

FINAL DEGREE PROJECT

Title:

WAVA: Design and development of a

cinematic 2D puzzle-platformer game

Author:

Oriol Viu Duran

Studies: Design and Development of Video Games

Document: Thesis

Tutor: Gustavo Patow

Department: Computer Science, Applied Mathematics and Statistics

Area: Computer Languages and Systems

Convocation (month/year): June 2022

Acknowledgements

To Gustavo Patow, tutor of this final degree project, for his guidance, enthusiasm and for

loving this project as much as I do.

To my precious family, for their outpouring love and support and for always believing in me.

To my friends, for their motivation and valuable input.

Index

1. Introduction .. 1

1.1. Introduction ... 1

1.2. Motivations .. 2

1.3. Purpose and objectives of the project .. 2

1.4. Task distribution .. 3

2. Viability study .. 4

2.1. Necessary resources... 4

2.1.1. Technical resources .. 4

2.1.2. Human resources ... 7

2.1.3. Economic resources ... 8

2.2. Market analysis ... 8

2.2.1. Search methodology .. 8

2.2.2. Similar games ... 9

2.2.3. Conclusions for the state of the art ... 11

2.2.4. Business model .. 11

2.3. Target audience .. 12

3. Planning ... 13

3.1. Work methodology .. 13

3.2. Work plan .. 13

3.2.1. Task description.. 14

3.2.2. Gantt chart .. 17

4. Framework and previous concepts .. 18

4.1. References .. 18

4.1.1. Gameplay references ... 18

4.1.2. Art style references ... 18

4.2. Vocabulary .. 18

4.2.1. Game engine-related concepts ... 19

4.2.2. Art-related concepts .. 19

4.2.3. General game concepts and acronyms ... 20

4.3. North Oriole Games .. 21

5. Design of the videogame .. 22

5.1. Narrative ... 22

5.1.1. Overview... 22

5.1.2. Characters .. 22

5.1.3. Story structure .. 23

5.1.4. Narrative devices .. 28

5.2. Art ... 29

5.2.1. Overview... 29

5.2.2. Characters .. 29

5.2.3. Environment ... 32

5.2.4. Weather .. 33

5.2.5. Interface.. 34

5.3. Gameplay .. 37

5.3.1. Overview... 37

5.3.2. Challenge hierarchy .. 37

5.3.3. Mechanics and player actions ... 38

5.3.4. Economy and resources ... 39

5.3.5. Level design ... 42

5.3.6. Game layout chart .. 50

6. Implementation and testing .. 51

6.1. Class diagram ... 51

6.2. File structure ... 52

6.3. Scene structure ... 54

6.3.1. Controller .. 54

6.3.2. Camera ... 57

6.3.3. Background .. 59

6.3.4. Canvas ... 62

6.4. Objects .. 63

6.4.1. Character .. 63

6.4.2. Light .. 82

6.4.3. Setbacks ... 86

6.4.4. Halo .. 94

6.4.5. Knowledge .. 96

6.4.6. Level building .. 98

6.4.7. Auxiliary platform .. 107

6.4.8. Checkpoints .. 109

6.4.9. Tutorial Zone .. 110

6.5. Cinematics .. 112

6.5.1. In-game.. 112

6.5.2. Cutscenes .. 113

6.6. User interface .. 117

6.6.1. Main menu .. 117

6.6.2. Pause menu ... 119

6.6.3. HUD .. 120

6.7. Testing .. 122

6.7.1. Editor testing ... 122

6.7.2. Build testing .. 122

7. Results ... 123

7.1. Final in-game screenshots .. 124

8. Conclusions ... 131

9. Future work .. 132

10. Bibliography ... 133

11. User manual and installation .. 134

11.1. Installation and execution ... 134

11.2. Game manual and instructions ... 134

11.3. Controls ... 135

Figures

Figure 1.1. WAVA Logo .. 1

Figure 2.1. MSI Logo .. 4

Figure 2.2. Unity Logo .. 5

Figure 2.3. Microsoft Visual Studio Logo .. 5

Figure 2.4. C Sharp Logo ... 5

Figure 2.5 Inkscape Logo ... 6

Figure 2.6. GitHub Desktop Logo ... 6

Figure 2.7. HacknPlan Logo ... 7

Figure 2.8. Diagrams.net Logo ... 7
Figure 2.9. Image from Limbo .. 9

Figure 2.10. Image from Inside ... 9

Figure 2.11. Image from Gris.. 10

Figure 2.12. Image from Another World ... 10

Figure 2.13. Bartle’s taxonomy of player types ... 12

Figure 3.1. Task planning and distribution .. 14

Figure 3.2. Project's Gantt chart ... 17
Figure 4.1. Familia, by Sebastian Curi .. 18

Figure 4.2. Spritesheet from Megaman for a running animation ... 20

Figure 4.3. User Interface (UI) for the game Red Dead Redemption 2 (2018) 20

Figure 4.4. North Oriole Games primary and secondary logo ... 21

Figure 5.1. Screenshot from the beginning cinematic ... 23

Figure 5.2. Screenshot from the first chapter .. 24

Figure 5.3. Screenshot from the second chapter .. 24

Figure 5.4. Screenshot from the third chapter .. 25

Figure 5.5. Screenshot from the fourth chapter .. 26

Figure 5.6. Screenshot from the fifth chapter .. 26

Figure 5.7. Screenshot from the sixth chapter .. 27

Figure 5.8. Screenshot from the ending cinematic .. 27

Figure 5.9. Design and colour palette of The Mind ... 29

Figure 5.10. Spritesheet of The Mind's walking animation .. 30
Figure 5.11. Close-up of Familia, by Sebastian Curi ... 30

Figure 5.12 Design and colour palette of The Light .. 30

Figure 5.13. Spritesheet of The Light's idling animation ... 31

Figure 5.14 Design and colour palette of The Setbacks and Knowledge 31

Figure 5.15. View of the Halo depending on the chapter .. 31

Figure 5.16. Screenshots and colour palettes for five different environments of the game . 32

Figure 5.17. View in game and spritesheet of the rain animation .. 33

Figure 5.18. View in game and spritesheet of the breeze animation 33

Figure 5.19. WAVA's final logo design.. 34

Figure 5.20. Main menu of WAVA .. 34

Figure 5.21. Play and options screens in the main menu ... 35

Figure 5.22. Pause menu of WAVA .. 35

Figure 5.23. Controls and options screens in the pause menu ... 36

Figure 5.24. Heads up menu (HUD) of WAVA .. 36

Figure 5.25. Challenge hierarchy of WAVA .. 37

Figure 5.26. Visual representation of the lives on the HUD .. 39

Figure 5.27. Visual representation of the Knowledge in-game and on the HUD 39

Figure 5.28. Visual representation of the auxiliary platform in-game 40

Figure 5.29. All lives being removed after being hurt by spikes .. 41

Figure 5.30. An auxiliary platform being built in exchange for full Knowledge 41

Figure 5.31. View of the first zone in Chapter 1 .. 42

Figure 5.32. View of the second zone in Chapter 1 .. 42

Figure 5.33. View of the third zone in Chapter 1 ... 43

Figure 5.34. View of the fourth zone in Chapter 1... 43

Figure 5.35. View of the first zone in Chapter 2 .. 43

Figure 5.36. View of the second zone in Chapter 2 .. 44

Figure 5.37. View of the third zone in Chapter 2 ... 44

Figure 5.38. View of the fourth zone in Chapter 2... 44

Figure 5.39. View of the first zone in Chapter 3 .. 45

Figure 5.40. View of the second zone in Chapter 3 .. 45

Figure 5.41. View of the third zone in Chapter 3 ... 45

Figure 5.42. View of the fourth zone in Chapter 3... 46

Figure 5.43. View of the fifth zone in Chapter 3 .. 46

Figure 5.44. View of the first zone in Chapter 5 .. 47

Figure 5.45. View of the second zone in Chapter 5 .. 47

Figure 5.46. View of the third zone in Chapter 5 ... 47

Figure 5.47. View of the fourth zone in Chapter 5... 48

Figure 5.48. View of the fifth zone in Chapter 5 .. 48

Figure 5.49. View of the sixth zone in Chapter 5 .. 48

Figure 5.50. Game layout chart of WAVA ... 50

Figure 6.1. Class diagram and structure of the project ... 51

Figure 6.2. Folder organization of the project ... 52

Figure 6.3. Input Action asset for WAVA .. 53

Figure 6.4. Scene structure and hierarchy of Chapter 1 ... 54

Figure 6.5. Hierarchy of the scene's main camera .. 57

Figure 6.6. Camera object in Unity's editor ... 57

Figure 6.7. RainZone prefab in Unity's editor ... 60

Figure 6.8. WindEmitter prefab in Unity's editor .. 61

Figure 6.9. Hierarchy of the Canvas in a chapter scene ... 62

Figure 6.10. Hierarchy of the Character prefab .. 63

Figure 6.11. Character prefab in Unity's editor ... 63

Figure 6.12. Character prefab in-game ... 63

Figure 6.13. Character’s animator controller states, transitions and parameters 64

Figure 6.14. Character’s animator controller separate .. 64

Figure 6.15. Character moving through water in-game ... 70

Figure 6.16. Spritesheet of the character's running animation .. 70

Figure 6.17. Character running in-game ... 70

Figure 6.18. Spritesheet of the character's falling animation... 71

Figure 6.19. Character with pickable Knowledge in-game .. 72

Figure 6.20. Spritesheet of the character's lever interaction animation 72

Figure 6.21. Character interacting with lever in-game .. 72

Figure 6.22. Spritesheet of the character's crouching idle and moving animations 73

Figure 6.23. Character crouching in-game ... 73

Figure 6.24. Spritesheet of the character's climbing animation ... 74

Figure 6.25. Character climbing in-game .. 74

Figure 6.26. Character using the Knowledge in-game .. 77

Figure 6.27. Character protecting itself in-game ... 78

Figure 6.28. Character getting hit in-game ... 79

Figure 6.29. Spritesheet of the character's death animation ... 79

Figure 6.30. Spritesheet of the character's hurting animation ... 80

Figure 6.31. Spritesheet of the character's swimming animation .. 81

Figure 6.32. Light prefab in Unity's editor ... 82

Figure 6.33. Light’s animator controller states, transitions and parameters 82

Figure 6.34. Light prefab in-game .. 83

Figure 6.35. The Light protecting in-game .. 84

Figure 6.36. Setback (bomber and kamikaze) prefabs in Unity's editor 86

Figure 6.37. Bomber Setback emitting an explosion in-game ... 89

Figure 6.38. Kamikaze Setback attacking the player in-game .. 90

Figure 6.39. The Setback's death animation in-game ... 90

Figure 6.40. SetbackExplosion prefab in Unity's editor ... 92

Figure 6.41. Halo prefab in Unity's editor .. 94

Figure 6.42. Halo prefab in-game ... 95

Figure 6.43. Knowledge prefab in Unity's editor ... 96

Figure 6.44. Knowledge prefab in-game ... 97

Figure 6.45. Hierarchy of the Platform prefab ... 98

Figure 6.46. Platform and TunnelledPlatform prefabs in Unity's editor 98

Figure 6.47. Tunnel prefab in Unity's editor .. 99

Figure 6.48. Hierarchy of the Water prefab... 99

Figure 6.49. Water prefab in Unity's editor ... 100

Figure 6.50. Floor, Edge and Rock prefabs in Unity's editor ... 101

Figure 6.51. Tree prefabs in Unity's editor .. 101

Figure 6.52. BuildingZone prefab in Unity's editor .. 101

Figure 6.53. BuildingZone prefab in-game ... 102

Figure 6.54. Hierarchy of the Lever prefab ... 102

Figure 6.55. Lever prefab in Unity's editor .. 103

Figure 6.56. Animator controller for the Lever .. 103

Figure 6.57. Lever being activated in-game.. 104

Figure 6.58. Spritesheet of the lever’s Up Down animation .. 104

Figure 6.59. Spikes prefab in Unity's editor .. 105

Figure 6.60. Spikes prefab in-game.. 106

Figure 6.61. Hierarchy of the CharacterPlatform prefab ... 107

Figure 6.62. CharacterPlatform prefab in Unity's editor .. 107

Figure 6.63. CharacterPlatform prefab in-game.. 107

Figure 6.64. CharacterPlatformFeedback prefab in Unity's editor 108

Figure 6.65. CharacterPlatformFeedback prefab in-game .. 108

Figure 6.66. Checkpoint prefab in Unity's editor ... 109

Figure 6.67. Hierarchy of the TutorialZone prefab .. 110

Figure 6.68. TutorialZone prefab in Unity's editor ... 110

Figure 6.69. TutorialZone prefab in-game .. 110

Figure 6.70. CinematicCamera script's public variables ... 112

Figure 6.71. Hierarchy and view of the Menu scene in Unity's editor 117

Figure 6.72. Hierarchy and view of the PauseMenu prefab in Unity's editor 119

Figure 6.73. Hierarchy and view of the HUD prefab in Unity's editor 120

Figure 6.74. Testing a scene inside Unity's editor .. 122

Figure 7.1. In-game screenshots of the splash screen ... 124

Figure 7.2. In-game screenshot of the main menu ... 124

Figure 7.3. In-game screenshots of the chapters' title covers ... 124

Figure 7.4. In-game screenshot of the initial text cinematic .. 125

Figure 7.5. In-game screenshot of Chapter 1 (1) .. 125

Figure 7.6. In-game screenshot of Chapter 1 (2) .. 125

Figure 7.7. In-game screenshot of Chapter 1 (3) .. 126

Figure 7.8. In-game screenshot of Chapter 1 (4) .. 126

Figure 7.9. In-game screenshot of Chapter 1 (5) .. 126

Figure 7.10. In-game screenshot of Chapter 2 (1) .. 127

Figure 7.11. In-game screenshot of Chapter 2 (2) .. 127

Figure 7.12. In-game screenshot of Chapter 3 (1) .. 127

Figure 7.13. In-game screenshot of Chapter 3 (2) .. 128

Figure 7.14. In-game screenshot of Chapter 3 (3) .. 128

Figure 7.15. In-game screenshot of Chapter 4 ... 128

Figure 7.16. In-game screenshot of Chapter 5 (1) .. 129

Figure 7.17. In-game screenshot of Chapter 5 (2) .. 129

Figure 7.18. In-game screenshot of Chapter 6 ... 129

Figure 7.19. In-game screenshots of the final text cinematics .. 130

Figure 7.20. In-game screenshots of the credits ... 130

Figure 11.1. WAVA's executable icon .. 134

Figure 11.2. WAVA’s level selection screen ... 134

Figure 11.3. WAVA's pause menu .. 135

Tables

Table 1.1. Self-assessment chart ... 3

Table 2.1. Hypothetical economic cost ... 8

Table 2.2. Comparison with other similar games .. 11

Table 11.1. Controls and bindings for each action .. 135

1

1. Introduction

1.1. Introduction

In recent years, the video game industry has experienced a resurgence of cinematic 2D

puzzle-platformer games. These games are often characterised by their short playtime,

simple mechanics and a powerful ambience. In spite of the absence of dialogue or text,

these types of games tell a complete and understandable story with a profound

message. Some notable titles may include Another World (1991) and, more recently,

Limbo (2010), Inside (2016) or Gris (2018).

Despite not being the most popular game genre, there is a very dedicated audience that

enjoys each project in spite of their simplicity in gameplay. However, what this type of

games lack in complexity, they make it up with very unique personalities, which make

them more accessible for more unexperienced players.

The game that will be developed for this project is called WAVA (see Figure 1.1). It is a

game that explores a very common and relatable topic: finding our place, whether it is

physically or mentally. Although the game’s scenery is somewhat realistic and plausible,

the game itself is very conceptual.

The game loop itself helps to narrate the story and transmit the main message. This

loop consists in reaching the end of the level by overcoming certain setbacks and

getting knowledge from them, thus enabling us to go on further. In addition, by using

different elements of design such as composition, weather or colour, the game

emphasises the main character’s feelings.

Figure 1.1. WAVA Logo

2

1.2. Motivations

The resurgence of 2D cinematic games was the main motivator for the creation of this

project. After observing the commercial and critical success of similar titles, we decided

to elaborate a product that can distinguish itself from others with very unique aesthetics

and a message that many players, no matter their level of expertise, can empathise

with.

On a more personal note, the main motives behind the development of this project are:

 Develop a cinematic video game from start to finish and work on different aspects

of game design and development.

 Create an easy and accessible product with a relatable message that intends to

help the player personally.

 Put into action all the knowledge gained along our time at university.

 Use this project as an official beginning to my own portfolio, thus aiding me in

entering the video game industry.

1.3. Purpose and objectives of the project

The main purpose of this project is to fully develop a cinematic 2D game with puzzle and

platforming elements. In the same manner as other similar games, this project intends to

transmit a profound message, more precisely about overcoming our own problems and

finding our place, with its design and unique aesthetic.

More specifically, the objectives set for this project include, but are not limited to:

 Deepening the knowledge already acquired about the game engine Unity and the

programming language C#.

 Implement game mechanics that reinforce the story and the message transmitted

by the game.

 Design an atmospheric environment that is captivating, unique and reinforces the

game’s predominant topics.

 Create different animations for the character and other assets that give the game

a certain smoothness and fluidity.

3

1.4. Task distribution

Video games are often developed by a multidisciplinary team, assigning each task to

different members based on their profile and area of expertise. Nonetheless, this project

will be fully developed by a single person who will work on all the various tasks.

The chart at Table 1.1 shows a percentage distribution for every aspect of the

development of the project based on their overall values and the amount of effort

dedicated to each one.

Aesthetics 25%

Narrative 25%

Mechanics 25%

Technology 25%

Table 1.1. Self-assessment chart

The distribution that describes the development of this project in the fairest way possible

is an even allocation across the four aspects.

Due to the visual nature of the game, designing and creating an atmosphere that

transmits the game’s message and distinguishes itself from other projects while still

being captivating and coherent, is a difficult task in itself. The aesthetics of the game

include several aspects, such as the world and environment, the main character/s and

other elements. It also involves all the various animations and the game’s interface.

The story needs to be written and structured in a way that advances the overall narrative

while also not relying on any messages written on screen. It is very important to find the

perfect plot points that are visual and are able to communicate the game’s overall

message.

As stated before, the game loop and the mechanics themselves are designed in a way

that reinforce and explain the game’s message. In addition, the composition of the world

directly represents the main character’s feelings. Therefore, it is extremely important to

lay all these different aspects out properly before implementing anything else.

Last but not least, all the game mechanics we have previously designed need to be

programmed and implemented. Furthermore, it is needed to build the world inside the

game engine. We need to ensure that the game feels complete and flows throughout.

4

2. Viability study

In this section, a thorough study of the viability of the project will be made in order to

determine if we are to proceed with it. Several aspects will be taken into account; first,

we will focus on our own resources and capabilities; afterwards, we will examine the

market to understand our opportunities and estimate a possible business model; lastly,

we will define our target audience.

2.1. Necessary resources

The project cannot be viable without analysing our own resources beforehand.
These include the human, economic and technical resources, for both software and
hardware.

2.1.1. Technical resources

The entirety of the game will be developed using free or open source software. As

for the hardware, only a mid-end to high-end computer is needed. The resources

used for this project have been the following:

Personal computer

All of the game’s development has been done using a sole laptop, model MSI

PE72 8RC (see Figure 2.1). The main traits and specifications of this machine

are:

 8th Gen. Intel® Core™ i7 (Processor)

 Windows 10 Home 64 bit (Operating System)

 NVIDIA GeForce® GTX 1050 (Graphics card)

 8 GB (RAM Memory)

Figure 2.1. MSI Logo

Unity

The game engine used for this project has been Unity, developed by the

company Unity Technologies. Specifically, the version used has been Unity

2020.3.11.f1 (see Figure 2.2).

5

Unity is widely known in the video game industry for its accessibility, since it is

free, relatively easy to use and can support a variety of platforms, which is very

beneficial for independent game developers. It can be used to create both three-

dimensional and two-dimensional games, the latter corresponding to our project.

For 2D games, Unity allows importation of sprites and an advanced 2D world

renderer. In addition, it is also very well documented and provides the developer

with a wide array of guides and examples for every function and aspect of its

environment.

Figure 2.2. Unity Logo

Microsoft Visual Studio

Programming for the game has been done in the integrated development

environment (IDE) Microsoft Visual Studio, which is also connected directly to

Unity. Specifically, the version used has been Visual Studio 2019 (see Figure

2.3).

The programming language used has been the object-oriented language C Sharp

(C#), designed by Anders Hejlsberg (see Figure 2.4). The game engine Unity

offers a primary scripting application programming interface (API) in C# using

Mono, which is a free and open-source .NET Framework-compatible software

framework.

Figure 2.3. Microsoft Visual Studio Logo

Figure 2.4. C Sharp Logo

6

Inkscape

All the visual and artistic aspects of the game have been made using the free and

open-source vector graphics editor Inkscape (see Figure 2.5).

Inkscape lets the user create a wide variety of shapes and then manipulate them

with different transformations such as moving, rotating, scaling and skewing. It

can render both primitive vector shapes and text, which made it possible to even

create aspects of the user interface (UI). Inkscape was also used to do the

different animations for the game, via spritesheet animation.

This software allows the importation of different types of files, such as images. It

also allows exporting Scalable Vector Graphics (SVG) into Portable Network

Graphics (PNG), which was utilised to create the different sprites for the game.

Figure 2.5 Inkscape Logo

GitHub Desktop

The version control was done with Unity Collaborate at first, which is a service

integrated in Unity. Nonetheless, in the midst of the game’s development, Unity

Collaborate merged into the platform Plastic SCM. Due to the convenience of

having this already integrated into the game engine, it was attempted to port the

project onto the new platform. Unfortunately, it was not possible as the version of

Unity used was not supported yet by Plastic SCM. From there on, the version

control was done via GitHub and GitHub Desktop (see Figure 2.6).

GitHub is a commonly used Internet hosting provider for software development

and version control. It uses Git, a software for tracking changes in a set of files.

Although this platform is mostly used for working collaboratively, within the frame

of this project, which has been realised by a single developer, it has served solely

as a version control and back up method.

Figure 2.6. GitHub Desktop Logo

7

HacknPlan

The project management and task planning was done with HacknPlan (see

Figure 2.7). It is an online tool created by Chris Estevez specifically designed for

game development. The app allows the user to create a board where all the

different tasks are visible and can be organised depending on their current state:

Planned, In progress, Testing and Completed. The tasks can be of one out of

eight categories: Programming, Art, Design, Writing, Marketing, Sound, Ideas and

Bug.

HacknPlan has many other functions and provides the user with loads of

personalisation options, but they were not needed for the organisation of this

project.

Figure 2.7. HacknPlan Logo

 Diagrams.net

The diagrams and other graphics that appear in this document have been made with

the free and open source online tool Diagrams.net, previously known as Draw.io (see

Figure 2.8).

Figure 2.8. Diagrams.net Logo

2.1.2. Human resources

Video games are usually developed by teams which, despite varying in size from

one project to another, tend to include different people with very different profiles

and areas of knowledge. These profiles include programmers, designers and

artists, among others.

However, for this project, all the different aspects of the game will be developed

by a single person.

8

2.1.3. Economic resources

Since all the software used to carry out this project is free to use and the

computer used was already owned prior to the start of the development, there is

no real economic cost for this project.

Anyhow, we could calculate an approximate total cost by adding the salaries of

hypothetical members for a team, each one with the same personal computer

used for this project. The number of hypothetical members is three, considering

one of them would focus on the programming, the second one on the designing

and the last one on all the artistic aspects.

According to the webpage Glassdoor, the average yearly salary for a game

developer in Spain as in 2022, is at approximately 35,000 EUR. Therefore, if we

consider the development of the game to have taken a full fiscal year, we get the

results shown in Table 2.1:

ITEM COST

3 X MSI PE72 8RC ~ 3,000 EUR

Programmer ~ 35,000 EUR

Designer ~ 35,000 EUR

Artist ~ 35,000 EUR

TOTAL ~ 108,000 EUR

Table 2.1. Hypothetical economic cost

It is also worth noting that developing a game with Unity is free as long as the

gross annual revenue for the previous fiscal year does not surpass 100,000 USD.

2.2. Market analysis

After a deep analysis of all our resources, it can be stated that, from this perspective,

the project is viable. The next step is to look at the state-of-the-art and detect how

our project can stand out from other cinematic puzzle-platformers, specifically, those

with a two-dimensional view.

2.2.1. Search methodology

The search engine Google was the one used to find these similar games. The

keywords chosen for the search, and the ones that returned the most significant

results, were “2d cinematic platformer games”. Other variations of these

keywords were tested, but only to a similar or lesser outcome.

9

2.2.2. Similar games

From the results obtained, only the most notable titles were selected. The ones

that were chosen were those we were already familiar with and had played, so as

to be able to make a better comparison.

Limbo (2010)

Limbo is a 2D puzzle-platform video game developed by the independent studio

Playdead, based in Denmark. It is well known for its use of sound and colour or,

in fact, its lack of it, since the game is in grayscale. Another notable aspect is its

minimal story, as there is no explicit plot told along the game’s runtime, leaving

the audience to form their own interpretation (see Figure 2.9).

Figure 2.9. Image from Limbo

Inside (2016)

Inside is a puzzle-platform game also developed by the Danish game studio

Playdead. It has many similarities to its predecessor, Limbo, such as its minimal

colour, untold story, and puzzle-platforming mechanics. Even though the

character’s movement is still two-dimensional, the game itself is three-

dimensional, which allows the camera to move more cinematically (see Figure

2.10).

Figure 2.10. Image from Inside

10

Gris (2018)

Gris is a cinematic puzzle-platformer game developed by the Catalan game

company Nomada Studio and published by Devolver Digital. It is a very unique

game, due to its gorgeous and distinct art style, created by the artist Conrad

Roset (see Figure 2.11).

Figure 2.11. Image from Gris

Another World (1991)

Another World is a cinematic platformer game designed by Éric Chahi and

published by the French company Delphine Software. It is one of the first

instances of this category of games and, perhaps, the most iconic. Its captivating

art style and fluid animations were a huge achievement for its time (see Figure

2.12).

Since the game was released a long time ago, for comparisons and other

important data, we will use the 20th Anniversary Edition, released in 2013.

Figure 2.12. Image from Another World

11

2.2.3. Conclusions for the state of the art

Since the search that was done to find possible competitors was very specific, we

see lots of similarities between the games, from minimalistic art styles, to a

complete visual narrative, to a similar gameplay. On the Table 2.2 we can see the

comparison with our competitors.

Title Movement Art Narrative Duration Price (EUR) Engine

Limbo 2D 2D Visual 3h 9,99 Own

Inside 2D 3D Visual 3h 19,99 Unity

Gris 2D 2D Visual 3h 16,99 Unity

Another World 2D 2D Visual 30m 9,99 Own

WAVA 2D 2D Visual 30m FREE Unity

Table 2.2. Comparison with other similar games

Even though the games are very similar to one another, each one of them has

had great commercial success and very positive critical acclaim. Cinematic

puzzle-platformers are not one of the most common types of games released in

this day and age; however, they are very well received and have a very dedicated

audience.

Despite the common and simple gameplay mechanics, each game has a unique

narrative, art style and overall atmosphere that distinguishes itself from others.

This is, of course, also the case for this project, WAVA.

2.2.4. Business model

One of the most common complaints for our competitors is their high price

despite their short playtime. As we can see, the prices range from 10 EUR to 20

EUR in the platform Steam.

As for our project, we believe the best course of action is to publish the game for

free, so as to make it function as some sort of “presentation letter” for ourselves.

By doing this, a wider audience can be reached and, if the game is well received,

this audience might be on board with future projects, some of which may be

monetised. One notable instance of this business model is the Dutch company

Total Mayhem Games.

12

2.3. Target audience

Last but not least, in order to see the full viability of this project, we must take into

account all the aspects of our game and define our target consumers. Richard Bartle

released in 1996 the Bartle’s taxonomy of player types, which classifies all players

into the following four groups (see Figure 2.13):

 Killers: These types of players are very competitive; they would rather fight

against other players than artificially intelligent entities.

 Achievers: These types of players like completion; they want to gain points,

levels and other concrete measurements of success in a game.

 Socializers: These types of players enjoy interaction with other players; they

also socialise outside of the game, in forums and social media.

 Explorers: These types of players long for immersion; they like to discover

areas and wander through the game’s world at their own pace.

Figure 2.13. Bartle’s taxonomy of player types

Due to our game’s calm nature and overall non-violent mechanics, we think the

profile of player that best adapts to it is the Explorer. WAVA is a very visual game,

with a very simple yet enchanting atmosphere and, to our belief, the game is enjoyed

the most when consumed slowly. Moreover, we believe that the sharing aspect of a

Socializer would also be hugely beneficial to our project. The game wants to convey

a deep message that, in a way, is open to interpretation to every single player.

Therefore, it would be terrific to have players discussing online their afterthoughts.

Lastly, it is very important to select the age range we want to cater. WAVA is a slow

paced game, and one that requires time and patience, which we think is more

adequate for a more adult audience. The controls are fairly simple and the game

loop follows an easy to understand pattern, so it can be enjoyed by anybody, no

matter their level of expertise.

13

3. Planning

In this section we will define the work strategy and work plan that will enable us to reach

our goals and develop the proposed project. Due to the fact that the game is fully

developed by a single person and we don’t depend on other team members or specific

deadlines, we are allowed a little liberty when deciding on what aspect of the game we

are focusing our attention on.

3.1. Work methodology

Video game development can generally be divided into three blocks: the design of

the project, the implementation of the designed aspects and, lastly, the testing of the

previous stages. Although it may seem that these blocks follow a sequential order,

they are, in most cases, an iterative sequence. This iteration happens due to the fact

that sometimes what we design does not work when put into practice, forcing

ourselves to rethink parts of the process.

Design is unavoidably the first stage of the process, since it is the part where we

figure out how we want the game to behave, look and feel. It includes many different

aspects, such as the general game design, story design, art design and even level

design.

Implementation can be summed up as the materialisation of the designs. This

includes both the more technological parts of the game, such as the programming of

the mechanics; and the more artistic aspects, such as the creation and animation of

all the different assets.

Testing happens along all of the game’s development. Once our designs have been

implemented, we need to try them out to see if they work in the “real world”.

Overall organisation and planning will be achieved by meeting with the project’s tutor

every two weeks and by keeping the project management tool HacknPlan up to date

according to this document.

3.2. Work plan

In order to develop the game fluently, all the different tasks that are to be done must

be defined and mapped out. These tasks will be distributed into six blocks: design,

technology, narrative, art, testing and documentation. For an easier understanding, it

is represented in the following diagram (see Figure 3.1):

14

Figure 3.1. Task planning and distribution

3.2.1. Task description

In this section, we will give a more defined description for every task that has

been stated in the previous diagram (Figure 3.1). Along with the description, an

estimated duration will be set for each one.

Design

 Game design
September 2021 – February 2022

Game design focuses on the more general aspects of the gameplay, like

defining the game mechanics, but also, a quick draft of how the game

looks and feels. This process takes a long time since, as stated before, the

game’s design may vary with the many iterations of implementing and

testing.

 Level design

February 2022 – May 2022

Level design involves the ideation of possible puzzles and zones and,

afterwards, creating the levels inside the game engine.

Technology

 Player movement and interaction
October 2021 – February 2022

This task includes the implementation of all the different ways in which the

character can move and interact with the environment. The main

interactions are the general movement, climbing, crouching, protecting and

picking up elements, among others.

15

 Player input
October 2021

This consists of making the necessary preparations to detect player input

and making it adaptable in case the input device is changed. For instance,

if the player was playing with the keyboard and suddenly decides to switch

to a console controller.

 Game behaviour

January 2022 – April 2022

Implementing the game behaviour includes setting the fail states and

managing the general workflow of the game, such as respawning the

player when killed or transitioning between scenes.

 NPC implementation
December 2021 – January 2022

NPC stands for “non-playable character”, so this task includes creating a

responsive artificial intelligence for every character that is not directly

controlled by the player. NPC implementation includes not only the game’s

enemies, but also the characters that accompany the player along the

journey.

 Cinematic mechanics
Mid-January 2022 – April 2022

There must be some extra mechanics that give the game a cinematic

feeling, such as animations and cinematics, smooth camera movement or

fluid transitioning between levels and chapters.

 UI implementation
February 2022 and April 2022

UI stands for “user interface”, so this task includes creating a responsive

heads-up display, or HUD, developing text prompts as a tutorial for the

player, and also designing the main menu and pause menu.

Narrative

 Story writing and structure
September 2022 – February 2022

Structuring the story correctly for this type of game with meaningful plot

points is very important in order to transmit the game’s overall message.

This task goes hand in hand with the game design, since the game

mechanics are very tied to the story and topic.

16

Art

 Character art and animations

Mid-September 2021 – February 2022

Although we have opted towards a minimalist art style, creating smooth

character animations is essential so as to give the game a complete and

fluid feeling.

 Environment art

Mid-September 2021 – October 2022 and January 2022 – March 2022

To give the game a proper atmosphere and make it feel unique while

keeping a simplistic look, we must take into account several aspects, for

instance, choosing the right colours. This task also involves designing and

animating the weather for each chapter, which is very tied to the story and

overall topic.

 NPC art and animations
December 2021 and February 2022

This task comprises the design and animation of both the game’s enemies’

and other side characters.

 UI art and design

February 2022 and April 2022

This task consists of creating a simplistic user interface that doesn’t take

any cinematic feeling away from the game, while also being completely

understandable and aesthetically tied to the game’s overall art style.

Testing

 Editor testing
October 2021 – April 2022

Testing inside the game engine takes place from the development’s start

to end. Each new mechanic that has been implemented needs to be tried

out and, in some instances, a more general testing of the game is required

so as to find possible bugs that need fixing.

 Build testing
Mid-April 2022 – Mid-May 2022

When the game is starting to take shape and is in its final stages, it is

recommended to export it and create early builds to see if it also works as

an executable.

17

Documentation

 Writing

October 2021 – Mid-June 2022

Last but not least, the game’s documentation takes place along all the

game’s development. When the due date is closer, some revisions and

tweaks to the document may be in order.

3.2.2. Gantt chart

After having defined all the tasks that will be developed for this project and their

duration, we will now distribute them across the months they will take place in by

using a Gantt chart (see Figure 3.2).

Figure 3.2. Project's Gantt chart

18

4. Framework and previous concepts

In order to start explaining WAVA’s design and development in full detail, it is needed to

state where we are coming from. In this section we are going to list the main references

that inspired this project and also some key words and concepts that will be used further

on.

4.1. References

Video game ideas do not start from scratch, since there are always previous pieces

and concepts that have influenced and inspired us. In this section we will state the

main sources of inspiration for both this project’s gameplay and art style.

4.1.1. Gameplay references

Some of the main game mechanics and overall gameplay were inspired by other

similar games, such as Limbo, Inside, or Another World (see section 2.2.2).

4.1.2. Art style references

The main source of inspiration for the main character’s design was the illustration

named Familia, made by the Argentinian illustrator and animator Sebastian Curi

(see Figure 4.1).

Figure 4.1. Familia, by Sebastian Curi

The minimalist aesthetics for the environment and the rest of the game was

selected based upon other games from the same genre, such as Limbo or

Another World (see section 2.2.2).

4.2. Vocabulary

Before starting a more thorough explanation of this project’s design and

implementation, we are going to list a series of concepts and important vocabulary in

order to ease the comprehension later on. These concepts are divided into three

categories: game engine-related concepts, art-related concepts and general game

concepts and acronyms.

19

4.2.1. Game engine-related concepts

 Scene: Scenes in Unity can transition from one another and store all the

different game elements. For our project, each chapter or level is stored

inside a different Scene. There is also a Scene for the Main Menu and one

for the Credits.

 Prefab: Prefabs are pre-fabricated GameObjects the user can create and

store in order to use them several times throughout all scenes. The

different values and components of the object can be edited separately for

each instance of the prefab.

 GameObject: GameObject is the base class for all entities in a Scene.

Scripts and other components can be added onto GameObjects in order to

change their behaviour.

 Transform: Transform is a basic component found in every GameObject

that is used to store and manipulate the position, rotation and scale of the

object.

 Collider2D: Collider2D is the parent class of the component used to detect

all collisions. These colliders can have different shapes and can be

configured to be triggers. If a Collider2D is trigger, the collider does not

apply any forces on other GameObjects and is just used for detection

purposes.

 Rigidbody2D: Rigidbody2D is the component that, when added to a

GameObject, puts it under the control of Unity’s physics engine. For

example, when this component is added, the GameObject is then affected

by gravity.

 Coroutine and IEnumerator: A Coroutine is a function that can suspend

its execution (yield) and can be executed over a number of frames or time.

For our project, it is used to fade in and out interface elements, set delays

and timers, among many other cases. A Coroutine in Unity is implemented

inside a function with an IEnumerator type of return.

4.2.2. Art-related concepts

 Sprite: A Sprite is a two-dimensional graphic element. In Unity, a

component of the same name can be added to a GameObject in order to

give it a 2D texture.

20

 Spritesheet: A Spritesheet is an array of Sprites arranged in an ordered

manner used to create animations. The animation is based upon quickly

switching between the different Sprites in order to create the illusion of

movement (see Figure 4.2).

Figure 4.2. Spritesheet from Megaman for a running animation

4.2.3. General game concepts and acronyms

 NPC: Stands for Non-Playable Character. It is any character that is not

directly controlled by the user. It is usually used to refer only to non-hostile

entities, but it can also include enemies.

 AI: Stands for Artificial Intelligence. In video games, it is the logic that

different game entities follow so as to act reasonably and rationally.

 UI: Stands for User Interface. It is the collection of visual elements used to

show information and allow the player to interact with the game directly.

Some examples of UI in games include the main menu and the pause

menu (see Figure 4.3).

Figure 4.3. User Interface (UI) for the game Red Dead Redemption 2 (2018)

 HUD: Stands for Heads-Up Display. It is the display by which the most

important information is shown to the player in-game. An example could be

a health bar. In cinematic games, it is very common not to have a HUD.

21

4.3. North Oriole Games

The final project will be published under the name North Oriole Games, which will

appear on later sections of this document. This name corresponds to the solo game

studio that was created to publish our games. It is worth noting that this brand was

created prior to the beginning project (see Figure 4.4).

Figure 4.4. North Oriole Games primary and secondary logo

22

5. Design of the videogame

In this section the full design of WAVA will be explained. It will be divided into three

different parts, starting with the narrative and artistic aspects. Afterwards, we will define

all the different game mechanics and the overall gameplay.

5.1. Narrative

5.1.1. Overview

WAVA’s story mainly explores themes of finding our place and learning from our

setbacks and problems. Topics of family and friendship are also discussed by

using the relationship between the two main characters, who work together as a

dyad that represents the human mind and soul.

The narrative is structured across six different chapters with mostly weather

related titles. The state of the weather in each chapter is a direct representation of

the character’s mood. The chapters follow a loop pattern and transition

seamlessly from one to the other. The game begins with a vague question, which

is contextualised and completed right at the end of the game. Therefore, it is

finished, like our characters’ journey.

After the story is completed and the credits are shown, the game loops fluidly

back to the main menu, which is located in the first zone of the game,

characterised by its rainy weather. This cycle mimics a person’s cycle of trial and

error until they find their definitive place.

5.1.2. Characters

In this section we will examine the game’s characters from a narrative

perspective. For a more detailed explanation of each character’s art design, see

section 5.2.2.

The Mind

The Mind is the main character of the game and the one that the user is able to

control along the game. Like its name indicates, it represents the human mind. Its

main narrative purpose is to display the message of overcoming our own

problems, learning from them and growing internally.

The Light

The Light is the other main character and is a representation of the human soul.

Its narrative purpose is to first accompany and protect the Mind and, in the end,

showcase the message of finding our place.

23

The Setbacks

The Setbacks are the main enemies of the game and their main purpose is to

impede the protagonists to advance. They are a representation of all the

problems we may encounter along our lives.

5.1.3. Story structure

In this section we will lay out WAVA’s story in full detail, describing its granularity

and how the main plot points are presented.

As stated before, the story is spread out across six chapters, two of which are

cinematics. These chapters include a prologue, an epilogue and an interlude in

order to make the game more theatrical and cinematic.

Beginning cinematic

The game begins in the same rainy forest where the main menu is located.

Before starting the first chapter, a message that reads “What is your place?” is

shown (see Figure 5.1).

Figure 5.1. Screenshot from the beginning cinematic

Chapter 1: The Light & The Mind (Prologue)

The first chapter is named after the main protagonists and it is the only one with a

title not related to the weather or environment. Its main function is to serve as a

tutorial for the player to get familiarised with the controls and gameplay (see

Figure 5.2).

This level is characterised by its rainy weather and for being the shortest and

easiest playable chapter. Along this level the protagonists encounter some

Setbacks and are presented with the main game mechanics, such as climbing,

crouching, protecting or building an auxiliary platform.

When the end is reached, the Mind pulls a lever that elevates a platform that

places both main characters inside a cave.

24

Figure 5.2. Screenshot from the first chapter

Chapter 2: The Rain

The second chapter, as the title itself implies, is also characterised by rain

pouring down along the level. Its main function is to reinforce the previous

chapter, since they have lots of similarities.

The level starts inside a cave and, once the protagonists get out, they start

encountering several Setbacks. These enemies allow the player to gather enough

Knowledge in order to go through a large section where the player has to

constantly place and recover an auxiliary platform in order to advance.

As they keep moving forward, the characters encounter a small body of water and

the player is taught that the Light extinguishes when being in contact with it. After

finding another way through, the characters encounter three more Setbacks.

At the end of the chapter, a rock falls onto the Mind and collapses the floor

underneath, which submerges the Mind into a large body of water. The Light

stays still for a little without being able to aid its friend. After a while, the Light

ascends rapidly onto the sky, leaving the Mind behind (see Figure 5.3).

Figure 5.3. Screenshot from the second chapter

25

Chapter 3: The Gloom

The third chapter begins with the Mind submerged in the water, but it is not

unconscious anymore. The player is taught that the Mind is able to swim

underwater as it makes its way out of the water and the cave it fell into. Outside of

the cave, the rain has stopped, but gloom and darkness are still invading the

environment (see Figure 5.4).

Since the Light is gone, the Mind cannot protect itself from Setbacks, thus forcing

it to go past them by diving into water. The Mind explores its environment and,

luckily, finds enough Knowledge to build an auxiliary platform and move forward.

After a while inside the cave, the Mind stops abruptly, as if it had seen something

special.

Figure 5.4. Screenshot from the third chapter

Chapter 4: The Moon (Interlude)

The fourth part of the story is the first cinematic chapter. We see the Mind is

standing still, but suddenly starts walking out of frame.

Shortly after, the camera follows the same path as the Mind, revealing an exit to

the cave and a gorgeous starry night sky with a huge moon (see Figure 5.5). The

Mind is stunned admiring the scenery when the player gets a button prompt

which, when pressed, triggers a bubble to emerge from our protagonist,

symbolising that it can now protect itself without the assistance of the Light.

Much like Plato’s Allegory of the Cave, the Mind has completed its catharsis,

found its own truth and is now free and self-sufficient.

26

Figure 5.5. Screenshot from the fourth chapter

Chapter 5: The Breeze

The fifth part is the one with the clearest weather. It is also characterized by a

slight breeze that incites the Mind to keep moving forward (see Figure 5.6).

After learning how to protect itself, the Mind is now able to stand up to Setbacks,

swim and overcome any sort of obstacle. By applying all that it has learnt along

its journey, the Mind encounters a lever that lifts it up to a very high cave. Much

like in Chapter 4, after a while inside the cave, the Mind stops abruptly.

Figure 5.6. Screenshot from the fifth chapter

Chapter 6: The Sun (Epilogue)

The sixth part of the story is the second cinematic chapter. Similarly to Chapter 4,

the Mind starts walking out of frame. The camera pans towards the Mind but, this

time, it reveals a crack on the cave’s wall and a huge sun peeking through (see

Figure 5.7).

While the Mind is watching the sun, the player gets a button prompt. When

pressed, the sun starts shaking, revealing that it is indeed the Light, which has

grown and found its place. Although their paths have been different, their love for

one another is so strong that they still have that special bond that united them in

the beginning.

27

The intention behind this interaction is to portray themes of family, friendship and

always being present when needed, no matter our journeys.

Figure 5.7. Screenshot from the sixth chapter

Ending cinematic

At the end, the screen turns yellow and a text cinematic with these messages is

played (see Figure 5.8):

“From all setbacks, we learn, we grow.”

“And no matter how lost we feel, we find our home, where we belong.”

“So let me ask you again.”

“What is your place…”

“... Where All Vanishes Away?”

After showing the meaning behind the acronym WAVA, the game’s logo is shown

before transitioning to the credits.

Figure 5.8. Screenshot from the ending cinematic

28

5.1.4. Narrative devices
As WAVA is mainly visual, the narrative of the game is told through a series of
methods and devices.

 Mechanics: The main narrative devices used are the game’s mechanics

and the overall gameplay. The Mind needs to overcome Setbacks in order

to gain Knowledge. When it gains a certain amount of Knowledge, it can

create an auxiliary platform that allows it to get to unreachable places and

advance further, until it finds its place. The names for each game element

have been carefully chosen so they are self-explanatory and the player

can easily understand the game’s message.

 Text Cinematics: Apart from the prompts that teach the player the

controls, the only texts that appear on screen are the text cinematics

shown at the beginning and end of the game. These texts are meant to

make the player reflect on their own interpretation of their place in the

world.

 Visual Cinematics: Along the game, there are a number of visual

cinematics and animations that help illustrate the main plot points. There

are also two chapters which are mainly cinematic due to their importance

to the story. This allows us to be in control of the pace and assure the

player does not miss any important story pieces.

 Weather: The weather and title of the chapters reflect the current emotions

and feelings of the main character. The constant improvement towards a

more pleasant weather represents the catharsis of the Mind and how it is

getting closer to finding its place. The rain pouring down in the first two

chapters symbolises the Mind being in an undesirable place that makes it

feel trapped and constantly bombarded. After the rain, there is gloom,

which represents the Mind still being clouded with thoughts and worries.

Last but not least, the breeze in the last chapter is a representation of the

sensation of freedom the Mind feels due to finally being self-sufficient.

 Level design: The level design for each chapter also has certain

importance on the narrative. The different challenges the Mind encounters

along each chapter reinforce its capabilities, but also its shortcomings. For

example, when the Mind can swim but not protect itself, there are easily

avoidable Setbacks placed in the water.

The composition of the levels is also key; for instance, since in Chapter 5

the Mind is closer to reaching its place, the route it has to follow goes

upwards. On the other hand, since in Chapter 3 the Mind is alone and lost,

most of the level happens inside underwater caves that force the Mind to

dive downwards.

29

5.2. Art

5.2.1. Overview

The general art style chosen for the game can be described as minimalist and

geometric. All the different game assets have very simple and basic shapes and

are painted with a flat colour, except for the more important entities, which have a

slight gradient.

The colours chosen play a huge role into the artistic aspect of the game.

Everything is blue-toned, black or white, including one of the main characters, the

Mind. The only entity that has a different and unique colour is the other

protagonist, the Light, which is painted yellow in order to distinguish it easily in the

final chapter.

The main character animations were done in Inkscape by using the technique of

spritesheet animation. Each animation has a different number of frames

depending on its complexity. Other simpler animations were achieved by simply

moving the GameObjects via Unity’s co-routines.

5.2.2. Characters

In this section we will examine the game’s characters from a visual and artistic

perspective. For a more detailed explanation of each character’s narrative

importance, see section 5.1.2.

The Mind

The controllable character of the game, the Mind, is formed by two blue-toned

circles of different sizes to represent its head and body, and four black lines to

represent its extremities (see Figure 5.9).

Figure 5.9. Design and colour palette of The Mind

30

It has fourteen different and unique animations that bring the character to life.

These animations include idling, walking, running, crouching, climbing, hurting

and dying, among others (see Figure 5.10).

Figure 5.10. Spritesheet of The Mind's walking animation

As previously noted, it is inspired on a design by the Argentinian artist Sebastian Curi

(see Figure 5.11).

Figure 5.11. Close-up of Familia, by Sebastian Curi

The Light

The other main character is the Light, which is formed by a yellow circle

surrounded by a slight yellow glow. It is the only game entity that is not blue-

toned, black or white (see Figure 5.12).

Figure 5.12 Design and colour palette of The Light

It has three different animations, which include one looping idle animation that

moves the Light up and down, and two interaction animations. These interactions

make the light either shake or circle around (see Figure 5.13).

31

Figure 5.13. Spritesheet of The Light's idling animation

The Setbacks and Knowledge

The enemies the protagonists protect themselves from, the Setbacks, are

characterized by being black with a glowing white core. This white orb represents

the Knowledge they have inside, which can be picked up by the player once the

Setback has been defeated (see Figure 5.14).

There are two different types of Setback, the bomber and the kamikaze. The first

one attacks the player by emitting a lethal explosion and is shaped like a square,

while the latter is a star polygon and attacks the players by hunting them down.

Figure 5.14 Design and colour palette of The Setbacks and Knowledge

The Halo

The Halo is a glowing bubble that surrounds the main character in order to protect

it from the Setbacks. In chapters one and two, when the Light is the one that

spawns it, the Halo is yellow. On the other hand, in chapters four and five, when

the Mind is the one that does so, the Halo is white (see Figure 5.15).

Figure 5.15. View of the Halo depending on the chapter

32

5.2.3. Environment

The environment for the game is also very minimalist and is based on a

somewhat plausible forest. It is divided into a blue-toned background and a black,

white and grey foreground. The background includes the sky, mountains and

clouds, while the foreground includes trees, ground, platforms, spikes, levers and

caves (see Figure 5.16).

In order to create a more realistic feel, the different environment elements scroll

across the screen with a parallax effect. So, the further the element is from the

camera, the slower it moves in relation to the character.

Figure 5.16. Screenshots and colour palettes for five different environments of the game

33

5.2.4. Weather

The weather in each level plays an important role in the game, so it should be

represented properly while still keeping a simplistic look. The animations for the

different weather types were also done via spritesheet animation in Inkscape.

Rain

The rain appears in the first and second chapter. There are several raindrop

particles that are spawned along the levels which, when in contact with the

ground, character or other world elements, do a splash animation (see Figure

5.17).

Figure 5.17. View in game and spritesheet of the rain animation

Breeze

The breeze appears in the fifth chapter. After a short delay, five gusts of wind are

spawned along the level repeatedly. These gusts of wind fade in and out and do a

swift swirl animation (see Figure 5.18).

Figure 5.18. View in game and spritesheet of the breeze animation

34

5.2.5. Interface

Branding

In order to create a visually coherent product, it is very important to create the

right branding and establish our game as a unique piece.

The font used for all texts in the game is the serif font named Bodoni MT. In order

to give the text more dynamism, the font is always italicized.

This is an example of the appearance of the font.

The logo for the game is very geometric and uses different blue tones and

gradients, similarly to the game itself. The letters also combine perfectly and form

a shape that resembles the mountains found in-game (see Figure 5.19).

Figure 5.19. WAVA's final logo design

Menus

The main menu is located in the rainy section of the game, right before where the

first chapter begins. It consists of the game logo and four buttons the player can

interact with: one for playing, another one for changing the options, the next one

to go to the credits scene and the last one to exit the game (see Figure 5.20).

Figure 5.20. Main menu of WAVA

35

Once pressed the play button, the players can select which level they want to

start from, allowing them to play the full story or just replaying a certain chapter.

The options menu has a toggle that allows the players to decide if they want the

game in full screen or not. This option is on by default (see Figure 5.21).

Figure 5.21. Play and options screens in the main menu

The pause menu consists of a semi-transparent black background with four

different buttons: one to resume the game, another one for the options, the other

one for viewing the game’s controls and the last one to exit to the main menu

(see Figure 5.22).

Figure 5.22. Pause menu of WAVA

Inside the controls’ menu, the players can check the different buttons that need to

be pressed in order to do each action, depending on the used controller.

The options in the pause menu also include a toggle to set the game in full

screen, and a toggle to hide the HUD can also be found. This option gives the

game a more cinematic feel and is better for taking screenshots (see Figure

5.23).

36

Figure 5.23. Controls and options screens in the pause menu

For both menus, when a button is hovered on or selected, the button’s text is

underlined.

HUD

The heads up display for the game is very simple so as not to take away any

immersion from the player. It can be divided in three parts (see Figure 5.24):

 Two black bars at the top and bottom of the screen that give the game a

more cinematic aspect.

 An array of five circles the same colour as the Mind on the top left corner

that represents the lives.

 A white slider on the top right that represents the current Knowledge

gathered by the players.

Figure 5.24. Heads up menu (HUD) of WAVA

37

5.3. Gameplay

5.3.1. Overview

The general gameplay of WAVA is very tied to its narrative and, like other

cinematic puzzle-platformers, it follows a very simple and easy to understand

game loop. In our case, this loop consists of defeating the Setbacks by protecting

yourself, pick up the Knowledge they leave behind and then build auxiliary

platforms that allow the character to go further and advance to the next level.

The game’s movement and view is two-dimensional, using a side-scrolling format

for the camera. The action is viewed from a side-view camera angle that smoothly

follows the player with a slight horizontal and vertical offset, incrementing the view

of what’s in front and on top of the main character. There is only one difficulty

level, which has been tested in order to be accessible for all players, no matter

their level of expertise.

5.3.2. Challenge hierarchy

WAVA follows a very linear structure, as the player advances from one chapter to

the next one. The main challenge is to reach the end of each chapter and

complete the game. However, inside each chapter there are obstacles the player

has to overcome. The main challenges found inside each chapter are:

 Protect the character from the Setbacks, defeat them and pick up the

Knowledge they leave behind.

 Build auxiliary platforms by using the Knowledge in order to climb up to

unreachable places.

 Avoid falling onto spikes and other world elements that might be lethal.

Figure 5.25. Challenge hierarchy of WAVA

38

Even though some challenges and obstacles may vary depending on each

chapter, Figure 5.25 visually represents the main challenge hierarchy of WAVA.

5.3.3. Mechanics and player actions

Similarly to other games, the game mechanics in WAVA are fairly common and

easy to understand in order to be more accessible for less experienced players.

There are a set of actions the players can do to control the main characters and

complete the levels so as to advance the plot.

Movement

Across all chapters, the players can move the main character around the

horizontal axis of the game world by either walking or running, depending on the

desired speed. In addition, from chapter three to chapter five, the Mind can also

swim underwater, which adds vertical movement to the player.

Climbing

Unlike other platformers, the main character of WAVA cannot do impressive

jumps. In order to move vertically, the players can climb onto ledges when

located next to them and as long as the character is not falling down.

Crouching

To enter caves and reach places with short entrances, the players can crouch

and move in the horizontal axis while squatting.

Protecting from Setbacks

All Setbacks will try to harm the players and, although the main character cannot

attack directly, it can protect itself by creating a bubble, named Halo, which wraps

the players around and is lethal to the Setbacks.

In chapters one and two, the Light is the one that spawns the Halo, while in

chapters four and five it is the Mind that does so.

Picking up Knowledge

After defeating a Setback, it will leave Knowledge behind, which can be picked up

by the player. This Knowledge comes in the shape of a glowing white orb.

Building an auxiliary platform

When five Knowledge orbs have been picked up, the player is able to build an

auxiliary platform in front of them in order to reach higher surfaces. However, this

is only possible when a world element is not on the way and the character is on a

building zone, which is represented by a white glow on the ground.

If an auxiliary platform is placed nearby and the player is on a building zone or on

top of said platform, the user is able to recover it in order to build another one

later on.

39

Interacting with a lever

There are some levers placed around the world that, when interacted with, move

a certain world object that enables the player to keep advancing.

Interacting with the Light

The Mind can interact with the Light, triggering one of two interaction animations.

Even though this action does not have any value gameplay-wise, it is intended to

reinforce the overall narrative and the relationship between the main characters.

Most game mechanics are presented along the first chapter, which is designed to

be a tutorial for all users and familiarize them with the controls and overall game

behaviour. However, some mechanics and other game aspects are introduced in

latter chapters, so as not to overwhelm the player with excessive new information.

5.3.4. Economy and resources

The internal economy of WAVA is very simple and is based on very few

resources. These resources can be tangible or intangible, depending on whether

they have physical properties in the game world. They can also be categorized as

concrete or abstract, the latter being those that do not really exist in the game but

are used for internal computation. In WAVA, the three main resources are:

 Lives: These are intangible and concrete resources that represent the

player’s health. The default number of lives is five (see Figure 5.26).

Figure 5.26. Visual representation of the lives on the HUD

 Knowledge: This is a resource that is left behind by Setbacks once

defeated and can be picked up by the player. Therefore, Knowledge is

tangible and concrete (see Figure 5.27).

Figure 5.27. Visual representation of the Knowledge in-game and on the HUD

40

 Auxiliary platform: This resource can be spawned in building zones once

the player has accumulated five Knowledge orbs. It can be climbed on and

is also a tangible and concrete resource (see Figure 5.28).

Figure 5.28. Visual representation of the auxiliary platform in-game

Economies typically include four types of functions that affect resources and

move them around. These mechanics are called sources, drains, converters, and

traders.

We will now list for each of these four types of mechanics, their corresponding

examples in WAVA’s internal economy:

 Sources: These are mechanics that create new resources out of nothing.

o In WAVA:

 After losing all five lives and once the player respawns, the

five lives are fully restored.

 Drains: Contrary to the sources, they reduce the current resources.

o In WAVA:

 When the player is hurt, a specific amount of lives are taken

out. When hurt by a Setback, only one life is removed. On

the other hand, all five lives are erased when hurt by spikes

or water, the latter only affecting the player when

accompanied by the Light (see Figure 5.29).

41

Figure 5.29. All lives being removed after being hurt by spikes

 Converters: These mechanics turn resources of one kind into another.

o In WAVA:

 Once defeated, the Setbacks, main enemies in the game,

turn into Knowledge that can be picked up.

 When the player has gathered five Knowledge orbs and is on

a building zone, the player can turn this Knowledge into an

auxiliary platform. This action also goes the other way

around, as the player can recover the box and convert it into

full Knowledge (see Figure 5.30).

Figure 5.30. An auxiliary platform being built in exchange for full Knowledge

 Traders: These are mechanics that move a resource from one entity to

another and another resource back in the opposite direction, according to

an exchange rule.

o In WAVA:

 Due to the game’s cinematic nature, the trader mechanic did

not make sense within the design of the game. Therefore,

there are no traders in WAVA.

42

5.3.5. Level design

In this section we will see a general visual view of the level design for each one of

the four playable chapters, along with a description of each level’s zones and

challenges.

Chapter 1: The Light & The Mind (Prologue)

The first playable chapter of the game functions as a prologue for the narrative

and a tutorial of the game mechanics and general gameplay for the player. As the

title indicates, it is also deeply centred on the relationship between the Mind and

the Light. This level can be divided into four parts:

 The first zone has no real threats for the players and is designed to teach

them the most basic motion controls, which include walking, running and

climbing onto ledges (see Figure 5.31).

Figure 5.31. View of the first zone in Chapter 1

 The second zone focuses on the “combat” aspect of the game. Both types

of Setback are presented, along with the controls to protect and pick up

Knowledge. The player must defeat four Setbacks, two kamikazes and two

bombers (see Figure 5.32).

Figure 5.32. View of the second zone in Chapter 1

 The third zone combines two new game mechanics: crouching and

building an auxiliary platform. This is achieved by placing the last

Knowledge orb needed to build the auxiliary platform inside a cave that

requires the player to crouch in order to enter (see Figure 5.33).

43

Figure 5.33. View of the third zone in Chapter 1

 The fourth zone is centred on the interaction between the Mind and the

Light and also introduces the lever interaction mechanic. The lever triggers

a platform that lifts the character upwards (see Figure 5.34).

Figure 5.34. View of the fourth zone in Chapter 1

Chapter 2: The Rain

The second chapter is visually equal to the first chapter, since the rainy weather

is still present; however, the gameplay is slightly more difficult. This level can be

divided into four different parts:

 The first zone starts by dropping the player downwards to face five

different Setbacks, placed strategically to be somewhat challenging for the

user (see Figure 5.35).

Figure 5.35. View of the first zone in Chapter 2

44

 With full Knowledge, the second zone is fully focused on the game

mechanic of building an auxiliary platform and recovering it in order to

advance. In addition, spikes are presented as a new threat to the main

character. The zone ends on top of a high mountain (see Figure 5.36).

Figure 5.36. View of the second zone in Chapter 2

 The third zone introduces the incapability of the Light to go into water. This

instigates the player to find another way around, which forces the

protagonists to go downwards, pull a lever and crouch through a cave (see

Figure 5.37).

Figure 5.37. View of the third zone in Chapter 2

 The fourth and last zone is uphill and, in order to reach the top, the player

must defeat three Setbacks (see Figure 5.38). At the top, a rock falls onto

the protagonists and collapses the floor underneath, submerging the Mind

into a large body of water. After a while, the Light ascends rapidly to the

sky, leaving the Mind behind.

Figure 5.38. View of the fourth zone in Chapter 2

45

Chapter 3: The Gloom

The third chapter is the first one where the Mind is alone, thus it is heavily

designed to accentuate its new capabilities and shortcomings. This is achieved by

relying heavily on underwater movement and decreasing the number of Setbacks

encountered, as well as placing them in easily avoidable places. This level can be

divided into five parts:

 The first zone begins in the same body of water the Mind fell into in the last

chapter. Its main function is to introduce the underwater movement

mechanic (see Figure 5.39).

Figure 5.39. View of the first zone in Chapter 3

 The second zone is uphill and, since it is set in the exterior of the forest,

the player sees the rain has stopped. It also includes a kamikaze Setback

which is intended to make the player realize they can no longer protect

themselves, which forces them to crouch into a cave (see Figure 5.40).

Figure 5.40. View of the second zone in Chapter 3

 The third zone is designed to reinforce the underwater movement

mechanic by putting an obstacle for the player to get through. After exiting

the water, the level continues going upwards (see Figure 5.41).

Figure 5.41. View of the third zone in Chapter 3

46

 The fourth zone is a more complex underwater cave section, with three

bomber Setbacks scattered around. Along this zone, players can find and

pick up two Knowledge orbs that allow them to build an auxiliary box and

advance to the next zone (see Figure 5.42).

Figure 5.42. View of the fourth zone in Chapter 3

 The fifth and final zone is a cave section that combines spikes, crouching

and other game mechanics. The zone’s layout forces the player to go

downwards (see Figure 5.43).

Figure 5.43. View of the fifth zone in Chapter 3

Chapter 5: The Breeze

The last playable chapter combines all the different game mechanics learnt along

the previous levels, since the Mind is now able to swim and protect itself. This

level can be divided into six parts:

47

 The first section has a peaceful beginning. After a tranquil stroll, the player

encounters two Setbacks, both of which can be easily defeated (see

Figure 5.44).

Figure 5.44. View of the first zone in Chapter 5

 The second zone is an underwater section that combines the swimming

and protecting mechanics, as there is one Setback inside the water (see

Figure 5.45).

Figure 5.45. View of the second zone in Chapter 5

 The third zone has two more Setbacks, two building zones and spikes,

leading the player onto a cave (see Figure 5.46).

Figure 5.46. View of the third zone in Chapter 5

48

 The fourth zone contains the second underwater zone, along with three

Setbacks in the player’s way (see Figure 5.47).

Figure 5.47. View of the fourth zone in Chapter 5

 The fifth zone forces the player downwards to face one last Setback.

However, at the end of this section the player encounters a lever that lifts

the character upwards, similarly to the one in Chapter 2 (see Figure 5.48).

Figure 5.48. View of the fifth zone in Chapter 5

 The sixth and final zone is a cave section which starts by going downhill.

At the bottom of the hill, the player can pick up the last Knowledge orb

needed to build an auxiliary platform and go upwards. The section ends

with an ascending hill, placing the Mind higher than ever before (see

Figure 5.49).

Figure 5.49. View of the sixth zone in Chapter 5

49

As it can be seen in the figures from Figure 5.31. View of the first zone in Chapter

1 to Figure 5.49, each level begins in the same place the last one ended in order

to give the game continuity and make the world coherent.

Chapters 4 and 6 are mainly cinematic and not controlled by the user, as they

serve a predominantly narrative purpose. The only player interaction in these

chapters is pressing a button when a prompt appears, which triggers an

animation that reinforces the story.

50

5.3.6. Game layout chart

In this section, we will see a representation of the game’s overall layout,

analysing how every scene and every chapter of the game is connected to one

another.

Figure 5.50. Game layout chart of WAVA

As it can be seen in the chart represented in Figure 5.50, the main menu of the

game allows the player to select the desired chapter, change the options for the

game, watch the credits or exit the game.

Every chapter is played in an ordered linear sequence. After chapter 6 is

completed, the credits are displayed and, once these are also completed, the

user goes back to the main menu.

In addition, the player is able to pause the game at any time to change the

options, check the game’s controls or leave to the main menu. Alternatively, the

player can resume the game and go back to the chapter.

51

6. Implementation and testing

After having fleshed out the full game’s design, in this section we will give a detailed

explanation of the game’s implementation, programming, and other aspects related to

the game engine. Afterwards, we will also present how these implementations were

tested along the development of the project.

6.1. Class diagram

The implementation of WAVA is distributed across 38 scripts, each one defining a

different class. In Figure 6.1 we can visualise all the game’s classes divided by their

category and how some of them are related to the others. In the following parts of

this section, we will give a detailed definition for each class and their respective

variables and functions.

Figure 6.1. Class diagram and structure of the project

52

6.2. File structure

The project’s file organisation follows the most common pattern used for 2D games

developed with Unity, which is to create, at least, the following four main folders:

Prefabs, Scenes, Scripts and Sprites. Each main folder includes other subdirectories

that distribute every asset according to their category. In addition, a folder to store

the font Bodoni MT was added (see Figure 6.2).

Figure 6.2. Folder organization of the project

The folder Prefabs contains all the different prefabricated GameObjects and their

respective children, components and parameters. Prefabs allow the user to create

and store objects that are used several times throughout all scenes. The different

values and components of the object can be edited separately for each instance of

the prefab.

There are eight different Scenes that compose the full project: one for each of the six

chapters or levels, one for the main menu and one for the game credits. The internal

structure of each scene, as well as the transitions between them, will be discussed

later on.

The folder Sprites stores all the different visual and artistic elements created for the

game. Animation-related assets are also included in this folder.

All the scripts and other technical assets are held in the same folder. Each script will

be commented in full detail when the object they affect is explained; however, there

are two scripts which have an effect on the whole game:

 Globals.cs: This script contains static variables and functions that can be

accessed by every other script. As of now, there is only one global variable

in the game, named InputType. This variable is an integer that stores the

current input type the player is using, so as to adapt the interface

depending on the controller used. If the integer’s value is 0, the player is

currently using mouse and keyboard; if the value is 1, the player is using a

PlayStation controller and, if it is 2, the user is playing with an XBOX

controller.

53

 PlayerActionControls.cs: This script is made and updated after creating

and editing the Input Action asset of the same name. This asset contains

all the different input actions the player can do, as well as their associated

bindings and control schemes.

There are ten different actions the player can do, each with two bindings;

one for keyboard and one for gamepad, be it a PlayStation or an XBOX

controller. For each action several properties can be edited, such as the

type of interaction; in case the button has to be pressed or held. The ten

input actions include the general movement, running, climbing, crouching,

interacting, using the Knowledge, protecting, interacting with the Light,

underwater movement and pausing the game (see Figure 6.3).

Control schemes are useful to detect the current input type or to change

properties depending on the controller the player is using. For our project,

there are three different control schemes; one for PC, one for PlayStation 4

and one for XBOX. Although the properties do not differ from one another,

having three separate control schemes is needed in order to detect a

change in the current input type. To see the final game controls and the

binding for each action, see section 11.3.

Figure 6.3. Input Action asset for WAVA

Unity incorporates a system of layering and tagging GameObjects, which is used to

detect the object’s type in triggers or when a collision occurs. Apart from the default

ones, eight new tags and fifteen layers were added for this project. Provided that it

has any importance or relevance, when defining an object, its tag and layer will be

stated.

54

6.3. Scene structure

The scenes that correspond to the different levels or chapters follow a very similar

hierarchy, with only a few variations from one to another. The overall structure for

these scenes is (see Figure 6.4):

 Controller, which controls the game’s behaviour, user input and

cinematics.

 Character, which corresponds to the Mind, the user controlled character.

 Light, which corresponds to the Light, the AI controlled character. Due to

the game’s narrative, this object is exclusive to chapters one and two.

 Main Camera, which corresponds to the main rendering camera.

 Base, which stores general level objects, such as background elements or

checkpoints.

 Zones, which distributes all the different world elements in several zones in

order to facilitate the level building.

 Canvas, which corresponds to the user interface and stores the different

images, menus and HUD elements.

 EventSystem, which is tied to the Canvas and is responsible for

processing and handling events in the scene.

Figure 6.4. Scene structure and hierarchy of Chapter 1

In this section we will not analyse the main characters’ GameObjects, as they will

be defined in full detail on sections 6.4.1 and 0.

6.3.1. Controller

The GameObject Controller is present in every scene. It includes mainly two

scripts; GameController.cs and InputTypeController.cs, the latter accompanied by

a Player Input component. It also includes the scripts related to any start of level

cinematics or, in chapters four and six, the full chapter animation.

55

Class GameController

The class defined in the script GameController.cs is in charge of controlling the

general functioning of the game. As of now, the GameController’s main purpose

is to handle the game’s pausing and unpausing.

For simplicity purposes, some of the actions the GameController could also be in

charge of, such as managing the HUD or the respawn of the player, are

controlled by the same player object (see section 6.4.1).

From now on, for all different classes we will list every variable and function,

along with their type, visibility and a description of their behaviour. The length of

this description will depend on the importance and complexity of every element.

 Variables

o Chapter (Integer/Public): The current chapter.

o PauseMenu (GameObject/Public): Pause menu’s prefab in the

scene.

o Character (GameObject/Public): Character’s prefab in the

scene.

o playerActionControls (PlayerActionControls/Private):

Instance of our Input Action class.

o paused (Boolean/Private): Is the game currently paused?

 Functions

Start (Void/Private)

Initializes the Character, hides the PauseMenu and sets the PauseGame

function to be executed when the pause button is pressed. The expression

to connect the method PauseGame with its respective input action from

PlayerActionControls is:

playerActionControls.Main.Pause.performed += _ => PauseGame();

PauseGame (Void/Public)

Depending on whether the game is currently paused or not, toggles the

character’s activeness, and shows or hides the pause menu.

Awake/OnEnable/OnDisable (Void/Private)

Creates an instance of PlayerActionControls, enables and disables it,

respectively.

56

Class InputTypeController

The class defined in the script InputTypeController.cs is in charge of detecting

and handling changes on the type of controlling device the player is using. This

class is mainly used to adapt the tutorial prompts according to the current

controller used by the player.

 Variables

o playerInput (PlayerInput/Public): A wrapper around the input

system that takes care of managing input actions and players.

 Functions

OnEnable/OnDisable (Void/Private)

Subscribes and unsubscribes the method onInputDeviceChange when the

user input is changed.

onInputDeviceChange (Void/Private)

Arguments: InputUser, InputUserChange, InputDevice

Listens for changes in the control scheme being used. If a change is

detected, changes the global variable InputType according to the current

control scheme being used in the PlayerInput.

void onInputDeviceChange(InputUser user, InputUserChange change, InputDevice

device)
{

 if (change == InputUserChange.ControlSchemeChanged)
 {
 switch (playerInput.currentControlScheme)
 {
 case "PC":
 Globals.InputType = 0;
 break;
 case "PS4":
 Globals.InputType = 1;
 break;
 case "XBOX":
 Globals.InputType = 2;
 break;
 }
 }
}

57

6.3.2. Camera

The main rendering camera in each scene uses most of Unity’s default settings,

except a slight increment of its size. Its hierarchy consists of two children

GameObjects; the first one includes the scene’s sky sprite, while the second one

includes the two cinematic bars placed on both ends of the screen. In addition,

the camera also includes a script component, named CameraFollow (see Figure

6.5 and Figure 6.6).

Figure 6.5. Hierarchy of the scene's main camera

Figure 6.6. Camera object in Unity's editor

Class CameraFollow

The class defined in the script CameraFollow.cs is in charge of moving the

camera around in order to constantly follow and keep the player in frame along all

playable chapters.

 Variables

o target (GameObject/Public): The object to follow around, in our

case, the main character.

o offset (Vector3/Public): The camera position’s offset in relation

to the target.

o smoothFactor (Float/Public): Multiplier to make the

interpolation between camera positions less abrupt.

o inCinematic (Boolean/Private): Is the camera in a cinematic?

o xOffset/yOffset (Float/ Private): Initial horizontal and

vertical camera position’s offset.

58

 Functions

Start (Void/Private)

Initialize xOffset and yOffset according to the initial camera horizontal and

vertical offset.

Update (Void/Private)

If the camera is not in a cinematic, move it to follow the target.

Follow (Void/Private)

Changes the horizontal and vertical offset of the camera depending on the

direction the player is facing and its current vertical position. On the

horizontal axis, the camera always shows a greater portion of what is in

front of the player. As for the vertical axis, the higher the main character is,

the lower the vertical offset’s value is.

These values are smoothly changed by using the function Lerp inside the

Mathf library, which interpolates linearly between two values in a given

time. For instance:

offset.x = Mathf.Lerp(offset.x, xOffset, Time.deltaTime*smoothFactor/5);

After both offsets are set, the camera position is interpolated to its new

target position by also using the function Lerp. Due to our game’s

cinematic nature, creating a gentle camera movement is very important;

hence all interpolations being regulated by the smoothFactor value.

toggleCinematic (Void/Private)

Switches the value of the inCinematic variable and changes the vertical

offset depending on the target’s current position.

getOffset (Void/Private)

Returns the current camera’s position offset.

59

6.3.3. Background

All six chapter scenes, as well as the main menu, share the same background
composition, which includes two layers of mountains, trees and clouds.

Class ParallaxBackground

The background elements appear livelier due to a parallax effect. This causes the

different layers to move quicker the closer they are supposed to be from the

camera, as well as repeating themselves infinitely. In order to do this infinite

scrolling effect, the draw mode of the background sprites must be set to tiled.

These effects are implemented in the script ParallaxBackground.cs.

 Variables

o parallaxEffectMultiplier (Vector2/Public): The horizontal

and vertical values of the parallax multiplier. These values range

from zero to one and, the closer they are to one, the smaller the

difference between the object and camera’s movement is.

o cameraTransform (Transform/Public): Main camera’s transform

component.

o lastCameraPosition (Vector3/Private): Last position of the

camera.

o textureUnitSizeX/textureUnitSizeY (Float/Private):

Texture’s unit size, obtained by dividing the texture's width and

height by the sprite's pixels per unit

 Functions

Start (Void/Private)

Initializes the camera’s transform, its last position, and computes its texture

unit size.

LateUpdate (Void/Private)

Calculates how much the camera has moved since the last frame and

adds this value, multiplied by the parallax effect factors, in order to move

the object. In addition, if the player has moved past the texture’s unit size,

the background element is relocated to a new position in order to create a

seamless and infinite scrolling effect.

The three playable chapters’ contain weather elements, which are an addition to

the scene’s overall background. The two weather types implemented for this

game are rain and wind.

60

Class RainZone

Rain falls down through the whole of chapters one and two. In order to create an

efficient rain effect, the rain is separated into different zones which are

implemented in the script RainZone.cs. Each RainZone object has a

BoxCollider2D component to detect the player and a particle system that

constantly emits rain drops from the top of the screen until there are up to two

thousand particles. Each one of these rain particles collides with all different

environment elements, the main characters and the Setbacks. When coming into

contact with these objects, a splash spritesheet animation is started and, once

finished, the particle is deleted (see Figure 6.7).

Figure 6.7. RainZone prefab in Unity's editor

 Variables

o Character (GameObject/Public): Character’s prefab in the

scene.

o isActive (Boolean/Public): Is the character inside the collider

and should the particle system emit rain drops?

o ps (ParticleSystem/Private): The rain zone’s particle system.

o em (ParticleSystem.EmissionModule/Private): The rain

zone’s particle system emission module.

 Functions

Awake (Void/Private)

Initialize the particle system and its emission module.

Start (Void/Private)

Finds the Character in the scene by its tag and enables the particle

system’s emission module if the rain zone should start as active.

OnTriggerEnter2D (Void/Private)

Arguments: Collider2D

If the Collider2D is tagged as “Player” and it has entered the rain zone, it

enables the emission of the particles.

61

OnTriggerExit2D (Void/Private)

Arguments: Collider2D

If the Collider2D is tagged as “Player” and it has exited the rain zone, it

disables the emission of the particles.

Class WindEmitter

Along the fifth chapter, five gusts of wind are emitted and swirl across the screen

every few seconds. This wind effect is made possible by a particle system

component and a simple method implemented in the script WindEmitter.cs (see

Figure 6.8).

Figure 6.8. WindEmitter prefab in Unity's editor

 Variables

o mainCamera (Camera/Public): The scene’s rendering camera.

o ps (ParticleSystem/Private): The wind emitter’s particle

system.

 Functions

Start (Void/Private)

Gets the particle system component and sets the function EmitWind to

execute every five seconds.

EmitWind (Void/Private)

Moves the emitter to the main camera's position, with a slight offset to the

left, and plays the particle system’s animation.

62

6.3.4. Canvas

All the scenes include a Canvas object, which stores the different user interface

elements. This object is scalable with screen size, with a reference resolution of

1920 x 1080, so as to preserve the UI’s composition and aspect in different

screens.

Figure 6.9. Hierarchy of the Canvas in a chapter scene

The scenes for the six chapters have an identical hierarchy of the Canvas, having

as children the following elements (see Figure 6.9):

 The HUD, which will be explained in full detail in section 6.6.3.

 A black screen, which is faded in and out in order to create smoother

transitions between chapters.

 A cover with the chapter’s number and title, which is shown at the start of

the scene.

 The pause menu, which will be explained in full detail in section 6.6.2.

63

6.4. Objects

Several GameObjects, along with their respective components and default values,

were saved as prefabs in order to use them in various scenes.

6.4.1. Character

The main character, the Mind, is the most complex GameObject and contains the

largest script, named PlayerController.cs, which includes a wide array of variables

and functions.

Figure 6.10. Hierarchy of the Character prefab

The prefab has three children objects: a Halo prefab (see section 6.4.4) and two

trigger BoxCollider2Ds that represent the positions where the auxiliary platform

can be built (see Figure 6.10). In Figure 6.11 and Figure 6.12 we can see the

Character prefab’s appearance in Unity’s editor and in-game, respectively.

Figure 6.11. Character prefab in Unity's editor

Figure 6.12. Character prefab in-game

64

The principal object is tagged as Player, layered as Character and contains the

following components:

 SpriteRenderer, which renders the current animation’s frame.

 CapsuleCollider2D, which provokes the character to collide with the

environment.

 Rigidbody2D (Dynamic), which causes the character to be affected by

physics and other forces.

 Animator, which controls the different character animations. There are ten

animations or states that transition from one to the other based on the

values of seven different parameters. Apart from these, eight additional

separate states are also included (see Figure 6.13 and Figure 6.14).

Figure 6.13. Character’s animator controller states, transitions and parameters

Figure 6.14. Character’s animator controller separate

65

 Variables

Since the number of variables is quite considerable, they have been split into

different groups depending on their type.

Controls:

o playerActionControls (PlayerActionControls/Private):

Instance of our Input Action class.

Object components:

o rb (Rigidbody2D/Private): The character’s rigid body component.

o col (CapsuleCollider2D/Private): The character’s collider

component.

o sr (SpriteRenderer/Private): The character’s sprite renderer

component.

o anim (Animator/Private): The character’s animator component.

Layer masks:

o climbLayerMask (LayerMask/Private): GameObjects with the

layers included in this mask can be climbed on.

o crouchLayerMask (LayerMask/Private): GameObjects with the

layers included in this mask can be crouched through.

o moveLayerMask (LayerMask/Private): GameObjects with the layers

included in this mask stop the player’s movement.

o groundLayerMask (LayerMask/Private): GameObjects with the

layers included in this mask can be walked on.

o buildLayerMask (LayerMask/Private): GameObjects with the

layers included in this mask impede the character from building an

auxiliary platform.

General values:
o speed (Float/Public): The character’s movement speed.

o rayLength (Float/Public): The default length of the ray when ray

casting.

o knowledge (Float/Public): The current amount of Knowledge

gathered by the player.

o knowledgeForBox (Float/Private): Knowledge orbs that need to

be collected in order to build an auxiliary platform.

o lives (Integer/Private): The current character’s lives.

Checkpoints:
o initialPosition (Vector3/Private): The character’s start position

in the current scene.

o lastCheckpoint (Vector3/Private): The position of the last

reached checkpoint.

66

User interface:
o knowledgeBar (KnowledgeBar/Public): Reference to the HUD’s

Knowledge slider.

o livesSlots (LivesSlots/Public): Reference to the HUD’s lives

slots.

References to objects and prefabs:
o theHalo (GameObject/Public): Reference to the character’s Halo

child object.

o theLight (GameObject/Public): Reference to the Light’s prefab in

the scene.

o characterPlatform (GameObject/Public): Reference to the

auxiliary platform’s prefab that can spawned in building zones.

o boxFeedback (GameObject/Public): Reference to the prefab that is

spawned when an auxiliary platform cannot be built.

o knowledgeBox (GameObject/Private): Reference to the auxiliary

platform that is currently placed in the scene.

o rightBox/leftBox (Transform/Public): The transform

components of the character’s child BoxCollider2D triggers, which

represent the places where the auxiliary platform can be spawned.

References to currently interactable world objects:
o climbablePlatform (GameObject/Private): Reference to the

platform object that is currently within reach and can be climbed onto.

o interactableLever (GameObject/Private): Reference to the lever

object that is currently within reach and can be interacted with.

o pickableKnowledge (GameObject/Private): Reference to the

Knowledge object that is within reach and can be picked up.

The Light:
o hasLight (Boolean/Public): Is the Light present in the current

scene?

o isInteractingWithLight (Boolean/Private): Is the character

interacting with the Light?

General boolean behaviour control:
o isCurrentlyActive (Boolean/Private): Can the user control the

character right now?

o isClimbing (Boolean/Private): Is the player climbing a platform?

o isFalling (Boolean/Private): Is the player falling down?

o isCrouching (Boolean/Private): Is the player crouching?

o isRunning (Boolean/Private): Is the player running?

o isProtecting (Boolean/Private): Is the player protecting itself?

o isDying (Boolean/Private): Is the dying animation being played?

67

o isInWater (Boolean/Private): Is the player swimming underwater?

o isInCinematic(Boolean/Private): Is the player in a cinematic?

o facingLeft (Boolean/Private): Is the player facing towards the left

of the screen?

o canClimbLeft/canClimbRight (Boolean/Private): Is there a

platform within reach on the left/right side of the player?

o canProtect (Boolean/Public): Is the player able to protect itself

currently?

Auxiliary platform:

o boxPlaced (Boolean/Private): Is there an auxiliary platform in the

scene that can be recovered by the player?

o inBuildingZone (Boolean/Private): Is the player inside a building

zone?

 Functions

Awake (Void/Private)

Creates a PlayerActionControls instance and initializes the object’s

components.

OnEnable/OnDisable (Void/Private)

Enables and disables the PlayerActionControls instance.

Start (Void/Private)

Called before the first frame update. Initializes all layer masks, updates the

heads up display, saves the start position as the first checkpoint and connects

a method of the class to a specific input action.

 void Start()
 {
 climbLayerMask = LayerMask.GetMask("Platform", "Tunneled Platform");
 moveLayerMask = LayerMask.GetMask("Platform", "Tunneled Platform", "Environment",

 "Tunnel", "Knowledge", "Lever", "Ground");
 buildLayerMask = LayerMask.GetMask("Platform", "Tunneled Platform", "Environment",

 "Tunnel", "Knowledge", "Lever", "Ground",
 "Build Block");

 crouchLayerMask = LayerMask.GetMask("Tunneled Platform", "Tunnel");
 groundLayerMask = LayerMask.GetMask("Ground", "Platform", "Tunneled Platform",

 "Environment");

 […]

 playerActionControls.Main.Run.started += _ => StartRunning();
 playerActionControls.Main.Run.canceled += _ => StopRunning();
 playerActionControls.Main.Protect.performed += _ => Protect();
 playerActionControls.Main.Crouch.performed += _ => Crouch();
 playerActionControls.Main.Climb.performed += _ => Climb();
 playerActionControls.Main.Interact.performed += _ => Interact();
 playerActionControls.Main.Knowledge.performed += _ => UseKnowledge();
 playerActionControls.Main.Light.performed += _ => LightInteraction()
 }

68

Update (Void/Private)

Called once per frame. If the player is active and not climbing, reads the value

of the user’s movement input and moves the character. If the character is

underwater, does the same for the underwater movement input. On the other

hand, if the player is on solid ground, detects if it is falling.

void Update()
{
 if (isCurrentlyActive)
 {

 if (!isClimbing)
 {

 float movementInput=playerActionControls.Main.Movement.ReadValue<float>();
 MoveCharacter(movementInput);

 if (isInWater)
 {
 float waterMovementInput=playerActionControls.Main.Water.ReadValue<float>();
 WaterMoveCharacter(waterMovementInput, movementInput);
 }

 else
 DetectFalling();
 }
 }
 }

MakeActive (Void/Public)

Sets the variable isCurrentlyActive to true.

MakeInactive (Void/Public)

Sets the variable isCurrentlyActive to false and sets the animator’s movement

parameter’s value to zero so as to transition to an idle state.

IsActive (Boolean/Public)

Returns the variable isCurrentlyActive.

MoveCharacter (Void/Private)

Arguments: Float

Changes the direction the player is facing depending on the value of the float

argument’s value; if the movementInput is negative, the character faces left;

else, it faces right. If the player can move, changes its current horizontal

position. Also, updates the necessary animator parameters’ values.

69

private void MoveCharacter(float movementInput)
{
 […]

 if (CanMove(movementInput))
 {
 anim.SetFloat("Movement", Mathf.Abs(movementInput));
 if (movementInput < -0.1 || movementInput > 0.1)
 {
 Vector3 currentPosition = transform.position;
 currentPosition.x += movementInput * speed * Time.deltaTime;
 transform.position = currentPosition;
 }
 }

 […]

 }

CanMove (Boolean/Private)

Arguments: Float

Checks the character’s ability to move based on the movementInput

argument’s value. Emits a ray in each horizontal direction to detect objects

belonging to the moveLayerMask. If the character is crouching and a collision

is found in its way, the collision’s layer is checked in case it is also included in

the crouchLayerMask.

private bool CanMove(float movementInput)
{
 […]

 RaycastHit2D hitL = Physics2D.Raycast(transform.position, Vector2.left, length,

 moveLayerMask);
 RaycastHit2D hitR = Physics2D.Raycast(transform.position, Vector2.right, length,

 moveLayerMask);

 if ((hitL.collider != null && movementInput < 0) ||

 (hitR.collider != null && movementInput > 0))
 {
 if (isCrouching)

 {
 bool isCrouchable;

 if (hitL.collider != null)
 isCrouchable=((crouchLayerMask.value & (1 << hitL.collider.gameObject.layer))

 > 0);
 else
 […]
 return isCrouchable;
 }

 return false;
 }

 return true;
}

70

WaterMoveCharacter (Void/Private)

Arguments: Float, Float

Similar to the regular MoveCharacter function; however, only moves the

character in the vertical axis. Depending on the vertical and horizontal

movement input, the character’s sprite has to be flipped in different directions

(see Figure 6.15).

Figure 6.15. Character moving through water in-game

WaterCanMove (Boolean/Private)

Arguments: Float, Float

Similar to the regular CanMove function; however, only emits the rays in the

vertical axis.

StartRunning (Void/Private)

Called when the Running input action’s button is pressed. Emits a ray

upwards to look for environment elements blocking the player. If nothing is

detected, changes the character’s speed and updates the necessary variables

and animator’s parameters (see Figure 6.16 and Figure 6.17).

Figure 6.16. Spritesheet of the character's running animation

Figure 6.17. Character running in-game

71

StopRunning (Void/Private)

Called when the Running input action’s button is released. Changes the

character’s speed and updates the necessary variables and parameters.

DetectFalling (Void/Private)

Emits a ray downwards to look for ground objects. If nothing is detected,

updates the necessary variables and animator’s parameters (see Figure 6.18).

Figure 6.18. Spritesheet of the character's falling animation

faceLeft (Void/Private)

Flips the character’s sprite to the left and updates the variable isFacingLeft.

faceRight (Void/Private)

Flips the character’s sprite to the right and updates the variable isFacingLeft.

isFacingLeft (Boolean/Public)

Returns the variable isFacingLeft.

Interact (Void/Private)

Called when the Interact input action’s button is pressed. If the

pickableKnowledge is not null, picks the Knowledge up. Alternatively, if the

interactableLever is not null and it is active, the lever is activated.

private void Interact()
{
 if (isCurrentlyActive && !isFalling)
 {

 if (pickableKnowledge != null)
 {

 pickableKnowledge.GetComponent<Knowledge>().PickUp();
 }
 else if (interactableLever != null)
 {
 if (interactableLever.GetComponent<Lever>().isCurrentlyInteractable())
 {
 if (isCrouching) Crouch();
 interactableLever.GetComponent<Lever>().Activate();
 StartCoroutine(LeverInteraction());
 }
 }
[…]

setPickableKnowledge (Void/Public)

Arguments: GameObject, Boolean

Sets the GameObject argument as the pickableKnowledge if the boolean

argument is true; null otherwise (see Figure 6.19).

72

Figure 6.19. Character with pickable Knowledge in-game

setInteractableLever (Void/Public)

Arguments: GameObject, Boolean

Sets the GameObject argument as the interactableLever if the boolean

argument is true; null otherwise.

LeverInteraction (IEnumerator/Private)

Makes the character inactive and moves next to the lever. Sets the animator

to play the LeverInteraction state, stops for a few seconds and then goes back

to its Idle state. If the lever does not stop the player while its associated object

is moving, the character is made active again (see Figure 6.20 and Figure

6.21).

Figure 6.20. Spritesheet of the character's lever interaction animation

Figure 6.21. Character interacting with lever in-game

73

Crouch (Void/Private)

Called when the Crouch input action’s button is pressed. Emits a ray upwards

to look for environment elements blocking the player. If nothing is detected

and the player is crouching, toggles the player to not crouch anymore.

Otherwise, sets the character to be crouching (see Figure 6.22 and Figure

6.23).

private void Crouch()
{
 if (isCurrentlyActive && !isClimbing && !isInWater)
 {
 RaycastHit2D hitUp = Physics2D.Raycast(transform.position, Vector2.up, rayLength,

 moveLayerMask);

 if (isCrouching && hitUp.collider == null)
 {
 isCrouching = false;
 anim.SetBool("IsCrouching", false);
 if (isRunning) speed = 8;
 if (hasLight) theLight.GetComponent<Light>().toggleIsCrouching(false);
 }

 else
 {
 if (isRunning) StopRunning();
 isCrouching = true;
 anim.SetBool("IsCrouching", true);
 speed = 4;
 if (hasLight) theLight.GetComponent<Light>().toggleIsCrouching(true);
 }
 }
}

Figure 6.22. Spritesheet of the character's crouching idle and moving animations

Figure 6.23. Character crouching in-game

74

Climb (Void/Private)

Called when the Climb input action’s button is pressed. Detects nearby

climbable platforms and, if one is found, prepares the character to climb by

updating the necessary variables and animator’s parameters and moving it

next to the platform (see Figure 6.24 and Figure 6.25).

Figure 6.24. Spritesheet of the character's climbing animation

private void Climb()
{
 if (isCurrentlyActive && !isClimbing && !isFalling)
 {
 DetectClimbablePlatforms();

 if (canClimbLeft || canClimbRight)
 {
 if (isProtecting) theHalo.GetComponent<Halo>().HideHalo(true);
 if (isCrouching) Crouch();

 isClimbing = true;
 anim.SetFloat("Movement", 0);
 anim.SetBool("IsClimbing", true);

 rb.isKinematic = true;
 rb.velocity = Vector2.zero;

 if (canClimbLeft)
 {
 faceLeft();
 transform.position =

climbablePlatform.GetComponent<Platform>().getDownRightPosition();
 }
 else if (canClimbRight)
 {
 faceRight();
 transform.position =

 climbablePlatform.GetComponent<Platform>().getDownLeftPosition();
 }
 […]

Figure 6.25. Character climbing in-game

75

StartClimb (Void/Private)

Called as an event at the first frame of the Climbing animation. Changes the

character’s position in order to adapt to the increment of size of the climbing

spritesheet.

FinishClimb (Void/Private)

Called as an event at the last frame of the Climbing animation. Updates the

necessary variables and animator parameters and moves the character on top

of the platform.

DetectClimbablePlatforms (Void/Private)

Emits a ray in each horizontal direction to detect objects belonging to the

climbLayerMask. In addition, emits a ray upwards to detect possible

environment blockings.

private void DetectClimbablePlatforms()
{
 […]

 RaycastHit2D hitL=Physics2D.Raycast(transform.position,Vector2.left,length,climbLayerMask);
 RaycastHit2D hitR=Physics2D.Raycast(transform.position,Vector2.right,length,climbLayerMask);
 RaycastHit2D hitUp=Physics2D.Raycast(transform.position,Vector2.up,rayLength*2,moveLayerMask);

 if (hitL.collider != null && (hitUp.collider == null || isInWater))
 {
 if (pickableKnowledge==null || pickableKnowledge.transform.position.x>transform.position.x)
 {
 canClimbLeft = true;
 climbablePlatform = hitL.collider.gameObject;
 }
 }

 else if (hitR.collider != null && (hitUp.collider == null || isInWater))
 {
 if (pickableKnowledge==null || pickableKnowledge.transform.position.x<transform.position.x)
 {
 canClimbRight = true;
 climbablePlatform = hitR.collider.gameObject;
 }
 }

 else
 {
 canClimbLeft = canClimbRight = false;
 climbablePlatform = null;
 }
}

FullKnowledge (Boolean/Public)

Returns true if the player has the necessary Knowledge to build a platform.

AddKnowledge (Void/Public)

Adds a Knowledge unit and updates the HUD’s Knowledge slider.

76

UseKnowledge (Void/Private)

Called when the Knowledge input button is pressed and held. If an auxiliary is

placed and the character is in a building zone, that box is recovered and the

HUD is updated, as well as the necessary variables. On the other hand, if an

auxiliary is not placed and the character has full Knowledge, two rays are

emitted in order to detect objects that may block the auxiliary platform that will

be built. If there are no blockings in front of the character or on top of it, an

auxiliary platform is instantiated and the HUD is updated, as well as the

necessary variables. However, if the platform cannot be built, a

CharacterPlatformFeedback prefab is instantiated (see Figure 6.26).

private void UseKnowledge()
{
 if (boxPlaced)
 {
 if (isCurrentlyActive && inBuildingZone)
 {
 Destroy(knowledgeBox);
 boxPlaced = false;

 knowledge = knowledgeForBox;
 knowledgeBar.SetKnowledge(knowledge);
 }
 }

 else
 {
 if (FullKnowledge() && isCurrentlyActive && inBuildingZone)
 {

 if (facingLeft)
 {
 RaycastHit2D hitUp = Physics2D.Raycast(leftBox.position, Vector2.up,

 rayLength * 2, buildLayerMask);
 RaycastHit2D hitL = Physics2D.Raycast(transform.position, Vector2.left,

 rayLength * 1.5f, buildLayerMask);

 if (hitL.collider == null && hitUp.collider == null)
 {
 knowledgeBox=Instantiate(characterPlatform,leftBox.position,

 Quaternion.identity);
 boxPlaced = true;
 knowledge = 0f;
 knowledgeBar.SetKnowledge(knowledge);
 }

 else
 {
 Instantiate(boxFeedback, leftBox.position, Quaternion.identity);
 }
 }

 else
 {
 […]

77

Figure 6.26. Character using the Knowledge in-game

changeInBuildingZone (Void/Public)

Arguments: Boolean

Sets the character to be in a building zone or not, depending on the boolean

argument’s value.

resetBox (Void/Public)

Sets the character to not have an auxiliary platform currently placed.

LightInteraction (Void/Private)

Called when the Light input action’s button is pressed. If the Light is present in

the current scene, the Light’s interact function is executed.

playerHasLight (Boolean/Public)

Returns true if the Light is present in the current scene.

changeIsInteractingWithLight (Void/Public)

Arguments: Boolean

Sets the character to be interacting with the Light or not, depending on the

boolean argument’s value.

Protect (Void/Private)

Called when the Protect input action’s button is pressed. If the character is

currently able to protect itself and the Light is present, the Light’s protect

function is executed. On the other hand, if the character can protect itself but

the Light is not in the scene, the Halo’s protect function is called (see Figure

6.27).

78

private void Protect()
{
 if (canProtect && !isProtecting && isCurrentlyActive && !isClimbing)
 {
 if(hasLight)
 theLight.GetComponent<Light>().Protect();
 else
 theHalo.GetComponent<Halo>().Protect(false);
 }
}

Figure 6.27. Character protecting itself in-game

CinematicProtect (Void/Public)

Called when the Protect input action’s button is pressed and the character is

in a cinematic. The Halo’s protect function is called.

changeCanProtect (Void/Public)

Arguments: Boolean

Sets the character to be able to protect or not, depending on the boolean

argument’s value.

changeIsProtecting (Void/Public)

Arguments: Boolean

Sets the character to be currently protecting or not, depending on the boolean

argument’s value.

Protecting (Boolean/Public)

Returns true if the character is currently protecting itself.

GetHit (Void/Public)

Arguments: Integer, String

Takes out the number of lives defined by the integer argument and updates

the HUD. If the character’s lives are larger than zero, the Hurting co-routine is

called. Alternatively, the Death co-routine is executed.

The string argument defines the cause of damage, which can be: “light”, if the

light has entered a body of water; “spikes”, if the character has fallen onto a

spike trap; and “left” or “right”, depending on the direction from which the

Setback has attacked the player (see Figure 6.28).

79

Figure 6.28. Character getting hit in-game

Death (IEnumerator/Private)

Arguments: String

Makes the player inactive and, if the string argument is “light”, stalls for two

seconds. Plays the death animation and, after a three second pause,

respawns the player (see Figure 6.29).

Figure 6.29. Spritesheet of the character's death animation

IEnumerator Death(string from)
{
 MakeInactive();
 changeIsInCinematic(true);

 sr.flipY = false;

 isDying = true;

 if (from == "light")
 {
 theLight.GetComponent<Light>().Die();
 yield return new WaitForSeconds(2f);
 }

 if (!isInWater) anim.Play("Death");
 else anim.Play("Water Death");

 yield return new WaitForSeconds(3f);

 Respawn();
 }

Hurting (IEnumerator/Private)

Arguments: String

Makes the player inactive and plays the hurting animation. If the string

argument is “left” or “right”, applies a force on the character towards the

opposite direction. Stalls for one second, plays the character’s idle animation

and reactivates it (see Figure 6.30).

80

Figure 6.30. Spritesheet of the character's hurting animation

IEnumerator Hurting(string from)
 {
 MakeInactive();
 changeIsInCinematic(true);

 sr.flipY = false;

 if (isCrouching && !isInWater) anim.Play("Crouching Hurting");
 else if (!isCrouching && !isInWater) anim.Play("Hurting");
 else anim.Play("Water Hurting");

 if (from == "left") rb.AddForce(Vector3.right * 250f);
 else if (from == "right") rb.AddForce(Vector3.left * 250f);

 yield return new WaitForSeconds(1f);

 if(!isFalling) rb.velocity = Vector2.zero;

 if (!isDying)
 {
 if (isCrouching && !isInWater) anim.Play("Crouching Idle");
 else if (!isCrouching && !isInWater) anim.Play("Idle");
 else anim.Play("Water Idle");

 MakeActive();
 changeIsInCinematic(false);
 }
 }

GetLives (Integer/Public)

Returns the current number of lives.

GetIsProtecting (Boolean/Public)

Returns true if the character is currently protecting.

UpdateCheckpoint (Void/Public)

Arguments: Vector3

Sets the Vector3 argument’s value as the position of the latest checkpoint

reached by the player.

Respawn (Void/Private)

Resets the player to its idle state, refills its lives, moves it to the nearest

checkpoint and updates the heads up display. If the Light is present, it is also

respawned.

81

private void Respawn()
{
 […]

 if (hasLight)
 {
 theLight.transform.position = lastCheckpoint;
 theLight.GetComponent<Light>().Respawn();
 }

 transform.position = lastCheckpoint;

 lives = 5;
 livesSlots.SetLives(lives);

 anim.Play("Idle");
}

changeIsInWater (Void/Public)

Arguments: Boolean

Sets the character to be underwater or not, depending on the boolean

argument’s value (see Figure 6.31).

Figure 6.31. Spritesheet of the character's swimming animation

InWater (Boolean/Public)

Returns true if the character is currently underwater.

changeIsInCinematic (Void/Public)

Arguments: Boolean

Sets the character to be in a cinematic or not, depending on the boolean

argument’s value. If this boolean variable is set to true, it prevents the

character from being wrongfully reactivated when the pause menu is closed

by the player.

InCinematic (Boolean/Public)

Returns true if the character is currently in a cinematic.

OnDrawGizmos (Void/Public)

Draws the different rays emitted by the character in Unity’s editor.

82

6.4.2. Light

The non-controllable main character, the Light, is implemented in the script Light.cs

(see Figure 6.32 and Figure 6.34). The prefab only has one child object, a Halo

prefab (see section 6.4.4).

Figure 6.32. Light prefab in Unity's editor

The principal object is tagged and layered as Light and contains the following

components:

 SpriteRenderer, which renders the current animation’s frame.

 CircleCollider2D, which is a trigger that detects other GameObjects.

 Rigidbody2D (Kinematic), which is also needed to detect collisions.

 Animator, which controls the different character animations. There are

three animations or states that transition from one to the other based on

the values of two parameters. Apart from these, one additional separate

state is also included (see Figure 6.33).

Figure 6.33. Light’s animator controller states, transitions and parameters

83

 Variables

o target (GameObject/Public): Reference to the object that the Light

will follow around; in our case, the Character.

o offset (Vector3/Public): Position offset in relation to the target.

o smoothFactor (Float/Public): Multiplier to make Light’s movement

less abrupt.

o xOffset (Float/Private): The horizontal value of the Light’s offset.

o anim (Animator/ Private): The Light’s animator component.

o sr (SpriteRenderer/Private): The Light’s sprite renderer

component.

o isCurrentlyActive (Boolean/Private): Is the Light active and

following the target?

o isInteracting (Boolean/Private): Is the Light being interacted

with?

o isClimbing (Boolean/Private): Is the Light waiting for the character

to climb?

o timesInteracted (Integer/Private): Amount of times the

character has interacted with the Light.

o theHalo (GameObject/Public): Reference to the Light’s Halo child

object.

Figure 6.34. Light prefab in-game

 Functions

Awake (Void/Private)

Initializes the object’s components.

Start (Void/Private)

Called before the first frame update. Finds the character by its tag and saves

the horizontal offset.

Update (Void/Private)

Called once per frame. If the Light is currently active and the character is not

climbing, executes the Follow function.

84

Follow (Void/Private)

Changes the horizontal position offset depending on the direction the

character is facing. Then, moves smoothly to its new position based on the

position of the target.

void Follow()
{
 if (target.GetComponent<PlayerController>().isFacingLeft())
 {
 offset.x = xOffset;
 if(!isInteracting) sr.flipX = true;
 }

 else
 {
 offset.x = -xOffset;
 if (!isInteracting) sr.flipX = false;
 }

 Vector3 targetPosition = target.transform.position + offset;
 Vector3 smoothPosition = Vector3.Lerp(transform.position, targetPosition,

 smoothFactor * Time.deltaTime);
 transform.position = smoothPosition;
}

Protect (Void/Public)

If the Light is currently active, calls its Halo’s protect function (see Figure

6.35).

Figure 6.35. The Light protecting in-game

Interact (Void/ Public)

If the Light is currently active, sets itself as being interacted with and starts the

DoInteraction co-routine.

DoInteraction (IEnumerator/Private)

Depending on the parity of the timesInteracted variable’s value, does a shake

animation or a circle animation. After a short delay, the Light goes back to its

idle state and sets itself as interactable again.

85

IEnumerator DoInteraction()
{
 if(timesInteracted % 2 == 0)
 anim.SetBool("ShakeInteraction", true);
 else
 anim.SetBool("CircleInteraction", true);

 yield return new WaitForSeconds(1.5f);

 […]

 target.GetComponent<PlayerController>().changeIsInteractingWithLight(false);
 isInteracting = false;
 }

Die (Void/Public)

Calls the Death co-routine.

Death (IEnumerator/Private)

Makes itself inactive, plays its fading out animation and waits for a few

seconds.

Respawn (Void/Public)

Sets itself as active and plays its idle state.

toggleIsCrouching (Void/Public)

Arguments: Boolean

Changes its vertical position offset depending on the boolean argument’s

value.

toggleIsClimbing (Void/Public)

Arguments: Boolean

Sets the itself as waiting, or not, for the character to climb depending on the

boolean argument’s value.

MakeInactive (Void/Public)

Sets the Light as inactive.

MakeActive (Void/Public)

Sets the Light as active.

86

6.4.3. Setbacks

The main enemies of the game, the Setbacks, are implemented in the script

Setback.cs. There are two types of Setback, the kamikaze and the bomber. Due to

their similarities, they share the same script but are saved as two different prefabs

(see Figure 6.36). This prefab only has one child object, called Sprite, which stores

the SpriteRenderer component.

Figure 6.36. Setback (bomber and kamikaze) prefabs in Unity's editor

The principal object is tagged and layered as Setback and contains the following

components:

 CircleCollider2D, which is a trigger that detects other GameObjects.

 ParticleSystem, which contains a particle animation that is played when

the Setback is defeated.

 Variables

o Character (GameObject/Public): Reference to the Character prefab

in the scene.

o attackLayerMask (LayerMask/Private): GameObjects with the

layers included in this mask will be attacked.

o ps (ParticleSystem/Private): The Setback’s particle system

component.

o sr (SpriteRenderer/Private): The Setback’s sprite renderer

component.

o Type (Integer/Public): The type of Setback; zero for bomber, one

for kamikaze.

o Sprite (GameObject/Public): The Sprite child object.

o Knowledge (GameObject/Public): The Knowledge’s prefab.

o Explosion (GameObject/Public): The SetbackExplosion’s prefab.

o speed (Float/Public): The speed of the kamikaze Setback.

o rayLength (Float/Public): The default length of the ray when ray

casting.

o rotation (Float/Private): The rotation of the kamikaze Setback.

o isActive (Boolean/Private): Is the Setback still not defeated?

87

o isAttacking (Boolean/Private): Is the Setback currently attacking?

o isReturningHome (Boolean/Private): Is the Setback going back to

its initial position?

o shake (Boolean/Private): True if the Setback has to shake when a

player is detected; false if it should attack.

o initialPosition (Vector3/Private): The home position.

 Functions

Start (Void/Private)

Finds the Character in the scene by its tag, gets the SpriteRenderer and

ParticleSystem components, saves its initial position and adds the layer

“Character” to the attack layer mask.

Update (Void/Private)

If the character and setback are currently active and the latter is not attacking

or returning home, the DetectPlayer function is called.

DetectPlayer (Void/Private)

Emits four rays that detect collisions on the attackLayerMask. If the character

is detected on the left or right and shake is true, the Shake co-routine is

called; alternatively, the Attack function is called. If the character is in water, it

has been detected on the vertical axis and the Setback is a bomber, the

Shake co-routine is called. However, if the player is not detected, the Setback

returns home.

private void DetectPlayer()
{
 RaycastHit2D hitL = Physics2D.Raycast(transform.position, Vector2.left,

 rayLength, attackLayerMask);
 RaycastHit2D hitR = Physics2D.Raycast(transform.position, Vector2.right,

 rayLength, attackLayerMask);
 RaycastHit2D hitUp = Physics2D.Raycast(transform.position, Vector2.up,

rayLength, attackLayerMask);
 RaycastHit2D hitDown = Physics2D.Raycast(transform.position, Vector2.down,

 rayLength, attackLayerMask);

 if (hitL.collider != null)
 {
 rotation = 600f;
 isAttacking = true;

 if(shake)
 StartCoroutine(Shake());
 else
 Attack(hitL.collider.transform.position);
 }

 else if (hitR.collider != null)
 {

 […]
 }

88

 else if (hitUp.collider != null || hitDown.collider != null)
 {
 if(Type == 0 && Character.GetComponent<PlayerController>().InWater())
 {
 isAttacking = true;

 if (shake)
 StartCoroutine(Shake());
 }
 }

 else
 {
 if (!shake)
 {
 isAttacking = false;

 isReturningHome = true;
 StartCoroutine(GoBackHome());
 }
 }

}

Shake (IEnumerator/Private)

Shakes the Setback for a short time by using the sinus function in Mathf. The

increments or decrements of position are only applied as long as the new

position is not too far from the initial position. Once the shaking animation is

over, it is checked if the player is still nearby.

IEnumerator Shake()
{
 […]

 float shakingSpeed = 0.1f;
 while (isActive && time < duration)
 {
 shakinessX = Random.Range(-0.05f, 0.05f);
 shakinessY = Random.Range(-0.05f, 0.05f);

 float shakeChangeX = Mathf.Sin(shakingSpeed * Time.time) * shakinessX;
 float shakeChangeY = Mathf.Sin(shakingSpeed * Time.time) * shakinessY;

 if (Mathf.Abs((shakingPosition.x + shakeChangeX) - initialPosition.x) < 0.1f)

 shakingPosition.x += shakeChangeX;
 if (Mathf.Abs((shakingPosition.y + shakeChangeY) - initialPosition.y) < 0.1f)

 shakingPosition.y += shakeChangeY;

 transform.position = shakingPosition;

 time += Time.deltaTime;

 yield return null;
 }

 yield return new WaitForSeconds(0.25f);

 shake = false;

 if (Character.GetComponent<PlayerController>().InWater() && Type == 0)
 StartCoroutine(Explode());
 else

 DetectPlayer();
}

89

Attack (Void/Private)

Arguments: Vector3

If the setback is a bomber, explodes. Alternatively, if it is a kamikaze, chases

the target towards the position entered as an argument.

Explode (IEnumerator/Private)

Instantiates an explosion and waits for a few seconds before being able to

attack again (see Figure 6.37).

IEnumerator Explode()
{
 yield return new WaitForSeconds(0.25f);
 if (isActive)
 Instantiate(Explosion, transform.position, Quaternion.identity);

 shake = true;

 yield return new WaitForSeconds(2f);

 isAttacking = false;
}

Figure 6.37. Bomber Setback emitting an explosion in-game

Chase (IEnumerator/Private)

Arguments: Vector3

Moves to the target position entered as an argument. In addition, rotates the

object while moving in order to generate more dynamism (see Figure 6.38).

IEnumerator Chase(Vector3 target)
{
 while (isActive && transform.position != target && isAttacking)
 {
 Vector3 currentEulerAngles = transform.eulerAngles;
 currentEulerAngles.z += rotation * Time.deltaTime;
 transform.eulerAngles = currentEulerAngles;

 transform.position = Vector2.MoveTowards(transform.position, target,

 speed * Time.deltaTime);
 yield return null;
 }
 isAttacking = false;
}

90

Figure 6.38. Kamikaze Setback attacking the player in-game

GoBackHome (IEnumerator/Private)

Returns to its initial position after having launched an attack.

Die (IEnumerator/Private)

Plays the particle system animation, instantiates a Knowledge orb and

reduces its Sprite child object’s size. Once the Sprite’s size is zero, the

Setback GameObject is destroyed.

IEnumerator Die()
{
 float duration = ps.main.duration + 3f;
 float time = 0;

 ps.Play();

 Instantiate(Knowledge, transform.position, Quaternion.identity);

 while (time < duration)
 {
 Sprite.transform.localScale = Vector3.Lerp(Sprite.transform.localScale,

 new Vector3(0, 0, 0), time / duration);
 time += Time.deltaTime;
 yield return null;
 }

 isActive = false;
 Destroy(this.gameObject);
}

Figure 6.39. The Setback's death animation in-game

91

 OnTriggerEnter2D (Void/Private)
Arguments: Collider2D

If the collider that has entered is tagged as Player, the character is hit and, if

the Setback is a kamikaze, it returns to its initial position. On the other hand, if

the collider is tagged as Halo, the Die co-routine is called. Finally, if the

kamikaze Setback collides with a platform, it returns to its home.

void OnTriggerEnter2D(Collider2D col)
{
 if (isActive)
 {
 if (col.gameObject.tag == "Player")
 {
 string from;
 if (col.transform.position.x > transform.position.x) from = "left";
 else from = "right";

 Character.GetComponent<PlayerController>().GetHit(1, from);

 isAttacking = false;

 if (Type == 1)
 {
 isReturningHome = true;
 StartCoroutine(GoBackHome());
 }
 }

 else if (col.gameObject.tag=="Halo" &&

 Character.GetComponent<PlayerController>().Protecting())
 {
 isAttacking = false;
 isActive = false;
 rotation = 0f;
 StartCoroutine(Die());
 }

 else if (col.gameObject.tag == "Platform" && Type == 1)
 {
 isAttacking = false;
 isReturningHome = true;
 StartCoroutine(GoBackHome());
 }
 }
}

OnDrawGizmos (Void/Public)

Draws the different rays emitted by the Setback in Unity’s editor.

92

Explosion

The explosion emitted by the bomber Setback is implemented in the script

Explosion.cs. The principal object is tagged and layered as Setback and contains the

following components (see Figure 6.40):

 SpriteRenderer, which stores and displays the object’s sprite.

 CircleCollider2D, which is a trigger that detects other GameObjects.

Figure 6.40. SetbackExplosion prefab in Unity's editor

 Variables

o Character (GameObject/Public): Reference to the Character prefab

in the scene.

o sr (SpriteRenderer/Private): The object’s sprite renderer

component.

o isExploding (Boolean/Private): Is the Setback currently attacking?

o affectsPlayer (Boolean/Private): Is the explosion currently lethal

to the player?

 Functions

Start (Void/Private)

Finds the Character in the scene by its tag, gets the SpriteRenderer

component and calls the Exploding co-routine.

Exploding (IEnumerator/Private)

Increases itself until reaching its target size. Afterwards, fades itself out by

decreasing its sprite’s alpha value. As soon as the sprite is at 95% opacity, it

stops affecting the player and, when it is completely transparent, the explosion

object is destroyed.

93

IEnumerator Exploding()
{
 […]

 while (time < duration && isExploding)
 {
 transform.localScale = Vector3.Lerp(transform.localScale,

 new Vector3(25f, 25f, 1f), Time.deltaTime / duration);
 time += Time.deltaTime;
 yield return null;
 }

 […]

 while (time < duration && isExploding)
 {
 sr.color = Color.Lerp(sr.color, new Color(1f, 1f, 1f, 0f),

 (Time.deltaTime * 4f) / duration);
 time += Time.deltaTime;

 if(affectsPlayer && sr.color.a < 0.95f)
 {
 affectsPlayer = false;
 }

 yield return null;
 }

 […]

OnTriggerEnter2D (Void/Private)

Arguments: Collider2D

If the collider that has entered is tagged as Player, the character is not

protected and the explosion currently affects the character, the character is

hit.

94

6.4.4. Halo

The player protects itself from Setbacks with a semi-transparent bubble named Halo,

which is implemented in a script with the same name. The Halo object is tagged and

layered as Halo and its components include a SpriteRenderer and two

CircleCollider2Ds, one of which is the trigger that detects the Setbacks.

The non-trigger collider is necessary in order to detect the collision of the rain drops

with the bubble. However, this makes the Halo collide with the environment and

influence the player’s movement. In order to solve this problem, the layer Halo has

been set to only react with objects layered as Setback (see Figure 6.41 and Figure

6.42).

Figure 6.41. Halo prefab in Unity's editor

 Variables

o Character (GameObject/Public): Character’s prefab in the scene.

o sr (SpriteRenderer/Private): The sprite renderer component.

o col (CircleCollider2D/Private): The trigger collider component.

o isProtecting (Boolean/Private): Is the Halo currently active?

 Functions

Start (Void/Private)

Finds the Character object in the scene, gets the components SpriteRenderer

and CircleCollider2D (trigger) and disables both of them.

Protect (Void/Public)

Arguments: Boolean

Enables both the SpriteRenderer and the CircleCollider2D, changes the

Character variables canProtect and isProtecting and starts the Protecting co-

routine. The boolean argument is specifically used for the fourth chapter and

dictates if the player is in a cinematic or not.

95

Figure 6.42. Halo prefab in-game

HideHalo (Void/Public)

Arguments: Boolean

The boolean argument dictates if the Halo sizing down animation should be

played or not. If the Halo must be hidden immediately, the SpriteRenderer is

disabled. Afterwards, the DestroyHalo co-routine is called.

Protecting (IEnumerator/Private)

Arguments: Boolean

Sets the variable isProtecting to true and initializes the variables time and

duration. Then, sets a target size for the Halo, which depends on whether it is

instantiated by the Mind or by the Light. During the previously defined

duration, the Halo increases its current size until it reaches the desired target

size. This is done with the following expression:

while (time < duration && isProtecting)
{
 transform.localScale = Vector3.Lerp(transform.localScale, targetSize,

 time / duration);
 time += Time.deltaTime;
 yield return null;
}

Once the target size has been reached, the HideHalo function is called in

order to play the sizing down animation. The boolean argument is the one that

dictates if the player is in a cinematic; in this case, the script will wait three

seconds before calling HideHalo, so as to not destroy the Halo so rapidly.

DestroyHalo (IEnumerator/Private)

This co-routine works very similarly to the Protecting function, but in the

opposite way. Instead of increasing the Halo’s size, its size is decreased until

a very minimal value is reached. Afterwards, the SpriteRenderer and

CircleCollider2D are disabled and the isProtecting variables are set to false for

both the Halo and the Character. The script then does a short timeout before

enabling the Character to protect itself again.

96

6.4.5. Knowledge

The Knowledge pick-up prefab is implemented in the script Knowledge.cs. It consists

of a main object, tagged as Knowledge and layered as Default that includes the

SpriteRenderer, a trigger BoxCollider2D in charge of detecting the player and an

Animator that plays the looping Knowledge orb’s flicker animation. The main object

has a child GameObject named Block, which contains a vertical CapsuleCollider2D

that prevents players to go through the orb if their Knowledge is not full yet. This

Block object is untagged, but layered as Knowledge (see Figure 6.43 and Figure

6.44).

Figure 6.43. Knowledge prefab in Unity's editor

 Variables

o Character (GameObject/Public): Character’s prefab in the scene.

o Block (GameObject/Public): The Block child object.

 Functions

Start (Void/Private)

Finds the Character object by its tag in the scene.

PickUp (Void/Public)

Arguments: Boolean

If the Character does not have full Knowledge, adds another unit and the

Knowledge object destroys itself.

OnTriggerEnter2D (Void/Private)

Arguments: Collider2D

If the Collider2D that has entered is tagged as “Player”, the Knowledge object

sets itself as pickable for the Character. Beforehand, if the Character already

has full Knowledge, deactivates the Block so as to not force the player to pick

up the Knowledge.

97

OnTriggerExit2D (Void/Private)

Arguments: Collider2D

If the Collider2D that has exited is tagged as “Player”, the Knowledge object

unsets itself as pickable for the Character.

Figure 6.44. Knowledge prefab in-game

98

6.4.6. Level building

There are different objects that are used to build the different levels which have been

saved as prefabs in order to ease the process of layering the different elements out.

Platform

The platforms which are climbed onto are implemented in the script Platform.cs.

They are tagged and layered as Platform and include a trigger BoxCollider2D and a

kinematic RigidBody2D component. In the prefab there are five children objects (see

Figure 6.45):

 Sprite: Includes the SpriteRenderer and a non-trigger BoxCollider2D. This

child object is layered as Environment, in order to prevent the two colliders of

the prefab to overlap.

 The other four children only have a transform component and correspond to

the two positions where the player is moved to before starting the animation,

the initial position where the character is placed in order to smoothly adapt to

the increment of size of the climbing spritesheet and, lastly, the position where

the player finishes the animation.

Figure 6.45. Hierarchy of the Platform prefab

Apart from regular platforms, there is also a tunnelled platform object that can either

be climbed onto or crouched through. All of its components are the same to the

regular platform, except the size of the non-trigger collider and its layer name, which

is TunnelledPlatform, not Platform (see Figure 6.46).

Figure 6.46. Platform and TunnelledPlatform prefabs in Unity's editor

99

 Variables

The script Platform.cs includes four public variables that store the four Transform

components of each different position: LeftDownPosition, RightDownPosition,

FinalPosition and InitialPosition.

 Functions

Each variable has its own getter, which returns a Vector3 object that corresponds

to the position stored in the Transform.

Tunnel

The tunnel prefab is layered with the same name and is composed of two children

objects, which represent the two entries of the tunnel. Both children are also layered

as Tunnel and include a trigger BoxCollider2D (see Figure 6.47).

Figure 6.47. Tunnel prefab in Unity's editor

Water

The water object in the game is tagged and layered as Water and is implemented in

the script Water.cs. The main object includes two colliders, one of which is a trigger

and the other is not. Much like the Halo, the non-trigger collider is necessary in order

to detect the collision of the rain drops with the water (see Figure 6.49).

Figure 6.48. Hierarchy of the Water prefab

The prefab has three children objects; the waves, which include a SpriteRenderer

and an animator that plays the looping wave animation; the fill, which corresponds to

the transparent water sprite that can be sized up or down in order to fit different

spaces; the top collider, which is layered as Environment and its purpose is to block

the Character from exiting the water, since its gravity scale is set to zero when

underwater (see Figure 6.48).

100

Figure 6.49. Water prefab in Unity's editor

 Variables

o Character (GameObject/Public): Character’s prefab in the scene.

o TopCollider (GameObject/Public): Water’s top block.

o swimmable (Boolean/Public): Can the player swim in this water?

 Functions

Start (Void/Private)

Finds the Character object by its tag in the scene.

OnTriggerEnter2D (Void/Private)

Arguments: Collider2D

If the collider that has entered is tagged as Light, all the remaining Character’s

lives are taken out. However, if the collider is tagged as Player and the water

is swimmable, the Character is set to be in water and the TopCollider is

enabled.

OnTriggerExit2D (Void/Private)

Arguments: Collider2D

If the collider that has exited is tagged as Player and the water is swimmable,

the Character is set to be on ground and the TopCollider is disabled.

Environment limiters

There are several other world-building elements that, although not having any

specific components apart from basic colliders, are saved as prefabs in order to

facilitate the creation of levels. These are layered as Ground or Environment, and

some prime examples are floors, edges and rocks (see Figure 6.50).

101

Figure 6.50. Floor, Edge and Rock prefabs in Unity's editor

Other important world elements include trees, which are are stored in singles, groups

of two or three, in order to easily place them by hand. However, these do not include

a collider since they are used solely in the background for aesthetic purposes (see

Figure 6.51).

Figure 6.51. Tree prefabs in Unity's editor

Building zone

The zones where the player is able to build and recover the auxiliary platform are

implemented in the script BuildingZone.cs. These prefabs are composed by a trigger

BoxCollider2D and a looping Particle System which, by constantly instantiating and

deleting particles, mimics a light white mist that emerges from the ground (see

Figure 6.52 and Figure 6.53).

Figure 6.52. BuildingZone prefab in Unity's editor

102

 Variables

o Character (GameObject/Public): Character’s prefab in the scene.

 Functions

Start (Void/Private)

Finds the Character object by its tag in the scene.

OnTriggerEnter2D/OnTriggerStay2D (Void/Private)

Arguments: Collider2D

If the collider that is inside the building zone is tagged as Player, sets the

Character to being currently in a building zone.

OnTriggerExit2D (Void/Private)

Arguments: Collider2D

If the collider that has exited the building zone is tagged as Player, sets the

Character to not being currently in a building zone.

Figure 6.53. BuildingZone prefab in-game

Lever

Levers that can be interacted with are implemented in the script Lever.cs. The main

object includes only a trigger BoxCollider2D (see Figure 6.55).

Figure 6.54. Hierarchy of the Lever prefab

In the prefab there are three children objects (see Figure 6.54):

 Block, which includes a PolygonCollider2D that prevents the player from

going through the lever.

 Sprite, which includes the components SpriteRenderer and Animator.

 InitialPosition, which stores a Transform component with the position where

the player is moved to when interacting with the lever.

103

Figure 6.55. Lever prefab in Unity's editor

 Variables

o Character (GameObject/Public): Character’s prefab in the scene.

o AssociatedObject (GameObject/Public): The GameObject that is

moved when the lever is activated.

o Sprite (GameObject/Public): The Sprite child object.

o InitialPosition (Transform/Public): The Transform component

of the InitialPosition child object.

o startPosition/finalPosition (Vector3/Public): The world

position where the AssociatedObject starts from and the position where

it ends.

o stopsPlayer (Boolean/Public): Should the player be inactive while

the AssociatedObject is moving?

o isMoving (Boolean/Private): Is the AssociatedObject moving?

o currentlyInteractable (Boolean/Private): Is the lever active?

o timesUsed (Integer/Private): The number of times the player has

interacted with the lever.

o anim (Animator/Private): The Animator component of the Sprite

child object. It includes three states: Still, which does not play any

animation; Up Down, which plays the animation of the lever being

pulled; and Down Up, which plays an animation that rotates the lever

back to its original position (see Figure 6.56).

Figure 6.56. Animator controller for the Lever

104

 Functions

Start (Void/Private)

Gets the animator component from the Sprite and finds the character object in the

scene by its tag.

Activate (Void/Public)

If the lever is active, the co-routine RotateLever is called and, if the

AssociatedObject is not moving, increments the variable timesUsed and calls the

co-routine MoveAssociatedObject (see Figure 6.57).

Figure 6.57. Lever being activated in-game

RotateLever (IEnumerator/Private)

Sets the lever to not currently interactable and plays the animation Up Down (see

Figure 6.58), so as to represent the lever being pulled.

Figure 6.58. Spritesheet of the lever’s Up Down animation

After a two second delay, the animation Down Up is played and the lever goes

back to its original rotation. There is a one second delay and, if the

AssociatedMoving is not moving anymore, the lever is set back to being

interactable. As in the rest of the game’s implementation, these delays are

implemented with the function WaitForSeconds, which suspends the co-routine

execution for the given amount of seconds.

MoveAssociatedObject (IEnumerator/Private)

Starts by setting a default speed and delays the function for three seconds.

Afterwards, sets the target position based on the times the lever has been used.

Therefore, if the lever has been interacted with an even amount of times, the

AssociatedObject has to be moved to its start position. When the

AssociatedObject has reached its destination, by using the Vector2’s function

MoveTowards, the lever is set back to being interactable and, if it stops the

player, the Character is made active again.

105

isCurrentlyInteractable/doesItStopPlayer (Boolean/Public)

Getters for the variables currentlyInteractable and stopsPlayer.

getInitialPosition (Vector3/Public)

Getter for the InitialPosition transform’s position value.

OnTriggerEnter2D/OnTriggerStay2D (Void/Private)

Arguments: Collider2D

If the Collider2D inside the collider is tagged as “Player”, the Lever object sets

itself as interactable for the Character.

OnTriggerExit2D (Void/Private)

Arguments: Collider2D

If the Collider2D that has exited the collider is tagged as “Player”, the Lever

object unsets itself as interactable for the Character.

Spikes

The spike traps that are lethal to the player are implemented in the script Spikes.cs.

These prefabs are composed by a trigger BoxCollider2D, a SpriteRenderer and a

looping Particle System which, by constantly instantiating and deleting particles,

mimics a black mist that emerges from the spikes. There is one child object named

Block, which includes a non-trigger BoxCollider2D that acts as a foundation (see

Figure 6.59).

Figure 6.59. Spikes prefab in Unity's editor

 Variables

o Character (GameObject/Public): Character’s prefab in the scene.

 Functions

Start (Void/Private)

Finds the Character object by its tag in the scene.

106

OnTriggerEnter2D (Void/Private)

Arguments: Collider2D

If the collider that has entered is tagged as Player, all the remaining Character’s

lives are taken out (see Figure 6.60).

Figure 6.60. Spikes prefab in-game

107

6.4.7. Auxiliary platform

The auxiliary platform that players can build is saved as a prefab named

CharacterPlatform. Its components and structure are nearly identical to the regular

Platform, including also the Platform.cs script (see Figure 6.61).

Figure 6.61. Hierarchy of the CharacterPlatform prefab

However, this box is special since it also includes a child BuildingZone object on top

of it, so as to allow the player to recover the platform when on top. This BuildingZone

is formed by a trigger BoxCollider2D and the script BuildingZone.cs. In addition, in

order to make a visual connection between the auxiliary platform and the Knowledge,

the platform has a white glow that surrounds it (see Figure 6.62 and Figure 6.63).

Please, note that both scripts mentioned in this section have a more detailed

description in section 6.4.6.

Figure 6.62. CharacterPlatform prefab in Unity's editor

Figure 6.63. CharacterPlatform prefab in-game

108

Feedback

When the player cannot build an auxiliary platform due to an environment element

being in the way, in order to give the player visual feedback, a semi-transparent

black box is spawned and then faded out (see Figure 6.64 and Figure 6.65).

Figure 6.64. CharacterPlatformFeedback prefab in Unity's editor

Figure 6.65. CharacterPlatformFeedback prefab in-game

The components that form this prefab include a SpriteRenderer and an Animation.

The latter consists of two key frames that interpolate the sprite’s transparency value

(alpha) from eighty to zero. When the last key frame is reached, an event is

triggered. This event calls the Destroy function, which is implemented in the script

BoxFeedback.cs.

 Functions

Destroy (Void/Private)

Is called when the animation is over and destroys the prefab.

109

6.4.8. Checkpoints

Checkpoints are mainly used to update the player’s respawn position according to its

progress through the level. In addition, some of the checkpoints also restart the

character’s auxiliary platform so as to prevent the player from recovering a platform

that is too far behind. The prefab is implemented in the script Checkpoint.cs and

consists of one trigger CapsuleCollider2D identical to the Character’s own collider

(see Figure 6.66).

Figure 6.66. Checkpoint prefab in Unity's editor

 Variables

o Character (GameObject/Public): Character’s prefab in the scene.

o resetsBox (Boolean/Public): Will the player be able to recover the

auxiliary platform previously placed along the level, or not?

o triggered (Boolean/Private): Has the player already entered the

checkpoint?

 Functions

Start (Void/Private)

Finds the Character object by its tag in the scene.

OnTriggerEnter2D (Void/Private)

Arguments: Collider2D

If the collider that has entered is tagged as Player and the checkpoint has not

been triggered yet, the player’s last position is updated and the checkpoint is

set as triggered. In addition, if the checkpoint is set to reset the box, the

character is set not to have a box currently placed.

110

6.4.9. Tutorial Zone

Tutorial zones display on screen basic game information and are implemented in the

script Tutorial.cs. The main object includes only a trigger BoxCollider2D (see Figure

6.68 and Figure 6.69).

Figure 6.67. Hierarchy of the TutorialZone prefab

The prefab has a Canvas child object that includes an Image that is rendered in

world space (see Figure 6.67).

Figure 6.68. TutorialZone prefab in Unity's editor

Figure 6.69. TutorialZone prefab in-game

 Variables

o Character (GameObject/Public): Character’s prefab in the scene.

o TutorialImage (Image/Public): The Image object from the Canvas.

o Options (Sprite array/Public): An array with the three variations

of the image prompt. Each variation displays a different button to press

depending on the current input type: keyboard, PlayStation controller or

XBOX controller.

o startDelay (Float/Public): The delay before the tutorial prompt is

first shown.

o firstTime (Boolean/Private): Has the prompt been shown before?

o fadingIn (Boolean/Private): Is the prompt fading in?

o fadingOut (Boolean/Private): Is the prompt fading out?

o lastInputType (Integer/Private): The latest input type detected.

111

 Functions

Start (Void/Private)

Sets the Image’s sprite according to the current input type and finds the

Character object by its tag in the scene.

Update (Void/Private)

If the input type has changed, the Image’s sprite is updated.

OnTriggerEnter2D (Void/Private)

Arguments: Collider2D

If the collider that has entered is tagged as Player, the prompt is set to fade in

and, if it is not currently fading out, the co-routine to change the image’s alpha

is started. If it is the first time the character has entered the tutorial zone, sets

firstTime to false.

OnTriggerExit2D (Void/Private)

Arguments: Collider2D

If the collider that has exited is tagged as Player, the prompt is set to fade out

and, if it is not currently fading in, the co-routine to change the image’s alpha

is started.

ChangeAlpha (IEnumerator/Private)

Arguments: Boolean

Fades in or out the TutorialImage depending on the boolean argument, which

dictates if the prompt is to be hidden or not. If the player has exited the zone,

keeps decreasing the image’s alpha value while the player is outside the

collider. If the player enters the tutorial zone while the image is fading out, it

starts fading it in. On the other hand, if the player has entered the zone, keeps

increasing the image’s alpha value while the player is inside the collider. If the

player exits the tutorial zone while the image is fading in, it starts fading it out.

HidePrompt (Void/Private)

Sets the image to fade out without taking into account whether the player is

outside the tutorial zone or not. Mainly used after the prompt button is pressed

in chapters four and six.

112

6.5. Cinematics

In order to give the game a proper cinematic feel, the game transitions smoothly

between chapters and uses mechanics that implement the technique commonly known

as “Show, don't tell”. The game’s cinematics can be divided in those that happen while

in-game and those that do not.

6.5.1. In-game

There are triggers along the levels that smoothly displace the camera in order to

present different elements in a more visual way. These object, named

CinematicCameraTrigger, include a trigger BoxCollider2D and are implemented in

the script CinematicCamera.cs (see Figure 6.70).

Figure 6.70. CinematicCamera script's public variables

 Variables

o mainCamera (Camera/Public): The game’s rendering camera.

o character (GameObject/Public): Character’s prefab in the scene.

o characterOffset (Vector3/Public): The camera’s position offset to

the player.

o target (Transform/Public): The transform component of the target

object in the scene.

o targetOffset (Vector3/Public): The camera’s position offset to the

target.

o timeTarget/timeReturn/timeStay (Float/Public): The seconds

the camera takes to reach the target, return to the character and the

time it stays on the target, respectively.

o triggered (Boolean/Public): Has the animation been triggered yet?

 Functions

OnTriggerEnter2D (Void/Private)

Arguments: Collider2D

If the collider that has entered is tagged as Player and the cinematic has not

been triggered yet, starts doing the cinematic.

113

doCinematic (Void/Private)

Sets the cinematic to be triggered, makes the character inactive, sets the

camera to stop following the player and starts the keepDoingCinematic co-

routine, which takes as arguments a target position, duration of the movement

and order.

keepDoingCinematic (IEnumerator/Private)

Arguments: Vector3, Float, Integer

Moves the camera to the target position in the specified duration. Depending

on the order of the animation, the camera goes to the target object’s position

or the character’s position.

6.5.2. Cutscenes

There are cinematics that are not integrated directly into the gameplay, except for

occasional button prompts. These cinematics are often found in transitions between

chapters, or in cinematic chapters, and share many aspects, such as variables or

functions.

 Common variables

o TitleCover (Image/Public): An image with the chapter’s number

and name.

o BlackScreen (Image/Public): A small black image used for

transitions between scenes.

o HUDBlock (Image/Public): A large black image that hides the heads-

up display.

o order (Integer/Private): The current order of the cinematic.

 Common functions

doCinematic (Void/Private)

Calls a different function or co-routine depending on the current order. All

other functions include a boolean argument that determines if, once executed,

the order should be increased.

FadeIn (IEnumerator/Private)

Arguments: Image, Boolean

Fades in the image by increasing its colour alpha value (transparency) over

time. If the boolean is set to true, increments the current order and calls the

function doCinematic.

114

IEnumerator FadeIn (Image i, bool changesOrder)
 {
 float t = 1f;

 while (i.color.a < 1f)
 {
 i.color = new Color(i.color.r,i.color.g,i.color.b,i.color.a+(Time.deltaTime/t));
 yield return null;
 }

 if (changesOrder)
 {
 order += 1;
 doCinematic();
 }
 }

FadeOut (IEnumerator/Private)

Arguments: Image, Boolean

Fades out the image by decreasing its colour alpha value (transparency) over

time. If the boolean is set to true, increments the current order and calls the

function doCinematic.

 IEnumerator FadeOut (Image i, bool changesOrder)
 {
 float t = 1f;

 while (i.color.a > 0f)
 {
 i.color = new Color(i.color.r,i.color.g,i.color.b,i.color.a-(Time.deltaTime/t));
 yield return null;
 }

 if (changesOrder)
 {
 order += 1;
 doCinematic();
 }
 }

MoveObject (IEnumerator/Private)

Arguments: GameObject, Vector3, Float, Boolean

Moves the GameObject to the target position in the defined duration. If the

boolean is set to true, increments the current order and calls the function

doCinematic.

115

IEnumerator MoveObject (GameObject obj, Vector3 target, float duration, bool changeOrder)
 {
 float time = 0f;

 Vector3 start = obj.transform.position;

 while (time < duration)
 {
 Vector3 newPosition = obj.transform.position;

 newPosition.x = Mathf.Lerp(start.x, target.x, time / duration);
 newPosition.y = Mathf.Lerp(start.y, target.y, time / duration);

 obj.transform.position = newPosition;

 time += Time.deltaTime;
 yield return null;
 }

 if (changeOrder)
 {
 order += 1;
 doCinematic();
 }

}

MoveCamera (IEnumerator/Private)

Arguments: Vector3, Vector3, Float, Boolean

Moves the main camera to the target position in the defined duration. If the

boolean is set to true, increments the current order and calls the function

doCinematic.

IEnumerator MoveCamera (Vector3 start, Vector3 target, float duration, bool changeOrder)

 {
 float time = 0f;

 while (time < duration)
 {
 Vector3 newPosition = mainCamera.transform.position;

 newPosition.x = Mathf.Lerp(start.x, target.x, time / duration);
 newPosition.y = Mathf.Lerp(start.y, target.y, time / duration);

 mainCamera.transform.position = newPosition;

 time += Time.deltaTime;
 yield return null;
 }

 if (changeOrder)
 {
 order += 1;
 doCinematic();
 }

}

116

All chapters’ cinematics are separated in two scripts, one for the start and one for the

ending. The start cinematic is stored inside the Controller object of the scene, while

the ending is stored in a GameObject with a trigger collider at the end of the scene.

Nonetheless, since chapters four and six are purely cinematic, every aspect of their

animation is implemented in a single script. The scripts that implement the different

cinematics and transitions are:

 Chapter1_Start.cs / Chapter1_End.cs

 Chapter2_Start.cs / Chapter2_End.cs

 Chapter3_Start.cs / Chapter3_End.cs

 Chapter4.cs

 Chapter5_Start.cs / Chapter5_End.cs

 Chapter6.cs

 Credits.cs

117

6.6. User interface

6.6.1. Main menu

The main menu of the game is stored in the scene Menu and is implemented in the

script MainMenu.cs. The scene’s canvas component consists of (see Figure 6.71):

 The object Main, which contains the principal buttons of the menu.

 The object Play, which contains the buttons for each chapter.

 The object Options, which includes a toggle to full screen the game.

 Other images, such as the WAVA logo or a black screen.

Figure 6.71. Hierarchy and view of the Menu scene in Unity's editor

 Variables

o mainCamera (Camera/Public): The game’s rendering camera.

o InitialPosition (Vector3/Public): The initial camera position.

o MenuPosition (Vector3/Public): The menu’s camera position.

o MenuBlock (Image/Public): A black image that hides the menu.

o BlackScreen (Image/Public): A black screen to transition between

chapters.

o WAVALogo (Image/Public): The logo of the game.

o order (Integer/Public): The current order of the cinematic.

o Chapter (Integer/Public): The chapter selected by the player.

o quitGame (Boolean/Public): Has the player pressed the exit button?

 Functions

doCinematic (Void/Private)

Starts by moving the camera to the MenuPosition, fading the MenuBlock out

and fading the WAVALogo in. Then, if the player has selected a level to play,

loads the scene that corresponds to that chapter.

ExitGame (Void/Public)

Sets quitGame to true and starts to fade in the BlackScreen. Once the image

is completely visible, the function Application.Quit() is called.

118

PlayButton (Void/Public)

Arguments: Integer

Sets the chapter to load depending on the integer argument’s value. Fades

the BlackScreen in and, once the image is completely visible, that chapter’s

scene is loaded.

SetFullscreen (Void/Public)

Arguments: Boolean

Changes the game’s view mode to full screen depending on the boolean

argument’s value.

119

6.6.2. Pause menu

The pause menu of the game is stored in the prefab PauseMenu and is implemented

in the script PauseMenu.cs. The prefab consists of (see Figure 6.72):

 The object Buttons, which contains the principal buttons of the pause menu.

 The object Controls, which contains an image with the game’s controls.

 The object Options, which includes toggles to full screen the game or hide the

heads up display.

Figure 6.72. Hierarchy and view of the PauseMenu prefab in Unity's editor

 Variables

o Character (GameObject/Public): Character’s prefab in the scene.

o BlackScreen (Image/Public): A black screen to transition between

chapters.

o HUDBlock (Image/Public): A black image that hides the HUD.

o hiddenHUD (Boolean/Public): Is the hide HUD toggle active?

o goToMenu (Boolean/Public): Has the player pressed the exit button?

 Functions

HideHUD (Void/Public)

Depending on whether the toggle to hide the heads up display is active, the

HUDBlock’s colour alpha value is set to 0 (transparent) or 1 (opaque).

SetFullscreen (Void/Public)

Arguments: Boolean

Changes the game’s view mode to full screen depending on the boolean

argument’s value.

Exit (Void/Public)

Sets goToMenu to true and starts to fade in the BlackScreen. Once the image

is completely visible, the Menu scene is loaded.

120

6.6.3. HUD

The heads up display of the game is stored in the prefab HUD and is divided in two

parts: the KnowledgeBar and the LivesSlots (see Figure 6.73).

Figure 6.73. Hierarchy and view of the HUD prefab in Unity's editor

The Knowledge bar is located on the top right and consists of a slider object that

represents the player’s current Knowledge. Its general functioning is implemented in

the script KnowledgeBar.cs.

 Variables

o smoothFactor (float/Private): Value to make the increase and

decrease of the bar’s fill more fluid.

o slider (Slider/Public): The slider object, which has a maximum

value of five.

 Functions

SetKnowledge (Void/Public)

Arguments: Float

Calls LerpBar with the new Knowledge value as an argument.

LerpBar (IEnumerator/Private)

Arguments: Float

Smoothly interpolates between the current slider value and the one that has

been entered as an argument.

slider.value = Mathf.Lerp(slider.value, Knowledge, smoothFactor * Time.deltaTime);

The lives slots are located on the top left and consist of a five images that represent

the player’s current health. Its general functioning is implemented in the script

LivesSlots.cs.

121

 Variables

o Images (Image array/Public): The five image slots.

o Sprites (Sprite array/Public): The two sprite options that can be

placed in each image.

o maxLives (Integer/Private): Maximum of lives the player can have.

 Functions

SetLives (Void/Public)

Arguments: Integer

Sets a specific Sprite in each image slot depending on the current number of

lives entered as an argument. From zero to the current lives value, sets the

full life Sprite and, for the rest of images, sets an empty slot.

for (int i = 0; i < Lives; i++)
{
 Images[i].sprite = Sprites[1];
}

for (int j = Lives; j < maxLives; j++)
{
 Images[j].sprite = Sprites[0];
}

122

6.7. Testing

6.7.1. Editor testing

Along all the game’s development, each newly implemented component was tested

in the Unity’s editor. In some instances, a more complete playthrough of the game

was done in order to analyse the overall game behaviour. Showing the different

objects’ Gizmos, such as colliders or rays, was extremely beneficial for

comprehending the different problems and errors encountered (see Figure 6.74).

Figure 6.74. Testing a scene inside Unity's editor

6.7.2. Build testing

In order to test the project as a finished product, several versions of the game were

built and played through. Apart from our own examination, other individuals also

tested the game in order to help us determine if the project was accessible,

enjoyable and whether the story was transmitted correctly. The testers’ level of

expertise was very diverse and, considering their positive feedback, we were able to

conclude that the game indeed caters to a wide and varied audience.

123

7. Results

In this section we will analyse the final outcome of the objectives defined at the start of

the project (see section 1.3).

The main purpose of this project was to develop a cinematic 2D game with puzzle and

platforming elements that intended to transmit a profound message with its design and

unique aesthetic. For each one of the more specific objectives previously defined, we

will evaluate their level of completion.

 Deepening the knowledge already acquired about the game engine Unity

and the programming language C#.

After a full year of developing this project, we have become more familiarised

with Unity and C# and have learnt new functions, methods and other

implementation techniques.

 Implement game mechanics that reinforce the story and the message

transmitted by the game.

All the planned game mechanics have been implemented and the proposed

game loop has been materialised. In addition, some mechanics that were

originally intended to be developed in the near future, such as the underwater

movement, have also been created for this version of the game.

 Design an atmospheric environment that is captivating, unique and

reinforces the game’s predominant topics.

In spite of its simplicity, the game’s environment feels unique and alive thanks to

its geometry, colouring, level design and other aspects, such as the parallax

background effect.

 Create different animations for the character and other assets that give the

game a certain smoothness and fluidity.

All the game characters have been brought to life by a wide array of spritesheet

animations, as well as with the inclusion of particle systems. Additionally, the

game transitions smoothly between chapters with its cinematics and other visual

elements.

In conclusion, we can determine that all objectives have been reached and exceeded,

since there are several mechanics and cinematics that were not expected to be

developed for this final degree project.

124

7.1. Final in-game screenshots

Figure 7.1. In-game screenshots of the splash screen

Figure 7.2. In-game screenshot of the main menu

Figure 7.3. In-game screenshots of the chapters' title covers

125

Figure 7.4. In-game screenshot of the initial text cinematic

Figure 7.5. In-game screenshot of Chapter 1 (1)

Figure 7.6. In-game screenshot of Chapter 1 (2)

126

Figure 7.7. In-game screenshot of Chapter 1 (3)

Figure 7.8. In-game screenshot of Chapter 1 (4)

Figure 7.9. In-game screenshot of Chapter 1 (5)

127

Figure 7.10. In-game screenshot of Chapter 2 (1)

Figure 7.11. In-game screenshot of Chapter 2 (2)

Figure 7.12. In-game screenshot of Chapter 3 (1)

128

Figure 7.13. In-game screenshot of Chapter 3 (2)

Figure 7.14. In-game screenshot of Chapter 3 (3)

Figure 7.15. In-game screenshot of Chapter 4

129

Figure 7.16. In-game screenshot of Chapter 5 (1)

Figure 7.17. In-game screenshot of Chapter 5 (2)

Figure 7.18. In-game screenshot of Chapter 6

130

Figure 7.19. In-game screenshots of the final text cinematics

Figure 7.20. In-game screenshots of the credits

All screenshots from Figure 7.1 to Figure 7.20 have been taken while doing a playthrough

of the final built game.

131

8. Conclusions

This final degree project has been the first major game fully designed and developed in

solitary and it has allowed us to put into practice all the knowledge acquired during the

Bachelor’s in Design and Development of Video Games. In spite of preferring and usually

focusing on the design and narrative aspects of game development, working on the artistic

and implementation side of things has been greatly appreciated and enjoyed.

The idea for WAVA started in 2019, when we were assigned to make a marketing plan for

an imaginary game and, at that point, the title WAVA was born. The geometry formed by

the four letters and their similarity to a mountain range created an inner thought that would

be revisited later on. The summer after, the four letters turned into an acronym; then, the

concept visuals for the game were made and, step by step, every single aspect came

together and culminated in the game that has been developed for this project.

As stated previously, all the objectives proposed at the start of this project have been

reached and exceeded, as the final prototype of the game has ended up being bigger and

longer that what was expected at first. Originally, only two or three levels were planned to

be developed; however, in the end, all six chapters of the game have been implemented.

This has been made possible thanks to good planning and management before and during

the game’s design and implementation.

Developing a video game from scratch is no easy task and many problems and bugs can

occur. However, thanks to Unity’s explicit documentation and the many forums and tutorials

that can be consulted online, all the different development setbacks were overcome with

very little trouble. All in all, we are very pleased with all the tools and resources used to

develop this project, including software and hardware, since they all have done their job

perfectly without supposing any real economic cost.

Even though we feel the final outcome of the game is very polished and nearly final, we are

very passionate about this project and want to keep developing several aspects in order to

improve the overall experience. All of these tasks that are to be developed in the near

future will be defined in the next section.

In conclusion, we are very pleased with the final product and we believe that it has been the

perfect culmination to our university tenure. Much like in WAVA, a new chapter begins and

it is time to find our own place in the video game industry, which is one that requires hard

work, dedication and, above all things, passion for what we create.

132

9. Future work

In this section we will define the current aspects of the game that can be improved, as well

as those elements that, although not being proposed for this final degree project, can be

added in the near future.

 Add music and sound elements

Cinematic games are extremely visual per se; however, the different audio elements

help enhance the player’s experience. A priority for our future work is to add different

sound effects along with a backing soundtrack that reinforces the narrative and visuals.

 Upgrade the visual aspect

Even though we are satisfied with the visual result, we believe there are many aspects

that can be improved. These aspects include more variety in the world elements, adding

new animations to the characters and environment and creating smoother cinematics.

 Optimization of the implementation

The scripts and overall implementation of the game can be re-organized in order to

optimize the game’s development and ease the understanding of the code.

 Implement full controller support

As of now, the game is only available on PC and can be played with keyboard,

PlayStation controller or XBOX controller. Nonetheless, the interaction with menus can

only be done with the computer’s mouse. Allowing players to navigate through the

menus with their controller would make the game more accessible and convenient.

 Add new game mechanics

In order to improve the overall player experience and create richer puzzles, new game

mechanics and actions will be implemented. Some examples include pushing and

pulling boxes or climbing ladders.

 Prolong the duration of the game

WAVA has been designed to be a short game, currently at an approximate playtime of

thirty minutes. Making the playable chapters longer would result in the plot points and

cinematics being more impactful and meaningful to the player.

 Publish and promote the game

Once the previous aspects have been worked on, the game will be self-published under

the studio North Oriole Games. Prior to its release, the game will be promoted through

our different social media accounts.

133

10. Bibliography

Books

 Adams, E., Dormans, J. (2012). Game Mechanics: Advanced Game Design. New

Riders.

 Skolnick, E. (2014). Video Game Storytelling: What Every Developer Needs to Know

about Narrative Techniques. Watson-Guptill.

Websites

 Unity Technologies. (2022). Unity User Manual: Version 2020.3.

https://docs.unity3d.com/2020.3/Documentation/Manual/UnityManual.html

Videos

 Code Monkey. (Dec. 2019). Parallax Infinite Scrolling Background in Unity

[Video]. https://www.youtube.com/watch?v=wBol2xzxCOU

 Antarsoft. (Aug.2020). Unity 2D Platformer Tutorial 7 - How To Create 2D Smooth

Camera Follow Script For Your Player

[Video]. https://www.youtube.com/watch?v=_QnPY6hw8pA

 Daniel Wood. (Sep. 2021). Unity 2D Platformer Tutorial 20 - Respawn checkpoints

[Video]. https://www.youtube.com/watch?v=VGOVe_adFMc

 DevDuck. (Apr. 2019). Unity 2D Rain Tutorial

[Video]. https://www.youtube.com/watch?v=xkB6yzCBfgw

 Sleepy Lava. (Jun. 2020). Unity tutorial - 2D Rain with splash

[Video]. https://www.youtube.com/watch?v=QP8zj-JQgmI

 Brackeys. (Aug. 2017). How to use GitHub with Unity

[Video]. https://www.youtube.com/watch?v=qpXxcvS-g3g

 Brackeys. (Dec. 2017). SETTINGS MENU in Unity

[Video]. https://www.youtube.com/watch?v=YOaYQrN1oYQ

https://docs.unity3d.com/2020.3/Documentation/Manual/UnityManual.html
https://www.youtube.com/watch?v=wBol2xzxCOU
https://www.youtube.com/watch?v=_QnPY6hw8pA
https://www.youtube.com/watch?v=VGOVe_adFMc&list
https://www.youtube.com/watch?v=xkB6yzCBfgw
https://www.youtube.com/watch?v=QP8zj-JQgmI
https://www.youtube.com/watch?v=qpXxcvS-g3g
https://www.youtube.com/watch?v=YOaYQrN1oYQ

134

11. User manual and installation

11.1. Installation and execution

Please, note that this version only works for the operating system Windows.

 Download the ZIP file “WAVA”.

 Extract the files into any directory.

 Access into the directory and do not delete any of the existing files.

 Execute the file “WAVA.exe” (see Figure 11.1).

Figure 11.1. WAVA's executable icon

11.2. Game manual and instructions

Please, note that in this version the menus only work with the mouse.

 After the initial splash screen animation, the main menu, which includes four buttons,

is shown.

o Play: To go to the level selector.

o Options: To change the game’s view settings.

o Credits: To watch the credits’ scene.

o Exit: To quit the game.

 Inside the level selector, click on any chapter to load it (see Figure 11.2).

Figure 11.2. WAVA’s level selection screen

135

 The different chapters will transition on to the next one starting from the level we have

selected in the main menu. At any given moment, the player can access the pause

menu (see Figure 11.3), which includes four buttons:

o Resume: To close the pause menu and go back to the game.

o Controls: To check the game’s controls.

o Options: To change the game’s view settings.

o Exit: To go back to the main menu.

Figure 11.3. WAVA's pause menu

11.3. Controls

To see the different actions that can be done in the game, as well as their respective

bindings for each different type of controller, see Table 11.1.

Action PC PlayStation XBOX

Horizontal movement A-D / Horizontal arrows Left joystick Left joystick

Underwater vertical movement W-S / Vertical arrows Left joystick Left joystick

Run Shift (hold) R2 (hold) RT (hold)

Climb W / Up arrow Cross A

Crouch C Circle B

Protect Space L2 LT

Pick up / Interact E Square X

Build and recover auxiliary platform E (hold) Square (hold) X (hold)

Interact with the Light Q Triangle Y

Pause Escape Options Menu

Table 11.1. Controls and bindings for each action

