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Abstract
Non-invasive brain-computer interfaces can be implemented through different paradigms, the most used one being motor

imagery and evoked potentials, although recently there has been an interest in paradigms based on perception and visual

imagery. Following this approach, this work demonstrates the classification of visual imagery, visual perception and also

the possibility of knowledge transfer between these two domains from EEG signals using convolutional neural networks.

Also, we propose an adequate framework for such classification, which uses convolutional neural networks and the black

hole heuristic algorithm for the search for optimal neural network structures.

Keywords Brain-computer interface � Convolutional neural networks � Black hole optimization � Visual imagery �
Visual perception

1 Introduction

Brain-computer interface systems allow direct commu-

nication between the brain and the outside world without

using the muscles. This type of technology allows people

with mobility problems to interact with the world that

surrounds them, either by allowing them to browse the

internet [1], move a wheelchair [2] or interact with a

home automation system [3]. Interaction can occur using

different paradigms, for example such as imagining the

movement of the hands, known as motor imagery; or

evoked potentials, such as P300 or SSVEP, which are

the most studied and used paradigms within BCI [4].

Although we can create any type of BCI system using

these paradigms or even combining existing ones,

humans have many other cognitive activities that can be

used to create more natural BCI systems, such as visual

perception or visual imagery. Through these activities,

more natural interfaces could be created for tasks such as

drawing or generating art.

Some studies have explored the possibility of classi-

fying visual perception (VP) and visual imagery (VI)

signals [5–7]. Bobrov et al. [5] demonstrated that visual

imagery could be classified using electroencephalo-

graphic signals (EEG), managing to classify two imag-

ined objects (human faces and houses) together with the

state of relaxation. Ehsan et al. [6] managed to classify

five imagined geometric figures using the Emotiv Epoc?

[8] device consisting of 14 electrodes. These works

focused only on the classification of visual imagery

without making any reference to visual perception. Also,

the techniques used there are not trivial; their main

component is a complex stage of feature extraction that

is difficult to reproduce. On the other hand, Kosmyna

et al. [9] studied the classification of visual imagery and

also visual perception, concluding that it was possible to
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distinguish between VP and VI, VP versus VP, Rest

versus VP, Rest versus VI, but not VI versus VI. This

raised the question of whether the classification of visual

imagery is possible and what are its limits. To address

this questions, some studies have attempted to shed light

on the use of visual imagery classification with EEG.

One of the most recent studies on this question is the

one by Fu et al. [10], who analyzed the possibility of

classifying visual imagery with 18 subjects that had to

visualize both static and dynamic images. Using machine

learning tools, visual imagery could be classified with a

maximum accuracy of 87% using empirical mode

decomposition (EMD) and autoregressive (AR). This

provided more evidence that the visual system can be

used to create new, meaningful BCI systems. However,

for practical applications, we need to study in more

depth the possibilities of classifying static images only,

to find out how to use vision more efficiently in the field

of BCI systems.

More recently, some efforts can be found that study the

classification of VP and VI for six classes of geometric

figures [9], reaching the conclusion that classification is

possible in both VI and VP. The main contribution of this

study was to use convolutional neural networks in time

control, making it easier to reproduce the results. In the

work of Alazrai et al. [11], a very complete study is carried

out on the possibility of classifying visual imagery. The

main contribution of this work is that, using different sets

of visual data, such as fruits, animals, numbers, letters and

arrow shapes, allows to obtain results above 88% in all

categories, providing more scientific evidence that visual

imagination can be classified using non-invasive EEG

signals. However, in this work, the possibility of using

visual perception or transferring knowledge between the

two domains (visual imagery and visual perception) is not

studied.

It should be mentioned that neural networks have been

widely used for the creation of BCI systems, in general

obtaining good results [12], being convolutional networks

one of the most used techniques [13]. However, one of the

main problems when dealing with neural networks is to

find the optimal structure of the network, which is not easy.

Some works carry out error tests and others use heuristic

methods, but, to the best of our knowledge, no other work

has used the Black Hole heuristic algorithm to classify

EEG signals from vision using CNN networks.

Also, none of the aforementioned works has studied the

transfer of knowledge between different subjects and dif-

ferent domains between VP and VI. It is known that the

training stage of the process of any BCI system is

uncomfortable in that it tires the end user. In our own

experience, we have noticed that, when recording EEG

signals based on visual imagery, users fatigue much more

than with recording based signals in visual perception.

Knowledge transfer has been used successfully in BCIs as a

way to solve this stage, so here we will also focus on the

study of knowledge transfer between VP and VI [14], to

reduce the required training.

BCI systems are made up of different stages, which

are acquisition, preprocessing, feature extraction and

classification [15]. For each stage, there are different

possible techniques that can be used. Many research

laboratories in BCI systems study which combinations

are best for given specific tasks, but in recent years deep

learning techniques have dominated research, specifically

Convolutional Neural Networks (CNN), which have been

successfully used for the classification of EEG signals

[16]. However, no previous study has evaluated the use

of the Black Hole heuristic algorithm and its effect on

the classification of EEG signals to automatically find

optimal CNN structures for the VP and VI paradigms.

This work also aims at extending the current knowledge

on the classification of perception and visual imagination

using non-invasive EEG signals, and to offer an optimal

and easy-to-use framework to extend the potential of

BCI systems.

2 Materials and methods

2.1 Data set

This paper used the public database provided by Xie et al.

[17]. It consists of a data set of visual imagery and visual

perception, formed by the registry of 38 people (age: mean

± SD = 24.1 ± 4.99 years, 30 female, 8 male). The data

can be downloaded at the following link: https://osf.io/

ykp9w/. The number of objects that have been used is 12

(Fig. 1): Apple, Car, Carrot, Chicken, Hand, Eye, Sheep,

Butterfly, Rose, Ear, Chair, and Violin. Each participant

viewed and imagined the object images, presented ran-

domly for 500ms, with a viewing angle of 2.9� and the

images appeared on the center of the screen. All partici-

pants completed two sessions, and within each session,

they completed 600 trials, split into two blocks separated

by a self-paced break.

Fig. 1 Images used during EEG signal recording in the used database
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2.2 Device

The device used to record the EEG data has been the

Brainvision actiCHamp amplifier EASYCAP with

64-channels. The 64 electrodes were arranged in accor-

dance with the standard 10–10 system. The sampling fre-

quency was 1000 Hz. EEG signals were filtered within the

range 0.3–100 Hz, and all electrodes were referenced

online to the Fz electrode. In this work, we used three

distinct configurations, the first configuration (configura-

tion 1) used the same electrodes as in the Emotiv Epoc

(AF3, AF4, F7, F3, F4, F8, FC5, FC6, T7, T8, P7, P8, O1

and O2), the second configuration (configuration 2) was the

occipital electrodes (O1, O2, Oz, PO3, PO4, PO8 and

PO7), and the last configuration (configuration 3) used all

electrodes. This way we studied what a good configuration

for classifying VP and VI is.

2.3 Preprocessing

The data offered are in raw format and already pre-pro-

cessed. Eye blinks and movements were detected and

removed with an Independent Component Analysis (ICA)

on frontal electrodes Fp1, Fp2, AF7 and AF8, implemented

in the SSP: Eye blinks algorithm in Brainstorm [17, 18].

The continuous EEG raw data were extracted in epochs

between 600 ms pre-stimulus and 1100 ms post-stimulus.

The data from each trial were separated into two segments,

the pre-stimulus segment of size 600 ms and the post-

stimulus segment, also of size 600 ms. The post-stimulus

segment occupies the interval 700 ms to 1300 ms. The pre-

stimulus segments have been labeled with the label 0 that

corresponds to no visualization or imagery, and the post-

stimulus segments have been classified as label 1, that is,

observation or imagery of an image. The preprocessing

consists of two parts, one is filtering of the EEG signals and

the other is normalization of the signals. For the filtering, a

five-order Butterworth-type bandpass filter was used

between the frequency bands 1 and 41 Hz. To normalize

the signals, the following equation has been used:

SðtÞin ¼ SðtÞi � min SðtÞi
� �� ��

max SðtÞi
� �

� min SðtÞi
� �� �

ð1Þ

where SðtÞi is the signal EEG of channel i, and SðtÞin is the
i-th channel, but normalized in the interval ½0� 1�.

2.4 Convolutional neural network

Convolutional neural networks (CNN) are a type of neural

networks that incorporate convolutional layers (Eq. 2),

which give this type of network its name. Through layers of

convolution, CNN networks create a hierarchy of spatial

features. At first, they were used for image classification

and processing [19], where they have had great success

[20]. However, in recent years, CNN networks have been

applied to other types of problems, and specifically in the

classification of EEG signals [12, 16, 21]. In general, they

can be described as

ymn ¼ f
XJ¼1

j¼0

XI¼1

i¼0

xmþi;nþjWij þ b

 !

ð2Þ

where x is the input two-dimensional data, y is the output of

M � N, where 0 6 m 6 M and 0 6 n 6 N. w is the con-

volutional kernel with size J � I, f is the activation func-

tion, and b is the bias. There are different possible

activation functions, and depending on the range of the

input data, one or the other should be used.

CNN networks consist of various types of layers, such

as input, dimensionality reduction (that are usually

applied after convolutional layers), and finally, output

layers. See Fig. 2. One of the problems that we face

when using CNN networks is knowing what structure the

CNN network should have, that is, how many convolu-

tional layers it should have, the size of the filters, the

number of neurons per layer, what functions of activa-

tion we must use, etc. Usually researchers use their

previous knowledge of the problem to gradually create

the CNN networks and test which networks give the best

results, but this way of proceeding requires a lot of time

and does not guarantee an optimal result. This is why we

have chosen to use an heuristic algorithm to find which

CNN network structure is the most optimal to classify

EEG signals, both pre- and post-event in visual percep-

tion. The heuristic chosen in this work has been the

Black Hole Algorithm, as it is a simple algorithm to

implement, it has few input parameters, and has been

used in a wide variety of problems with good results

[22–25].

CNN networks have proven to be useful for use in

highly changing EEG signals, since they are capable of

autonomously extracting features through the hidden layers

that make up the network.

2.5 Black Hole algorithm

The Black Hole Algorithm is a metaheuristic algorithm that

is based on Newton’s laws of gravitation [26]. This algo-

rithm is intended to find an optimal solution to a search

problem in an n-dimensional space. The main idea is to

generate candidate solutions (called stars) that approach

the optimal solution by means of the laws of motion. This

way, as the algorithm is iterated, the different solutions

approach the solution that gives the best result (called black

hole). This algorithm has been used in different problems
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[27] and it has even been used to select features in EEG

problems [28].

The Black Hole Algorithm rests on three concepts: the

stars, which are possible solutions to the problem and are

uniformly distributed throughout the search space; the

Black Hole, which is the star with the best fitness value,

i.e., it is a candidate for a possible solution; and the

movement of the stars, which is the equation that describes

how the solutions are updated as the algorithm is iterated.

The main idea is that the space near a black hole is a space

where the best solutions can be found; therefore, once we

have a black hole, it creates a gravitational field that

attracts the different stars towards its closest space. As the

stars move, solutions are analyzed in the search space, but

it may happen that a star falls into the black hole. Then, this

star disappears and a new star is created in a random place

within the search space. This prevents the algorithm from

falling into local minimal and the full search space can be

explored.

The Black Hole Algorithm beings by randomly gen-

erating an initial population of n stars, each representing

a possible solution to the problem within the search

space, PðsÞ ¼ fst1; st2; :::; stng. Once the stars have been

generated, the fitness value of each star is calculated

using Eqs. 3 and 4 , and the star with the best fitness

value is the one assigned as the black hole. Once the

fitness has been calculated and the black hole assigned,

we update the positions of the stars using the equation of

motion 5. Any star that falls within the event horizon of

the black hole disappears and a new star is generated at

random. We iterate the algorithm until we find an opti-

mal solution or a certain number of iterations have been

completed.

fi ¼
Xpopsize

i¼1

fitnessðPðiÞÞ ð3Þ

fitnessðPðiÞÞ ¼ accuracyðCNNiðxTrain; yTrainÞÞ ð4Þ

siðtÞ ¼ siðtÞ þ aðBHi � siðtÞÞ ð5Þ

Equation 5 describes the movement of the stars attracted

by the black hole, which allows us to explore different

solutions in the search space. In this equation, we can

observe the a factor, which is a random value between 0

and 1, and i indicates the index of the star. To calculate the

fitness value in our problem, we must convert the star into a

CNN network, and we train and evaluate this network with

the training data, returning the accuracy value that will be

the final fitness value. To know if a star will be absorbed by

the black hole, we must calculate the radius of the event

horizon of the black hole:

R ¼ fitnessðBHÞ
Pn

i¼1

fitnessðsiÞ

where si is the i-th star position and BH is the black hole. If

the position of the star is less than R, the start crosses the

event horizon and disappears. The pseudo-code of the

Black Hole Algorithm can be found in Algorithm 1.

Fig. 2 Convolutional Neural Network schema
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2.6 Metrics

In order to evaluate the different options, it has been

chosen to use the accuracy and Cohen’s Kappa value,

widely used in the literature [29, 30]. Together, they give

us an explanation of how the classification model behaves:

Through the accuracy, we can observe the percentage of

success of the classifier, but this value by itself does not

indicate if it generalizes correctly. For this, it is necessary

to rely on other parameters such as the Cohen’s Kappa

value, that will indicate how far away the classifier is of a

random classification. Accuracy (measured as a percent-

age) is defined as:

Accð%Þ ¼ TPþ TN

Pþ N
� 100 ð6Þ

where TP is true positive, TN is true negative, P number of

positives and N number of negatives.

Cohen’s Kappa [31] is an indicator that informs whether

the classification is random or not, taking values within the

range – 1 to 1. It is expressed as:

k ¼ p0 � pe
1� pe

ð7Þ

where p0 is the observed accuracy and pe is the theoretical

accuracy. The Cohen’s Kappa is very useful for evaluating

the efficiency of a classifier, as it gives an idea of how it is

behaving. If the Kappa value is 1, it means that the clas-

sifier performs a perfect positive classification, if the value

is 0, it means that the classification is random, and a – 1

means a perfect negative classification. Next, we can see a

possible interpretation of Cohen’s Kappa values [31]:

• \ 0.20 Poor.

• 0.21–0.40 Weak.

• 0.41–0.60 Moderate.

• 0.61–0.80 Good.

• 0.81–1.00 Very good.

For the evaluation of the same person, the pipeline shown

in Fig. 3 has been used. In the pipeline, EEG signals are

divided into three disjoint groups, two of these groups are

used for the creation and training of the model and the last

one is used for validation. If it were not done in this way,

the system would be training and validating with the same

signals, and this would give an overestimation of the

obtained results [32].

2.7 Transfer learning

With respect to the transfer learning process, the following

steps were followed. First, the possibility of classifying

visual imagery and visual perception has been studied.

Then, we study whether it is possible to create a model

with a given subject, and whether this model would work

for another subject. This is of great importance because it

would allow creating BCI systems without prior training

for the subject who is going to use the BCI system. Next,

the possibility of carrying out transfer learning between

domains was also studied, creating the model using EEG

signals that come from VP and classifying with these

models with VI signals on the same subject, with the aim of

facilitating training. Finally, we have mixed VP and VI

signals to determine whether the classification improves.

We tested different percentages of VI signals (out of the

original 12 VI objects) to find out the optimal percentage

needed to create the model with VP data.

In order to achieve these goals, we must find an optimal

CNN model to classify EEG signals coming from vision.

First of all, we must create the model from a well-labelled

data set, that is, from a data set we called input. However,

we do not know the CNN structure beforehand, although it

is true that we can try different structures and see which is

the one that gives us the best results, which is not very

Fig. 3 Evaluation schema
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efficient as it would take a long time to test configurations

to be sure that we have a good network. So, we use the BH

algorithm that will look for an optimal CNN structure from

the training data in an automatic manner. Once we have an

optimal model, this model is tested with unlabeled data,

that is, the test data, and this is where we extract the final

results for all our further tests and verifications.

3 Results

First, we study the electrode configurations for the classi-

fication of Rest versus VP, and between the 12 VP objects.

As mentioned in Sect. 2.2, we used 3 different electrode

configurations (Fig. 4). Configuration 1 uses the electrodes

of the Emotiv Epoc? device, which has proven useful for

classifying EEG signals. Configuration 2 focuses on the

occipital area, while configuration 3 focuses on the motor

and temporal area.

First, we studied how the electrode configuration

affected the result when classifying VP versus Rest, and

between the 12 VP classes. For this, the pipeline shown in

Fig. 3 has been followed. In this diagram, we can see that

the data were divided into two groups, one for testing and

the other for training. The training group is the data that

will be used to obtain an optimal CNN model with the help

of the Black Hole Algorithm, and finally, the model will be

tested with the test group. In this way, we make sure that

the model is tested with EEG signals that it has not seen

before.

Using the method described, a classification was made

and the results obtained can be seen in Fig. 5. The results

show that it is possible to classify both VP versus Rest, and

the 12 VP objects. Although all the configurations show a

high success rate, configuration 2 is the one that seems to

obtain the best results, with a 93% accuracy for VP versus

Rest, and 28% for the 12 VP classes. In this case, the

results obtained for the 12 VP classes show that the clas-

sification by CNN plus BH is possible, since chance is just

8.33%.

The confusion matrix for the rest versus VP classifica-

tion can be seen below, in Fig. 6. Label 0 represents rest

and Label 1 the visual perception of one object among the

twelve that have been experienced. This confusion matrix

is computed as the average of all subjects.

In the confusion matrix (Fig. 7), it can be seen that

practically all the images can be well classified, with the

exception of the image with label 3, which corresponds to

the chicken, which is often confused with the sheep image.

This makes some sense as they are two animals and we

may say that the two images produce a similar EEG pattern

because of this.

Once it was detected that configuration 2 is the one that

offers the best results, we studied which frequency range

can be the best one. For this, the full frequency range was

divided into several non-overlapping ranges, and it was

found that the frequency bands, a and b, are the most

important for classifying visual perception, as shown in

Table 1

Once it was confirmed that it is possible to detect visual

perception using electrodes in the occipital area, and in

particular using the frequency range between a and b, it
was then studied whether the designed method could be

used to classify visual imagery. The results obtained were

those shown in Fig. 8.

The confusion matrix (Fig. 9) indicates that the classi-

fication of visual imagery versus relax is possible and that

the results are very similar to the results obtained for rest

versus VI.

Fig. 4 In green the electrodes used in each configuration
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In Fig. 10, we can see the average confusion matrix

when classifying the 12 VI classes. As can be seen, the

matrix is mainly diagonal, which is a quite positive result.

The results (Table 2) for VI versus Rest are very similar

to those obtained with VP versus Rest, but for the classi-

fication of the 12 imagined objects, we can see that the use

of configuration 3 obtains better results, reaching a 29%

accuracy.

As happens with visual perception, the a and b ranges

are the most important frequencies, as they are the ones

that obtain the best results when classifying the 12 different

classes.

Once we have confirmed that the classification of visual

imagery and visual perception can be done beyond chance,

we decided to analyze whether it was possible to use visual

perception to classify EEG signals that come from visual

imagery. That is, by means of VP EEG signals to create

models capable of classifying also VI EEG signals. In this

way we would carry out a transfer of knowledge between

domains [33], and a user could train a model simply by

visualizing objects and then these models could be used to

classify visual imagination. Thus, the objective is to create

simpler training paradigms that do not involve a high

Fig. 5 Accuracy obtained for

different VP target groups and

electrode configurations. The

results obtained are the average

for all the subjects

Fig. 6 Average confusion matrix of all subjects for the classification

of rest versus VP with configuration 2 as electrode configuration

Fig. 7 Average confusion matrix of all subjects when classifying the

12 VP classes using configuration 2

Table 1 Results obtained on the 12 VP classes using configuration 2

Frequencies (Hz) Acc (%) Kappa

(1–4) 12.43 ± 10 0.10

(5–8) 24.76 ± 10 0.20

(9–12) 27.31 ± 11 0.21

(13–25) 26.93 ± 9.78 0.20

(26–34) 9.98 ± 6.78 0.01

([ 35) 8.45 ± 9.08 0.01
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concentration load on the side of people who want to use a

BCI system, and visual perception involves less concen-

tration load than visual imagery.

Table 3 shows the results obtained by classifying visual

perception versus rest and creating a model, and then using

these results to classify VI versus Rest. Although, on

average, we obtained 87.84% of accuracy, that is, slightly

lower than that obtained by training with signals from the

same specific domain, the results clearly show that the use

of transfer learning between these similar domains is

feasible.

Finally, Table 4 shows the results obtained for the

classification of 12 different classes. As can be seen, the

results obtained are lower than when using the same

domain to train and test, but they are still much higher than

chance. Therefore, we can conclude that it is possible to

use visual perception to train a BCI system that will then be

used to classify EEG signals from visual imagery.

Figure 11 shows topoplots (topographic maps of an

EEG field as a 2-D circular view) of the images that offer

the best results when classifying. It can be seen that the

Fig. 8 Accuracy obtained for

the VI target group, with

different electrode

configurations. The results

obtained are the average for all

the subjects

Fig. 9 Average confusion matrix of all subjects for the classification

of rest versus VI with electrode configuration 2

Fig. 10 Average confusion matrix of all subjects when classifying the

12 VI classes using configuration 2

Table 2 Results obtained on the 12 VI objects using configuration 3

Frequencies (Hz) Acc (%) Kappa

(1–4) 9.21 ± 7 0.08

(5–8) 12.95 ± 7.5 0.10

(9–12) 28.74 ± 9.5 0.22

(13–25) 27.32 ± 4.78 0.20

(26–34) 8.10 ± 2.78 0.01

([ 35) 10.98 ± 8.21 0.01
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visual perception of sheep and butterfly activates the same

region but in a slightly different way, as for sheep there is a

stronger activation.

4 Conclusions and discussion

This paper analyzes the possibility of using imagination

and visual perception for BCI systems. Working with EEG

signals in general is difficult due to its high variability, and

thus obtaining good results in the classification of these

signals is complex and requires different processing stages.

However, it has been shown that, by using convolutional

neural networks together with an heuristic algorithm such

as the Black Hole Algorithm, it is possible to classify

imagination and perception for 12 different classes, with

accuracy close to 30%. The electrode configuration that has

offered the best performance has been the configuration

that uses eight electrodes at the occipital area, chosen as the

optimal between 3 predefined configurations. It has also

been found that the a and b range of frequencies are the

most important for classifying visual perception and

Table 3 Results obtained

training with VP versus Rest,

while testing with VI versus

Rest

Figure Acc (%) Kappa

Subject 1 88.38 0.76

Subject 2 87.70 0.75

Subject 3 87.96 0.75

Subject 4 88.64 0.77

Subject 5 87.34 0.74

Subject 6 88.46 0.76

Subject 7 88.02 0.76

Subject 8 87.50 0.75

Subject 9 88.07 0.75

Subject 10 87.70 0.75

Subject 11 86.97 0.73

Subject 12 88.33 0.77

Subject 13 87.76 0.75

Subject 14 87.08 0.74

Subject 15 87.91 0.75

Subject 16 86.77 0.73

Subject 17 87.44 0.74

Subject 18 87.82 0.74

Subject 19 87.06 0.74

Subject 20 87.81 0.75

Subject 21 88.33 0.76

Subject 22 88.48 0.76

Subject 23 88.33 0.76

Subject 24 86.30 0.72

Subject 25 87.70 0.75

Subject 26 88.90 0.77

Subject 27 88.38 0.76

Subject 28 88.69 0.77

Subject 29 88.22 0.76

Subject 30 87.71 0.75

Subject 31 87.85 0.75

Subject 32 86.49 0.73

Subject 33 88.07 0.76

Subject 34 89.32 0.78

Subject 35 87.23 0.74

Subject 36 87.55 0.75

Average 87.84 0.75

Table 4 Results obtained train-

ing with the 12 VP classes and

then testing with the 12 VI

classes

Figure Acc (%) Kappa

Subject 1 18.26 0.14

Subject 2 25.98 0.20

Subject 3 21.35 0.19

Subject 4 20.12 0.19

Subject 5 35.11 0.25

Subject 6 31.62 0.23

Subject 7 27.65 0.21

Subject 8 14.60 0.10

Subject 9 29.35 0.22

Subject 10 30.28 0.23

Subject 11 12.75 0.09

Subject 12 24.02 0.19

Subject 13 23.59 0.18

Subject 14 25.78 0.20

Subject 15 25.33 0.20

Subject 16 21.89 0.15

Subject 17 19.21 0.14

Subject 18 21.21 0.18

Subject 19 27.60 0.20

Subject 20 27.12 0.20

Subject 21 18.33 0.17

Subject 22 28.48 0.22

Subject 23 28.33 0.22

Subject 24 16.30 0.12

Subject 25 27.70 0.20

Subject 26 28.90 0.22

Subject 27 28.38 0.21

Subject 28 28.69 0.22

Subject 29 18.22 0.16

Subject 30 37.71 0.31

Subject 31 15.11 0.10

Subject 32 26.49 0.19

Subject 33 28.07 0.22

Subject 34 29.32 0.23

Subject 35 27.23 0.20

Subject 36 27.55 0.20

Average 24.93 0.19
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imagery. The possibility of using the visual perception

paradigm to train a model and then use the resulting model

to classify visual imagination has also been studied. The

results show that knowledge transfer is possible. As a

consequence, we can create BCI systems that do not

impose a tiring session on the subject when training, as

perceiving images is less cumbersome than imagining

them.

Although the designed system is efficient and the

implementation complexity is low, certain computing

capabilities are required, i.e., the more computing power

we have, the more complex CNN networks we can obtain,

thus improving the success in the classification. In the

future, it would be interesting to study the use of visual

imagination in an online BCI system.
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