the analyzed database. MSD = mass spectrum data; PTD = plantar test
data; VFD = von Frey test data. (G) Comparison of thermal hyperalgesia; data shown as the median ± IQR (interquartile range) for each group; a,b:
groups not sharing a letter are significantly different, p < 0.05, by Duncan’s test. (H)Comparison of mechanical allodynia data. No statistical differences
were found. Experimental groups: RIM (n = 15), SCI (n = 15), CCI (n = 15), and ASI (n = 15).
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SCI-, ASI-, and RIM-model databases, respectively (Figure S1).
All the calculations were based on feedforward neural networks
operating in a supervised learning mode using back propagation
algorithms.Model overfitting, which is one of themain problems
in ANN analysis,37 was not detected in any of the analyses
performed after more than 50,000 training cycles (epochs).
The capacity for prediction and generalization of the ANN

models must be verified to confirm that new samples can be
classified reliably. Ideally, the model would be validated using
completely new data, but given the difficulty in obtaining a
secondary independent database when dealing with clinical
samples, a cross validation method was used. This method
allows the evaluation of the robustness of the model by dividing
the samples present in the database into a training set, which is
used to build the model during the training phase, and a
verification set, which is used as new data to assess the model
performance.57,66 Thus, in the verification phase of our study,
the leave-one-out validation method was performed to confirm
the classification model’s ability to predict the output of the
excluded sample.57 Then, based on the samples that were
correctly classified for each pathological pain animal model, a
classification output success�expressed as a percentage�was
calculated (Figure 4). The RIM fibromyalgia-like model resulted
in 87% of correct predictions (Figure 4A). In other words, only
two samples from each group were not classified correctly,
whereas 26 samples were assigned to their corresponding
groups. Regarding the ASI fibromyalgia-like model, 63% of
correct predictions were obtained in cross-validation (Figure
4B), since nine controls and 10 ASI mice samples were classified
into their corresponding groups. In the SCI central neuropathic
pain models, 82% were classified correctly (Figure 4C), whereas
in the group of CCI peripheral neuropathic pain and their
respective control mice, 59% of correct predictions were
obtained (Figure 4D).
Taken together, these results suggest that meaningful

information from the mass spectra may be used as inputs for
ANN analyses to discriminate between serum samples of
pathological models and healthy mice. However, to consider this
methodology as a reliable diagnostic tool, some improvements
are required to classify results more precisely, especially in the
case of peripheral insult-induced pathological pain (CCI and
ASI). To this end, outputs from functional analyses were used in
addition to fingerprint data.

Mass Spectra Fingerprints in Combination with
Functional Data Improve the Capacity of ANN Models
To Successfully Classify Both Pathological Pain and
Healthy Samples. It has been shown that different types of
input data can be processed together using the ANN to produce
a significant output.35 In an attempt to improve the percentage
of successfully classified samples, the functional data (thermal
hyperalgesia and mechanical allodynia outputs) were added to
the ANN models. These two variables were first added
individually to the different datasets containing the mass spectra
data and then both reflexive pain responses variables were
included together at the same time.
When the databases containing the mass spectra data and the

functional data were analyzed by PCA, few differences were
observed in the 3D score plots (Figure S2). On the other hand,
remarkable differences were obtained when they were analyzed
by the ANN. When thermal hyperalgesia data were included in
all the datasets analyzed in the present work, the percentage of
successfully classified samples improved in all cases, never falling
below 90% (Figure 4). These results were in line with the

differences observed in the plantar test between the pain models
and their respective controls that were evident in all cases at the
end of the experimental protocol (Figure 1). However, when the
information of mechanical allodynia was added to the ANN
model, the results were not as good as before. In most cases, the
percentage of correctly classified samples was lower than when
only the information present in the mass spectrum was included
in the database (Figure 4). In the particular case of the ASI pain
animal model, the percentage did increase but the classification
rate was not as high as when the plantar test was added. The
counterproductive effect of mechanical allodynia outputs in the
ANN model could be explained by the low variability observed
in the von Frey data in which results ranged only from 0.8 to 1.51
g. Furthermore, the variance (s2) was lower than 1 in comparison
to the higher variance values that were obtained in the thermal
hyperalgesia variable. Finally, when data of both functional
variables were included in the datasets, a higher percentage of
correctly classified samples (Figure 4) were observed, which in
most cases was equal to the results that were obtained when only
thermal hyperalgesia data was included. The latter may confirm
the low relevance of von Frey data for the model.
Hence, all these results show that mass spectra fingerprints in

combination with functional data improve the classification
capacity of ANN models. Overall, the results reported so far
indicated that by analyzing serum samples using MALDI TOF
MS and applying PCA and ANN analyses to the resulting mass
spectrum information, CCI, RIM, ASI, and SCI pathological
pain samples can be discriminated from their respective controls.
Once this milestone had been achieved, the study progressed to
the development of a new ANN model that would be able to
discriminate between the different pathological pain samples,
instead of just between models and control samples, and, hence,
potentially provide a diagnostic tool for the identification of
pathological pain subtypes. To this end, the serum mass spectra
obtained for the four pathological groups included in the
study�CCI, SCI, ASI, and RIM groups�were compared and
used to develop the new methodology.

Combination of MALDI-TOF MS and ANNs Is a Suitable
Methodology To Discriminate between Pathological
Pain Subtypes and May Be a Suitable Clinical Decision
Support Tool for the Diagnosis and Monitoring of These
Health Conditions. When serum samples were analyzed and
the resulting mass spectra were compared, no single peaks that
might correspond to specific classes were found (Figure 5A−D).
However, similarly to the previous experiments, several peaks of
varying intensities within the four models were observed,
suggesting that the metabolomic patterns of pathological pain
subtypes could be different and specific for each condition.
Hence, these results may give further support to the hypothesis
that the analysis of a group of molecules could be a better
approach than the identification of single biomarkers for the
study of pathological pain. Specifically, a total of 74 m/z signals
corresponding to relevant peaks were selected for inclusion in
the dataset (Figure S3). Then, when the mass spectra data were
analyzed by PCA and samples were represented on a 3D score
plot, only SCI and RIM samples were grouped together in the
case of the first three PCs, forming two different clusters, where
ASI and CCI samples were mixed (Figure 5E). Despite the latter
finding, the resulting new ANN generated model based on mass
spectra outputs was able to discriminate between pathological
pain subtype samples with high specificity (93%) (Figure 5F), as
only four samples (2 RIM, 1 SCI, and 1 CCI) were classified as
unknown.
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Although these results were promising, it was decided to add
the reflexive pain responses outputs also since this additional
information had made it possible to improve the discrimination
between pathological pain models and their controls in the
previous experiments. Before ANN analysis, thermal hyper-
algesia and mechanical allodynia were compared between the
different pathological groups to determine whether differences
between the experimental group were present. The statistical
analysis of thermal hyperalgesia data showed significant group
differences. However, no significant differences were shown
between most groups (p > 0.05 in all cases) and only CCI mice
showed significantly decreased paw withdrawal latency to
thermal stimulation in comparison with RIM, SCI, and ASI
groups (p < 0.05 in all cases) (Figure 5G).
On the other hand, mechanical allodynia data analysis showed

a lack of significant differences in the pawwithdrawal mechanical
threshold between groups (Figure 5H). These reflexive pain
variables, which indicated similar reflexive pain responses in all
groups, were included separately in the database. However, in
contrast to the previous studies, no differences were observed in
the corresponding score plots after the PCA analyses (Figure
S2). Furthermore, when the thermal hyperalgesia data were
subsequently added to generate the ANN model, 92% of the
samples were correctly classified and 93% of correct
classifications was reached when mechanical allodynia data
were included (Figure 5F). Therefore, the addition of one or
both reflexive pain responses variables had little effect on the
sample classification in the newly generated ANN model.
In summary, all these findings confirm that MALDI TOF MS

serum analysis and its subsequent data analysis by ANNs is a
suitable methodology to discriminate between subtypes of
pathological pain, even without including reflexive pain response
outputs. This is really interesting since these results could be
seen as mimicking what happens in the case of humans given
that hyperalgesia and mechanical allodynia are two of the main
clinical manifestations of both NP11 and FMS patients13 and
consequently they would not be clinically discriminative on their
own. In addition, FMS usually present neuropathic pain
features67 and other phenotypic similarities that have been
detected in patients of both aetiologies12,67 causing patients to
choose very similar descriptors to define their sensory
perceptions. Thus, while using pathological pain response data
to differentiate between subtypes conditions would not be
helpful, the new methodology generated in this study has the
capability of discriminating between pathological pain subtypes,
so minimizing the need for reflexive pain response variables.

■ CONCLUSIONS
An innovative, simple, and fast method for the detection and
classification of pathological pain subtypes in experimental
models using serum mass spectra has been developed.
Moreover, the analysis of pain responses outcomes and
MALDI-TOF MS serum spectra in combination with ANNs
provides a methodology for the detection of pathological pain
subtypes and the identification of their origin through their
fingerprints without the need for the identification of single
biomarkers. These findings may usefully be translated into
clinical practice in using the MALDI-TOF MS ANN method-
ology as a decision support tool for the diagnosis andmonitoring
of pathological pain subtypes. Finally, but not least importantly,
the developed methodology may also be used for the detection
of molecules involved in the generation and persistence of

pathological pain that could become potential therapeutic
targets.

■ METHODS
Drugs, Reagents, and Solutions. Reserpine (metil-11,17α-

dimetoxi-18β-((3,4,5-trimetobenzoilo)oxy)-3β,20α-yohimban-16β-
carboxylate) (R0875, Sigma Aldrich, USA) was dissolved in glacial
acetic acid (A6283; Sigma-Aldrich, USA) and diluted to a final
concentration of 0.25% acetic acid with distilled water.54 Sterile saline
solution was mixed with the acid (A6283; Sigma-Aldrich, USA) until
pH = 4 was reached.54 Sinapinic acid (3,5-Dimethoxy-4-hydroxycin-
namic acid) (D7927, Sigma-Aldrich, Germany) was used as the matrix
for MALDI-TOF MS analysis. Acetonitrile (ACN) (271004, Merck,
Germany) and trifluoroacetic acid (TFA) (T6508, Sigma-Aldrich,
Germany) were used for matrix preparation. Micro-90 concentrated
cleaning solution (Z281506, Sigma-Aldrich, Germany) was used for
MALDI-TOF MS target cleaning between different analyses.38 Red
phosphorus (04004H, Riedel de Haen̈, Germany) was used for
MALDI-TOF MS calibration.68

Animals. Eight-week-old female ICR-CD1 mice (20−30 g) were
obtained from Janvier Laboratories (France). The number of mice used
was kept to a minimum, working with experimental groups each
consisting of 14−15mice. The animal sample size needed for functional
evaluation was calculated using GRANMO (Version 7.12 April 2012)
and the University of Boston spreadsheet (Sample Size Calculations
(IACUC); Boston University) within the ethical limits set by the
Animal Ethics Committee. Mice were housed in standard plexiglass
cages (28× 28× 15 cm)with free access to food andwater, with a 12:12
h light/dark cycle, a temperature of 21 ± 1 °C, and 40−60% of
humidity. Cages were changed twice weekly. All mice were allowed to
acclimatize for at least 1 h to the facility rooms before any functional or
surgical procedures, which were all conducted during the light cycle.
Sentinel mice were routinely tested for pathogens, and facilities
remained pathogen-free during the whole experimental period.

All experimental procedures and animal husbandry were conducted
following the ARRIVE 2.0 guidelines and according to the ethical
principles of the I.A.S.P. for the evaluation of pain in conscious
animals,69 which are contained in the European Parliament andCouncil
Directive of 22 September 2010 (2010/63/EU). The study protocol
was also approved by the Animal Ethics Committee of the University of
Barcelona and the Generalitat de Catalunya, Government of Catalonia
(DAAM numbers 8884 and 8887). All efforts were made to minimize
animal suffering and to keep the number of animals to a minimum to
demonstrate consistent effects for the procedures.

Experimental Design and Animal Models. To analyze the
different subtypes of pathological pain, four independent studies were
conducted with experimental models of neuropathic and nociplastic
pain. Peripheral neuropathic pain was induced in mice by the ligation of
the sciatic nerve performed in accordance with procedures described
elsewhere.51,70 Briefly, animals were first anesthetized with sodium
pentobarbital (50 mg/kg, i.p.), and an incision was made in the right
thigh exposing the sciatic nerve. Two ligatures 1 mm apart were then
made around the exposed nerve causing a chronic constriction injury
(CCI; CCI group). Finally, the incision was closed using 5−0
interrupted nylon sutures. A sham group in which the surgery was
performed, the sciatic nerve was exposed but no further manipulation
was made was also established for this first experiment. A second set of
mice was used to analyze central neuropathic pain induced by mild SCI.
After anesthetizing the animals, spinal cord contusion was performed
with a device to drop weights following a procedure explained
elsewhere52,53 that allows central neuropathic pain to be induced
without leading to animal paralysis. After a dorsal laminectomy, T8−T9
thoracic spinal cord segments were exposed, and 2 g of weight was
dropped from a height of 25 mm onto a metallic stage located over the
exposed spinal cord (SCI group). Following this procedure, the wound
was closed, and the animals were kept in a warm environment until full
recovery. Animals also received 0.5 mL of saline solution to restore an
eventual blood volume deficit. In the corresponding sham group, the
spinal cord was exposed but not contusioned. Regarding nociplastic
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pain, two different fibromyalgia-like pain animal models were used. For
the RIM model, the RIM6 model was induced.54 Briefly, reserpine
(Sigma-Aldrich; St. Louis, MO, USA) dissolved in acetic acid and
diluted to a final concentration of 0.5% acetic acid with saline solution
was administered subcutaneously (0.25 mg/kg) on days 0, 1, 2, 9, 16,
and 23 (RIM group). The corresponding controls (CNT) received the
reserpine dilution vehicle subcutaneously at the same time-points. The
second model of nociplastic pain was the acid saline-induced (ASI)
myalgia. In this case, a volume of 10 μL of acidic saline solution at pH 4
was administered intramuscularly using a Hamilton syringe into the
right gastrocnemius muscle (ASI group) at days 0 and 5.54 Sterile saline
solution was administered under the same conditions in the
corresponding control mice group.

Functional Evaluation. Functional tests were performed before
starting the experimental protocol and once per week until the end of
the experimental period of each pathological pain experimental model.
Regarding reflexive pain response assessments, the Hargreaves and von
Frey tests were performed to evaluate thermal hyperalgesia and
mechanical allodynia, respectively. For thermal hyperalgesia evaluation,
a plantar algesimeter (#37370; Ugo Basile, Comerio, Italy) was used in
accordance with the Hargreaves method.53,71 Mice were placed into a
plastic box with an elevated glass floor and allowed to acclimate for 1
hour. The light of a projection lamp (100 W) was then focused directly
onto the plantar surface of the hind paw. The time to withdrawal of the
heated paw (withdrawal latency) was measured through a time-meter
coupled with infrared detectors directed at the plantar surface. A cut-off
time of 25 s was imposed to avoid skin damage. The result was
established as the mean of at least three trials separated by 5-min resting
periods. In the CCI model, the withdrawal latency of the injured paw
was measured, whereas in the other models both paws were analyzed as
the lesions could result in bilateral injuries. Mechanical allodynia was
assessed using the hind paw withdrawal response to von Frey filament
stimulation.56,72Mice were placed on different plastic tubes on a framed
metal mesh floor and allowed to acclimate for 1 hour. Von Frey
monofilaments (bending force range from 0.04 to 2 g) were then
applied onto the plantar surface of the hind paws, and thresholds were
measured using the up-down method paradigm. Initially, the 0.4 g
filament was used but the strength of the next filament was then
decreased or increased depending on whether the mouse responded.
The procedure was stopped four measurements after the first response
of the animal. A clear paw withdrawal, shaking or licking was considered
a positive response. Each filament was applied for 2 s at intervals of
about 5−10 s between each stimulation. As in the previous test, both
paws were measured in all models except in the CCI model, where only
the injured leg was measured. The 50% paw withdrawal threshold was
calculated using the Dixon formula: 50% paw withdrawal threshold (g)
= ((10(Xf+κδ)/10,000)), where Xf is the value (in logarithmic units) of
the final von Frey filament used, κ is a fixed tabular value for the pattern
of positive/negative responses, and δ is the mean difference (in log
units) between stimuli.

All functional analyses were blinded using a numerical code for each
mouse. Functional data were analyzed using repeated measurements.
MANOVA (Wilks’ criterion) and ANOVA or the Friedman statistical
test for nonparametric repeated measures followed by the Mann−
Whitney U test were used when the data did not follow a normal
distribution. The SPSS 25.0 for Windows statistical package was used
for all analyses and significance was set at 0.05.

Sample Collection and Preparation for MS Analysis. At the
end of the experimental protocol, all the animals were anesthetized with
sodium pentobarbital (90 mg/kg; i.p.), and blood was collected
through the insertion of an intracardiac needle. This was then
centrifuged for 15 min at 4000 rpm to obtain serum, which was
immediately frozen in dry ice and stored at −80 °C until analysis by
MALDI-TOF MS. For MS analysis, the serum samples (maximum 10
μL) were first diluted 10 times with double distilled water (dd-H2O)
and mixed at a 1:1 ratio with a solution of sinapinic acid (SA)
containing 20 mg SA /mL in 60%:40% (v/v) acetonitrile (ACN): dd-
H2O with 0.3% trifluoroacetic acid (TFA) to increase the ionization. 1
μL of the mixture was then placed on a purified stainless-steel target
plate in triplicate.38 The protocol for sample preparation was previously

optimized by analyzing serum samples using different matrices and
dilutions.

Acquisition of Mass Spectra. Mass spectra were acquired using a
MALDI-7090 TOF mass spectrometer from Kratos Analytical Ltd.
(Manchester, UK) equipped with a nitrogen laser operating at 355 nm,
delayed extraction, and a microchannel plate detector. The laser energy
was expressed in arbitrary units (a.u.) and set at 140 a.u. The laser
fluence was ≈10 mJ/mm2/pulse, the accelerating voltage was set at 20
kV, and laser repetition at 5 Hz with a pulse time width of 3 ns. All
measurements were carried out in positive linear mode and the mass
range, which was from 0 to 10,000 Da, was analyzed. The automatic
mode was set to record all mass spectra using a regular raster, and the
spectra were registered as the relative ion signal to the mass-to-charge
(m/z) value. The spectra were normalized, establishing maximum peak
intensity equal to 100%. Moreover, matrix samples were used as blanks
and were analyzed to differentiate the matrix peaks from those of the
samples. Solutions software from Kratos Analytical Ltd. was used to
evaluate and export the mass spectra.

Mass Spectrometry Data Analysis: Artificial Neural Net-
works. After mass spectra exportation, data were preprocessed using
the R Studio software. The preprocessing of the data consisted of the
removal of the background, normalization of signal intensity,
smoothing and baseline subtracting using Savitzky−Golay and Loess
method, respectively, and spectra alignment. The goal of this
preprocessing step was to reduce the variance within databases.73 An
individual database was built to analyze the mass spectra obtained from
each pain animal model using R Studio software. Thus, four different
databases were constructed for the four different pain models. A fifth
database was built to compare the spectral fingerprints of these four
models. The resulting files, which contained all the information of the
mass spectra including nonrelevant information, were revised and
cleaned before starting the statistical analyses. To this end, the variance
(s2) of the mean intensity of the different peaks was calculated, and only
those with a s2 > 1 were included in the final database. Z-scaling was
then applied to each of the datasets, and PCA was performed to analyze
databases using the SPSS 25.0 statistical package. The main m/z
variables for each database, as well as the functional data for some
experiments, were selected to construct PCAs using TRAJAN 3
software (Trajan Software Ltd., Trajan House, Lincs, UK), and these
were used to classify the models. The multilayer perceptron network
was the architecture used for all the experiments in the study. Briefly,
this type of ANN consists of several artificial neurons or nodes
organized in one input layer, one or more hidden layers, and one output
layer. First, the best architecture for each pathological pain subtype
model was optimized before each analysis. Once the parameters of the
learningmodel were fixed, the number of nodes in the hidden layer were
chosen to minimize the root mean squared error. In all the experiments
included in this work, an architecture with three nodes in the hidden
layer was used. The inputs of all the networks used were the intensities
of the selected m/z signals of the animals included in the database. The
number of inputs were specific for each model. The network, and
therefore the classification model, was trained using the back-
propagation algorithm with a maximum number of iterations of
50,000 and a classification confidence level of 0.05. After the training
phase, each model was verified using the leave-one-out cross-validation
method to test the prediction capacity of the model in classifying single
samples that were excluded from the training data set. Cases that were
not identified by ANN and, hence, whose output was unknown, were
classified as erroneous predictions.
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Intensities of the most relevant peaks found in mass
spectra of serum samples obtained with the MALDI-TOF
of (A) CCI and sham, (B) SCI and sham, (C) ASI and
saline, and (D) RIM and CNT; data shown as the median

ACS Chemical Neuroscience pubs.acs.org/chemneuro Research Article

https://doi.org/10.1021/acschemneuro.2c00665
ACS Chem. Neurosci. XXXX, XXX, XXX−XXX

I

https://pubs.acs.org/doi/10.1021/acschemneuro.2c00665?goto=supporting-info
pubs.acs.org/chemneuro?ref=pdf
https://doi.org/10.1021/acschemneuro.2c00665?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


of each group ± IQR, a significant difference in only one
peak (*p < 0.05); analyses of the serum mass spectrum
data obtained with MALDI-TOF and pain response data
of the different pain animal models; score plots on which
samples are represented in terms of the first three
principal components; graphs obtained after the PCA
calculations using the different databases containing the
mass spectrum data and (A) thermal hyperalgesia data,
(B) mechanical allodynia data, or (C) both variables;
intensities of the most relevant peaks found in mass
spectra from injured mice serum samples obtained with
theMALDI-7090 TOF; data shown as the median of each
group ± IQR, a significant difference found in only one
peak; and a−c: groups not sharing a letter in the same
peak are significantly different, p < 0.05, by Duncan’s or
Kruskal−Wallis test (PDF)
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A.; Havel, J. Artificial neural networks in medical diagnosis. J. Appl.
Biomed. 2013, 11, 47−58.
(36) Houska, J.; Peña-Méndez, E. M.; Hernandez-Fernaud, J. R.;
Salido, E.; Hampl, A.; Havel, J.; Vaňhara, P. Tissue profiling by
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