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A B S T R A C T

Today, in the field of energy, the main goal is to reduce emissions with the aim of maintaining a clean
environment. To reduce energy consumption from fossil fuels, new tools for micro-grids have been proposed. In
the context of multi-vector energy management systems, the present work proposes an optimal scheduler based
on genetic algorithms to manage flexible assets in the energy system, such as energy storage and manageable
demand. This tool is applied to a case study for a Spanish technology park (360 kW consumption peak) with
photovoltaic and wind generation (735 kW generation peak), hydrogen production (15 kW), and electric and
fuel cell charging stations. It provides an hourly day-ahead scheduling for the existing flexible assets: the
electrolyser, the electric vehicle charging station, the hydrogen refuelling station, and the heating, ventilation,
and air conditioning system in one building of the park.

A set of experiments is carried out over a period of 14 days, using real data and performing computations in
real time, in order to test and validate the tool. The analysis of results show that the solution maximises the use
of local renewable energy production (demand is shifted to those hours when there is a surplus of generation),
which means a reduction in energy costs, whereas the computational cost allows the implementation of the
tool in real time.
1. Introduction

In the modern world, the use of fossil fuels such as coal or gas
gives rise to significant concern due to their environmental footprint,
as they release greenhouse gases like CO2 and other gases into the
atmosphere and cause global warming (Association et al., 2022). The
planet’s climate emergency requires the effective and rapid decar-
bonisation of the ways the energy is produced and consumed. This
energy transition involves several actors, as new policies and circular
economy (Magazzino and Falcone, 2022) or reconversion of existing
energy installations, such as refineries (Falcone et al., 2021). The
energy sector, including transport, industry, and heating & cooling,
is responsible for around 72% of the European Union’s greenhouse
gas emissions. As a consequence, renewable energy sources are being
introduced into electrical energy systems to decrease dependence on
conventional resources (Maris and Flouros, 2021).

Although renewable energy sources such as solar and wind energy
do not emit greenhouse gases, this type of generation involves uncer-
tainty due to the variable and intermittent nature of the primary energy
sources, i.e., sunlight and wind. This inherent uncertainty and intermit-
tence causes difficulties in terms of planning the daily operation of a
local energy system (LES) or micro-grid (MG). The goal of this planning
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is to ensure that the maximum proportion of the energy consumed
is generated locally. With increasing the use of local generation the
energy that needs to be supplied by the utility is reduced. Energy
supplied by utilities is not always generated using conventional primary
energy sources. Moreover, the market prices for energy depend on
when the energy is consumed, or the maximum amount of energy
consumed. Planning for an MG also aims to minimise the operational
cost in terms of energy costs. In order to tackle these challenges, there
is a need to develop an optimal scheduler (OS) module inside a multi-
vector energy management system (MVEMS) that can optimise the use
of local renewable generation, increase the autonomy of the system,
and reduce the overall energy costs, peak loads and CO2 emissions,
among other optimisation criteria.

Nowadays, the management of an energy system must consider
different types of power systems, such as managing heating, ventilation
and air conditioning (HVAC), electricity-to-hydrogen conversion, solar
thermal and geothermal systems. Moreover, new technologies such as
electrical, thermal and hydrogen storage, electric and fuel cell electric
vehicles (EVs, FCEVs) have arisen, as has the problem of flexible
demand. These assets have to be managed together, and decisions must
be made on when to consume or store energy, or when to charge an
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Table 1
State-of-the-art schemes for multi-vector energy management systems.

Year Author Name Controllable
assets

Non-
controllable
loads

Non-
controllable
generation

Real data Solver Ref

2014 Mousa
Marzband

Experimental validation of a real-time energy
management system using multi-period
gravitational search algorithm for micro-grids in
islanded mode

EES, MT, RLD NRL PV No Gravitational
search algorithm

Marzband
et al. (2014)

2014 Mehdi
Motevasel

Expert energy management of a micro-grid
considering wind energy uncertainty

EES, MT, FC WT, PV No Bacterial
foraging
optimisation

Motevasel and
Seifi (2014)

2014 E.E. Sfikas Simultaneous capacity optimisation of distributed
generation and storage in medium voltage
micro-grids

EES, BM NRL WT, PV Weather Non-linear
programming

Sfikas et al.
(2015)

2015 Christos-
Spyridon
Karavas

A multi-agent decentralised energy management
system based on distributed intelligence for the
design and control of autonomous poly-generation
micro-grids

EES, FC, HT,
PWT, ROD

NRL, PEM WT, PV No Multi agent
system

Karavas et al.
(2015)

2015 G.R. Aghajani Presenting a multi-objective generation scheduling
model for pricing demand response rate in
micro-grid energy management

EES, FC, MT NRL WT, PV No Multi-objective
particle swarm
optimisation

Aghajani et al.
(2015)

2015 Walied
Alharbi

Probabilistic coordination of micro-grid energy
resources operation considering uncertainties

EES, CG WT, PV No Multi-scenario
mixed integer
linear
programming

Alharbi and
Raahemifar
(2015)

2015 Saber Talari Stochastic-based scheduling of the micro-grid
operation including wind turbines, photovoltaic
cells, energy storages and responsive loads

EES, FC, MT NRL WT, PV No Linear
programming

Talari et al.
(2015)

2018 Chee Lim
Nge

A real-time energy management system for smart
grid integrated photovoltaic generation with
battery storage

EES PV No Lagrange
multipliers

Nge et al.
(2019)

2019 Makbul A.M.
Ramli

Efficient Energy Management in a Micro-grid with
Intermittent Renewable Energy and Storage
Sources

EES, CHP NRL WT, PV No Most valuable
player algorithm

Ramli et al.
(2019)

2020 Sizhou Sun Multi-Objective Optimal Dispatching for a
Grid-Connected Micro-Grid Considering Wind
Power Forecasting Probability

EES, MT, FC WT, PV No Improved
multi-objective
bat algorithm

Sun et al.
(2020)
EV or produce cold. As a result, there is a need for an MVEMS, and
more specifically an OS, that can optimise the operation of the MG as
a whole.

In previous years, several OSs for MVEMSs have been proposed
in the literature. Some of these works deal with MGs with a reduced
numbers of dimensions and features, for example the scheme in Zhao
et al. (2015) in which a photo-voltaic (PV) plant and a thermal system
in a small building were optimally scheduled. In Jung et al. (2020),
a residential building with PV and electric energy storage (EES) were
managed using an OS. An OS was also applied to a battery bank in
a system consisting of a PV, wind turbine (WT), diesel generator and
one small building (Forough and Roshandel, 2017). At house level, a
system with several assets (photovoltaic generation, micro fuel cell,
solar thermal collectors, electrical and thermal storage) is controlled
in Muthalagappan (2021).

As a summary of state-of-the-art MVEMSs for MGs for MGs with
considerable dimensions, Table 1 shows which assets are controlled
by the energy management system (flexible), demand and genera-
tion, non-controllable consumption assets (non-flexible demand), and
non-dispatchable generation installations. The table also includes in-
formation on the use of real data and the nature of the tests done in
real installations. Finally, it contains information on the solver (that is,
the algorithm) employed to calculate an optimal scheduling plan for
the controllable assets.

From a review of the controllable assets considered in the literature,
all of the works in Table 1 include control of the EES (Marzband et al.,
2014; Motevasel and Seifi, 2014; Sfikas et al., 2015; Karavas et al.,
2015; Aghajani et al., 2015; Alharbi and Raahemifar, 2015; Talari
et al., 2015; Nge et al., 2019; Ramli et al., 2019; Sun et al., 2020),
2

whereas others forms of control, such as micro turbine (MT) (Marzband
et al., 2014; Motevasel and Seifi, 2014; Aghajani et al., 2015; Talari
et al., 2015; Sun et al., 2020) or responsive loads (RLDs) (Marzband
et al., 2014), are used in only some of them. In addition, hydrogen
tanks (HTs) (Marzband et al., 2014; Karavas et al., 2015), potable
water tanks (PWTs) (Karavas et al., 2015), reverse osmosis desali-
nation (ROD) (Karavas et al., 2015) and combined heat and power
(CHP) (Ramli et al., 2019) are controllable assets that appear in some
of these works. In regard to the non-controllable loads, non-responsive
loads (NRLs) (Marzband et al., 2014; Sfikas et al., 2015; Karavas et al.,
2015; Aghajani et al., 2015; Talari et al., 2015; Ramli et al., 2019)
are considered in 64% of the works, and the remainder do not contain
any non-controllable loads. There is one work (Karavas et al., 2015)
in which the non-controllable load is defined as a proton-exchange
membrane fuel cell (PEM). Finally, concerning the non-controllable
generation, it is seen that all the works contain a PV, a WT, or both.

From an implementation point of view, there is only one work
(Sfikas et al., 2015) in which real weather data were used in order
to create the models. The rest of the works do not include real data
or a real implementation in the case of an MVEMS. In regard to the
way that the optimisation problem is solved, a wide variety of solvers
have been implemented. Solvers that use linear programming (Sfikas
et al., 2015; Karavas et al., 2015), Lagrange multipliers (LM) (Nge et al.,
2019), nonlinear programming (Sfikas et al., 2015) and multi-agent
systems (Karavas et al., 2015) have been applied, while the remain-
der have used stochastic methods such as the most valuable player
algorithm (MVPA) (Ramli et al., 2019), the improved multi-objective
bat algorithm (IMOBA) (Sun et al., 2020) and the gravitational search
algorithm (GSA) (Marzband et al., 2014).

From this review, it is seen that there are major gaps in the state of

the art in regard to MVEMS, such as a lack of descriptions of real MGs,
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since most of the works are based on theoretical scenarios. This also
means that the MVEMSs proposed in the literature have not been tested
using real data, and have not been implemented in actual installations.
In addition, the scheduling of HVAC systems is not included in a multi-
vector scenario, and hydrogen electrolysers and EV charging stations
have also not been considered as controllable assets in most cases.
Another important drawback is that technical constraints arising from
human behaviour, such as work schedules, are not considered in these
schemes.

Finally, the majority of the works reviewed here do not take into
account the computational time required to perform the optimisation
calculations. These schemes employ methods that cannot be used in
real time due to their high computational requirements, such as their
latency and calculation time.

With the aim of overcoming the limitations described above, the
authors present a MVEMS in which the overall objective is to provide
an optimal solution for a 24-hour day-ahead schedule for the existing
controllable assets in an energy system. The proposal includes a de-
tailed, low-level description of the MG, and is based on real data and
installations.

The proposed MVEMS, and the OS inside it, are used to find an
optimal schedule for the following assets: HVAC, EV charging station,
electrolyser and hydrogen refuelling station. The OS operates the HVAC
system based on energy efficiency and economic incentives, shifting its
electricity consumption to off-peak hours and thus reducing electricity
bills. Load shifting is also applied to the EV charging stations and
hydrogen refuelling stations, promoting the use of green mobility and
reducing CO2 emissions while increasing the use of local generation
sources. Regarding the electrolyser, the proposed solution provides
an optimal scheduling for hydrogen production and storage, which
also increases the use of local generation resources together with the
scheduling of hydrogen refuelling stations. As a global objective of the
MVEMS, all these actions increase the self-consumption and degree of
autonomy of the MG.

In order to calculate an optimal schedule for the existing control-
lable assets in a hybrid MG, a range of tools are needed. First, forecasts
of the local renewable generation and the non-controllable consump-
tion must be calculated. Next, the controllable assets must be modelled
in order to simulate their energy consumption in the optimal schedule.
Following this, the authors used an optimising algorithm that provides
a solution to the problem with an objective defined based on a mix of
mathematical functions, models and black box forecasting. Finally, the
inclusion of existing operational constraints and requirements of the
assets must be taken into account in the definition of the optimisation
problem.

This work presents a real case of the optimisation of an hybrid
MG, with distinct energy sources and multiple controllable assets. The
hybrid MG is a technology park with local photovoltaic and wind
generation (100 kW and 635 kW, respectively) and four types of
controllable assets: the HVAC system in one of the buildings of the
park, the EV charging station, an electrolyser, and the electric/fuel
cell vehicles charging station. The technology park has seven buildings
and its peak power consumption is 360 kW. Present work describes
how forecasts of the generation and consumption are created, how the
distinct assets are modelled, and how the cost function is constructed
and solved using an optimisation algorithm.

This work is structured as follows. Next section presents a general
overview of the OS and their elements. Section three describes how
the OS is implemented in the specific MG of the technology park. In
section four, the OS is tested during two weeks and results are shown
and discussed. The fifth section provides a discussion of the findings of
this work. Finally, the last section includes acknowledgements of the
research projects that have funded this work and other people who have
contributed in specific parts of it.
3

Fig. 1. Block diagram of the inputs and outputs of the OS.

2. General methodology

In this chapter, the general methodology and blocks are depicted
and generically described. In the next section, the authors describe the
exact methodology to be applied in the presented case.

Based on the overall definition of the MVEMS explained above, the
OS is described in this section. The OS is a module that forms part of the
MVEMS and calculates a hourly day-ahead schedule for the controlled
assets in the energy system according to a pre-set objective.

Fig. 1 shows a general overview of the OS module. This module is
composed of the following elements: state variables, control variables,
constraints, cost function and solver.

2.1. State variables

The state variables are the inputs that contribute to the mathe-
matical definition of the objective (cost function) to be optimised.
These variables are predicted or simulated energy values (for gener-
ation and consumption), depending on whether they are controllable
or non-controllable assets, respectively. These energy values may in-
clude the electrical or thermal demand of buildings, renewable energy
production, and EV/FCEV consumption, for example.

Calculation of the energy demand is approached differently for
non-controlled and controlled demand. In the first case, the energy
consumption forecast is calculated by the energy forecaster (EF), based
on data-driven models of the demand which include weather forecast-
ing and contextual information such as the hour of the day and its
type (that is, working/non-working periods). In the second case, energy
consumption is simulated using the OS module, since it depends on the
operational state of some controllable asset. Different types of methods,
such as data-based models, first principles models, etc. may be used to
simulate the controllable loads.

2.2. Control variables and constraints

The control variables are the parameters of the controllable assets to
be optimised. They represent the output of the OS module, and depend-
ing on the nature of the control variable, they may be binary, discrete or
continuous. Examples of control variables include the ON/OFF control
of the chiller and its set-point temperature, and whether or not an
electrical vehicle charger is enabled for charging.

The constraints are defined as certain limitations on the control
variables, such as a maximum value permitted or a range of discrete
values. These limitations may also correspond to limitations on the
assets, such as the capacities of electric batteries or hydrogen storage
tanks, or limitations introduced by use, such as the daily time-frame in
which an EV can be charged.
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Fig. 2. Installations and assets at Walqa technology park.
2.3. Cost function and solver

The objective that the OS must pursue when calculating a schedule
for the controllable assets is described as a cost function. This function
typically includes the amount or the price of the energy that is supplied
by a utility grid (such as a distribution electricity company), and is
implemented based on the state variables, controlled variables and
constraints. The solver is the algorithm that finds the minimum of the
cost function.

This methodology is used in real scenarios and needs to deal with as
many as possible types of cost functions. So, computing time needs to be
controllable, and having a sub-optimal solution is much more desirable
than having no solution for a given time. The author’s purpose is to
use metaheuristic techniques as they usually adapt better with these
requirements. Finally, genetic algorithm (GA) (Volta et al., 1995) was
selected for the particular case presented in next section as it was the
one performing better in results and time by the present case.

3. Description of the case study

The proposed optimisation for the MVEMS was implemented and
tested in Walqa technology park, located in the northeast of Spain close
to the Pyrenees. The technology park is a pilot associated with the
E-LAND European project. It is an initiative promoted by the Aragon
General Government, and includes four buildings that are rented out
and several others that are owned by private companies. Electrical
energy, electricity-to-hydrogen and electricity-to-cold are included in
this scenario. These three types of energy usage are marked in Fig. 2 as
the electricity bus, the hydrogen bus and the thermal bus. The figure
also shows the existing assets in the MG. These assets are divided into
four types: power supply (source), consumption (sink), conversion of
electrical energy to hydrogen and cold (transformer), and storage.
4

Electrical energy is supplied by the electric grid and the local energy
generation units, which consist of two PV plants (100 kW) and three
WTs (635 kW).

Electrical energy is consumed in seven buildings located in the park
(360 kW peak). These buildings are divided into three sets based on
the assets included in each of them. The first includes the building
Fundacion de Hidrógeno Aragón (FHA), in which electrical energy
is used for the offices and to charge electrical vehicles and produce
hydrogen. The second includes the Ramon 𝑦 Cajal building, in which
the HVAC system is modelled to include the conversion of electricity to
cold in the energy management system (EMS). The third set includes
the rest of the buildings, for which the consumption is not optimised
by the EMS.

The storage asset in the MG is a hydrogen storage tank, which is
connected to an FCEV refuelling station.

In order to improve the operation of the MG, optimise the use of
local renewable resources and minimise operational costs, some of the
previous consumption assets are controlled by the EMS based on the
forecasting of local production and non-scheduled consumption assets.
In this case study, the controlled assets are the electrolyser, which
generates hydrogen from electricity; the chiller, which generates cold
in the HVAC system; the chargers of the EV charging station; and the
hydrogen refuelling station, which provides hydrogen to the FCEV.

3.1. Implementation of the case study

The OS for the Walqa MG was implemented by defining the nec-
essary inputs (state variables), outputs (control variables) and tech-
nical/operational constraints, together with the cost function that de-
scribes the objective of the optimisation and the solver that calculates
the optimal scheduling of assets. Fig. 3 provides a general overview
of the implementation, and the information presented in the figure is
described in more detail below.
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Fig. 3. Walqa pilot block diagram of the OS.
Fig. 4. PV generation forecasting. On vertical axis there is the PV generation (blue) and the PV generation prediction (red) in Watts. In horizontal axis there is the time in hours.
3.1.1. State variables
The state variables are the inputs of the OS, and are used to define

the cost function. Two types of state variables can be distinguished:
forecast and simulated variables. The difference between them is that
forecast values are calculated by the EF models, whereas simulated
values are calculated in the OS depending on the equations used. In
the following, an overview of these state variables is given.

• PV generation: The daily electric energy (𝐷𝐺𝐸𝑁 ) produced by
the two PV plants was forecast by means of a random forest
model (Breiman, 2001), which was parameterised as follows:
trees = 100 and maximal depth = 15. The preprocessing method-
ology included windowing, missing average substitution, nor-
malisation, feature selection, etc. The model was created using
historical data on PV energy generation and weather. As an
example, Fig. 4 shows the real PV generation vs the predicted PV
generation, between 15th January 2022 and 14th February 2022.
The correlation coefficient between them is 0.943.

• WT generation: The daily electric energy produced (𝐷𝐺𝐸𝑁 )
by the three WTs was forecast by means of a random forest
model (Breiman, 2001), which was parameterised as follows:
trees = 25 and maximal depth = 15. The preprocessing methodol-
ogy included missing average substitution, normalisation, feature
selection, etc. The model was created using historical data on WT
5

energy generation and weather. As an example, Fig. 5 shows the
real WT generation vs the predicted WT generation, between 29th
December 2021 and 4th March 2022, note that the forecasting
includes the required energy by wind turbines to operate. The
correlation coefficient among the two is 0.88.

• Non-controllable consumption: The daily electrical consump-
tion (𝐷𝐶𝑂𝑁 ) of those assets that were not optimised by the
OS was forecast using a RF model (Breiman, 2001), which was
parameterised as follows: trees = 120 and maximal depth =
15. The preprocessing methodology included windowing, missing
average substitution, normalisation, feature selection, etc. The
model was created using historical data on electricity consump-
tion, and weather and calendar data. As an example, Fig. 6 shows
the real consumption vs the predicted consumption for the test
data, between 15th January 2022 and 14th February 2022. The
correlation coefficient between them is 0.915.

• HVAC consumption: To simulate the daily HVAC consumption
(𝐷𝐻𝑉 𝐴𝐶 ), the authors needed to also model the thermal be-
haviour of the Ramon 𝑦 Cajal building depending on the ON/OFF
operation. This thermal simulation was carried out in order to
check that the users’ comfort range requirements were met and
to capture the system dynamics that affected electrical consump-
tion. The HVAC consumption simulation model consisted of two
distinct models.
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Fig. 5. WT generation forecasting. On vertical axis there is the WT generation (blue) and the WT generation prediction (red) in Watts. In horizontal axis there is the time in
hours.
Fig. 6. Non-controllable consumption forecasting. On vertical axis there is the non-controllable consumption (blue) and the non-controllable consumption prediction (red) in Watts.
In horizontal axis there is the time in hours.
First model is used to forecast the indoor building temperature
depending on the outdoor temperature, relative humidity, the
temperature setpoint and ON/OFF operation. Different existing
methodologies in the literature were tested, being multiple linear
regression (MLR) the one that provides the most accurate results.
The correlation coefficient between them is 0.963.
Second, a model to forecast the consumption of the HVAC system
is also created. This model is based on outdoor temperature,
the forecasted indoor temperature of the first model, the op-
erational status of the HVAC system ON/OFF and the hour of
the day. The HVAC consumption simulation model consisted of
an RF (Breiman, 2001) model, and the most accurate results
were obtained with the following parameters: trees = 120 and
maximal depth = 15. The preprocessing methodology included
windowing, missing average substitution, normalisation, feature
selection, etc. The model was created using historical data on
HVAC consumption and operation, and weather and calendar
data. As an example, Fig. 7 shows the real HVAC consumption vs.
the simulated consumption for the test data, between 2th and 8th
October 2021. The correlation coefficient between them is 0.925.

• Electric vehicle charging station: The energy consumed by
the EV charging station (𝐷 ), which allows two vehicles to be
6

𝐸𝐶
recharged at the same time, is simulated in the OS based on the
charging power set point of each charger (3.7 kW) and the hours
that they are active, as shown in Eq. (1).

𝐷𝐸𝐶 =
24
∑

𝑖=1
[𝑚1(𝑖) ⋅ 𝑃𝑜𝑤𝑒𝑟 𝑐ℎ1(𝑖) ⋅ 𝛥𝑡 + 𝑚2(𝑖) ⋅ 𝑃𝑜𝑤𝑒𝑟 𝑐ℎ2(𝑖) ⋅ 𝛥𝑡] (1)

where:
𝐷𝐸𝐶 = daily energy consumed by EV charging station (kWh)
𝑚1, 𝑚2 = one if the charger is active; zero otherwise
𝑃𝑜𝑤𝑒𝑟 𝑐ℎ1, 𝑐ℎ2 = charging power set-point (3.7 kW)
𝛥𝑡 = time increment (one hour)

• Hydrogen storage tank: The state of the tank (kg of stored
hydrogen) is calculated in the OS to simulate how much hydrogen
is produced by the electrolyser from its energy consumption
and stored in the tank using Eq. (2). The authors then subtract
the amount of hydrogen delivered by the hydrogen refuelling
station in Eq. (3). Finally, the consumption of the electrolyser is
calculated using Eq. (4).

𝐷𝐻𝑃 =
24
∑

𝑖=1
[𝑚(𝑖) ⋅ 𝑃𝑜𝑤𝑒𝑟(𝑖) ⋅ 𝛥𝑡 ⋅ 𝐶𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛 𝐹𝑎𝑐𝑡𝑜𝑟(𝑖)] (2)

where:
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Fig. 7. HVAC consumption forecasting. On vertical axis there is the HVAC consumption (blue) and the HVAC consumption prediction (red) in Watts. In horizontal axis there is
the time in hours.
𝐷𝐻𝑃 = daily hydrogen production (kg)
𝑚 = one if the electrolyser is active; zero otherwise
𝑃𝑜𝑤𝑒𝑟 = power consumption (kW)
𝐶𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛 𝐹𝑎𝑐𝑡𝑜𝑟 = energy consumption for hydrogen production
(kg/kWh)
𝛥𝑡 = time increment (one hour)

𝑇𝑆(𝑖) = 𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑡𝑎𝑛𝑘 𝑠𝑡𝑎𝑡𝑒 +
𝑖

∑

𝑗=1
[𝐻𝑦𝑑𝑟𝑜𝑔𝑒𝑛 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛(𝑗)

−𝐻𝑦𝑑𝑟𝑜𝑔𝑒𝑛 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛(𝑗)] (3)

where:
𝑇𝑆(𝑖) = state of the tank at hour i (kg)
𝐻𝑦𝑑𝑟𝑜𝑔𝑒𝑛 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛(𝑗) = amount of hydrogen produced during
hour j (kg)
𝐻𝑦𝑑𝑟𝑜𝑔𝑒𝑛 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛(𝑗) = amount of hydrogen delivered by
hydrogen refuelling during hour j (kg)

𝐷𝐸𝐿 =
24
∑

𝑖=1
[𝑃𝑜𝑤𝑒𝑟(𝑖) ⋅ 𝛥𝑡] (4)

where:
𝐷𝐸𝐿 = daily energy consumed by the electrolyser (kWh)
𝑃𝑜𝑤𝑒𝑟 = power consumption (kW)
𝛥𝑡 = time increment (one hour)

• Electricity price: The hourly day-ahead electricity prices are pro-
vided to the OS by external service providers (Central Collection,
2022; Precio Horario del Mercado Diario, 2022).

• Hydrogen price: The buying and selling prices for hydrogen are
fixed. In the case of the hydrogen used to fuel the FCEV, the price
is 3.6 euros/kg (Collins, 2020), whereas the price of the hydrogen
injected into the utility grid is 1.6 euros/kg.

3.1.2. Control variables and constraints
As can be seen from Fig. 1, there are four controllable assets: the

electrolyser, the hydrogen refuelling station, the EV charging station
and the HVAC system. The OS provides the hourly day-ahead schedule
for one or more parameters of a controllable asset. In the following,
the schedule created for each asset and their technical/operational
specifications are explained.

Electrolyser: The OS produces a schedule for when to produce
hydrogen from electricity and how much hydrogen to produce, fixing
the energy consumption. The electrolyser can work at six levels of
power (from 0%–100% of the nominal power), and the OS will fix
7

the optimal value if the electrolyser is scheduled to be active. The
OS also has to comply with the following technical requirements and
specifications:

• 15 kW maximum power.
• Once turned on, the electrolyser does not produce hydrogen for

the first 20 min and has a fixed cost.
• Any hydrogen produced when the tank is full is lost, as it is

liberated to the atmosphere.

Hydrogen refuelling station: The OS schedules the activation or
deactivation of the refuelling station. A user can only refuel a car if the
station is active. Moreover, the OS has to comply with the following
technical requirements and specifications:

• A weekly recharge of 5 kg must be guaranteed.
• The maximum capacity of the hydrogen storage system is 33.5 kg.

EV charging station: In the same way as the hydrogen refuelling
station, the OS schedules the activation or deactivation of each of the
two chargers in the EV charging station. A user can only refuel a car if
one of these chargers is active. The OS must comply with the following
technical requirements and specifications:

• The set point for the charging power is equal to 3.7 kW.
• There are two chargers.
• A minimum daily global charge of 30 kWh must be guaranteed

between the two chargers (availability).
• A user can recharge a car between 8:00 and 17:00 h.

HVAC system: This is located in the Ramon 𝑦 Cajal building. It
is composed of a chiller and fan coils, and is the major source of
consumption due to the chiller. The OS schedules the turning ON and
OFF of the chiller, ensuring that the indoor temperature is maintained
at the fixed set point temperature during summer time. The OS also has
to comply with the following technical requirements and specifications:

• The set-point temperature of the building is fixed at 22 ◦C.
• The HVAC system can work between 8:00 and 17:00 h.
• The chiller is not operated in winter.
• The chiller is not operated at weekends.
• Valid rang of indoor temperatures is 22 to 25 Celsius.

3.1.3. Cost function
The cost function, or the objective function that the OS must min-
imise, is defined in this subsection. Based on the cost function, the OS
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𝑓

finds the best combination of the control variables in order to minimise
the day-ahead operational cost of the MG, and to integrate as much
local generation as possible in the system. Depending on when and how
the controllable assets are used, how the demand is covered and how
the prices vary, it is possible to find an hourly day-ahead schedule for
these assets that minimises the cost function.

The cost function takes into account the four controllable assets and
the cost of energy (both electrical and hydrogen). It includes:

• The price of electricity provided by the utility. This energy is
the difference between the energy consumption (buildings, elec-
trolyser, HVAC system, and EV charging station) and the local
generation (PV and WT).

• The price of the hydrogen that is produced. The hydrogen is
considered at the lowest selling price. This means that hydrogen
is considered as it has to be sold to the grid.

The resulting cost function is expressed in Eq. (5):

(𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑣) = 𝑃𝑒 ⋅ [𝐷𝐶𝑂𝑁 +𝐷𝐸𝐿 +𝐷𝐻𝑉 𝐴𝐶 +𝐷𝐸𝐶 −𝐷𝐺𝐸𝑁 ] −𝐷𝐻𝑃 ⋅𝑃ℎ (5)

where:
𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑣 = controlled variables
𝐷𝐶𝑂𝑁 = daily electrical energy consumed by non-controllable assets

(kWh)
𝐷𝐺𝐸𝑁 = daily electrical energy generated by local generation re-

sources (kWh)
𝐷𝐸𝐿 = daily electrical energy consumed by the electrolyser (kWh)
𝐷𝐻𝑉 𝐴𝐶 = daily electrical energy consumed by the HVAC system,

mainly the chiller (kWh)
𝐷𝐸𝐶 = daily electrical energy consumed by the EV chargers (kWh)
𝐷𝐻𝑃 = daily hydrogen production (kg)
𝑃𝑒 = the price of selling energy to the grid, which is set to 0.068

euros/kWh, and a dynamic price for buying
𝑃ℎ = the price of selling hydrogen to the grid, which is set to 1.6

euros/kg

3.1.4. Solver
As stated in the previous subsection, the cost function defines

the objective to be minimised in the MG. The control variables are
calculated to reach this objective, while complying with the technical
specifications and requirements for each asset. From the range of
existing solvers, the genetic algorithm (GA) (Volta et al., 1995) was
selected since it is capable of performing well with a wide range of
optimisation functions, and can handle discrete attributes. GA is a
search algorithm for optimisation problems inspired by the process of
biological evolution.

The configuration used in the GA algorithm is the following one:
the number of particles to be used is 51, one particle for each hour
of each controllable variable, the population size is 100, the mutation
probability used is 0.1, the elite ratio for ensure not losing the best
solution is set to 0.01 and the crossover probability is 0.5, using an
uniform crossover method.

4. Example of application

This section describes an example of applying the proposed OS
(Section 2) to the MG described in Section 3. This example involves
optimisation of the MG over 14 days. The example data relate to
the period from 4th to 17th May 2022. At the end of each day at
23:50 h the actual data were collected from the MG via different web
services in order to obtain the schedule for the next day to apply
directly to the grid the results on the optimisation. First, the state
variables (input variables) are defined based on real data gathered from
Walqa technology park and the optimisation results are then presented
and discussed. Existing technical specifications and requirements are
8

described in Section 3.
4.1. State variables

In this section, the inputs to the OS are described. Each day, the
state variables were collected from the MG. Day-ahead consumption
and generation data were provided by the EF described in Section 3,
using data-driven models based on historical data gathered at Walqa
technology park over a period of four months, while weather fore-
casting data were provided by external services, seen in Dark Sky
(2022), Openweather (2022) and solcast (2022). Electricity buying
prices were obtained from Central Collection (2022) and Precio Ho-
rario del Mercado Diario (2022), and the rest of prices were fixed by
contract. Finally, the initial status of the hydrogen storage tank was
obtained from a measurement device in the tank. These input data are
summarised in Fig. 8, with the aim of simplifying all the days are shown
together but OS uses a day-ahead horizon.

4.2. Results

Once the forecasts are available to the OS, together with the prede-
fined technical specifications and requirements of the assets, the cost
function in Eq. (5) is solved by means of a GA. The solver provides
the hourly day-ahead schedule for the four controllable assets in Walqa
technology park.

The hourly day-ahead schedule of the control variables calculated
by the OS is used to simulate the consumption of the corresponding con-
trollable assets. These simulations of the consumption, together with
the forecasts for local generation and non-controllable consumption,
allow us to assess the optimisation results calculated by the OS for the
day. In order to interpret the results in Fig. 9, some simulations can be
seen on the best case found during the optimisation process for each
day. It should be noted that the scheduling is done for the day ahead,
and this is the reason why the tank profile changes at 00:00 h. Updating
is done when scheduling is started with real values from the tank for
the next day’s operation, and not at the real hour at which the car was
charged.

Finally, Fig. 10 shows the operation for each of the controllable
assets. Again, the results for each of the 14 days are shown.

In general terms, the assets are operated based on the requirements,
the energy prices and the availability of renewable energy. In the
following paragraphs these assets are explained in more detail:

• Electrolyser: It can be seen from Fig. 10(a) that the electrolyser
tends to be used at minimum power, since there is usually no
excess electricity. That is true, except the days that the require-
ments of having a minimum of 5 kg in the tank are not met. As an
example of exploiting energy surpluses, it seen that on 15th May
there are some hours with excess energy, in which the electrolyser
generates hydrogen at full power.

• HVAC: From Fig. 10(b), it is seen that the OS calculated that the
HVAC system (that is, the chiller) should be active and operate
from 8:00 to 17:00 h in order to maintain the fixed indoor
conditions. The operation of the HVAC was similar for all the
days for which the summer mode was active. This was because
the testing days were particularly hot and the HVAC power was
limited. Summer mode is the period in which there is the option
to operate the HVAC.

• EV chargers: The OS calculates that the chargers for the station
should be active during the working hours of the day, when
more local renewable generation is available, as can be seen from
Fig. 10(c). The operation of the EV charger changes from one day
to the next, due to varying electricity prices and the amount of
available generation sources. It is worth pointing out that due to
technical specifications, the station must remain inactive before
17:00 h. Electricity from the grid is used to charge the cars to the
minimum capacity required. On 12th of May, since there was a

small surplus, both EV chargers were allowed to charge at once.
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Fig. 8. OS inputs for each of the 14 days. In vertical axis there is the electricity selling price in euros/MWh (orange), the building consumption in kW (yellow), the solar production
in kW (green), the outdoor forecasted temperature in Celsius (grey), the wind production in kW (dark blue) and the electricity buying price in euros/MWh (blue). In the horizontal
axis there is the time in hours.

Fig. 9. Simulation of assets over the experimentation period. In vertical axis there is the tank profile in kg (orange), EV chargers consumption in kW (yellow) and hydrogen
generated in kg (grey). In the horizontal axis there is the time in hours.

Fig. 10. Optimal operation of assets on each day of the experiment. (a) Is the electrolyser operation. Vertical axis is the percentage of utilisation. Horizontal axis is the time in
hours. (b) Is the HVAC operation. Vertical axis is 1 or 0, being 1 for turned on and 0 for turned off. Horizontal axis is the time in hours. (c) Is the EV Cargers operation. Vertical
axis is 1 or 0, being 1 for turned on and 0 for turned off. Horizontal axis is the time in hours. EV charger 1 operation (blue) and EV charger 2 operation (orange) (d) Is the
refuelling station operation. Vertical axis is 1 or 0, being 1 for turned on and 0 for turned off. Horizontal axis is the time in hours.
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Fig. 11. Cost function evolution for one specific day. Vertical axis is the cost of the best solution in the actual population expressed in euros. Horizontal axis are the iterations.
• Hydrogen refuelling station: The OS calculated when the hydro-
gen charge should be available to users. As shown in Fig. 10(d),
the station was available during hours where at least a charge of
5 kg is allowed.

Fig. 11 shows an evaluation of the cost function during the calcula-
tion of the OS by means of GA for one day. The horizontal axis shows
the number of iterations of the GA, starting from random solutions and
evolving to the best solutions once the algorithm is executed and the
maximum number of iterations reached, that is 16,000 iterations.

The vertical axis shows the evaluation of the cost function in Eq. (5)
for the best solution calculated at each iteration. Although the cost
function is defined in terms of euros, the value of the function may
differ from the exploitation cost of implementing the schedule provided
by the OS, as this cost is computed from the simulations and some
assets are computed at its maximum operation cost as for example EV
chargers. It can be seen that the cost is mainly reduced during the first
2000 iterations, and minor reductions are then made indicating that the
algorithm converged to a solution. As the authors use GA, the solutions
are not always easy to interpret as can depend on many factors, but
also as GA is not an exact methodology, the provided solution can
be a local minimum or a sub-optimal solution. In any case GA allows
stabling a maximum number of iterations and ensure a response inside
the time restrictions. The authors remind the reader that this is a real
application example, that means time is critical as the solution must be
found and sent to the pilot before 00:00 h in order to correctly apply it.
In the present case a maximum time of ten minutes for data gathering,
preprocessing, forecasting, optimisation and sending results is required.
These ten minutes correspond to: five minutes for GA computation, one
minute for preprocessing and forecasting the data and four minutes for
data transfer and delays.

5. Conclusions

This work proposes an OS that provides a 24-hour optimal schedul-
ing plan to operate the controllable assets in a MG. The proposed tool
is implemented in a technology park, where the proposed MVEMS, and
the OS inside it, are used to find an optimal schedule for four different
assets: HVAC, EV charging station, electrolyser and hydrogen refuelling
station.

The complexity of solving the optimisation problem implies a bal-
ance between the accuracy of the solution and the time and resources
required to obtain it. In order to find the optimal schedule for the
10
controlled variables, the day ahead forecast of three variables have
been trained using real measurements and applied on-line. In the same
way three different variables have been simulated. RF has been used
for forecasting as well as for simulating one variable. Two of the
simulations have been carried out based on simple first principles
models. Finally, the cost function to be minimised takes into account
the four controllable assets and the price of energy, and it is solved
using a genetic algorithm (GA) that can handle the variety of attributes.
The combination of the proposed forecasting and simulation tools,
the cost functions and the proposed solver offers in this case a good
performance in terms of accuracy of results and ensures a response in
a fixed computing time.

Based on the solution price that results from the tests, it is seen
that the OS helps to improve the performance of the energy system
operation by reducing the old daily consumption bill (an average cost
of 548 euros in 2021), achieving a minimum cost of 131 euros for
the best day, and an average cost of around 360 euros per day in
the tested period. Thus, local energy generation is better used in the
energy system, increasing its efficiency. This benefit, together with
the computational time required by the OS to perform the calculation
of day-ahead optimal schedule plan, allows its potential exploitation
integrated in a new or existing MVEMS.

Finally, authors will continue this work adding other energy vec-
tors and assets, such as solar thermal collectors and thermal storage,
aiming the objective of provide tools that optimises an energy system
co-managing different energy vector types.
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