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Abstract

This Master Thesis aimed to detect stress and relaxation states from EEG data
acquired with the Neuroelectrics Enobio device and contrast them with other
physiological signals, in this case the electrocardiogram (ECG) and galvanic skin
response (GSR) acquired with the Biopac MP36 system. In the literature, there
are several investigations conducted in this field using EEG or ECG/GSR sig-
nals, but there are much fewer studies assessing the benefits of combining EEG
signals with other physiological signals for mental state classification.

At the same time, the performance of different Machine Learning and Deep
Learning techniques were investigated to corroborate which one is the most suit-
able to achieve the proposed goals. The models used were LightGBM, a 16-layer
CNN, a KNN with Grid Search for Hyperparameter Tuning and a non-linear SVM.

The data used in this work have been obtained from students at the Univer-
sity of Girona. To acquire data from the subjects, an inductive stress experiment
was conducted in a controlled work environment. Each subject underwent sev-
eral tests with relaxation videos interspersed between each test. The data were
labeled into three classes (stress, relax or neutral) based on the values of the ECG
and GSR signals and contrasted with the post-experiment survey conducted on
each subject. To balance the ratio of the three classes, random oversampling
was applied to the data set.

Each model was trained in several phases with different scenarios: calcu-
lating only the means and standard deviations of each sample window, ex-
tracting the five frequency bands of the EEG signals (delta, theta, alpha, beta
and gamma), segmenting the data in windows (with and without overlapping),
applying a binary problem of stress/relax vs the rest, using only the EEG or
ECG/GSR signals and the combination of the three, and finally, performing an
intrasubject classification.

The results show that the best model for predicting mental state from EEG
data is the LightGBM model without overlapping windows and without apply-
ing any feature extraction, with an accuracy of 90.92% and a run time of 14s.
Combining EEG, ECG and GSR signals achieves an accuracy of 95.03%, which
is a significant improvement over using EEG data alone, but due to the intru-
siveness of the Enobio device its use for stress detection cannot be justified. For
its use to be feasible, the EEG signal recording device should be wearable.
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CHAPTER 1

Introduction

Stress is a problem that is widespread throughout the world, dubbed by the
World Health Organization as the Health Epidemic of the 21st Century. Although
it is natural to have a certain level of stress due to the challenges we face on
a daily basis, stress is not only caused by factors external to the individual, in
many cases it is related to the way we interact with the environment and the
internal processes involved. In Europe alone, more than 50% of workers and
students suffer from stress.

There are positive and negative emotions [24]. Stress is part of the negative
ones and if suffered continuously can lead to the appearance of other emotions
such as anger or sadness. This set of emotions can be captured through the
collection of electroencephalographic or EEG signals from the human brain. In
most cases, the procedure of the various studies in this field consists of inducing
a calm state in the subject to subsequently make him enter into different emo-
tional states while these contrasting signals are recorded. The major advantage
of EEG is that it only records electromagnetic waves from the individual’s brain
and is therefore non-invasive.

The primary objective of the present Master Thesis is to classify stress and
calm brain states from EEG data acquired in an inductive stress experiment and
contrast them with other biological signal data such as GSR (EDA) and electro-
cardiogram (ECG).

Secondary objectives include comparing the performance of different Ma-
chine Learning and Deep Learning techniques to corroborate which is the most
suitable for studies in this area and a study on the importance of channels to
assess the feasibility of using an EEG wearable.






CHAPTER 2

State of the art

Over the past two decades, multiple studies have been conducted to detect stress
in humans using physiological sensors. Some of these earlier studies demon-
strate the importance of EDA and ECG signals for stress detection, asin[7, 8, 19]

In 2006, J. Zhai [7] developed a system for assessing stress levels from
four physiological signals: electrodermal activity (EDA), skin temperature (ST),
blood volume pulse (BVP) and pupil-lar diameter (PD). To classify to resting
and stress states the authors used three pattern detection algorithms: SVM, NB
and decision trees.

In 2012, Y. Deng [8] demonstrated the importance of feature selection in
this type of studies by proposing a method based on Principal Component Anal-
ysis (PCA). The authors apply five classification algorithms (SVM, Naive Bayes,
KNN, Linear Discriminant Function and C4.5 induction tree) to evaluate the
effectiveness of the feature selection proposed method in accuracy and compu-
tational time.

In 2019, R. Martinez et al. [19] designed a system to identify Relaxation
Response (RResp), the bodily reaction of an individual when relaxing that pos-
itively affects the organism regardless of its emotional state. Analyzing only the
GSR ! signal, the authors identified three levels of RResp (Low Relaxation Re-
sponse, Medium Relaxation Response and High Relaxation Response) that could
be quantified with two calculated features and classified using a decision tree.

Moreover, in recent years other studies have proposed various methods to
detect stress from EEG. Kaminska et al. [ 13] investigated the use of EEG signals
to classify the stress level of subjects while using virtual reality (VR). The acqui-
sition protocol consisted of alternating between simulated relaxation and stress
scenes while monitoring with an EEG headset. They then compared the perfor-
mance of a CNN with other Machine Learning methods by stress classification,

! Galvanic skin response (GSR) is another term for electrodermal activity (EDA), which mea-
sures continuous variations in the electrical characteristics of the skin such as conductance.
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obtaining the best result (96.42%) with an SVM considering all brain waves.

In 2022, Phutela et al. [23] proposed a stress classification system using a 4-
electrode Muse EEG headband. The experiment consisted of showing four clips,
two of stress induction and two of comedy scenes. Once the data were acquired
with the headset, they compared two classification models, Multilayer Percep-
tron (MLP) and Long Short-Term Memory (LSTM), achieving an accuracy of
93.17% with the LSTM architecture.

These previous studies on stress detection are the basis on which this work
has been inspired. While procedures based on physiological signals such as ECG
or GSR have been previously corroborated, the use of EEG signals for emotional
detection is a more open and recent field where multiple data acquisition de-
vices and classification models can be applied, since there is no standardized
method. While previous studies with EEG focus on stress prediction only with
this signal, this project aims to contrast the prediction results with EEG data and
other physiological data (ECG and EDA), acquired simultaneously in the same
experiment, to assess whether this combination provides a significant benefit
that the signals do not provide separately.



CHAPTER 3

Preliminaries

This chapter presents the background necessary to understand the methodology
followed in this project.

EEG. The electroencephalogram (EEG) is a neurophysiological examination
based on the recording of brain bioelectrical activity by means of special elec-
trodes to study the functioning of the central nervous system from the electri-
cal currents formed in the brain neurons. This procedure allows the diagnosis
of alterations in the brain’s electrical activity that can lead to diseases such as
epilepsy or Alzheimer’s disease [12], among others.

Band-pass filter. A band pass filter is a type of filter that allows a specific
frequency range of a signal (like the EEG, ECG or GSR) to pass and rejects or
attenuates the rest of the frequencies [10].

Frequency bands. Frequency domain analysis has been widely used to in-
terpret the raw recording of EEG signals. Multiple studies have identified five
main frequency bands for EEG signals, also called brain rhythms, and have es-
tablished the correlation between behavior and neural activity in a given part of
the brain. Although there is no universal definition of the range of these bands,
the following values are generally considered: Delta (0-4 Hz), Theta (4-8 Hz),
Alpha (8-14 Hz), Beta (14-30 Hz) and Gamma (30-45 Hz) [21].

Delta waves are related to continuous attention tasks; Theta waves are as-
sociated with the state of deep meditation; Alpha waves imply a relaxing state
of mind; Beta waves are related to active thinking or anxiety; finally, Gamma
waves are used to confirm certain brain diseases.

Machine Learning. Machine learning is a field of artificial intelligence (AI)
that comprises the set of techniques that provide systems with the ability to
automatically learn and improve from experience [20]. ML allows to perform
classification tasks, regression or pattern recognition among other tasks. The
fields of application range from medicine, market analysis, robotics or video
games.
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LightGBM. LightGBM is a fast, distributed, high-performance decision tree-
based algorithm supported by the gradient boosting framework, which supports
both classification and regression tasks [2]. LightGBM uses a binning algorithm
to represent the data in a discrete view (histogram) to find the optimal split
point.

The difference with other boosting algorithms is that it splits the tree leaf-
wise instead of level-wise. This further reduces the prediction losses and there-
fore greatly increases the accuracy compared to other similar algorithms.

Another main characteristic of LightGBM is that by using an algorithm based
on the histogram, its training speed is higher than the rest of the decision trees,
since it groups the values of the continuous characteristics in discrete intervals
that accelerate the training procedure.

By replacing continuous values with discrete intervals, memory usage de-
creases and efficiency increases.

CNN. Convolutional neural networks are a subclass of neural networks that
are based on layers of convolutions. Convolution is a mathematical operation
that transforms two functions into a third function that represents the mag-
nitude of overlap of both original functions. Like all other networks, they are
based on supervised machine learning (i.e. to be used with labeled data). Being
a black box algorithm, they are very difficult to interpret [3].

KNN. KNN is a non-parametric lazy learning algorithm that does not build
any explicit model. It relies on data similarities and sophisticated distance met-
rics to generate accurate predictions. In classification tasks, it takes into account
the closest observations to a new sample to predict its class [11].

SVM. An SVM is a supervised learning model that represents the sample
points in an N-dimensional space, where N is the number of features, to later
search for a hyperplane that allows classifying the data points. When it re-
ceives new samples, these are classified according to the space to which they
belong [9].



CHAPTER 4

Methodological Contribution

To validate the contribution of EEG in stress detection, the following steps are
proposed:

* Acquisition of data from volunteers
* Preprocessing of EEG data

* Preprocessing of ECG and GSR data (for later comparison with EEG)

Data labeling and balancing

Model building

The following diagram summarizes the last four steps of the methodology
followed in this project (see page 29).

EEG PREPROCESSING ECG & GSR PREPROCESSING
i i
8 Al 8
Windowing &
Raw EEG data Feature > LABEL AS STRESS/ NEUTRAL / RELAX Windowing (—j
Extraction
v 1 | 1
Identification Crop in
of bad datasets per Oversampling
channels test
High-pass Mean
¢ ? l Filter normmalization
Band-pass Re-referencing P A A
Filter 130 Hz toCz T
Physiological Raw ECG data Raw GSR data
artifact |I'I[?:f'l‘]:”|?1[:‘sbaﬂ h 4 A 4
removal ( Light GBM ( NN ( KNN SVM

Figure 4.1: Diagram of the methodology

The data collected from all subjects are used to construct the prediction
models (multisubject model). This is a decision that favors the availability of
a larger amount of data, which are subsequently analyzed in the experimental
work performed.
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4.1 Data collection

The first part of this project consisted of obtaining data from humans. To that
end, an experimental inductive stress procedure is carried out with the aim of
eliciting emotional changes in several subjects within a controlled and as realis-
tic as possible laboratory environment. To carry out this experiment, data were
collected from six men and four women, all of them students between the ages
of 18 and 38.

The acquisition of the participants’ data was carried out with the EEG Eno-
bio device from Neuroelectrics and the Biopac MP36 for physiological signals
(see Figure 4.2).

(a) EEG Enobio (b) Biopac MP36

Figure 4.2: Signal acquisition devices
Biopac has one set of electrodes for capturing ECG signals and another for
GSR/EDA signals. The latter were placed on two fingers of the subjects. For ECG

signals, the electrodes were placed following the configuration shown in Figure
4.3.

NEGRO

BLANCO (-) b

1

ROJO (+)

Figure 4.3: Electrode Positioning
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The Biopac Student Lab was the software used to process these signals, con-
figuring three channels. Channel 1 recorded the ECG signals, Channel 2 the GSR
signals and Channel 3 calculated the R-R interval of Channel 1. The sampling
frequency was 500 Hz in all three channels.

For EEG signal acquisition with the Enobio device, an EEG25 configuration
with 19 standard electrodes was used (see Figure 4.4). Data were recorded with
the NIC2 software with a sampling rate of 500 Hz.

NASION

Peee®
©-0-0-0-@
Q2®0@

INION

Figure 4.4: EEG standard electrode configuration

The methodology of the experiment was based on the performance of three
stress induction tests. Between each test a two-minute relaxation video was
shown to the subject. The tests that were performed are as follows.

e 3D Puzzle

In this test, the subject was asked to solve a 3-dimensional puzzle in a lim-
ited time. After watching a relaxing video, the subject had a limit of seven
minutes to solve the puzzle. When there were only two minutes left, the
subject was alerted to try to make them nervous.

At the end of the test the subject is shown the solution. Sometimes the
solution on paper is more difficult to understand than doing the puzzle
itself, which adds frustration and stress.
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¢ Mathematical calculations

In this test, the experimenter sequentially proposed mathematical calcu-
lations of increasing difficulty. As the subject answered each question cor-
rectly, another calculation of greater difficulty was proposed. The objective
was to answer the maximum number of calculations in a limited time, in
this case three minutes.

* Video game

In this experiment, the subject was provided with a musical mobile game
that incorporates an increasing difficulty. Depending on the subject’s knowl-
edge of this type of video game, the difficulty was adjusted to challenge
the subject.

Apart from the tests themselves, an attempt was made to generate a stress-
ful environment and the subject’s reactions and behaviors were noted while
monitoring the experiment. At the end of the experiment, an interview and a
questionnaire were conducted to contrast this information with the data gath-
ered by the sensors.

The complete protocol of the experiment is shown in Table 4.1.

Test Duration Number of samples
(min) (approx.)

Relaxation video 1 2 60.000
3D Puzzle 7 210.000
Relaxation video 2 2 60.000
Mathematical calcula- | 3 90.000
tions

Relaxation video 3 2 60.000
Video game 4 (approx.) 120.000
Relaxation video 4 2 60.000
Interview & survey - -

Table 4.1: Complete experimental procedure
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Data acquisition results in two files for each subject:

* An edf file which stores EEG data

* A csv file which gather ECG and GSR data

Moreover, the questionnaires were recorded on paper and subsequently dig-
itized.

4.2 EEG Data Preprocessing

To perform the EEG data preprocessing, the Python MNE library, a package for
visualizing and analyzing human neurophysiological data, was used. There are
several methodologies for working with EEG data [15]. The following steps
have been chosen for this project, adapted from the manual Introduction to EEG-
preprocessing: Methodological working in imaging neuroscience [1].

4.2.1 Working with metadata

The first step after importing the raw EEG data is to define the type of acquisition
channel. In this project all channels were EEG. Next, the electrode assembly that
was used with the Enobio device must be selected, in this case a standard 1020,
since 19 electrodes were used.

4.2.2 Identification of bad channels

Once the data collection configuration has been defined, a band-pass filter from
1 to 30 Hz is applied. In this way; it is possible to identify which electrodes have
noise or no signal and mark them as bad in the initial configuration.

4.2.3 Downsampling

The next step is to apply a 500 Hz downsampling, which reduces the data size.
After downsampling, the data has been stored as .csv file.
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4.2.4 Additional physiological artifact removal

In this step, an ICA analysis is applied to detect the ocular components and sep-
arate them from the brain components. ICA is a common practice that consists
of searching for a linear transformation that minimizes the statistical depen-
dence between the components involved in the signal in order to subsequently
eliminate artifactual sources from each EEG sample and reconstruct the signals
without these components [28].

LN Figure 2
Segment image and ERP/ERF

Segment

00 05 1o 15
Time (s)

Spectrum

204 Dropped segments: 0.00 %
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: - g g
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20 , o 00 4% 0 1“

25 50 75 100 125 0 50 W0 150 20 100
Frequency (Hz) segment

A€IPQ=n

AU*Hz (dB)
Variance (AU)

Figure 4.5: Example of ocular artifact in an ICA analysis

Thanks to ICA, eye movements and eye blinks can be removed and the signal
corrected. Failure to filter out such artifacts can result in the loss of important
information for the detection of the subject’s emotional state.

4.2.5 Interpolate bad channels

As this is a multi-subject analysis, it is necessary to maintain the same dimen-
sionality for all subjects (same amount of channels). Therefore, in this case it
is preferable to interpolate the bad channels instead of eliminating them, since
the bad channels do not have to coincide between subjects.

Channels were interpolated using the spherical spline method [22], which
projects the sensor locations onto a unit sphere and interpolates the signal at
the bad sensor locations based on the signals from the good locations.



4.2. EEG Data Preprocessing 13

T
P Pt B oI, o Vo MO PNt P PN AN 1y

& R A N s et T IV VY Y N N 0 e VWY
// R A, ~
b2 pormrern o W/Mwm,w»,ww.m,mw , T A N o SRS SE
\ \
P3 Frl it “\/W Pl g o Y W e s P3 Jetth e 1,“ \\WM ”"mw,wa“'““wﬂm”w-.u”“‘w«wwﬂw”w/”lﬂm-»

(SR " MJWW Ly vav\v«vf\/\wfﬂwwvﬂ'\,mu%wMrw-m\,v,v,»"\w, ps N S oo PN

4™ " P ey e
o1 MVM’/\"'VW"WV/W ‘MW o J Mt"’”%w b\ et St Nl«,\,JMy oty S 01 " u;,“ v’” W ,rw, Yk ‘/L%m,/mh,n‘uw w,\,wmvﬂmm‘ W e
02 Mttt A W R P o A4 02 b Mw”u\hw WA w

TT A A Al SO, A g AU S N A A i

AN o

\, ,,/“W”'

o wva WAV MVVMW o P DA S

L o kot b ok s S e NS Y
ro sty v‘\’\h | | o waﬂl WJ\/’%\“ B g h M/’ s \«MW ol N
FPL et f /\"/\HM PN, P e g e ,Lw s Fpl o e w/ww o vaW\w"”wmwd“‘mwww 1 ‘Hm
[[73 WAL M,f \\W W”” wwwfkwumwm S Fp2 »NMvr.qum(w'W‘m/\w H./KM o \,M it My ., J\M/ﬂ"\
ch20 X
360 362 364 366 368 360 362 364 366 368
(a) P4 and F4 channels marked as bad (b) P4 and F4 channels interpolated

Figure 4.6: Interpolation of the channels previously marked as bad

In Figure 4.6(a) we observe that channels P4 and F4 have been previously
marked as bad, since in this case they did not give any signal. In Figure 4.6(b)
these two channels have been reconstructed by interpolating their signal ac-
cording to the good sensors around them.

4.2.6 Re-reference

In EEG data recording, the most typical references are the vertex electrode (Cz),
single or linked earlobes, or the tip of the nose. There is no consensus on which
is the most appropriate method, but some studies claim that earlobes introduce
more noise than a scalp channel [4].

Figure 4.7: Re-reference to Cz
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In this project, all channels were re-referenced from the earlobe (GND) to
the Cz electrode, since the chosen configuration is symmetrical.

4.2.7 Crop

This step consists in performing a crop of the dataset for each subject test. Thus,
seven datasets (three tests and four relaxation videos) are created for each sub-
ject, one per step of the protocol (see Table 4.1), which will allow us to easily
label the samples later.

4.2.8 Windowing & Feature Extraction

Windowing consists of dividing a signal into different windows with the same
length (and, therefore, with the same number of samples) to later apply some
transformation and calculate different characteristics that summarize the infor-
mation of the window. These windows can have overlapping, which means that
two consecutive windows share a percentage of their data.

Two approaches have been followed for feature extraction. The first ap-
proach followed is similar to the one described in A Simplified CNN Classification
Method for MI-EEG via the Electrode Pairs Signals. Front. Smoke. Neuroscio. 2020
by Xiangmin Lun et al. [16], using only the values of the filtered signals and
without performing feature extraction beyond calculating the mean and stan-
dard deviations of the chosen windows for each channel.

The second procedure consisted of calculating the Delta, Theta, Alpha, Beta
and Gamma bands (also known as brain rhythms) of each window, since they
are related to the different mental states, as shown in previous studies such as
Somayeh Mohammady’s Wavelet Theory [21]. As there is no standard defini-
tion of the range that defines each of the bands, the ranges defined in the book
Wavelet Theory were applied:

Frequency band | Range (Hz)
Delta 0-4
Theta 4-8
Alpha 8-14
Beta 14 - 30
Gamma 30 -45

Table 4.2: Frequency bands
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In both cases, windows of 500 samples were selected, so that each window
represented 1 second, since, as mentioned above, the sampling frequency is
500 samples per second. Since there is no consensus on whether overlapping
is preferable for EEG data, two datasets were created for each approach, one
without overlapping and one with an overlapping of 250 samples.

4.3 ECG & GSR Data Preprocessing

For the preprocessing of the ECG signals, a high-pass filter was applied to elim-
inate noise. In the case of the GSR signals, a mean normalization was applied,
since each subject has a different sweating level and the environmental condi-
tions (temperature and humidity) of the laboratory may not coincide between
subjects.

Subsequently, as with the EEG signals, two approaches were followed, one
without overlapping windows and the other with an overlapping of 250 sam-
ples.

These physiological data have been used to make a comparison with the EEG
data in the classification results.

4.4 Labeling & Oversampling

Once the data had been preprocessed, labelling was carried out and the classes
were checked to see if they were balanced in order to subsequently train the
models.

4.4.1 Labeling

In a first stage, labeling aims to consider the problem as a binary one; stress
versus relaxation. But as in some samples it was not clear whether the subject
was stressed or relaxed, a third class called neutral has been added.

To decide with which state to label each time period, the ECG and GSR data
recorded with the Biopac and the interviews conducted with the subjects after
the experiment, where each one assessed which tests and which specific mo-
ments had caused them more stress, were used as a reference.
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Figure 4.8: Labeling with ECG and GSR signals

Figure 4.8 shows a fragment of the captured ECG and GSR signals. As can
be seen, the ECG signal stabilizes when the subject enters a relaxed state. At the
same time, the GSR signal decreases in that state, indicating a decrease in the
subject’s sweating, while in the state of stress its tendency is to increase.

4.4.2 Oversampling

Subsequent to labeling, oversampling was applied, since samples in the stress
class accounted for more than 50% of the samples, as shown in Figure 4.9(a).

000 2000 5000
count

1000 200 000 2000 o 1000
count

(a) Unbalanced samples (b) Balanced samples

Figure 4.9: Oversampling
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It is necessary to have the data balanced because at the time of creating the
train and test partitions, a class with few samples could have little representa-
tion in the train set and, therefore, it would be difficult for the model to classify
that class. Oversampling is applied instead of undersampling because the num-
ber of samples available is already limited for some models and we do not want
to lose information from the majority class.

This balanced the data by replicating the minority class samples and equal-
ized the ratio between the three classes.

4.5 Model building

Four different models were trained on the datasets.

» Light GBM, a gradient boosting framework that uses tree based learn-
ing algorithm. This model has the following parameters: learning rate,
n_estimators, criterion, max_depth. Each approach will be initialized with
the following values: learning rate = 0.1, n_estimators = 200, criterion
= ’squared_error’, max_depth = 15. These parameters were set as an ex-
perimental basis and subsequently optimised for each test.

* A 16-layer CNN based on the one proposed by Acharya et al. in the paper
Multi-class Emotion Classification Using EEG Signals [5].

* A KNN with Grid Search for Hyperparameter Tuning, namely metric, weights
and number of neighbors.

* A Radial Basis Function SVM, since RBF kernels are the most widely used
form of kernelization and have the best results in most cases [27].

All models have been built with the 80% of the data. The remaining data
were used for testing.
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Results

To test the hypothesis about the contribution of EEG to stress detection, several
experimental scenarios have been carried out:

EEG data with different feature extraction technique, to select the best set
of features.

* EEG data without overlapping and with overlapping of 250 samples, to
select the best windowing approach.

* A binary classification of stress/relax vs the rest, to check if there is a class
with dubious labelling.

* A comparison between EEG data, ECG/GSR data and the combination
of both, to assess whether EEG data make a significant contribution to
prediction.

* An intrasubject classification, to test whether samples from any subject
cause conflicts in the classification and whether there is gender bias.

All experiments have been tested with the four differents machine learning
techniques (LightGBM, KNN, SVM and CNN). As mentioned in the methodology
section, all models have been trained with the same data and the same propor-
tions of train (80%) and test (20%) partitions were used to classify mental state
according to stress level. To validate the results, a 5-Fold cross-validation has
been applied. Therefore, the data are split into 5 folds and in each iteration one
of these folds is used to test the model while the rest are used to train the model.

To evaluate model results the metric used is accuracy in percentages (%):

Number of correct predictions
Accuracy = — * 100
Total number of predictions
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5.1 Best features

The first experiment was defined to analyze which is the best approach for fea-
ture extraction: simple feature extraction (mean and std only), the extraction
of the frequency bands and the combination of both methods. In all three cases,
the best results for test set prediction were achieved by LightGBM, followed by
KNN. With only the mean and std of the samples, LightGBM has an accuracy of
90.92% while KNN decreases to 84%. Training the models with the frequency
bands, the results are quite lower, with 76.26% in the best case (LightGBM).
Combining the two previous approaches, the accuracy increases again to values
close to those of the first method, with a maximum of 89.27% accuracy. This
implies that the models give more weight to the mean and std features than to
the bands to predict the state.

LightGBM CNN KNN SVM
Train | Test | Train | Test | Train | Test | Train | Test
Mean & std 100.00 | 90.92 | 53.42 | 51.57 | 100.00 | 84.00 | 68.25 | 63.65

Frequency bands 99.80 | 76.25 | 33.66 | 32.70 | 100.00 | 71.00 | 38.15 | 36.98
Mean & std + bands | 100.00 | 89.27 | 53.52 | 52.02 | 100.00 | 80.00 | 59.92 | 57.50

Table 5.1: Classification results without overlapping

These results might indicate that frequency bands are not very suitable for
predicting stress following the methodology of this experiment.

5.2 Overlapping windows

Since EEG signals are time-continuous data, the effect of applying overlap on
the samples had to be tested.

SVM
Train | Test

CNN
Train | Test

KNN

LightGBM
Train | Test

Train | Test

99.23 | 77.45 | 34.24 | 31.73 | 100.00 | 72.00 | 39.86 | 39.40

Mean & std
Frequency bands

100.00 ‘ 86.24 ‘ 49.54 ‘ 49.10 ‘ 100.00 ‘ 78.00 ‘ 65.23 ‘ 63.65 ‘

Table 5.2: Classification results with overlapping
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As the table shows, no improvement is observed in any model and in the
case of LightGBM, the accuracy in the test set decreases to 86.24%.

5.3 Binary versus multiclass problem

In the previous predictions, a tendency of the models to misclassify the neutral
state was observed. For this reason, the three-class classification problem was
reduced to a binary stress/relax problem. In the stress vs. relax case, the accu-
racy of the best model (LightGBM) in the above tests was reduced to 80.65%
while the CNN increased to 69.03%. On the other hand, in the relax vs. rest
classification, both LightGBM and KNN significantly increased the accuracy.

CNN
Train | Test

KNN
Train | Test

SVM

LightGBM
Train | Test

Train | Test

Stress vs the rest
Relax vs the rest

99.95 | 80.65 | 75.24 | 69.03 | 100.00 | 74.00 | 65.73 | 63.65
100.00 | 92.05 | 49.73 | 51.08 | 100.00 | 85.00 | 67.89 | 65.86

Table 5.3: Binary classification results

Analyzing these results it can be seen that samples labeled as neutral in case
of being misclassified have a tendency to be classified as stress while samples
labeled as relax are easier to classify.

5.4 EEG alone versus EEG with ECG and GSR

The next step was to compare the results of the best model trained only with
EEG data, in this case the LightGBM without feature extraction and overlap,
with the results obtained from training the same models with ECG and GSR
data recorded with Biopac and with the combination of EEG, ECG and GSR data.
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LightGBM CNN KNN SVM
Train | Test | Train | Test Train | Test | Train | Test
EEG 100.00 | 90.92 | 53.42 | 51.57 | 100.00 | 84.00 | 68.25 | 63.65
ECG+GSR 95.80 | 87.19 | 33.80 | 31.46 | 100.00 | 87.00 | 60.15 | 58.77
EEG+ECG+GSR | 100.00 | 95.03 | 54.97 | 54.34 | 100.00 | 87.00 | 60.15 | 58.77

Table 5.4: EEG and ECG & GSR classification results

The results show that combining EEG signals with ECG and GSR signals
provides a significant improvement in prediction over using EEG signals alone.
This increase is more than 4% in the LightGBM model and 3% in the KNN model.
On the other hand, combining the signals results in an 8% increase in accuracy
compared to using only the physiological signals from the Biopac.

5.5 Personalisation

Personalised or Precision Medicine is a concept that relies on building models
based on individual, rather than multi-subject data. Patients are stratified ac-
cording to their characteristics, risk, prognosis or response to treatment using
specialised diagnostic tests. The key idea is to base medical decisions on individ-
ual patient characteristics rather than population averages in order to achieve
the best possible outcome through personalised treatments [6].

For this reason, an intrasubject classification was performed to analyse whether
it is feasible to create personalised models without losing accuracy and to check
whether any subject’s samples cause conflicts in the classification of the models.
For each subject, its sample set was divided into the same training and test ratio
as in the previous cases and all four models were trained.

The test results show that the LightGBM model has an average accuracy of
80.53% while the KNN is 75.80%. In general, subjects 1 and 6 have the worst
results in all models, which seems to indicate that the samples of these subjects
are not as reliable as those of the rest.

The low accuracy of the CNN compared to the other models is due to the
fact that being a Deep Learning method it would need a much larger amount of
data than those provided in this experiment.
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Subject | Gender LightGBM CNN KNN SVM
Train | Test | Train | Test Train | Test | Train | Test
SO M 100.00 | 86.48 | 33.80 | 35.61 | 100.00 | 76.00 | 50.24 | 45.78
S1 M 100.00 | 66.96 | 49.14 | 53.44 | 100.00 | 64.00 | 61.98 | 59.42
S2 F 100.00 | 86.01 | 48.69 | 55.24 | 100.00 | 80.00 | 72.34 | 70.28
S3 F 100.00 | 87.14 | 50.36 | 48.56 | 100.00 | 85.00 | 65.15 | 61.15
S4 M 100.00 | 74.57 | 49.53 | 51.89 | 100.00 | 68.00 | 61.34 | 57.56
S5 F 100.00 | 95.69 | 50.44 | 48.25 | 100.00 | 95.00 | 84.04 | 81.67
S6 F 99.80 | 64.90 | 49.74 | 51.02 | 100.00 | 64.00 | 63.12 | 59.18
S7 M 100.00 | 88.10 | 49.66 | 51.13 | 100.00 | 78.00 | 72.89 | 69.13
S8 M 100.00 | 70.02 | 49.87 | 50.51 | 100.00 | 69.00 | 57.37 | 54.62
S9 M 100.00 | 85.40 | 49.49 | 52.02 | 100.00 | 79.00 | 71.05 | 69.80
Avg. - 99.98 | 80.53 | 48.07 | 49.77 | 100.00 | 75.80 | 65.95 | 62.86

Table 5.5: Intrasubject classification results

In addition, we checked for gender bias and as the results show there is no
significant difference between males and females.

5.6 Computational time

A comparison between the accuracy with the EEG data of the first approach
(mean and std without overlapping) and the execution time for each model
shows that LightGBM is undoubtedly the most efficient and fastest model, with
an accuracy of 90.92% and an execution time of 14.78s.

| | LightGBM | CNN | KNN | SVM |

Accuracy
Time

90.92
14.78

51.57 | 84.00 | 63.65
204.17

89.84

26.71

Table 5.6: Execution time (s) and accuracy (%) of each model

Even though it is a less complex model than CNN and KNN and with few
hyperparameters to tune, it is able to provide the best results among the four

models.
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5.7 Channels

Finally, it was proposed to carry out an analysis of which channels provide the
most information for predicting stress states, quantifying the feature amounts in
percentages of all channels (see Table 5.7). The existence of a specific area that
is more relevant for prediction would allow the electrode cap to be replaced by
a less intrusive portable EEG device.

| Importance (%) | Channels

6.0to0 6.8 01, 02, Pz, T8, F7
5.3t05.7 P4, P8, F3, Fz, Fpl, Fp2
4.6t05.0 P7,P3,T7, C4, Cz, C4, F4, F8

Table 5.7: Channel analysis

There are two slightly different areas (see Figure 5.1). In magenta are the
five most important (values between 6.8 and 6%) and in yellow the six with
values between 5.7 and 5.3%. The rest are between 5 and 4.6%.

Figure 5.1: Channel importance

Nevertheless, the differences between the percentage values are very small
and therefore these results cannot be said to be significant.
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5.8 Discussion

The best features are clearly the average and std. Frequency bands reduce the
accuracy of all models. Comparing the models, LightGBM and KNN have the
best results, with 90.92% and 84% respectively.

Comparing the results with and without overlapping, despite being signals,
the models with overlapping provide between 5 and 6% more accuracy.

Analysing the binary classification, the results of relax vs the rest, with an
accuracy of 92.05%, compared to stress vs the rest, with an accuracy of 80.75%,
seem to indicate that the neutral class tends to be misclassified as stress.

The combination of EEG signals with ECG/GSR, increases the accuracy in
the LightGBM model by 5.05% compared to the same model trained with EEG
data only and by 8.00% compared to the model trained with ECG/GSR data.
The other three models (KNN, CNN and SVM) do not show any improvement
and their results are much lower than those of LightGBM.

Regarding the intrasubject classification, the results show that although the
average accuracy of the subjects (80.53%) is much lower than the multisubject
model (90.92%), in 6 of the 10 subjects the accuracy is close to or even better
than the multisubject model.

Comparing execution times, LightGBM is the fastest and highest performing
model, with an average of 14s per run.

In summary, the model that according to the results is the most suitable for
detecting stress is LightGBM with simple feature extraction (mean and std) and
no overlapping.

Analysing the importance of EEG channels, there are no significant differ-
ences indicating that some sensors provide more valuable information than oth-
ers. To corroborate these results, an experiment with a larger number of subjects
would have to be conducted.






CHAPTER 6

Conclusions and future work

In this project, various methodologies for stress detection with EEG signals have
been contrasted. Using a stress induction experiment, physiological data were
acquired from ten subjects. Subsequently, four models have been trained: Light-
GBM, a 16-layer CNN, a KNN and a SVM.

The first hypothesis that had been proposed was whether the inclusion of
EEG signals provides any considerable benefit in stress detection versus using
only ECG and GSR signals. The results show that EEG signals provide a signifi-
cant increase in accuracy, between 4-5%, but not enough to justify their use in
conjunction with ECG and GSR signals. The major drawback has to do with the
issue of intrusiveness. A wearable device, such as a wristband, can be used to
record physiological signals, whereas a cap with electrodes is required to cap-
ture EEG signals. On the other hand, portable EEG devices are being developed
which, unlike the Enobio device, would not be intrusive and could replace the
wearable or even be complemented by this type of device.

The second hypothesis that had been raised was which model is the most
suitable for the methodology followed by this project. The results clearly show
that LightGBM is the most effective, fastest and least complex model. It provides
the best results, with an accuracy of 90.92%, only with the means and std of
each of the 19 channels, while the second best model, KNN, has an accuracy of
84%. In terms of execution time, LightGBM is much faster than the other mod-
els.

In future work, in order to compare the performance of a portable EEG de-
vice with a wearable as discussed above, the experiment should be repeated,
since in this project the Biopac device was used to record the physiological data
and the results could vary drastically with a wearable device.

On the other hand, repeating the experiment with a larger number of sub-
jects would allow the results to be consolidated in order to subsequently write
an article.






Diagram of the methodology
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