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Abstract—Detecting changes between images of the same scene
taken at different times is of great interest for monitoring and
understanding the environment. It is widely used for on-land
application but suffers from different constraints. Unfortunately,
Change detection algorithms require highly accurate geometric
and photometric registration. This requirement has precluded
their use in underwater imagery in the past.

In this paper, the change detection techniques available nowa-
days for on-land application were analyzed and a method to
automatically detect the changes in sequences of underwater
images is proposed. Target application scenarios are habitat
restoration sites, or area monitoring after sudden impacts from
hurricanes or ship groundings. The method is based on the
creation of a 3D terrain model from one image sequence over
an area of interest. This model allows for synthesizing textured
views that correspond to the same viewpoints of a second image
sequence. The generated views are photometrically matched and
corrected against the corresponding frames from the second
sequence. Standard change detection techniques are then applied
to find areas of difference. Additionally, the paper shows that
it is possible to detect false positives, resulting from non-rigid
objects, by applying the same change detection method to the
first sequence exclusively. The developed method was able to
correctly find the changes between two challenging sequences of
images from a coral reef taken one year apart and acquired with
two different cameras.

I. INTRODUCTION

The study of benthic areas benefits from recent progress
in underwater technology, allowing the deployment of opti-
cal cameras for systematic surveying. Detecting the changes
between images of the same scene taken at different times
is of great inferest for monitoring and understanding the
environment. Several application fields would benefit from this
technology, e.g. benthic habitat monitoring, deep water geolog-
ical exploration or mapping of archeological sites. During the
last decades, change detection algorithms were widely studied
and have achieved significant progress in on-land applications
[1]-[13]. The main requisite of these algorithms is a highly
accurate geometric and photometric registration of the images.
Therefore they are still restricted to aerial or satellite imagery.

The underwater medium can significantly degrade the qual-
ity of the acquired images. Scattering effects and non-uniform
lighting result in differences in intensity levels between the
images of the same areca. Moreover, because of the rapid
attenuation of light and the scattering effects, the images have
to be taken at short range, and the area of interest cammot
generally be acquired in one single view. Therefore, it is
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necessary to acquire a sequence of images covering the interest
areca and align them into a photomosaic to gain a global
perspective of the site. Unfortunately, acquiring images at short
range also emphasizes the parallax effects of the 3D relief
resulting in local misregistrations.

Despite of the poor quality of underwater images, methods
for detecting the changes can be useful in several underwater
applications such as habitat restoration sites, assessing impacts
from hurricanes [14] or ship groundings, coral monitoring and
supervision of geothermal and volcanic activities.

The objective of this work is to develop automated tools
able to deal with the constraints of the underwater sequences
for detecting temporal changes in the appearance of benthic
structures.

A. Related work

Several change detection algorithms were proposed [1]-[3].
Most of them require a highly accurate alignment between the
images [15], [16]. They were widely used in remote sensing
for the monitoring of fire, flooding, deforestation, vrbanization
among others [4], [5], [17]. The images used for this kind
of application are taken from very high altitude (satellites or
planes) in order to attenuate the effect of the 3D relief on the
registration. Normally, the images to be compared are acquired
at the same period of the year and on the same time of the
day to avoid the effect of the shadows coming from the sun
light.

Change detection techniques are also widely used in video
surveillance [6]. In most cases, the camera is static or only
rotating around its optical center. The absence of translation
prevents parallax, making registration easier and improving its
accuracy. A known background is generally used as a base for
the comparisons.

In the medical imaging context, standard change detection
techniques are also used to analyze MRI, X-ray or ultrasound
imaging [7], [8]. In this context, they have to deal with the
specific motion of the body in order to align the images.

Some techniques transform the original images by reducing
the redundant information among bands [10], [11]. These
methods use multi-band images such as multi-spectral, color
or polarized synthetic aperture radar (SAR) imaging. However,
they are generally used for finding only one typical type of
change. Other methods are based on classified images [12],
[13] and are then invariant to the change in illumination
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but require an accurate classification of the images. These
methods present the advantage to provide change direction
information (from-t¢). Their inconvenient is that thev require
a long training in order to provide an accurate classification.
In [9], the changes are detected through a neural network. An
image is compared to a sequence of images of the same scene
and the network stabilizes in a change mask. This method is
less sensitive to noise and to misregistrations but generally
requires a long sequence.

Black et al. [18] have proposed a technique that takes profit
of optical flow in order to reject changes detected due to
misregistration.

Within the underwater imaging field, previous work in
change detection is almost non-existent. A notable exception is
the work of Lebart et al. [19] where a method was developed
to find seafloor transition (e.g. from rocks to sandy seafloor)
in a sequence of underwater images.

In this work, we propose a method that is composed of six
steps as illustrated in Fig. ??. The method aims to compare
two image sequences of the same area possibly acquired with
two different cameras and at different times. In the first step, a
mosaic representing all the images aligned in a common frame
is created in order to find overlapping pairs of images [20],
[21]. Secondly, the relief of the ocean floor and the camera
positions and orientations (camera poses) of one sequence are
estimated using robust computer vision methods that allow
recovering the accurate camera poses and a large set of 3D
points [22]. This step requires high overlap among the images
and a good calibration of the intrinsic parameters of the
camera. Then, by matching the images of the second sequence
with their overlapping correspondent in the first one, their
camera positions are estimated. The fourth step consists in
generating a set of synthetic images for each image of the
second sequence. These synthetic images are the modeled
images warped in such a way that their textures are seen from
the camera position of the images in the second sequence.
This is useful in order to reduce the effect of the 3D relief
and to provide better registration. Next, photometric matching
techniques are used to correct the differences in illumination
and/or differences caused by the image sensors between the
two datasets. Finally, once an image viewing the same area and
from the same location as the image of the second sequence
is generated, standard change detection algorithms can be
applied. This process is applied to every image of the sequence
and its corresponding set of synthetic images. As a result, we
have a binary change mask for each pair of images that says
whether there is or not a change between the two images.
Those change masks can be merged into a general mask
representing the changes of the surveved area. A mosaic of
the change mask can be easily obtained as we already know
the position of the images corresponding to the change mask.

For testing the method, two sequences of images from a
coral reef survey in the Bahamas were used. These images
were acquired ten months apart {in December 2005 and Octo-
ber 2006) by two different sensors under different illumination
conditions. The radial distortion of the images was corrected
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and the inirinsic parameters of the cameras were accurately
computed.

The paper is organized as follows. Section ?? explains in
detail the steps to produce the synthetic images of the model
that will be compared. Section ?? presents the results obtained.
Conclusions and future work are discussed in section I.
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Fig. 1. Flowchart of the proposed method.

II. METHODOLOGY

The initialization of the proposed methodology is composed
of 2 steps: (1) The mosaicing of the whole set of images and
(2) the 3D reconstruction of one of the sequences (hereafter
called reference sequence). After this initialization, for each
image of the other sequence (hereafter called comparison
sequerice), four additional steps are needed: (1) computation of
the camera pose (position and orientation); (2) Synthesizing a
set of images from the 3D model; (3) Adjusting the intensity
values of the set of synthetic images; (4) applying change
detection techniques between the image and its set of synthetic
images. Finally, a change mask is obtained for each image of
the comparison sequence (see Fig. 22).

A. Finding overlapping pairs

Aligning images that overlap in a common frame is known
as mosaicing. By knowing the position of every image in a
common frame called mosaic frame, it is possible to extract
only the area of interest in order to reduce the number of
images to process in the following steps.

Automatic algorithms for mosaicing are widely avail-
able [20], [21], [23]. They generally use feature-based mo-
tion estimation methods. These methods are composed of
four main steps: (a) Feature detection [24]-[26], (b) Feature
matching [25], [26], (c) Motion estimation with outlier rejec-
tion [27], [28] and (d) global alignment [29].
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B. 3D reconstruction

The main problem of change detection algorithms is the
alignment of the images. Since images are acquired at short
range, the 3D relief of the scene introduces misregistration
between the images. Change detection algorithms may take
profit of knowing the 3D structure of the scene. This 3D model
can be computed from one of the sequences. See [30] for a
survey on 30 reconstruction methods.

In this paper, we used structure from motion [22] to estimate
the model. The 3D structure is composed of a set of 3D
vertices characterized by the local image descriptors resulting
from feature tracking. Building this 3D model is achieved in
two steps. The first step consists of initializing the structure
of the scene. This is done by computing the camera motion
between the first two frame and by determining the 3D
positions of a set of matched points. In the second step,
each subsequent camera pose is computed by matching image
features with the 3D points of the model using a robust
method. In order to update the 3D model, new 3D points are
added by computing their positions from tracked features using
the estimated camera poses (Fig. 7?).

C. Computing the camera poses

For each image of the comparison sequence, a set of
synthetic images are generated using the 3D model obtained
from the reference sequence. These images are generated to
simulate the view point of the comparison camera pose. The
camera poses of the images in the comparison sequence are
estimated by associating 2D features from these images with
the 3D vertices in the model.

It is possible, especially when the sequences of images
come from different cameras, that the matching method does
not provide enough comrespondences in order to compute an
accurate camera position. In this case the number of 3D points
to be matched with the comparison image can be reduced by
taking only those that are present in its overlapping pairs of the
modeled sequence. This reduces the number of potential wrong
matches. There are cases in which additional correspondences
have to be set manually in order to compute the camera pose
accurately.

D. Synthesizing the images

Two images viewed from the same camera position do not
suffer from any parallax effect. The main idea of the proposed
method consists then in warping the images of the model in
such a way that they are viewed from the same camera pose as
that of the comparison image. This is possible by knowing the
position and orientation of the camera that has to be simulated
{see section ?7).

The 3D points of the model are interpolated using Delaunay
triangulation [31] in order to have a surface (Fig. ??). Knowing
the intrinsic parameters of the camera in addition to its pose
allows to compute the directions of the ray vectors of each
pixel of the synthetic image. Their intersection with the 3D
surface is then calculated generating a 3D position for each
pixel. The intensity values of these pixels are extracted by
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back-projecting their 3D positions into the reference images.
A bilinear interpolation of the pixel values is performed. This
generates, for each image of the model, a synthetic version
that represents the same View of the scene as that of the
comparison image (Fig. 2?). In this way, the two images have
the same size and are already aligned up to the accuracy of
the 3D model.

E. Photomerric matching

The different datasets are likely to have different illu-
mination conditions and different sensor responses resulting
in different intensity values of the same scene points. A
photometric matching technique is then used to correct these
differences.

We applied a local histogram specification between the
comparison image and its corresponding synthetic ones. The
local histogram of a sub-window of the comparison image is
extracted and this histogram is imposed in the same region
of the synthetic images. The sub-windows have overlapping
areas, to avoid abrupt changes in the histogram specification.
By computing the average of the results over these windows, a
set of photometrically matched synthetic images are obtained
(Fig. 27).

F. Change detection Methods

For each image to compare, a set of synthetic images were
generated from the reference ones. In this set, the parallax ef-
fects caused by the 3D relief has been reduced (see section 22).
Their intensity values are matched with the comparison image
(see section ??). Change detection techniques can then be
applied between the comparison image and its synthesized
referenice images.

Change detection algorithms often generate a change image
that represent a quantification of the changes for each pixel.
In order to convert it to a change mask, a threshold must be
applied. As one change mask is obtained for each synthetic
image, they are combined in order to generate a general one.
This can be done either by applying a voting scheme on the
change masks or by averaging the change images before ap-
plying the threshold. This final mask is more accurate than the
individual ones. Effectively, some false changes are triggered
in the synthetic images because of moving objects such as
fishes or local misregistrations due to the inaccuracies of the
3D model. These kinds of changes are generally detected at
different positions of the synthetic images. Therefore, while
generating the general mask, as the change is detected at
the same position in few images, their contributions are less
important and they are not taken into account.

III. RESULTS

In order to test the method described in the previous section,
two sequences of images from a coral reef taken 10 months
apart were used. The sequences were acquired with different
cameras. Both cameras were accurately calibrated and the
images were corrected for radial distortion. The scene presents
an important 3D relief that produces parallax effects and
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Fig. 2. Parallax effect due to 3D relief in two images of the same sequence:
some features are occluded from one image to another (red arrows) making
impossible the detection of changes with a 2D image alignment. Blue arrows
show the same locations.

makes it impossible to detect changes directly from 2D image
alignment (Fig. 2?).

Two 2D mosaics of these sequences of images were com-
puted independently by matching SURF features (Fig. ??).

The area around the same coral colony was extracted from
both image sequences. The sequence from October 2006 (see
Fig. ??) was chosen arbitrarily as the reference, to generate
the 3D structure of the scene. The traced SURF features were
used to compute the positions of the 3D vertices and cameras
poses. More than 15,000 3D vertices were extracted from the
images (Fig. 2?).

Fig. ?? shows a sample image from the sequence of 2005.
Local SURF features of this image are matched with a reduced
set of the 3D points from the model built from the 2006
sequence in order to estimate its camera pose with respect
to the model (see section ??).

Next, the intersections of the pixel rays of the synthetic
images with the 3D surface obtained by Delaunay triangulation
are computed. The 3D position of each pixel (Fig. 2?) is then
back projected in each image of the model in order to obtain
its intensity values. A set of synthetic images is then generated
(Fig. ?7). These synthetic images are photometrically matched
to the comparison image that was selected (Fig. ??).

The change detection method used for these results is an
operation between two images that results in a “change im-
age”. Each pixel of the change image is obtained by summing
the squared differences of the input images over a 7x7 pixel
window centered in that pixel. Due to the limited accuracy of
the 3D model, only three synthetic views were used to detect
changes. These views were selected as having the highest
overlap with the comparison image. The three different change
images were averaged and thresholded to produce a final mask
(Fig. ?7).

Ag it can be seen from Fig. 22, the algorithm detects some
changes in the bottom left of the image. Those changes are
triggered because of algae that could not be modeled in the
3D structure as they are moving with the waves.

This kind of changes can be discarded by finding the
changes between the synthetic images themselves. Effectively,
as they are not modeled, these algae are also moving in the
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synthetic images and a mask can be obtained. This change
mask specify the regions in which there exists feature that
could not be modeled such as moving algae or shadows.

As for finding the change between the two sequences, it
is also possible to use the combination of change images
coming from different pairs of synthetic images in order to
have a better accuracy of the change mask. In this example,
as three synthetic images were selected in order to detect the
changes, it is possible to get three change masks between
images (1-2, 1-3, 2-3). Fig. ?? shows the regions in which
we can discard the detected changes since they have a high
probability of being false positives. Fig. ?? shows, in red,
the changes detected in the comparison image; in green, the
changes detected within the sequence of synthetic images that
can be discarded and, in yellow, the changes detected in the
comparison image that are actually discarded. Finally, Fig. 2?
shows the comparison image and one of its synthetic versions
with the detected changes outlined in red and, in green, the
areas where the change detection can be discarded.

It can be seen that the red areas which are not in close
proximity to the green areas correspond to real changes in
the benthos, such as the numbered tiles and the coral colomny
which were bleached (whiter) in the reference sequence but
not in the comparison one.

IV. CONCLUSION AND FUTURE WORK

We have developed a method to deal with the constraints
of the underwater environment in order to detect changes in
sequerices of images. Although preliminary, this paper presents
promising results which validate the approach.

Synthesizing images from a 3D model presents several
advantages. The main one is that it minimizes the impact of
the relief on the registration, which is the main problem for
change detection algorithms.

The proposed algorithm incorrectly detects changes in the
areas of the images that could not be correctly modeled or that
could not be modeled at all. This can happen when moving
objects like fishes or algae are present in the scene. In some
sequerces of images the light source is also moving, resulting
in moving shadows. Fortunately, it is possible to detect those
areas by finding the changes within the sequence of synthetic
images, and thus remove them from the final “change mask”.

There are several ways to improve the results of this method.
One direction is to improve the accuracy of the 3D model since
it has a direct impact on the accuracy of the synthetic images.
The 3D modeling algorithm can be improved by using a dense
matching approach such as match propagation [32].

In this paper we used a standard change detection algorithm
which produced good results for the test sequences. However,
other more sophisticated algorithms such as the neural network
algorithm proposed in [9] need to be implemented and tested.

Another direction is in combining the change masks ob-
tained for each image of the comparison sequence into one
single view. If the combination of masks is done in a 2D
mosaic, misalignment of changes will appear. As the 3D
position of every pixel of the synthetic images is known, it is
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(a) Comparison Image

Fig. 6.

(b) Synthetic Tmage

This triplet of images shows the different steps in order to obtain the images to compare. One image from the sequence of 2005 (a) is selected.

Its camera pose is computed in order to generate a set of synthetic images. Each image of this set is then photometrically matched. (b) shows one of the
synthetic images and (c), the same image photometrically matched. The change detection algorithms are applied on (a) and ().

Fig. 7. 3D model of the image to synthesize. Note the similarity with the
image to compare (figure ??) and the inaccuracy of the model.
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(a) Change mask between sequences {b) Change mask within the reference sequence (c) Final change mask
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Note that some wrong matches are detected in the bottom left of the mask. (b) Change mask obtained within the sequence of synthetic images. This mask
shows the areas where changes can appear but should not be taken into account. (¢) Change mask showing in red the areas where change has been detected,
in green, the areas that can be discarded and, in yellow, the areas that where initially detected as “change” but finally discarded.
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{a) Comparison image (b) Synthetic image

Fig. 10, The comparison image (a) and one of its synthetic version (b) with the changes detected outlined in red and the areas where changes detected can
be discarded outlined in green
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