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ABSTRACT

Both gradual and extreme weather changes trigger complex ecological responses in river ecosystems. It is still unclear to
what extent trend or event effects alter biodiversity and functioning in river ecosystems, adding considerable uncertainty
to predictions of their future dynamics. Using a comprehensive database of 71 published studies, we show that event – but
not trend – effects associated with extreme changes in water flow and temperature substantially reduce species richness.
Furthermore, event effects – particularly those affecting hydrological dynamics – on biodiversity and primary productiv-
ity were twice as high as impacts due to gradual changes. The synthesis of the available evidence reveals that event effects
induce regime shifts in river ecosystems, particularly affecting organisms such as invertebrates. Among extreme weather
events, dryness associated with flow interruption caused the largest effects on biota and ecosystem functions in rivers.
Effects on ecosystem functions (primary production, organic matter decomposition and respiration) were asymmetric,
with only primary production exhibiting a negative response to extreme weather events. Our meta-analysis highlights
the disproportionate impact of event effects on river biodiversity and ecosystem functions, with implications for the
long-term conservation and management of river ecosystems. However, few studies were available from tropical areas,
and our conclusions therefore remain largely limited to temperate river systems. Further efforts need to be directed to
assemble evidence of extreme events on river biodiversity and functioning.
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I. INTRODUCTION

Extreme weather events are becoming more frequent and
unpredictable as global warming and human activities jointly
alter the water cycle (Evans & Boyer-Souchet, 2012;
Ummenhofer &Meehl, 2017; Best & Darby, 2020). Changes
in rainfall and temperature patterns have led to prolonged
heatwaves, abrupt decreases in water flow, or large floods,
which are subsequently altering temporal patterns of water
flow in river networks over large areas of the Earth
(Messager et al., 2021). Low water flow periods have become
longer (Döll & Zhang, 2010) and, as a result, river systems
experience progressively stronger transitions towards slow-
flowing phases (Sabater, 2008) or are completely interrupted
(Messager et al., 2021). Furthermore, these hydrological
changes have altered sedimentological processes (Inman &
Jenkins, 1999), and increased water temperatures (Morrill,
Bales & Conklin, 2005; Kaushal et al., 2010). At the other
extreme of hydrological events, large floods have become
more frequent (Hirabayashi et al., 2013; Arnell &
Gosling, 2016), and already produce long-term effects in
larger rivers of the world (e.g. Espinoza et al., 2022). Large
floods may transform the geomorphological setting of river
networks and, when catastrophic, produce long-lasting
impacts on river biodiversity (Woodward et al., 2015). Thus
the type and intensity of extreme events, principally hydro-
logical and climatic events, likely affect the biodiversity and
ecosystem functioning of river ecosystems, yet the magnitude
and direction of their impacts remain to be comprehensively
synthesized.

Extreme events, which frequently overlap in time and
space (Bowler et al., 2020), vary in their impacts on biodiver-
sity and ecosystem functions (Rillig et al., 2019). Ecosystems
impacted by frequent disturbances, such as river networks,
host ecological communities and provide ecosystem func-
tions that respond directly to water flow patterns (Thorp,
Thoms & Delong, 2006). River systems are increasingly
affected by gradual changes (trend effects) and extreme events
(event effects; Jentsch, Kreyling & Bejerkuhnlein, 2007) in their
hydrology and climate patterns. While gradual changes in
water flow and temperature can be classified as press distur-
bances, extreme events are equivalent to pulse disturbances
(Lake, 2000; Harris et al., 2018). The impacts of press distur-
bances on biodiversity may be seen as continuous and grad-
ual, leading to shifts in species distributions and community
structure (e.g. Mantua, Tohver & Hamlet, 2010). The pace
of changes due to press disturbances may allow for some

degree of adaptation, at least for some species (Benedetti-
Cecchi et al., 2006; Heino, Virkkala & Toivonen, 2009). By
contrast, the impacts of pulse disturbances may lead to
abrupt changes in environmental conditions, disproportion-
ately affecting species with limited opportunities for adapta-
tion (Harris et al., 2018; Ledger & Milner, 2015).
Pressorpulsedisturbancesmaydifferentially affect thecapac-

ity of ecosystems to resist and recover structurally and function-
ally (Jentsch &White, 2019). Changes to community structure
due to trend and event effects may cascade to ecosystem func-
tions, with unknown consequences for biodiversity–ecosystem
functionrelationships (Biggs et al.,2020). In terrestrialecosystems
such as experimental grassland communities, biodiversity con-
sistentlybuffers variation inecosystemfunctioning (productivity)
for both extreme wet and dry events (Isbell et al., 2015). Func-
tional redundancy, i.e. the extent to whichmultiple species per-
form similar roles in a community,maymoderate the impacts of
extreme climate events on ecosystem functions (Woodward
et al., 2015). Quantifying the relative importance of the impacts
of trend- andevent-drivendisturbances onbiodiversity andeco-
system functions of river ecosystems is essential for developing
data-driven adaptation andmitigation strategies.
Herein we perform a comprehensive meta-analysis that

evaluates the relative impacts of trend and event weather
effects on the biodiversity and ecosystem functions of river eco-
systems. We compiled a database of 199 effect sizes, including
both observational and experimental studies, to determine
whether: (i) event effects have stronger, negative impacts than
those of trend effects on diversity, abundance, and biomass of
river communities, based on the assumption that pulse effects
are stronger than press effects; (ii) hydrological anomalies lead
to stronger or weaker impacts than temperature anomalies on
river ecosystems; (iii) the impacts of trend and event effects on
ecosystem functions (decomposition, respiration, primary pro-
duction) are weaker than impacts on biodiversity, since ecosys-
tem functions may be maintained at pre-disturbance levels
where functional redundancy is high.

II. METHODS

(1) Data collection

We used the Web of Science and Scopus databases to perform a
comprehensive search of relevant studies (Gusenbauer &
Haddaway, 2020). Entries up to March 2021 were included
using a composite search string with hydrological and
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climatic descriptors considering different ecological commu-
nities and functions of river ecosystems (the complete set of
Boolean terms is provided as online supporting information
in Appendix S1). Our search returned 30,847 references,
which was reduced to 1,235 unique records after removing
duplicates (PRISMA diagram, Appendix S2). We only
retained peer-reviewed papers testing the effects of climate
change on biodiversity or ecosystem functions. These papers
had to use standardized sampling methods (in the field or the
laboratory), with at least one control and impact treatment
and more than three samples for each. We included species
richness, density (number of individuals per unit area), and
biomass as descriptors of biodiversity, while organic matter
decomposition, respiration, and primary production were
included as descriptors of ecosystem functions (Hooper
et al., 2012).

We extracted mean values, standard deviations, standard
errors, and the number of samples in control and impact
treatments from tables, text, or figures. If the mean abun-
dance or standard deviation were not reported, we derived
these from the total abundance, sample size, and standard
error, if possible. Data from figures were extracted using
Webplot Digitizer 3.4 (Rohatgi, 2015). We also retrieved
information on four moderators that we anticipated could
affect biodiversity and ecosystem functions (Table S1).
Following the information provided by the authors, for each
extracted data point we collected information on the ecolog-
ical community, type of effect (trend or event), anomaly type
(increase or decrease in water flow; increase or decrease in
water temperature), and study type (experimental or
observational).

In total, we built a database of 199 effect sizes from 71 stud-
ies (each observational or experimental treatment was con-
sidered as a replication unit), of which only 21 had both
biodiversity and ecosystem function data. All studies included
in the meta-analysis are identified in the reference list with an
asterisk. Effect sizes were calculated as standardized mean
differences (Hedges’ g) using means, standard deviations,
and sample sizes retrieved from each study.We used the escalc
function in the metafor package in R (Viechtbauer, 2010) to
compute Hedges’ g and its respective variance. To account
for differences in sampling variance, we weighted the esti-
mated effect sizes by their sample size as recommended by
Hamman et al. (2018). Effect sizes are presented as units of
the pooled standard deviation, such that a value of 0.5 repre-
sents a difference equivalent to half of a standard deviation.
Thus, negative values indicate that climate change, whether
trend or event, had a negative impact on the variables, while
positive values indicate the opposite. The complete list of
data sources, effect sizes, and moderators is available at
https://doi.org/10.5281/zenodo.7004412.

(2) Data analysis

We used hierarchical Bayesian models to analyse variation in
effect sizes, as implemented in the brms package in
R (Bürkner, 2017). To distinguish between the effect of trend

versus event effects and the anomaly type, we fitted a univari-
ate model for each predictor variable, excluding the inter-
cept. We chose this approach because intercept models for
categorical predictors with more than two levels use only
one as the reference against all others (Doherty et al., 2020).
We considered predictor variables important for all models
when the 95% credible intervals (CIs) of the posterior esti-
mates did not overlap with zero. We did not evaluate interac-
tions between fixed effects because some combinations of
variables (e.g. extreme temperature decrease) were poorly
replicated. We ran four chains of 10,000 iterations each for
each model, with a burn-in of 1000 iterations, resulting in a
total of 36,000 samples. We assessed convergence by inspect-
ing trace plots and ensuring that the Gelman–Rubin statistic
was <1.1 (Gelman & Rubin, 1992).

We specified non-informative normal priors (μ = 0,
σ = 10) for the fixed effects and weakly informative half
Cauchy priors (μ = 0, σ = 1) for the random effects
(Bürkner, 2018). We fitted models assuming a normal distri-
bution and included random effects for the study identity,
type, and duration to account for non-independence
between effect sizes from the same study or study type. By
incorporating these categorical factors as random effects,
we assume that the biodiversity and ecosystem function
responses will be more similar within the same study
(ID) and similar types of study (observational or experimen-
tal). To identify an appropriate structure of random effects,
we fitted and ranked five nested models containing different
combinations of study ID and type as random effects. The
ecological community could not be included as a random
effect factor because the number of samples per class was
highly unbalanced. Model ranking using leave-one-out
cross-validation (Vehtari, Gelman & Gabry, 2017) indicated
different random effects structures for each response variable
(Table S2).

To avoid potential confounding effects of unusually
adverse events, we decided to exclude data points falling out-
side the ranges of the biodiversity (−10.3 to 9.1) and ecosys-
tem function (0.04 to −7.7) aspects. These ranges
accounted for the 1st percentile of the distribution of effect
sizes in biodiversity (effect sizes less than −10) and ecosystem
function variables (effect sizes less than −7). Specifically, we
did not include some of the results from Romero et al.
(2019) and Truchy et al. (2020) (Hedges’ g for biomass
between −14 and −244), Geraldes, Pascoal & Cassio (2012)
(Hedges’ g for decomposition greater than −10), and Oprei,
Zlatanovic & Mutz (2019) (Hedges’ g for respiration greater
than −10). The inclusion of these studies increased the mag-
nitude of the effect size for extreme events although did not
alter the reported trends.

We used a combination of funnel plots and Egger’s tests
(Egger et al., 1997) to assess potential publication bias. Visual
inspection of the funnel plot suggested no systematic asym-
metry in effect sizes (Fig. S1), a result also supported by the
non-significance of Egger’s tests (Table S3). To assess the sen-
sitivity of our analysis to the use of Hedges’ g, we also ran a
parallel meta-analysis using the log-response ratio (LRR) as
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the effect size. To calculate the LRR we divided values from
impact treatments by those in the control treatments and
took the logarithm of this number.We used the escalc function
for this computation. Table S4 shows that our results are
robust to the selection of the effect size, as the magnitude
and direction of the effect sizes did not change significantly
when comparing Hedges’ g and LRR results.

All analyses and figures were performed using R v. 4.0.3
(R Core Team, 2020). Code and data are available at
https://doi.org/10.5281/zenodo.7004412. We provide a
completed PRISMA for Ecology and Evolutionary Biology
(PRISMA-EcoEvo; O’Dea et al., 2021) checklist in Table S5.

III. RESULTS

We analyzed 199 effect sizes for components of biodiversity
(62 studies) and 100 effect sizes for ecosystem functions
(26 studies) (see Table S4 for a summary of the effect sizes
and their respective 95% credible intervals). The geographical
distribution of the studies is shown in Fig. 1. Most studies were
distributed in temperate and boreal regions in North America
and Europe; very few were from tropical or arctic regions.

Our analysis of multiple components of river biodiversity
revealed negative impacts of weather changes on species
richness (Fig. 2). A univariate model for weather anomalies
(trend versus event) revealed that these negative impacts were
mainly due to extreme events [posterior mean of event:
−1.08 (95%CI: −1.78 to −0.42), posterior mean of trend:
0.07 (95%CI:−0.73 to 0.9)]. The between-study heterogene-
ity variance of this model was estimated at τ = 0.75 (95%CI:
0.06–1.5). A separate model for anomaly type showed that
decreases in water flow caused the most dramatic impacts

on species richness (posterior mean: −1.48, CI: −2.42 to
−0.60). The between-study heterogeneity variance of this
model was estimated at τ = 0.83 (95%CI: 0.18–1.46).

Fig. 1. Geographical distribution of the studies included in the meta-analysis. Different colours indicate whether studies contained
data on biodiversity, ecosystem functions, or both.

Fig. 2. Impacts of trend and event effects and anomaly type on
species richness of river ecosystems. The distributions display the
posterior probability of different effect sizes, dots corresponding
to posterior means, and their horizontal bars to 95% credible
intervals. The dashed line corresponds to an effect size of zero.
Numbers in parentheses represent the sample size (i.e. number
of effect sizes) for each predictor variable. Weather events,
particularly flow decrease, had a significant impact on riverine
species richness.
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Neither extreme increases in temperature nor water flow had
detectable effects on species richness. In contrast to species
richness, community density (N = 85) did not change consis-
tently in response to trend or event effects (Table S4).

As was the case for species richness, community biomass
showed an overall decrease in response to event effects and
anomaly types (Fig. 3A, model’s τ = −0.74, 95%CI: −1.17
to −0.31). The decrease in community biomass was not sig-
nificantly associated with trend effects (posterior mean:
−0.62, CI:−1.28 to 0.04), but the relationship was significant
for event effects (posterior mean:−1.13, CI:−1.84 to−0.41).
A second model revealed that reduction in biomass is associ-
ated with increases in temperature and decreases in flow
(Fig. 3A, model’s τ = −1.04, 95%CI: −1.89 to −0.19).
However, the response of community biomass was not con-
sistent across taxonomic groups. Independent models indi-
cate that trend changes do not impair benthic algal

(biofilm) biomass (Fig. 3B), and that only extreme weather
events affect fungal (posterior mean: −1.75, CI: −3.41 to
−0.09; model’s τ = 1.08, 95%CI: 0.04–2.96) (Fig. 3C) and
invertebrate biomass (posterior mean: −1.46, CI: −2.37 to
−0.54; model’s τ = 1.34, 95%CI: 0.89–3.45) (Fig. 3D). We
also found significant impacts of temperature increases and
flow decreases on invertebrate biomass (model’s τ = −1.48,
95%CI: −2.53 to −0.43) (Fig. 3D).

Finally, our results did not show effects of anomaly type on
most of the ecosystem functions (Fig. 4). Respiration (Fig. 4C)
and organic matter decomposition (Fig. 4B) were not affected
by either event or trend effects or anomaly type.
The between-study heterogeneity variance of these models
(type of effect: trend versus event) was estimated at τ = 0.98
(95%CI: 0.06–2.20) for respiration; τ = 1.62 (95%CI:
1.03–2.46) for decomposition; and τ = 0.83 (95%CI:
0.03–2.61) for primary productivity. However, we found that

Fig. 3. Impacts of trend and event effects and anomaly type on the biomass of communities of river ecosystems (A), and on the
biomass of biofilm (B), fungi (C) and invertebrate (D) communities. The distributions display the posterior probability of different
effect sizes, with dots corresponding to posterior means and their horizontal bars to 95% credible intervals. The dashed line
corresponds to an effect size of zero. Numbers in parentheses represent the sample size (i.e. number of effect sizes) for each
predictor variable. Weather events (flow decrease) had a significant impact on biomass, mostly on that of invertebrates and fungi,
but not on biofilm.

Biological Reviews (2022) 000–000 © 2022 The Authors. Biological Reviews published by John Wiley & Sons Ltd on behalf of Cambridge Philosophical Society.

Extreme events threaten biodiversity of river 5

 1469185x, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/brv.12914 by Spanish C

ochrane N
ational Provision (M

inisterio de Sanidad), W
iley O

nline L
ibrary on [18/11/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



primary productivity was negatively affected by abrupt
flow decreases (Fig. 4A, posterior mean: −2.73, CI: −4.12
to −1.3). The between-study heterogeneity variance of these
models (anomaly type) was estimated at τ = 1.05 (95%CI:
0.05–2.73) for respiration; τ = 1.62 (95%CI: 1.04–2.45) for
decomposition; and τ = 0.88 (95%CI: 0.04–2.46) for pri-
mary productivity.

IV. DISCUSSION

Ongoing changes in weather patterns may lead to transfor-
mative impacts on the biodiversity and ecosystem functions
of river ecosystems across the globe. Here, we present a
comprehensive meta-analysis showing that extreme
weather events negatively affect the biodiversity of rivers,
while of the ecosystem functions assessed, only primary pro-
ductivity responded significantly, and only to weather
events.

(1) Impacts on biodiversity of rivers

We found that extreme weather events had consistent, nega-
tive impacts on biodiversity (species richness and biomass) of
river ecosystems. We determined that, on average, event
effects on biodiversity were twice as strong as trend effects,
which adheres to the definition of extreme event disturbances
as localized, high-energy, rapid changes in environmental
conditions (Peters et al., 2011). Our results raise concerns
about the future of riverine biodiversity since extreme events
are increasingly frequent and will challenge the adaptation
capacity of the biota (Ummenhofer & Meehl, 2017;
Jentsch & White, 2019).

Event effects have driven considerable changes in a variety
of ecosystems and biological compartments, spanning from
soil microbiota (Fierer & Schimel, 2002), to meadow-
dwelling insects (Piessens et al., 2009), to fish foraging in coral
reefs (Stuart-Smith et al., 2021; Richardson et al., 2018).
In rivers, abrupt changes in water flow and temperature
directly affect the habitat extent and suitability for organisms
as they cause rapid variations in hydraulic and chemical con-
ditions (Guse et al., 2015; Petrovic et al., 2011; Ponsatí
et al., 2015). These variations challenge the adaptability of
many species, with potential effects on the composition,
diversity, and abundance of biological communities. Our
results show that such effects differ for different biological
compartments, with some being more vulnerable than
others.
Our synthesis of the available evidence reveals that river

biota do not exhibit consistent responses to extreme events.
While the species richness and biomass of invertebrates were
consistently negatively affected by water flow interruption,
microbial communities showed inconsistent responses, rang-
ing from non-significant effects for benthic algal (biofilm) bio-
mass to decreases for fungal biomass. Rivers undergoing
complete or abrupt flow interruptions experience dramatic
declines in available habitat (Suren & Jowett, 2006; Pace,
Bonada & Prat, 2013), leading to habitat fragmentation
and to the prevalence of colonization–extinction processes.
Only taxa with traits conferring resistance to low-flow condi-
tions (usually associated with physical and chemical stressors,
such as high temperatures, organic matter and fine sediment
accumulations, and low dissolved oxygen levels) or prolonged
droughts, will remain after an extreme event occurs
(Townsend & Hildrew, 1994). The different responses
obtained in our meta-analysis suggest that organisms with
shorter life cycles (microbes) may resist and recover from

Fig. 4. Impacts of trend and event effects and anomaly type on ecosystem functions of rivers: (A) primary productivity,
(B) decomposition, and (C) respiration. The distributions display the posterior probability of different effect sizes, with dots
corresponding to posterior means, and their horizontal bars to 95% credible intervals. The dashed line corresponds to an effect
size of zero. Numbers in parentheses represent the sample size (i.e. number of effect sizes) for each predictor variable. Only
weather events, particularly flow decrease, had a significant effect, and only on primary productivity.
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pulse disturbances (event effects) to a greater extent than
organisms with longer lifespans. Shorter generation times,
higher dispersal ability and greater heat, abrasion, and desic-
cation tolerance may confer microorganisms with a greater
resistance to hydrological extremes (Sabater et al., 2016;
Chester & Robson, 2014).

By contrast with specific studies considered in our analysis
(Gonçalves et al., 2019; Romero et al., 2019), we conclude that
neither changes in water flow nor temperature affected bio-
mass of microbes (except for fungi). The absence of detect-
able effects on microbial communities can be attributed to
high heterogeneity among studies or perhaps to the inaccu-
racy of species richness as a measure of the impacts of envi-
ronmental changes on river biodiversity (Hillebrand
et al., 2018). Losses of aquatic microbial species may favour
the arrival of terrestrial species that are adapted to resist des-
iccation (Truchy et al., 2020), which may alter the composi-
tion of the bacterial community, but not necessarily its
richness (following a rather general pattern across ecosys-
tems; Blowes et al., 2019). Alternatively, the limited response
of microbial biomass to hydrological disturbances suggests
that other factors, such as the availability of resources or bio-
logical interactions, may enhance resistance (Krauss
et al., 2011). Water flow reduction, for example, does not
reduce benthic algal biomass because lower flow primarily
reduces grazing pressure (Truchy et al., 2020).

Invertebrates are the biological group for which the most
detailed evidence is available regarding responses to environ-
mental effects. While several studies have determined that
changes in the distribution, diversity and abundance of inver-
tebrates are associated with long-term increases in water tem-
perature or flow patterns (Durance & Ormerod, 2007;
Domisch et al., 2013), our analysis concludes that inverte-
brate richness and biomass are mostly sensitive to sudden
(event) changes in water temperature and flow. Abrupt
changes such as extreme droughts may induce effects on
diversity (Bogan, Boersma & Lytle, 2015), mostly by affecting
the most sensitive taxa (Piggot et al., 2015a; Madji et al., 2020).
Ephemeroptera, Plecoptera and Trichoptera are the most
affected groups of invertebrates, likely because they tend to
be adapted to cold and highly oxygenated water, and they
adapt poorly to warmer temperatures, lower dissolved oxy-
gen levels, and shrinking waters (Céréghino, Boutet &
Lavandier, 1997; Tierno de Figueroa et al., 2010). It has been
observed that unseasonal or supraseasonal flow interruptions
(Lake, 2003) can cause unpredictable effects on macroin-
vertebrate richness and biomass, especially in permanent
systems (Hill et al., 2019). Several studies included in our
meta-analysis show that flow interruptions may result in
extensive loss of individuals and species (Calapez
et al., 2014; Dewson, James & Death, 2007), thereby directly
affecting species richness and biomass. Direct effects of
water flow interruption not only challenge the resistance
of invertebrate communities, but also their recovery
because the colonization rate of drifting and flying inverte-
brates is a function of the distance to drought refuges
(Vander Vorste, Malard & Datry, 2015).

In contrast to interruptions in water flow, floods did not
show consistent impacts on either species richness or biomass.
While flood events may lead to losses of algae and macroin-
vertebrates via physical disturbance and washout (the scour-
ing effect; Feeley et al., 2012) and cause important changes
in the geomorphological structure of rivers, they do not nec-
essarily affect all taxonomic groups similarly (Piniewski
et al., 2017). This variability may reflect the differential ability
of organisms to find shelter and the differential capacity of
populations to recover quickly after floods subside (response
diversity; Hershkovitz & Gasith, 2013). Our meta-analysis
included several studies describing the effects of catastrophic
floods (Tsai et al., 2014; Feeley et al., 2012; Foord &
Fouché, 2016), which indeed reported large changes in the
biomass of algae or invertebrates. Species loss of macroinver-
tebrates is most likely related to substratum movement and
associated drift, and taxa inhabiting riffle areas
(e.g. blackflies) are the most affected (Milner et al., 2013).
However, with certain exceptions (e.g. Hynes, 1970; Wood-
ward et al., 2015), studies monitoring the responses of inverte-
brate communities after floods have shown rapid
invertebrate recovery (Herbst et al., 2019; Baillie et al.,
2020), with an initial decline in abundance usually followed
by a rapid increase in both abundance and species richness.
Moderate floods may even enhance the mobility of nutrients
and sediment, and the complexity of the river habitat (Death,
Fuller &Macklin, 2015). Floods may therefore confer a com-
petitive advantage to invertebrates with rapid development
of aerial stages, asynchronous egg hatching, and synchro-
nized metamorphosis with flood timing (Lytle & Poff, 2004).

Compared to water flow, we found that temperature
changes induced few direct and indirect effects on the
biomass of stream biota. Moderate short-term warming has
not been found to cause substantial effects on the biomass
of biofilm communities (Romero et al., 2019), but sustained
warming may increase the functional richness and diversity
of benthic microbial communities (Ylla, Canhoto &
Romaní, 2014). Warming generally enhances microbial
activity (Diaz Villanueva, Albariño & Canhoto, 2011) but
may cause changes in resource acquisition (Romero
et al., 2019). In macro-organisms, warming may produce
direct effects on the metabolism, leading to increased growth
rates and smaller size at maturity. Indirect effects on macro-
organism survival occur through changes in the availability
and quality of basal resources (Piggot et al., 2015b; Hogg &
Williams, 1996), which may account for our observed
decrease in invertebrate biomass in response to warming
(Fig. 3D).

(2) Impacts on ecosystem functions of rivers

Contrasting with responses in biodiversity, the ecosystem
functions of rivers did not exhibit consistent, negative
responses to weather variability. Only primary productivity
exhibited a negative response to event effects, largely due to
a negative response to extreme water flow decreases. Neither
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respiration nor organic matter decomposition were affected
by trend or event effects.

This synthesis of available evidence reveals that extreme
water flow reduction consistently reduces primary productiv-
ity. Low flow, particularly during certain periods
(e.g. summer), consistently decreases stream width and water
velocity, favours higher water temperature, and reduces
nutrient uptake (Riis et al., 2017). The physical constraints
imposed by low water velocity (and associated higher thick-
ness of the boundary layer over the stream bottom) have been
found to lead to consistent decreases in net and gross primary
production (Riis et al., 2017; Arias-Font et al., 2021), moving
the balance from autotrophic to heterotrophic (Acuña
et al., 2015; Romero et al., 2019). This shift towards heterotro-
phy is probably due to collapse of the photosynthetic capacity
of primary producers under dry conditions (Colls et al., 2021).

The lack of response of respiration and decomposition to
trend or event effects in our meta-analysis does not support
results of previous case studies showing that extreme events
affect organic matter decomposition in river ecosystems.
A recent study showed that the effects of drying on shredders
did not affect leaf litter decomposition (Carey, Chester &
Robson, 2021), highlighting the variable or uncertain out-
comes of interactions among climate, water quality, and
decomposers (Bernabé et al., 2018). The response of micro-
bial decomposition to changes in water stress is highly con-
text dependent, reflecting differential responses of microbial
communities to temperature, nutrient, and oxygen levels
(Duarte et al., 2017). Our meta-analysis indicates that
extreme events can reduce fungal biomass, which is associ-
ated with decomposing substrates, while decomposition itself
remained unaffected. Gonçalves et al. (2019) showed that fun-
gal biomass and diversity decreased after experimentally
reducing water flow by 74–88%, but that ecosystem func-
tions were maintained, suggesting that fungal communities
have high functional redundancy. Similarly, Arias-Real
et al. (2022) found that a reduction in species richness did
not alter decomposition rates in fungal communities with ini-
tial higher richness. Species-rich communities exhibit a wider
range of ecological and functional responses to stressors than
less-diverse communities, making them more resistant to dis-
turbances (McLean et al., 2019). Overall, the apparent dis-
crepancy between biodiversity and functional responses of
river ecosystems to hydrological and climate trends and
events highlights the role that functional redundancy (Biggs
et al., 2020) may have on conserving the provisioning of eco-
logical functions.

(3) Caveats of the analysis

While our meta-analysis revealed stronger effects from
extreme weather events, we recognize that our results may
reflect limitations associated with the distribution, type, and
number of studies. We found few studies from Asia, Africa,
and South America, whose river ecosystems show specific dif-
ferences (e.g. Dudgeon, 2008; Petsch et al., 2020; Gonz�alez-
Trujillo et al., 2021) compared with the temperate ecosystems

that comprise most effect sizes in our study. Secondly, only a
small number of studies provided initial conditions to be
compared with data after disturbances (Peters et al., 2011).
This is an essential requirement for quantifying effect sizes.
Due to this constraint, we included studies from a variety of
contexts, ranging from field observations, to manipulative
field studies, to experimental studies in the laboratory.
Including this variety of studies to enable sufficient statistical
power may, however, restrict the transferability of our results
to real-world ecosystems, as the magnitude of climate change
treatments frequently exceeds model-based projections
(Korell et al., 2020). Thirdly, the data gaps for ecosystem
functions, which are pervasive (von Schiller et al., 2017), did
not allow us to define the temporal frame or period under
which trend or event effects are more (or less) damaging
(Trisos, Merow & Pigot, 2020). It should be kept in mind that
most studies conducted so far on ecosystem functions have
been performed under controlled conditions, at relatively
short spatial and temporal scales (Estes et al., 2018) and
exclude biotic components that may also contribute to eco-
system functions (e.g. detritivores in decomposition studies
and grazers in primary production studies).
Finally, the low sample size also affected our ability to

quantify precisely the impacts of weather anomalies, partic-
ularly for groups such as fish or bacteria. There is need for a
larger number of studies to reduce between-studies hetero-
geneity (our measured τ) and provide more accurate esti-
mates. We dealt with imperfect data availability by
conducting a Bayesian meta-analysis, which allows direct
modelling of the uncertainty of τ estimates and improves
estimations of the pooled effects when the number of
included studies is small (McNeish, 2016). Bayesian
methods produce full posterior distributions that allow
comparison of the whole spectrum of impact levels caused
by trend or event effects.
Despite these caveats, our meta-analysis is the most com-

prehensive to date on the impacts of hydrology and climate
trends and events on the biodiversity and ecosystem functions
of river ecosystems. Future research should aim to expand
how the impacts of trend and event effects on river ecosys-
tems are quantified in terms of biodiversity or ecosystem
functions in order to test the differential effects of extreme
stressors and their consequences for the future of rivers. We
call on future investigators to measure the impacts of statisti-
cally unusual events (i.e. above the 99th percentile) using
standardized protocols.

V. CONCLUSIONS

(1) Our study provides insights into the impacts of extreme
weather events on the maintenance of biodiversity and eco-
system functions in river ecosystems.
(2) We found evidence that substantial changes may occur at
population and community levels, but mostly for larger
organisms such as invertebrates.

Biological Reviews (2022) 000–000 © 2022 The Authors. Biological Reviews published by John Wiley & Sons Ltd on behalf of Cambridge Philosophical Society.
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(3) Even though impacts on ecosystem functions are less evi-
dent, primary productivity was particularly impacted by
extreme conditions.
(4) Strong, negative impacts of certain types of anomalies,
especially water flow interruption, cause effects that may shift
biodiversity and (at least some) ecosystem functions irrevers-
ibly beyond their dynamic stable states (Trisos et al., 2020).
(5) Evidence that weather extremes may have long-lasting
impacts on the biodiversity and ecosystem functioning of
river ecosystems already exists. The Millennium drought in
Australia (1997–2009) led to some rivers being unable to
recover to pre-drought flow regimes (Peterson et al., 2021),
with these river ecosystems providing examples of ‘no turn-
ing back’ in response to weather extremes that cause irrevers-
ible effects.
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