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Abstract

Motion cue is pivotal in moving object analysis, which is the root for motion segmentation and detection. These preprocessing
tasks are building blocks for several applications such as recognition, matching and estimation. To devise a robust algorithm
for motion analysis, it is imperative to have a comprehensive dataset to evaluate an algorithm’s performance. The main
limitation in making these kind of datasets is the creation of ground-truth annotation of motion, as each moving object might
span over multiple frames with changes in size, illumination and angle of view. Besides the optical changes, the object can
undergo occlusion by static or moving occluders. The challenge increases when the video is captured by a moving camera.
In this paper, we tackle the task of providing ground-truth annotation on motion regions in videos captured from a moving
camera. With minimal manual annotation of an object mask, we are able to propagate the label mask in all the frames.
Object label correction based on static and moving occluder is also performed by applying occluder mask tracking for a given
depth ordering. A motion annotation dataset is also proposed to evaluate algorithm performance. The results show that our
cascaded-naive approach provides successful results. All the resources of the annotation tool are publicly available at http://

dixie.udg.edu/anntool/.
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1 Introduction

Motion analysis is a prerequisite in video analysis with its
applications in computer vision ranging from surveillance
[1-3], multi-object tracking and crowd estimation [4-9] to
gesture recognition [10,11], video object segmentation [12—
17], behavior analysis [18,19] and anomaly detection [20—
22]. An objective analysis of moving objects can be carried
out when motion is accurately detected and segmented as
a prior. In the state-of-the-art of computer vision, precise
and robust algorithms, which can work in the presence of
occluders and other distortions, while the acquisition of video
is done from a moving camera, are still elusive. Therefore,
research to find a solution of these tasks is still an open field.

To find a solution for each of these tasks, algorithms are
needed to be devised, which are trained and tested on their
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corresponding annotated datasets for performance analysis.
A prevalent problem while creating such algorithms is the
availability of relevant utilizable corresponding datasets. The
utility of a dataset is determined by the domain it is captured
for, the variability it encapsulates and the comprehensiveness
of the annotation it contains. While the acquisition of data
and variability are addressable, a comprehensive annotation
with respect to each task is cumbersome. In crowd estimation
[4,6,8,9], each individual moving person is annotated as a
unique entity. To do so in images and videos with hundreds of
peopleis quite time-consuming. In video object segmentation
[12,13,15,17], the contour around each moving object has to
be annotated. While in motion, the size, field of view, depth
of field and projective geometry of the object also changes.
Annotating such complex scenes requires a lot of time of the
expert user in terms of annotation.

Specifically in motion segmentation, the limitations pre-
vailing in annotated moving objects’ datasets are restricting
the development of effective motion analysis tools. The
diversity and complexity of a real-life motion captured in
a collection of video sequences determines how represen-
tative the dataset is of the actual problem. If the annotated
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Fig. 1 First, middle and last frame of a moving object while entering
and leaving the field of view in a video shot. Top: The white car enters
and leaves the frame without occlusion and distortion. Bottom: The blue

datasets encapsulate limited motion diversity, then the algo-
rithms tested on them will also have limited applicability. On
the other hand, if more complex motions are captured in a
sequence for dataset formation, the dataset will become more
representative but the task of correctly generating ground-
truth motion label for each moving object in all the frames of
a video sequence becomes increasingly cumbersome. Here,
the problematic element is the expert-user annotation time,
which increases as the captured motion becomes excessively
complex.

Anillustrative example is presented in Fig. 1, which shows
the first, middle and last frames of two moving objects in a
video shot, while they enter and leave the field of view. In
the left top view of Fig. 1, the white car enters the scene,
it continues its movement from left to right in the scene as
shown in the middle top image of Fig. 1 and the same white
car moves toward the right end of the field of view to exit the
scene as shown in the right top image of the Fig. 1, whereas,
in the left bottom view of the Fig. 1, the blue truck enters
the scene, it continues its movement from right to left in the
scene as shown in the middle bottom image of Fig. 1 and the
same blue truck after taking a turn moves toward the right
end of the field of view to exit the scene as shown in the
right bottom image of Fig. 1. The white car in the top row
remains unoccluded, relative change in size across all frames
is minimal, the illumination remains generally homogeneous,
and no perspective distortion effect can be seen. On the other
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truck enters and leaves the frame while undergoing complete occlusion,
change in heading direction and illumination, a significant alteration in
relative size and experiences perspective distortion (color figure online)

hand, the blue truck, present in the bottom row, enters the
field of view with a small size due to being considerably
deep in the scene with reference to the camera, experiences
complete occlusion during the course of its motion and exits
the frame with an enlarged size, change in heading direction,
variation in illumination and with perspective distortion. The
expert-user annotation time for generating ground-truth on
these two motion samples is radically different. While the
annotation labels on the white car be provided with state-
of-the-art label propagation algorithms, there is no modern,
time efficient methodology or platform, to annotate the blue
truck or such motions.

This limitation in label propagation can be looked into as
a set of multiple subproblems based on the complexity and
variation in the object motion. The variants include a con-
siderable change in size or illumination, partial or complete
occlusion, static or moving occluder, multiple appearance
and disappearance in the field of view (FoV), perspective dis-
tortion, etc. Each variant, if tackled separately, with a unique
approach, can yield improved results.

In this paper, we propose a methodology, which utilizes
the expert-user time to propagate labels on all moving objects
in all the frames of a video sequence captured from a moving
camera. With an existing platform [23], which propagates
labels in situations with no occlusion nor distortions, our
methodology is integrated to propagate labels across occlu-
sions and its related distortions. The propagation result keeps
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the object shape intact with scale adjustment. We do so by
using just two user-labeled motion masks, the first and last
frame of a subproblem set. Utilizing the two masks, we
perform object mask propagation across all frames using
maximal flow vector count, acquired through Large displace-
ment optical flow (LDOF) [24]. Concurrently, we take a
static occluder shape input on a single frame from the user,
to perform occluder mask tracking using keypoint descrip-
tors (SURF features [25]) across all frames. With non-rigid
point set registration [26,27] of the first frame mask onto
the last frame, we perform object mask scale adjustment to
improve the propagated object mask estimate. To validate
the performance of our approach, we carry out a quantitative
and qualitative analysis of our algorithm on moving objects
undergoing partial occlusion, where occluder is both static
and moving, with sequences captured from a moving cam-
era. In this regard, we used a 25 sequence occlusion/occluder
dataset with moving objects going across static or moving
occluder(s). On 20 static and 5 moving occluders, our results
demonstrate that by splitting the motion annotation problem
into subproblem sets, the expert-user time is utilized in an
improved manner, maintaining accurate boundaries on the
object annotations.

2 Related work

In general, the solutions of the video annotation problem
try to achieve two distinct objectives, either to reduce the
expert-user annotation time in generating the ground-truth
of large-scale video data, or to improve annotation quality.
These objectives are usually achieved by two approaches.
One is to put forth comprehensive video annotation platform
tool, which can label motions or objects of interest in video
sequences as a standalone package. The other is to devise
label propagation methodologies, which can be incorporated
in the existing tools. The state-of-the-art in video annotation
includes techniques from both practices.

Several video annotation tools have been developed in
recent years. Predominantly, computer vision and machine
learning methods are used as support for efficient human
annotation. The different tools can be distinguished based
on the functionalities they support. The pioneering work
on video annotation was presented in ViPER [28], which
was a reconfigurable video performance evaluation resource.
It provided an interface for manual ground-truth genera-
tion, an evaluation metric and a visualization tool. It was
a Java-based desktop application, which propagated rect-
angular or polygon region-of-interest (ROI) through linear
interpolation. Similar desktop-based GTTOOL [29] and web-
based GTTOOL-W [30] tools were presented, with a goal to
improve user experience with respect to ViPER [28] by pro-
viding edit shortcuts, and by integrating some basic computer

vision algorithms to automate. The collaborative web-based
implementation featured an easy and intuitive user inter-
face that allowed instant sharing/integration of the generated
ground-truths. The label propagation in these tools were per-
formed using tracking approaches.

Relatively recently, a popular online, openly accessible
tool LableMe-Video [31], was presented that allows anno-
tation of object category, motion and activity information
in real-world videos. This tool used homography to propa-
gate the label across key frames in the video. With the same
focus, iVAT [32], an interactive video annotation tool, which
supports manual, semiautomatic and automatic annotations,
was presented. This tool integrated several computer vision
algorithms working in an interactive and incremental learn-
ing framework. Another human-in-loop methodology [23],
to create ground-truth for videos containing both indoor and
outdoor scenes, was used with the idea that human beings
are experts at segmenting objects and inspecting the match
between two frames. The approach contained an interactive
computer vision system to allow a user to efficiently anno-
tate motion. Similar tools for trajectory-based datasets have
also been presented [33]. A comparative overview of the dis-
cussed annotation tools is given in Table. 1.

Besides independent annotation tools, some recent work
has been presented solely related to label propagation, where
a manually given object label in key frames is propagated
forward and/or backward in all frames the object exists. Prob-
abilistic graphical models for multi-modal label propagation
in video sequences were used in [34-37]. An expectation
maximization (EM) algorithm propagates the labels in a
chunk of video with starting and ending frames already
labeled. The unlabeled parts of the video are dealt within
a batch setting. In [38], a similar approach was used to
train a multi-class classifier. The pixel labels estimated by
the trained classifier were fed into a Bayesian network for
a definitive iteration of label inference. A hybrid of genera-
tive propagation and discriminative classification in a pseudo
time-symmetric video model enables conservative occlusion
handling. Moreover, in [39] the limitations of pure motion
and appearance-based propagation methods were shown,
especially the fact that their performances vary on differ-
ent type of videos. To avoid these limitations, a probabilistic
framework was proposed that estimated the reliability of the
appearance-based or optical flow-based label sources and
automatically adjusted the weights between them.

An active frame selection approach was adapted in [40,
41]. In [40], active frame selection was done by selecting k
frames for manual labeling such that automatic pixel-level
label propagation can proceed with minimal expected error.
Here, the frame selection criterion is joined with the predicted
errors of a flow-based random field propagation model. The
method excels in utilizing human time for video labeling
effectively. In contrast, an information-driven active frame,
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be applied on objects undergoing occlusion by other moving
objects.

Our label propagation algorithm is introduced in Sect. 3.
The experimental setup and evaluations are presented in
Sect. 4. A course of action on how to improve results is also
suggested in Sect. 5, before concluding in Sect. 6.

3 Motion-region annotation

Motion-region annotation means tagging all the motion
regions with a unique label per motion in a sequence of
frames by a human expert. More formally, given a sequence
of N frames f = {f1, f2, ..., fn}, the objective is to seg-
ment all the moving objects M with the set of labels
m= {ml,mz,...,mM}.

As the goal of annotation is to generate the ground-truth
for a given video, it is imperative to take the accuracy of
the annotation into consideration. One way of maintaining
accuracy is to generate annotation of one motion m* at a
time, with respect to their depth ordering in the scene. The
object near the camera first (the one with least depth) and
the object farthest from the camera last (the one with most
depth). The depth order can be kept track of by the expert
user. Hence, the objective is to find the annotation labels m*
where x = {1, 2, ..., M}, sorted by depth ordering, 1 being
least deep and M being the deepest.

An underlying premise of all annotation tools is to utilize
the expert-user time in an efficient manner. The tool pre-
sented in [23] facilitates the annotation of moving objects
in a sequence of frames. An expert user defines the object
outline contour in a key frame. The region inside the object
contour is given a label, and then, the labeled contour is prop-
agated both ways, forward and backward. The algorithm
works well for moving object annotation, when the object
does not undergo any occlusion or perspective distortion. In
the presence of occlusion, perspective distortion and change
in object’s depth, the propagation fails. If the propagation
fails due to illumination variance, background homogene-
ity with moving object, etc., the labeled region contour can
be corrected in frames with bad annotations. The manual
correction by the user is then linearly interpolated across
all frames the label was propagated on. In the absence of
real noise, the platform utilizes expert-user time efficiently
and exhibits good results. On the contrary, it fails in real
sequences, especially outdoors, where occlusion, change in
depth and perspective distortions are somewhat dominant.

From another perspective, let us consider the sequence of
frames shown in Fig. 2 as an example. The moving object
enters and exits the FoV in the frames f] and fi3, respec-
tively. The motion annotation of this object, m ! inthese 113
frames can be divided into a set of three subproblems. One
from fi till f75 (m%), when the object is fully visible with-

out occlusion, which as mentioned earlier, can efficiently be
handled by [23]. The second subproblem ranges from frames
fr6 till f100 (mé), when the object is occluded by multiple
static occluders, where this method [23] and other similar
methods fail. The third subproblem is mé when the object
is again fully visible from frames f1o; till f3, until it goes
out of the FoV. Then, the overall motion-region annotation
of the object, m* is given by,

o
m* = Um;‘ (1)

i=1

The annotation task of each motion x, to be labeled in the
sequence of frames, leads to its corresponding subproblem
set S¥. Hence, the goal is to devise m”, the moving object seg-
mented mask over all frames in which the object is present,
for all x. In the example given in Fig. 2, x, is the object label
by depth ordering, and S¥, is the number of subproblems x*"
motion-region annotation task was divided into. So, with x
being 1 and S* being 3, the labeled motion-region output of
the framework for one object in the given example is given
as,

3
m' = Jm! @)

i=l1
3.1 Motivation illustration

The question really is why should the annotation problem
be considered as a set of multiple subproblems of annota-
tion labeling. The goal of devising any annotation tool or
labeling method is to reduce the expert-user annotation time.
As illustrated in the example with reference to Fig. 2, the
expert-user need not be engaged in the annotation of frames
which the existing tool [23] can handle. As mentioned earlier,
the tool [23] works well in the absence of distortions such
as partial or complete occlusion, perspective distortion and
change in object’s depth and size. In these cases, as the tool
[23] performs blind linear interpolation of the object mask,
it fails to capture the nonlinear visual evolution of the object
in the scene. Hence, it makes sense to divide the annotation
problem of a moving object over all frames into two type of
modular tasks, once where these distortions are absent and
the other where these distortions are present. The expert-user
gets engaged in the separation of these subproblems and only
annotates the moving object for the subproblem with distor-
tions.

A modular approach to solve this annotation problem
can yield better results in terms of pixel accuracy and time
efficiency. This approach of creating subproblem tasks facil-
itates the expert-user to objectively divide the annotation
problem based on the behavior each moving object exhibits,
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Fig.2 Six frames of a moving object, black car, entering and leaving the
field of view in a video shot. Top: The black car enters the field of view
in f1 (Left) and moves till f75 (Right), without occlusion ‘mi ’. Middle:
Here, the car undergoes partial occlusion by multiple static occluders
from fr¢6 till fio0, ‘m%’. Two frames in this subproblem, where the

and also, inherently reduces user annotation time. This sub-
categorization based on label propagation complexity can
further reduce the manual annotation time, if the label prop-
agation in the problematic subsets, (the ones which require
most user corrections due to real distortions), can be autom-
atized.
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object was undergoing occlusion are shown, fg» (Left) and foo (Right).
In f3o, the object has started undergoing occlusion behind the two static
occluders. In fy9, the object has almost gone across the occluders. Bot-
tom: The car moves from fjo; (Left) without occlusion till f3 (Right)
when it completely goes out of the FoV,‘m %’

As mentioned earlier, while [23] works well in unoc-
cluded, low depth change and no perspective distortion
motions, it fails otherwise. As a smart hybrid approach, the
framework in [23] was used for the subproblems where these
distortions were not present. To annotate the subproblems
with distortions, we propose a semiautomatic annotation
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Fig.3 Annotation flow of the motion-region annotation algorithm. The motion annotation subproblem of type-2 spanning over L frames is processed

using the proposed algorithm

methodology to better utilize the expert-user time. In this
section, our annotation algorithm is presented.

Given a set of K frames f = {f1, f>,..., fx}, with K C
N, in which a single x’" moving object appears and then
disappears from the FoV. The objective is to find the motion
annotation label m*. It is also given that the annotation task
can be further divided into S sub problems, where each
subproblem can have either of the two types;

— Type-1 (motion under normal conditions) Here, the object
moves without occlusion or perspective distortion. The
annotation under such moving conditions is computed
through the work presented in [23].

— Type-2 (motion under distorted conditions) Here, the
object undergoes occlusion and/or perspective distor-

tion. The annotation under these conditions is resolved
through our motion annotation algorithm.

A pictorial depiction of the same is given in Fig. 3. On
the top, the figure shows a sequence of N frames, with
two moving objects, so the objective is to estimate mov-
ing object labels m* = {m', m*}. Considering that object
1 is near the camera, it spans over K frames and the anno-
tation task is divided into three subproblems S' = 3, then
m! = {m%, m%, m%}. Here, m{ and mé are the subproblems
of type-1, where the object does not undergo any occlusion or
perspective distortion. This annotation problem is estimated
by the framework in [23]. On the other hand, m; is the anno-
tation subproblem of type-2, where the object experiences
these distortions. If the movement under distortion spans over
L frames, then the objective of the proposed algorithm is to
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Fig.4 Block diagram of the motion-region annotation algorithm of one moving object spanning over K frames. The motion annotation subproblem
of type-2 to estimate m spanning over L frames is processed using the proposed algorithm

find m ;, given the expert-annotated object boundaries in the
first and the last frame of the set L. A detailed account of the
framework is explained further through Figs. 3 and 4.

In our work, any m is the output moving object label set
computed for all the frames, in subproblem i of type-2, while
annotating moving object x. For ease of notation, any such
mf in the remaining text is denoted as m. In our framework,
a three pronged motion-region label propagation approach
was taken to attain maximal accuracy with minimal expert-
user intervention. The steps include Occluder mask tracking
(m°<©), Object mask propagation (m'™) and Object mask
scale adjustment (m). A block diagram of the algorithm is
shown in Fig. 4.

3.2 Occluder mask tracking (m°¢)

In a subproblem with distortion, given a set of L frames and
the occluder shape marker points, P%C in the frame f] as
inputs, the objective of occluder mask tracking was to per-
form shape tracking of the occluder mask in all the remaining
L — 1 frames. Here, the set of frames L in the subproblem is
a subset of the total number of frames NV, hence, L C K. The
shape marker points of the occluder(s), P(}TC, in the f] frame
of the set L were marked by the user through an interactive
graphical user interface.

By taking the shape marker points, P‘}TC, of the rigid
occluder in the first frame as input, shape tracking of these
markers was performed in the rest of the L — 1 frames. With
respect to this shape marker, the occluder mask in the first

frame, m;fc, is given as

m‘;fc = region(countour(P?«fc)) )
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while the complete occluder mask set is given as,

occe — {m{)CC occe occe ()L‘C} (4)

m fio My s My Mg

A user is required to define a set of markers (points)
around the occluder such that they encapsulate the shape
of the occluder. Subsequently, robust SURF features [25]
inside the occluder mask, of this n'" frame, were estimated
as, F,, = SURF (m‘};'"). After feature extraction, a point
tracker was initialized on the user-defined occluder shape
markers to estimate their probable position, in the following,
(n + 1), frame. Given as,

P‘};‘C_fnﬂ = PointTrackerEst(P‘}jC) ®)

The point tracker estimate in the (n + 1) h frame was
expanded on all sides by an expansion factor A. The objective
was to make sure that even in the case of wrongful tracking
by the point tracker, the occluder must be inside the expanded
mask. Surf features were again extracted in the A-expanded
mask.

Fy11 = SURF (region(countour (i (}ic_fnﬂ))) 6)

The features F, and F},;; were matched to yield feature pairs,
which were then used to compute a similarity transform.

Ty = SimilarityTransform(FeatureMatching(Fy, Fy,4+1))
)

This similarity transform, 7§, multiplied with the input shape
markers, Pycc n results in the shape markers in the next frame.

e, = TPy ®
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Using eq. 3 for all n, the occluder mask for all the L — 1
frames of a type-2 subproblem set with distortions, m®°c,
can be estimated.

3.3 Object mask propagation (m™)

Given the object mask in the first frame m"]?l" and the last

frame mlf”Ll of a subproblem set, the object mask propagation

objective was to determine m'™, where

R Y O ©)
The user-defined input masks are formed independent of
occluder to save user time and effort. The output label set,
which results when the first frame object mask is propa-
gated forward till the last frame, is m" . This estimate can
be utilized to perform nonlinear object scale adjustment in
the subsequent step.

As a first step for label propagation, the forward optical
flow, by using the state-of-the-art LDOF [24], was calculated.
LDOF supports the estimation of dense optical flow field by
integrating rich descriptors into the variational optical flow
setting. In [24], the optical flow w := (u, v)T is calculated
with a comprehensive energy minimization term. These com-
puted flow vectors give an estimate as to where each pixel
moved in the following frame.

The given input, m"j(*;i, contained the labeled pixels per-
taining to the moving object region in the first frame. As for

every frame n, the occluder mask mi;]’li is known; then, for all

ini
n, m's" can be updated as,

mip = mig’ — (g O (10)
For f, it becomes m’]i:’ = m"ﬁi — (mi]{:i N m(}fc). Following

this occluder mask subtraction update in the object mask,
a set of forward flow vectors of all the pixels in mif':i were
segregated. In effect, this set contained the pixel-movement
estimated by LDOF for all the pixels in the object region.
It can be seen from Fig. 5 that though the vector directions
are robustly detected inside the homogeneous region of the
moving object, the estimates around the object boundary are
adrift. Hence, as an initial estimate, instead of taking the flow
vector per pixel, a 10-bin histogram of vector orientations was
computed. All the vectors in the bin with the maximum vector
count were separated. The average, direction and magnitude
of this vector set were taken to be the direction and magnitude
of the object motion vector, w,. In other words, with respect
to forward flow, w, is the direction and amount of motion
the object mask underwent to reach its new position in the
following frame. Formally, if

W = wiz(mu?-x(hiSt(wn)) (1D

where w, is the direction vector, then any n'" frame in the
set of frames L gives an estimate of the mask position in the
following frame by,

m'f | =m 4, (12)

By progressively estimating all the frames in the forward
direction, m'™" was computed.

3.4 Object mask scale adjustment (m)

Given the object mask in the first frame m s, and the last
frame m 7, of a subproblem set, with m'™ already computed,
the object mask scale adjustment objective was to determine
the final m, where

m=(mg,mpg,....mpg_,my) (13)

Here, it should be noted thatm f, = m’}:i andmy, = m’f”Ll
Hence, the task is to determine m in the remaining L — 2
frames, from m g, tillmy, .

A moving object, while in motion inside the FoV, might
exhibit a considerable change in depth, perspective and in
size. The contour encapsulating a moving object in the first
frame might increase or decrease drastically in size and shape
in the last frame. An important detail for object mask scale
adjustment was to estimate the correspondence of each point
on the object contour in the first frame with each point on the
object contour in the last frame. As one-to-one correspon-
dence was not possible, there were two options. One was to
add or decrease points along the contour from the first frame
until the last. This method can result in inaccuracies at each
step resulting in error accumulation. Second one was to find
a registration between object contours. For this purpose, the
point set registration method presented in [26,27], defined by
a function g, was used here. A coherent point drift (CPD) of
all the points on the contour in the first frame with reference
to the contour in the last frame, was estimated. A ‘non-rigid’
point drift estimation option was selected, as in some cases
perspective changes result in self-occlusion by the object.
In this case, the rigidity constraint fails to register the two
contours correctly. Hence,

m?LPD = g(contour(my,), contour(myg,)) (14)

As we get m 7, and m?LP D in the same estimated reference,

the difference between the two contours was computed to
estimate the linear shape adaptation, defined as:

K= mG"P —mp)/L (15)
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Fig.5 Left: LDOF vectors overlay on the first frame of a moving object.
The direction of flow vectors on the moving object is different from that
of the background. More visible in the zoomed image on the ‘Right’.
Right: A zoomed image of the red bounding box from the ‘Left’ image.

Optical flow vectors maintain consistent direction inside the car, but
around the object motion boundary and on the background, the vector
directions are different (color figure online)

frames: fi,....,fi

myg, M, Py

occluder mask moce
tracking

object mask
propagation

mini object mask m
scale adjustment

Fig. 6 Algorithmic block diagram of the functions of the motion-region annotation algorithm having one moving object pertaining to the type-2

subproblem with frame length L

Using «, the scale of all the L — 2 frames in the subproblem
set can be adjusted, for all n by,

my, —K(L—n—i—l)*m”” (16)

This adjustment yields the final output m, which gives
a shape estimate for the moving object, subtracting the
occluder mask, on all the L frames in the subproblem set.
An overall flow of the algorithm is given in Algorithm 1.
The block diagram of the overall algorithm is given in Fig. 6.

This final output m is essentially the annotation mask
of the object estimated for the subproblem with distortion
(type 2), where [23] failed. Hence, our proposal along with
the existing methodology in [23] gives forth a framework,
where any object can be annotated semiautomatically with
minimum user intervention. Moreover, the given proposal is
able to provide an estimated ground-truth annotation in all
the frames in the presence of occlusion, change in scale and
perspective distortion.

All the algorithm resources including the subproblem
sequences, evaluation source codes, results and the related
documentation are publicly available at http://dixie.udg.edu/
anntool/.

3.4.1 Complexity analysis
There are three sequential functional blocks of the algorithm.

Each block contains a single for loop with the index n. The
max length of the index in each case is less than total frame
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Algorithm 1 Motion-Region Annotation Across Occluders

I: Inputs:  Object: frames — {f1,..., fL},mp,my,

2: Occluder: Pj?“

3: Outputs: m = {my ,mp,,...,my }

4:

5: function m°®“ = OCCLUDER MASK TRACKING(f1, ..., fL, P "“

6:  where m?¢ {m"“, ’};C . m’}i“l m’;CLC

7: ’;;}i = regton(cot,mtour(P(,L-L-f1 ))

8 forn=1:L-1

9: Pj?cifn+ = PointTrackerEst(P""")

10: Fuy1 = SURF(reglon(countour(kP;“ )))

11: T, = SlmzlarlzyTransform(FeatureMatchtng(Fn, Fo+1))

12. PDL‘C T *PDCC
: Jar1 T fn

13: moe¢ = region(countour(P’}i”))

14: function ~ m™ = OBIJECT MASK PROPAGA-
TION(f1, ..., fL,myg,myg , m°c)

15: whgre mint = {rrf"“l m’}j’ lf"L’ Iy m}"Li

16: m'l < my ; lf’;’ —myg;

17:. forn=2:L—1

18: mifni — mini _ (mini mmOCC)

19: wp'= LDOF (fu, faz1) "

20: w,, = wn(ma?&w(hist(wn))

21: mlfm«u = m’;” + Wy

22: function m = OBJECT MASK SCALE ADJUST-
MENT(f1, ..., fL,m'™")

23: wherem_(mfl,mfz,.. S )

24: mfl<—mf1 me<—m"f”L’

25: m?LPD = g(contour(my,), contour(my,))

26: k= (m‘;LFD —mp)/L
27: forn=2:L-—1 o
28: mfn:/c(L—n—i—l)*m’f’:
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length L of the subproblem. Within each ’for’ loop, the tasks
are being performed in constant time. Therefore, the com-
plexity of each functional task is O(L). As these tasks are
sequential, the complexity per functional block is added.
Hence, the total complexity of Algorithm 1 is three times
O (L), which is still O(L) as in terms of asymptotic com-
plexity, O (L) is sufficient to exhibit linear complexity.

4 Experimental metrics

Firstly, this section presents the evaluation methods and
experimental setup used to assess the motion-region anno-
tation result. Afterward, the performance of our proposal is
exhaustively evaluated, showing both quantitative and qual-
itative results.

4.1 Evaluation method

The choice of evaluation criteria is such that a critical insight
into the performance of the algorithm can be extracted. There
are two factors at play in the motion-region annotation per-
formance assessment: spatial and temporal. So, the goal of
the criteria is to determine how accurately was the annotation
propagated in terms of spatial precision as well as temporal
evolution.

Spatially, the annotated region in each frame is compared
with its respective ground-truth to compute the segmented
region overlap performance. This, when accumulated over-
time for all frames, gives an average measure of performance.
This spatial performance commonly adjudged by F-score (F)
and Dice (D), which are actually equivalents of each other.
Sensitivity and precision are used to calculate F-score using
the Hungarian method as in [48]. F(D) per frame and their
average over the set of frames gives a good estimate on how
well the resultant annotated region aligns with the reference.
The variation in alignment over time and its reasons are, how-
ever, not addressed by these metrics. The values range from
0 to 1. With O being worst annotation and 1 meaning that the
motion region coincides perfectly with the ground-truth.

The temporal insight on the evolution of motion-region
annotation per frame is grasped profoundly by three more
measures, annotated-reference region overlap ratio, occluder-
object size ratio and the change in Hausdorff distance
between the reference and annotated regions per frame over
time.

The annotated-reference region overlap ratio, ry~
given by

" s

a—r _ Mp,

mgr,

(Vn=1,2,...L) (17)

wherem s, andm ¢, are the annotated and reference motion-
regions per frame, respectively. This ratio gives an insight on
how well the annotated region captures the true ground-truth
in terms of its size, its evolution in time exhibits the capability
of the algorithm to cope with the ground-truth even if the
annotation is corrupted in the middle frames. Its value varies
between 0 and 1, with 0 indicating no overlap and 1 indicating
complete overlap of the two masks.
The occluder-object size ratio, rﬁfb is given by

pixels(mofi") N pixels(mg,)

c—b
Vn=1,2,...L
"n pixels(m,) (vn )
(18)
where m%¢ is the occluder region in each frame. This is

the ratio of the overlapped area of the occluder and anno-
tated regions, with the total annotated motion region. This
measure gives an idea on how much of the motion region
is occluded by the occluder. The algorithm’s performance in
these regions, over time, tells us how robust the algorithm
is to the size of the occluder. Here, the r,i_b value varies
between 0 and 1, with O indicating no occlusion and 1 indi-
cating that the object is complete occluded by the occluder.
It should be noted that if ry, ~b becomes 1, the algorithm will
fail, as it requires some part of the moving object to be visible
at all times.

The Hausdorff distance H¥*' between the reference and
annotated regions is given as,
HYS" = HausDist(m¢,,mgr,) (Yn=1,2,...L) (19)
where HausDist indicates the Hausdorff distance imple-
mentation function. Intuitively, H%*' finds the point p from
the set m y, that is farthest from any point in m¢7, and mea-
sures the distance from p to its nearest neighbor in mgr,,.
This measure gives an insight as to how far off the worst
annotated motion-region point is with respect to the ground-
truth. If evaluated over time, it gives an idea of the temporal
robustness as well as the reliability of the algorithm. Here, a
good annotation means that the H dist yalue is close to zero,
given in pixels. A greater H%*' value would indicate the
magnitude of misalignment of the annotated mask with the
reference.

4.2 Experimental setup

The performance of the motion-region annotation algorithm
was tested on a newly formed subproblem dataset. This
was done by taking a total of 25 snippets from the new
motion segmentation benchmark dataset [47]. These 25 video
sequences are subproblems of annotation, when the moving
object underwent occlusion. Among the 25 sets of frames, 20
contain static occluders, and the remaining 5 contain moving
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Fig. 7 The moving objects being annotated in the given examples are
captured by a green contour around them. The static occluders are shown
in blue, while the moving occluders are shown in red, bounding regions
around them, respectively. Top Row: Two examples of moving objects
going across single static occluder. The black car in the left image has
high depth, whereas the white car in the right image has low depth, near
the camera, Middle row: Two examples of moving objects going across

occluders. A few examples of this motion-region annotation
dataset are shown in Fig. 7.

The 20 sequences with static occluders encompass 15 with
one occluder and 5 with two occluders, as listed in Table. 2.
The depth of each moving object being annotated is also
indexed in three categories, low, medium and high. A moving

@ Springer

two static occluders. The left image is high depth and the right image
is medium depth, Bottom row: Two examples of moving objects going
across moving occluders. The left image has very high depth, and the
right image has medium depth. The moving occluder in the left image is
the black moving car, which occludes our desired moving object almost
completely. In the right image, the moving car is occluded by moving
people (color figure online)

object at low depth means that the object and occluder are
near the camera, so they appear big in size and may have
distinct features contained in them. A high depth means that
the object size is small in the field of view. In this case,
the occluder might be big or small, depending upon its own
depth.
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Table2 A summary of the

Motion-region annotation dataset features

features of the motion-region

annotation dataset Datasets Dataset features
Total sequences Total frames Avg. frames Object depth
Static occluder (one) 15 340 22.7 Lw/Md/Hg
Static occluders (two) 5 166 33.2 Md/Hg
Moving occluders 5 177 354 Md/Hg

Acronyms are Avg.: Average. In object depth, Lw: Low, Md: Medium, Hg: High

In addition to the 20 sequences with static occluders, 5
more sequences were taken with moving occluder. In this
case, the occluder mask is already given, as these moving
occluders are motion-regions of the same sequence, which
have already been annotated. The moving object depth in
these sequences is also listed. All these sets of frames contain
a single moving occluder.

To establish the efficacy of our work, we evaluate the
performance of our algorithm in comparison with other state-
of-the-art contributions. The choice of methods to utilize is
limited due to a number of factors, namely availability of
code, applicability on the proposed scenario (ability to prop-
agate the label across occluders and be able to recover the
shape of the moving object) and computational time. Of the
listed factors, applicability of the algorithms in our scenario
is a limiting factor as most algorithms fail, when motion
label is propagated across an occluder. There are tracking
algorithms, which are able to perform this task but they pro-
vide bounding boxes on the moving object instead of moving
object boundary. Hence, we present a comparative analysis
with two recent methods, a probabilistic method [16] and
a learning-based method [17]. Both are moving object seg-
mentation methods, which give the moving object motion
boundary as the output. These methods do not start with
known initial object boundary as in our method, so to make it
fair to them, we consider their results correct on any motion
they were able to correctly segment around the ground-truth.
This consideration gives an advantage to the algorithms in
terms of motion estimation on or around the moving object,
but in effect makes them not applicable for moving object
occluder sequences. Furthermore, as these methods do not
estimate occluder boundary separately, hence the occluder-
object size ratio, rg_b is not calculated for them.

A 64-bit Intel i7 core 3.4 GHz machine with 16GB RAM
was used for processing, except LDOF calculation, which
was run in a similar server machine with 128GB RAM.
All the scripts and results related to the experiments done
are publicly available online with the motion-region dataset.
Also, the scripts are designed as such to be able to incor-
porate any new algorithm for standardized comparison of
results.

4.3 Quantitative results

The results of the motion-region annotation algorithm on
the presented dataset are given in Tables 3, 4 and 5. The
accumulative average F-score on static occluders as well as
moving occluders reaches up to 95%.

Upon static object occlusion, a maximum F-score of 98%
is achieved for seq-03, and the lowest is 73% for seq-17,
where, on average, 21% motion-region area was occluded by
2 occluders, as given by the corresponding 7°~”. For moving
occluders, amaximum F-score of 97% is achieved for seg-24,
even in the presence of 58% occlusion. The lowest F-score in
moving occluders is 94%, which is achieved even when, on
average, 68% of the motion region was occluded. Observing
the results in Table 4, it is observed that the overall perfor-
mance of the two Probabilistic [16] and Learning-based [17]
algorithms is not suitable to be used as ground-truth. In gen-
eral, these algorithms do an acceptable motion segregation
when the motion is small and the moving object depth in the
scene is relatively small. The algorithms fail when the object
is too large or too small.

The occluder-object overlap ratio, r=? indicates the per-
centage amount of annotated motion-region being occluded.
A higher value of this ratio signifies that the most part of the
moving object is covered. It can be seen from the results that
even with high r¢~?, the algorithm is able to propagate the
label correctly in the following frames. In sequences seg-07,
seq-19, seq-22, seq-24, seq-25, where the occlusion percent-
age reaches 44%, 38%, 38%, 58% and 88% respectively, the
algorithm performs as high as 97% and never goes below
86%.

The annotation-reference overlap ratio r~" and Haus-
dorff distance H95" should be understood in conjunction.
r?~" gives a measure of how much of the propagated anno-
tation conforms correctly with the ground-truth, while H45
measures how far the worst propagated label is from the
ground-truth annotation. Here, with static occluders, it can be
seen that maximum r*~" of 96% is achieved in seq-03 with
H?st a5 low as 0.03 pixels on average. The lowest overlap
of 57% is experienced in seq-17 with H45? as high as 3.64
pixels on average. It is interesting to note that these results
are consistent with the performance exhibited by F-score.
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Table 3 A summary of the

Results on motion-region annotation dataset having static occluders

results of the label propagation

algorithm on the Seq. attributes

Spatial importance

Temporal importance

motion-annotation dataset Name Frames S P F(D) ra=r reb Fdist

featuring static occluders
One static occluder
seqO1 24 0.94 0.96 0.95 0.90 0.01 0.29
seq02 15 0.87 0.97 0.92 0.84 0.09 0.26
seq03 29 0.98 0.98 0.98 0.96 0.05 0.03
seq04 21 0.99 0.95 0.97 0.94 0.06 0.12
seq05 15 0.99 0.97 0.98 0.95 0.03 0.07
seq06 20 0.97 0.95 0.96 0.92 0.04 0.10
seq07 15 0.96 0.95 0.95 091 0.44 0.14
seq08 14 0.98 0.94 0.96 0.92 0.12 0.12
seq09 15 0.99 0.91 0.95 091 0.07 0.26
seql0 73 0.93 0.93 0.93 0.87 0.07 0.14
seqll 20 0.96 0.95 0.95 0.91 0.21 0.10
seql2 19 0.93 0.96 0.95 0.90 0.17 0.15
seql3 18 0.95 0.96 0.96 0.91 0.11 0.11
seql4 21 0.92 0.88 0.90 0.82 0.26 0.52
seql5 21 0.98 0.89 0.94 0.88 0.09 0.45
Two static occluders
seql6 25 0.93 0.96 0.94 0.89 0.11 0.19
seql7 20 0.72 0.73 0.73 0.57 0.21 3.64
seql8 62 0.98 0.91 0.94 0.89 0.03 0.40
seql9 38 0.91 0.81 0.86 0.75 0.38 0.48
seq20 21 0.97 0.95 0.96 0.93 0.08 0.10
Overall cumulative results with static occluders
Average 253 0.96 0.93 0.95 0.90 0.08 0.38
Max 73 0.99 0.98 0.98 0.96 0.44 3.64
Min 14 0.72 0.73 0.73 0.57 0.01 0.03

Acronyms are Seq.: Sequences, S.: Sensitivity, P: Precision, F: F-score, D: Dice score. The best value of each

metric across all sequences is bolded

One thing which cannot be appreciated through these aver-
age performance measures is the capability of the algorithm
to recover, in case of failure in the intermediate frames. A
temporal evaluation per frame gives a better insight on this
behavior. This temporal evaluation is shown in Fig. 8, where
the evolution of H95" and ¢~ of some selected sequences
per frame can be visualized.

In the figure, the temporal progress of H4S" and r¢~
in subproblem sets of frames from five video sequences are
shown. It can be seen that in seg-02 and seq-03 as the percent-
age occlusion of the object, r”‘b, remains below 20%, then
the farthest point of the annotated labeled contour from the
reference label contour, H%5!  never increases more than 0.3
pixel. As r¢~% increases to almost 32% in seq-14, the maxi-
mum propagation error in terms of distance stays within 1.5
pixel distance. It can also be appreciated that in seq-07 where
even with a 70% peak <~ the H*! never goes beyond 0.25
pixels. This trend is also observed in the moving occluder

b
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sequence seq-25, where even in the presence of 88% peak
r¢=f_ the annotation error in term of H%S! remains within
0.5 pixels for all frames. In general, the algorithm performs
well in all the sequences even in the presence of high percent-
age of occlusion of the moving object. Only, seg-17 behaves
differently, where in the presence of 60% occlusion, which
is less than that of seq-07 and seg-25, the maximum H4s!
goes up to 11 pixels.

Another perspective of evaluation is to observe the perfor-
mance of the algorithm on relatively long set of sequences.
Taking one from each type, we see that in seg-10, seq-18 and
seq-23 with 73, 62 and 58 frames, respectively, the algorithm
had an average F-score of 95% and an average H%*! of 0.32
pixels. These sequences exhibit a variety of characteristics,
where the moving object is, at a high depth in seq-10, at
a medium depth in seq-18 going across two occluders and
at a medium depth in seq-23 going across moving non-rigid
occluders. The average performance shows that the algorithm
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Table4 A summary of the
comparative results of metrics
on the motion-annotation dataset
featuring static occluders

Table5 A summary of the
results of the label propagation
algorithm on the
motion-annotation dataset
featuring moving occluders

Results on motion-region annotation dataset having static occluders

Probabilistic [16] Learning [17] Ours
Name FD) ¢ HA FD) r¢"  HY  FD) e g
One static occluder
seqO1 0.78 0.64 1.35 0.79 0.65 1.29 0.94 0.89 0.19
seq02 0.74 0.59 2.96 0.74 0.59 217 0.73 0.57 3.64
seq03 0.88 0.79 1.17 0.82 0.69 2.10 0.95 0.90 0.29
seq04 0.82 0.69 1.21 0.78 0.64 1.23 0.92 0.84 0.26
seq05 0.87 0.77 1.56 0.81 0.68 2.31 0.98 0.96 0.03
seq06 0.45 0.29 23.33 0.85 0.73 1.46 0.97 0.94 0.12
seq07 0.00 0.00 - 0.84 0.72 3.00 0.98 0.95 0.07
seq08 0.41 0.26 13.84 0.83 0.72 1.54 0.96 0.92 0.10
seq09 0.70 0.54 4.84 0.81 0.69 1.81 0.94 0.89 0.40
seql0 0.63 0.45 3.80 0.75 0.60 243 0.95 0.91 0.14
seqll 0.51 0.34 4.94 0.53 0.36 7.32 0.86 0.75 0.48
seql2 0.79 0.65 3.86 0.73 0.58 3.31 0.96 0.92 0.12
seql3 0.74 0.58 6.56 0.78 0.64 3.73 0.95 0.91 0.26
seql4 0.05 0.02 24.37 0.38 0.23 13.53 0.93 0.87 0.14
seql5 0.48 0.32 7.05 0.44 0.28 10.86 0.95 0.91 0.10
Two static occluders
seql6 0.68 0.52 4.33 0.80 0.67 1.79 0.95 0.90 0.15
seql7 0.85 0.74 0.84 0.77 0.62 2.03 0.96 0.91 0.11
seql8 0.80 0.67 1.88 0.77 0.62 2.67 0.96 0.93 0.10
seql9 0.61 0.44 5.84 0.64 0.47 3.78 0.90 0.82 0.52
seq20 0.75 0.60 5.60 0.71 0.56 7.36 0.94 0.88 045
Overall cumulative results with static occluders
Average 0.63 0.50 6.28 0.73 0.59 3.79 0.93 0.88 0.38
Max 0.88 0.79 24.37 0.85 0.73 13.53 0.98 0.96 3.64
Min 0.00 0.00 0.84 0.38 0.23 1.23 0.73 0.57 0.03

Acronyms are Seq.: Sequences, F: F-score, D: Dice score, 7, ~": Annotated-reference region overlap ratio and
H%s': Hausdorff distance. The best value for each metric against each sequence is bolded

Results on motion-region annotation dataset having moving occluders

Seq. attributes Spatial importance Temporal importance
Name Frames S P F(D) ré=r re=b HAist
seq21 42 1.00 0.92 0.96 0.92 0.12 0.14
seq22 25 0.94 0.98 0.96 0.93 0.38 0.08
seq23 58 0.94 0.94 0.94 0.89 0.29 0.33
seq24 36 0.95 0.99 0.97 0.94 0.58 0.08
seq25 16 0.94 0.95 0.94 0.89 0.68 0.14
Overall cumulative results with moving occluder

Average 332 0.95 0.94 0.95 0.90 0.30 0.16
Max 58 1.00 0.99 0.97 0.94 0.68 0.33
Min 16 0.94 0.92 0.94 0.89 0.12 0.08

Acronyms are Seq.: Sequences, S.: Sensitivity, P: Precision, F: F-score, D: Dice score. The best value of each

metric across all sequences is bolded
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Fig.8 The temporal evolution of performance measures of three sequences, seq-02, seq-03, seq-07, seq-14 and seq-25. Left: A visualization of the

change in H%'5! over time in each frame (in pixels). Right: The change in occluder-object ratio r

is not affected by the length of frames as much as the type of
motion in them.

4.4 Qualitative results

The qualitative results give a visual and intuitive evaluation
of the algorithm. In Figs. 9 and 10, the results of motion label
propagation are shown, with one occluder, two occluders and
moving occluder.

In Fig. 9, three different frames, first, middle and last, of
two sequences with a single static occluder are shown. In
the top row from seq-05, a large truck is seen going across a
direction post. The truck has a low depth in the field of view,
meaning it is close to the camera. The average occlusion
percentage is 3%, but the issue to note is that the whole body
of the moving object undergoes occlusion at least once during
the complete motion. The occluder mask was created with
a few clicks around the direction post and it was tracked as
mentioned in Sect. 3.2. It can be seen that from the start until
the end, the occluder mask is robustly tracked. This robust
result facilitates the shape propagation of the motion mask
across all frames. As the shape and perspective change of the
moving object is minimal, the results achieved are as good
as 98%.

In the bottom row of the figure, three frames of the
sequence seq-08 are shown. The white car undergoes an
occlusion by a tree stem. The car moves across multiple
frames coming toward the camera, which changes its depth.
This can be verified from the first and the last frame, as the
size variation of the car is visually apparent. The thin tree
stem occluder is marked in the first frame by defining a few
points around it. Here, it can be seen that the area around the
trunk is also marked. As the tree trunk is quite thin, the soil
area around the trunk reinforces the SURF feature extrac-
tion and matching, resulting in a better tracked occluder. The
linear change adaptation factor «, as explained in Sect. 3.4,
gives a good estimate of the change in depth of the car in
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c=b over time in each frame (%age)

each progressive frame. So even in the case of depth change,
the achieved F-score is 96%.

In the top row of Fig. 10, three frames from seg-19, where
the moving object is occluded by two occluders, are shown.
It can be seen that the white car gets occluded by a lamp
post and a thin tree trunk. Over the course of the motion, the
size of the moving object changes considerably as it moves
toward the camera. The occluder masks are marked in the
first frame of the sequence, and it can be seen that the masks
are well tracked even until the end. The object starts moving
from a high depth and comes toward the camera to medium
depth. With such a big change in depth, and even with 38%
occlusion on average, a F-score of 86% is achieved. Here, it
can be appreciated that the algorithm possesses the capability
to map a small contour in the starting frames to an expanded
large contour in the ending frames with consistency in shape,
and vice versa.

In the middle row of Fig. 10, three frames from seq-25,
where the moving object is occluded by a single moving
occluder, are shown. An extreme case is present in this
sequence, as the moving object is at a higher depth and has a
small size, as compared to the moving occluder, which is at
a low depth, hence quite large in size. On average the occlu-
sion ration reaches up to 88%. Even in the presence of such
occlusion, due to reliable LDOF calculation, as mentioned
in Sect. 3.3, our algorithm performs well, achieving 94% F-
score. Here, the moving occluder is assumed to have been
previously annotated; therefore, the occluder mask marking
and tracking is not performed.

In the bottom row of Fig. 10, we also show three frames
from seq-17, where the moving object is occluded by two
occluders. It can be seen that the black car goes across two
lamp posts. The occluder masks are marked in the first frame
and tracked until the last. In the last frame, the tracker losses
the shape of a marker but it does not affect the result as there
is no overlap between the wrongly tracked occluder mask
and the moving object mask. Besides the occluder mask,
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Fig.9 Motion annotation result on three frames of two sequences con-
taining single static occluder. The motion and the occluder masks are
shown in green and blue contours, respectively. Top row: Frame 4, 9
and 14 from the sequence seq-05. The moving truck is occluded by the

the motion label propagation is shown by a green contour
around the black car failing to propagate the label correctly.
The propagated labels move ahead of the ground-truth, this
means that the maximal velocity count consensus is making
the mask move in the right direction but not with the cor-
rect magnitude. Upon further investigation on the obtained
results, we observed that there are two competing hypothe-
sis on the magnitude of the motion vector. Here, the wrong
hypothesis edges past the correct one with a small difference.
This occurs due to the background around the car because the
LDOF calculated at the edges of the car gets tampered due to
the color similarity between the car and the background. This
limitation could be overcome by introducing a factor catering
for background similarity in the maximal vector consensus.

5 Discussion

The proposed methodology is a contribution in motion
annotation frameworks, where moving object labels can be
propagated across occlusions. In this section, a few sugges-
tions are proposed as future directions, which can improve
the accuracy and precision even further and solve some of
the limitations.

A natural progression of the framework is to develop more
sophisticated methods for occluder mask shape tracking. The
current method is suitable for rigid shapes with affine trans-

static direction post (F-score: 98%). Bottom row: Frame 2, 8 and 13
from the sequence seq-08. The white car is occluded by the static thin
tree trunk (F-score: 96%) (color figure online)

formations. An occluder undergoing nonlinear change, like
perspective or radial distortion, would be badly tracked by
this methodology, as the overall result is sensitive to its shape
tracking. A recently proposed shape tracking algorithm [49]
might yield better results, as it takes a coarse to fine region-
based Sobolev descent approach [49].

An enhancement in the object mask propagation approach
is needed to deal with non-rigid motion masks. Currently,
the motion mask is restricted to being rigid, which is good
enough to cater for a lot of real motions but not all. To deal
with non-rigid motion masks, the recently proposed scheme
of minimal basis subspace based rigid and non-rigid segmen-
tation approach [50] coupled with occlusion—disocclusion
segregation [49] can be used in a motion model specific
framework to yield acceptable results. A drawback of using
image segmentation approaches for moving objects is that
based on the number of frames in a video sequence the
computational cost multiplies. In comparison, our approach
yields quick results depending upon how fast LDOF is being
calculated.

In addition to revising the object mass propagation
approach for non-rigid moving objects, a nonlinear scal-
ing adaptation factor can further improve the annotation
result on a fine scale. One way of doing it would be to
perform forward and backward propagation of the object
mask, and then devise a cost function to penalize the non-
homogeneous region overlap of the mask with the image.

@ Springer



2 Page18o0f 21

M. H. Mahmood et al.

N
Vo

—

=

Fig. 10 Motion annotation result on three frames of three sequences is
shown. The motion mask is shown in green contours. The static occluder
masks are shown in blue, while the moving occluder mask is shown in
red, contours. Top row: Frame 2, 18 and 37 from the sequence seq-
19. The moving white car is occluded by two static occluders, a lamp

Assuming that the homogeneous region is part of the object
and the non-homogeneous region corresponds to the back-
ground, a piece-wise fine scale adjustment of the object
mask contour can be done. The objective function in such an
approach would be nonlinear and computationally expensive,
but the results could improve. The improvement of results
using this nonlinearity, might be more apparent in sequences
with a very big change in size, scale or perspective.

More recently, deep learning approaches have been a suc-
cess in almost all the domains they have been applied on. On
the same lines, a recent object detection and segmentation
approach based on convolutional neural networks (CNNs)
[51] exhibits excellent results. Our approach applied with
integration of CNNs based object recognition methodologies
[52,53] may yield improved results. These too would work
at an exceptionally high computational cost, with a disad-
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post and a tree trunk (F-score: 86%). Middle row: Frame 2, 8 and 15
from the sequence seg-25. The gray car is occluded by the moving
black car (F-score: 94%). Bottom Row: Frame 3, 10 and 19 from the
sequence seq-17. The black car is occluded by the two static lamp posts
(F-score: 73%) (color figure online)

vantage of training and testing cycle as necessary for these
approaches.

6 Conclusion

In this paper, a framework to address the problem of motion
annotation in the presence of occlusion, depth change and
perspective distortion has been presented. Our approach is
integrated with an existing methodology [23] to formulate
a framework to overcome the prevailing limitations. It was
shown that with minimum manual intervention and with best
utilization of the expert-time, the generation of ground-truth
label for moving objects can be done even in the presence of
real distortions. A three-pronged approach was taken where
first the occluder mask was tracked in subsequent windows,
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with SURF feature matching and similarity transformation.
Then, the object mask propagation was done by computing
maximal consensus motion vectors from the state-of-the-art
LDOF estimation. And finally, the scale adjustment of the
propagated object mask was performed by first to last frame
point-set registration couple with linear adaptation factor «.
For evaluation, we also presented a motion annotation dataset
with 25 sequences, containing single and multiple static and
moving occluders. We presented a detailed quantitative and
qualitative analysis of the methodology to show that it can be
reliably used for label propagation in sequences with occlu-
sion and other real noises, reaching an average F-Score as
high as 95%. In addition, we performed a comparative anal-
ysis of our proposal with two state-of-the-art methodologies.
We have also shared the source codes, results and the related
documentation publicly for the community to use it and to
perform further improvements in this methodology.
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