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inputs were chosen among these easily controlled or 
measured variables: Total lignin (wt%), Cellulose 
(wt%), Hemicellulose (wt%), Extractives (wt%), HPH 
Energy Consumption (kWh/kg), Cationic Demand 
(µeq/g), Transmittance at 600  nm and Consistency 
index (Ostwald-De Waele’s k). In both cases, the 
ANN models trained here provided satisfactory esti-
mates of aspect ratio (MAPE = 4.54% and  R2 = 0.96) 
and the yield of nanofibrillation (MAPE = 6.74% 
and  R2 = 0.98), being able to capture the effect of the 
applied energy along the fibrillation process. RF and 
LR models resulted in correlation coefficients of 0.93 
and 0.95, respectively, for aspect ratio, while for yield 
of nanofibrillation the correlation coefficients were 
0.87 and 0.92.

Keywords Artificial neural networks · Aspect 
ratio · Yield of nanofibrillation · Lignocellulosic 
micro/nanofibers · Multiple linear regression · 
Random forest

Introduction

Nanocellulose consists of a group of cellulose-based 
materials that have at least one dimension in the nano-
metric scale and englobes three main types of nano-
structures: cellulose nanocrystals (CNCs), cellulose 
nanofibers (CNFs) and bacterial nanocellulose (BNC) 
(Abdul Khalil et al. 2014). Taking a closer look at cel-
lulose micro/nanofibers (CMNFs), these are generally 

Abstract Predictive monitoring of two key proper-
ties of nanocellulose, aspect ratio and yield of nanofi-
brillation, would help manufacturers control and 
optimize production processes, given the uncertainty 
that still surrounds their influential factors. For that, 
20 different types of cellulosic and lignocellulosic 
micro/nanofibers produced from spruce and pine soft-
woods, and by different pre-treatment and fibrillation 
techniques, were used as training and testing datasets 
aiming at the development and evaluation of three 
machine learning models. The models used were 
Random Forests (RF), Linear Regression (LR) and 
Artificial Neural Networks (ANN), broadening the 
scope of our previous work (Santos et al. in Cellulose 
29:5609–5622, 2022. https:// doi. org/ 10. 1007/ s10570- 
022- 04631-5). Performance of these models were 
evaluated by comparing statistical parameters such 
as Mean Absolute Percentage Error (MAPE) and R². 
For the aspect ratio and the yield of nanofibrillation, 
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produced by a top-down approach, including a pre-
treatment stage of lignocellulosic feedstock followed 
by a fibrillation step. Pre-treatment methods englobe 
chemical and enzymatic treatments, oxidation pro-
cedures and mechanical techniques. The fibrillation 
process, on the other hand, is mainly mechanical and 
it is based on delaminating the pulp, for example, 
by means of high-pressure homogenization, grind-
ing and others (Klemm et al. 2018; Dai et al. 2019). 
CMNFs are characterized by the presence of both 
amorphous and crystalline regions within the cel-
lulose fiber, being both strong and flexible. Because 
of that, they are able to form an entangled network 
and, therefore, CMNF applications include emulsifi-
cation in the food industry, rheology modifiers, rein-
forcing agent in the packaging and automotive sec-
tors, water treatment and membrane production (Alila 
et al. 2013; Klemm et al. 2018). If lignin is kept along 
the whole process (Serra-Parareda et al. 2021a), be it 
with the aim of valorizing lignocellulosics with high 
yields, to avoid the use of hazardous chemicals, or to 
attain less hydrophilic nanocellulose forms, it is con-
venient to talk about lignocellulosic micro/nanofibers 
(LCMNFs).

Usually, criteria to discriminate microfibers from 
nanofibers imply that the diameter of the former is 
greater than 100  nm (Isogai 2020). This work opts 
for a pragmatic definition that may or may not coin-
cide with the 100-nm criterion. In dilute suspensions 
of LCMNFs, the proportion of fibers that are small 
enough so that Brownian motion prevails over gravi-
tational settling is called “yield of nanofibrillation” 
(Besbes et al. 2011; Sanchez-Salvador et al. 2021b). 
Particles that tend to sediment, despite having under-
gone a destructuring process, constitute the microfi-
brillated fraction.

In spite of the broad spectrum of applications, 
large scale production of nanocellulose is challeng-
ing and one of the reasons is the lack of easy, rapid 
and accurate measuring techniques for process moni-
toring (Serra-Parareda et al. 2021c). Moreover, some 
methods used for property measurement are time-
consuming or tedious, even at laboratory scale. The 
aspect ratio, an important morphological property of 
CMNFs that strongly influences various properties 
regarding final applications, such as mechanical and 
rheological parameters (Leong et al. 2022), is meas-
ured either by gel point methodology or by very high-
resolution microscopy. Another relevant parameter, 

the yield of nanofibrillation, can be obtained by sepa-
ration of the dispersed and settling fractions using 
stages of centrifugation, drying and weighing (Raj 
et  al. 2016; Tarrés et  al. 2020b; Sanchez-Salvador 
et al. 2021a). As noticeable, these techniques involve 
steps that are quite tiresome for monitoring purposes 
in the industry. Another relevant aspect is the lack of 
consistent mathematical models able to describe and 
capture the complex relations between the features of 
the CMNFs produced and the characteristics of the 
raw material and process conditions.

Among the most valuable efforts to benchmark 
CNF suspensions, the quality index proposed by 
researchers from LGP2 (Desmaisons et al. 2017) and 
the correlations of the Arrhenius Lab in Stockholm 
(Kriechbaum et al. 2018) should be cited. The former 
relied on optical microscopy, nanosized fraction and 
turbidity tests, while the latter was mainly based on 
the porosity and the apparent density of anisotropic 
CNF foams. Nonetheless, despite the usefulness of 
post hoc quality assessment, accurate monitoring 
involving variables to be measured on-line, or deter-
mined and controlled beforehand, would be an impor-
tant leap forward in the manufacturing of nanoscale 
cellulose products. For instance, the strength of 
nanocellulose-based materials has been predicted, to 
different levels of satisfaction, by micromechanical 
models, such as the Cox-Krenchel method (Lee et al. 
2014; Mugwagwa and Chimphango 2022) or com-
binations between the Kelly-Tyson and Pukandszky 
models (Tarrés et al. 2020a). In this context, machine 
learning (ML) algorithms constitute an advanta-
geous tool to apply in predicting and controlling the 
properties of CNF suspensions, films and materials 
derived thereof, which is a field that has been scarcely 
explored (Özkan et  al. 2019; Torrents-Barrena and 
Pellicer 2021).

Machine learning is a subfield of artificial intel-
ligence that can be used to predict outputs based on 
previously presented data without the need of explicit 
programming, which means, in a way that the com-
puter can learn “by itself” from data and be more 
accurate with time. ML can be a great tool for getting 
insights and solving complex problems that require 
fine-tuning or when existing solutions are not satis-
factory (Géron 2019). Some algorithms frequently 
applied in Machine Learning are Linear Regression 
(LR), Decision Trees, Random Forests (RF), Artifi-
cial Neural Networks (ANN), and Clustering. Putting 
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a spotlight on the algorithms typically used in Mate-
rial Science, supervised learning algorithms usually 
prevail, such as LR, RF and ANN.

When it comes to ML techniques in the cellulose/
nanocellulose fields, some work worthy of mention 
are: Aguado et al. (2016), using a support regression 
vector approach to predict paper strength from mor-
phological characteristics; Pennells et al. (2022), with 
a similar approach on nanopaper; Özkan et al. (2019), 
who evaluated three different algorithms (LR, RF 
and ANN) in the prediction of mechanical properties 
of three-component nanocomposite films; Almonti 
et al. (2019), who made use of ANNs to predict fiber 
length based on the pulp refining process parameters. 
Recently, another article of ours provided ANN pre-
dictions of the aspect ratio of (L)CMNFs, using pulps 
from aspen, eucalyptus and spruce to validate the per-
formance of the model with other types of biomass 
(Santos et  al. 2022). This work widens the scope of 
said attempts, including the yield towards nanostruc-
tured cellulose and other alternative methods. The 
ability to rapidly predict the yield and the morpholog-
ical properties of nanocellulose based on the joint use 
of machine learning tools and a set of easily measur-
able input parameters of the starting pulps is critical 
for industrial applications. An example of application 
follows: an on-line series of optical and rheological 
sensors detect a set of variables that would result in 
a low yield of nanofibrillation, and thus the cellulose 
stream is recycled to the fibrillation unit for one more 
pass. For these reasons, this study focusses on devel-
oping techniques that are inexpensive, easy to imple-
ment and widely applicable, such as machine learn-
ing models combined with selected input variables. 
All considered, the present work seeks to take one 
more step towards the effective control and predic-
tive monitoring of the fibrillation of (ligno)cellulosic 
pulps. Besides ANN, two ML algorithms, LR and RF, 
were applied for predicting both the yield of nanofi-
brillation and the aspect ratio of laboratory-produced 
(L)CMNFs. It should be noted that, as the previous 
literature understandably focuses on predicting the 
mechanical properties of the nanocellulose-based end 
product, the yield of nanofibrillation (a key indicator 
of the extent of the fiber disruption itself) has been 
overlooked. Inputs are based on easily obtainable data 
from the pre-treated fibers and the fibrillation process. 
After discussing the influence of the most relevant 
variables, the three models are compared by means of 

their performance parameters and they are analyzed 
regarding the feasibility of their application.

Experimental

Dataset materials

The data used for training and testing the models were 
obtained from previous work of our group (Serra-
Parareda et  al. 2021c). Therein, four cellulosic and 
lignocellulosic pulps, following different treatments, 
were employed to produce mechanical (L)CMNFs 
with varying nanofibrillation yields. For the sake of 
comparison, it should be noted that this experimental 
dataset, explicitly displayed in Table 1, partially over-
laps that of our previous work on the ANN-based pre-
diction of the aspect ratio (Santos et al. 2022).

Three of the pulps were obtained from pine (Pinus 
radiata), considering that they had undergone ther-
momechanical, unbleached kraft and bleached kraft 
treatments (TMP, UKSP and BKSP respectively), 
whilst the final one was obtained from spruce (Picea 
abies) that had undergone thermomechanical pulping 
and peroxide bleaching (BTMP). The pre-treatment 
step of these pulps consisted in a mechanical refin-
ing stage in a Valley beater, designed in compliance 
to TAPPI T200 (TAPPI 2020), and all four pulps 
were refined for 60  min. Afterwards, each pulp was 
passed through a high-pressure homogenizer (HPH), 
NS1001L PANDA 2  K-GEA (GEA Niro Soavy, 
Parma, Italy), gradually increasing the number of 
passes from 3 to 9 and pressure from 300 to 900 bar. 
This resulted in five HPH levels of energy consump-
tion, which was measured by means of a device from 
Circutor (Barcelona, Spain), model CVM-C10. Sam-
ples were taken from each of the stages, resulting in 
5 types of CNFs for each pre-treated pulp and thus 
totalizing 20 (L)CMNF different samples (Table 1).

The pre-treated pulps were characterized in terms 
of their chemical composition and crystallinity index 
(%). Data regarding these parameters, whose extrac-
tion and curation is explicit in the aforementioned 
article (Serra-Parareda et al. 2021c), can be checked 
in Table  2. Briefly, ash and extractives were deter-
mined gravimetrically after combustion at 525 °C and 
ethanol/benzene extraction, respectively, according to 
the common TAPPI methods (TAPPI 2020). Struc-
tural carbohydrates and total lignin were determined 



 Cellulose

1 3
Vol:. (1234567890)

by following the analytical procedure NREL/TP-510-
42618 (Sluiter et al. 2012), which involves hydrolysis, 
spectrophotometry, and liquid chromatography. Crys-
tallinity was estimated from the (200) peak of cellu-
lose I in X-ray diffraction patterns (Supplementary 
Information, Figure S1), applying Segal’s empirical 
method (Segal et al. 1959).

The CNFs produced were characterized by meas-
urement of rheology properties, such as consistency 
index (k) and flow index (n), yield of nanofibril-
lation, aspect ratio, transmittance at 600  nm and 

cationic demand. In particular, the yield of nanofi-
brillation was understood as the fraction of solid 
material that did not sediment when centrifuging a 
0.2% CNF suspension at 3400 g for 20 min. Regard-
ing the aspect ratio, it was estimated via the gel 
point (Varanasi et al. 2013), which was in turn cal-
culated from the sediment height at several concen-
trations, as described in detail elsewhere (Sanchez-
Salvador et  al. 2021c). The cationic demand was 
determined by potentiometric back titration (Serra-
Parareda et al. 2021b).

Table 1  CMNF and (L)CMNF characteristics as function of the HPH intensity (Serra-Parareda et al. 2021c)

Pulp HPH intensity 
(kWh/kg)

CD (µeq/g) T at 600 nm (%) k n Aspect ratio Yield (%)

Pine TMP 5.67 148 2.5 0.222 0.281 51 3.12
7.73 155 3.1 0.625 0.272 65 4.22

11.67 170 5.9 0.789 0.270 72 6.74
14.59 179 7.0 0.889 0.257 74 7.31
19.72 190 7.4 1.107 0.239 80 8.11

Pine UKSP 5.67 157 4.2 1.461 0.373 63 7.40
7.73 166 6.5 4.987 0.280 66 9.26

11.67 177 7.4 6.780 0.276 78 12.41
14.59 188 9.9 6.638 0.224 90 14.20
19.72 206 12.5 7.679 0.233 103 17.94

Pine BKSP 5.67 154 5.4 2.178 0.253 140 7.46
7.73 169 6.8 2.824 0.256 177 8.80

11.67 188 7.2 3.873 0.247 212 11.57
14.59 201 9.5 4.816 0.234 214 13.12
19.72 210 12.7 6.549 0.204 217 15.48

Spruce BTMP 5.67 156 4.1 0.349 0.338 59 2.90
7.73 173 4.7 0.456 0.324 69 6.00

11.67 185 7.0 0.616 0.307 68 11.60
14.59 199 9.7 0.781 0.299 70 15.60
19.72 214 11.9 1.201 0.278 70 20.60

Table 2  Chemical composition and morphology of the selected pulps (Serra-Parareda et al. 2021c)

*Percentage of extractives was considered 0 for modeling since this component was below the lower limit of detection of the equip-
ment used (0.3%)

Pulp Cellulose
(wt%)

Hemicellulose
(wt%)

Total lignin
(wt%)

Extractives 
(wt%)

Ash (wt%) Crystallinity 
Index (%)

Pine TMP 47.9 22.9 27 0.7 1.4 73.3
Pine UKSP 74.2 16.6 8.2 0* 0.8 81.1
Pine BKSP 85.3 8.7 3.9 1.2 0.9 87.0
Spruce BTMP 46.2 22.9 29.4 0.9 0.5 76.1
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Machine learning techniques

The ML algorithms were implemented in Python 
and the environment used for training and testing the 
models was the open-source platform Jupyter Note-
book. The whole dataset consisting in the 20 sam-
ples was separated into a training and testing sub-
sets considering 80% and 20% of experimental data, 
respectively.

The modeling approach here used a multiple 
input–single output (MISO) structure for each kind of 
model, considering aspect ratio and yield of nanofi-
brillation (%) as the output parameter for each model. 
The initial features chosen to be the inputs were: 
cellulose (wt%), total lignin (wt%), hemicellulose 
(wt%), ash (wt%), extractives (wt%), crystallinity 
index (%), transmittance at 600 nm (T600), cationic 
demand (CD), consistency index (k), flow index (n) 
and energy consumption in the high-pressure homog-
enizer (kWh/kg).

The features to be used in the final models 
responded to a double criterion. On the one hand, they 
were selected to be suitably applied at industry. On 
the other, based on their simplicity and reproducibil-
ity. In this sense, some of the parameters were related 
to pre-treated pulps (cellulose, hemicellulose, lignin, 
extractives and ash content, and crystallinity), some 
others to (L)CMNF characteristics (cationic demand, 
transmittance, consistency index and flow behavior 
index), and to process (energy consumption during 
HPH). Although the determination of the chemical 
composition of the pre-treated pulps requires specific 

gravimetric methods and chromatographic analyses, 
the homogeneity of the material allows their determi-
nation less frequently and, indeed, it can be a param-
eter provided by the pulp supplier. Energy consump-
tion can be directly measured from the fibrillation 
equipment with the appropriate device and, finally, 
the selected (L)CMNF characteristics can be directly 
measured with low sample processing.

Table  3 summarizes the variables and range val-
ues investigated for ML modelling. For LR and ANN, 
input data was normalized since these algorithms are 
affected by the order of magnitude of the features, as 
it will be explained in the following sections.

Linear regression

LR models are based on a single or multiple linear 
function, relating a dependent output with one or 
a sum of multiple independent inputs, each of them 
being multiplied by their specific weight, plus a con-
stant (Géron 2019):

In Eq.  1, the first term ŷ refers to the predicted 
value, while �

0
 represents the constant and �n the 

weight associated to each input value xn.
As aforementioned, applying LR in machine 

learning requires either normalization or standard-
ization of data. As it can be seen from Eq.  1, if an 
input is numerically large, even though its weight is 
not so big, it might still have a strong impact in the 

(1)ŷ = 𝜃
0
+ 𝜃

1
x
1
+ 𝜃

2
x
2
+ 𝜃nxn

Table 3  Ranges of the 
experimental data used for 
ML modelling (Serra-
Parareda et al. 2021c)

Type of variable Variable Range Units

Pre-treated pulp characteristics (input) Cellulose content 47.9–85.3 wt%
Hemicellulose content 8.7–22.9 wt%
Total lignin content 3.9–29.4 wt%
Extractives 0–1.2 wt%
Ash 0.5–1.4 wt%
Crystallinity Index 73.3–87 %

Process parameters (input) HPH–Energy consumption 5.67–19.72 kWh/kg
(L)CMNF characteristics (input) Cationic demand 148–210 µeq/g

Transmittance at 600 nm 2.5–12.7 %
Consistency index “K” 0.222–7.679 –
Flow behavior index “n” 0.204–0.373 –

Output Aspect ratio 51–217 –
Yield of nanofibrillation 2.90–20.60 %
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prediction. Therefore, in order to eliminate this kind 
of influence, all input values should be in the same 
range. Further details of the multiple linear regres-
sion algorithm can be found elsewhere (Maulud and 
Abdulazeez 2020).

Random forest

RF is an algorithm based on a conjunction of multiple 
Decision Tree models and it is usually trained by the 
bagging method. It fits a number of Decision Trees, 
and the final outcome is the average from the results 
obtained by each individual tree. RF adds extra 

randomness while growing the trees and it looks for 
the best feature among a random subset of them while 
splitting a node. In this way, RF generally performs 
better than single Decision Trees and because of the 
large number of predicators, it does not overfit, giving 
a more robust performance. Its structure is outlined 
in Fig.  1. Internal estimators such as generalization 
error, strength and correlation are used both for moni-
toring the performance of the model in the face of the 
increased number of features used in the splitting, and 
for determining their importance (Breiman 2001). 
Because of the principal function of RF models, data 
normalization is not required.

Fig. 1  Schematic figure of a random forest regressor
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Artificial neural networks

ANNs are systems that resemble biological neurons, 
being based on small processing units that are inter-
twined. Each neuron receives input values that have 
an associated weight, and the network makes use of 
activation functions, including, e.g., rectified linear 
unit and sigmoidal functions, to connect between lay-
ers of neurons (Haykin 1999; Géron 2019).

Its structure comprises the input layer, the hidden 
layer and the output layer of neurons. The input layer 
possesses the same depth as the number of features 
used in the model. The hidden layer includes as many 
layers of neurons intended and the depth of each 
hidden layer is a hyperparameter that can be tuned. 
Finally, the output layer size is the same as the num-
ber of outputs described by the model. ANN makes 
use of backpropagation and optimization algorithms 
in order to improve the weights and bias associated. 
A simplified scheme is depicted in Fig.  2 and more 
detailed descriptions can be found elsewhere (Haykin 
1999; Torrents-Barrena and Pellicer 2021; Santos 
et al. 2022).

Model evaluation

ANNs, RF and multiple LR models had their accu-
racy tested and compared by statistical parameters of 
customary use: Mean Absolute Error (MAE), Mean 
Absolute Percentage Error (MAPE), Root Mean 
Squared Error (RMSE) and R² score.

MAE and MAPE can be calculated using Eqs. 2 and 
3, where n represents the number of datapoints,  is the 
actual value for the ith sample and  is the prediction of 
the ith sample.

RMSE is calculated as represented in Eq.  4. The 
notations are the same for the metrics stated above.

The determination coefficient R² can be calculated 
by Eqs. 5 and 6, where the notations are the same as 
stated above, with exception of 

−

y , which represents the 
mean value of all actual observations.
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Fig. 2  Schematic represen-
tation of an artificial neural 
network
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Results and discussion

Aspect ratio

On the input parameters

Due to the number of combinations tested, Table  4 
only presents the results for the three best combina-
tions of features in each case. Statistical parameters 
are shown for the sake of comparison between differ-
ent groups of parameters and their influence on the 
performance in the train and test subsets.

As it can be seen from Table  4, modelling with 
all features was performed for the three algorithms, 
followed by up to 5-feature models in which mainly 
chemical components are present in the modelling. 
This funneling of parameters was done based on the 
models with subset of features that performed better 
and on the two guidelines presented in the Experi-
mental section. Additionally, we also considered the 
features that were amongst the most important and/
or that had higher absolute values of Pearson correla-
tion coefficient to help funneling the options. These 
features can be seen in Fig. 3; Table 5.

It is possible to observe that cellulose, hemicel-
lulose, total lignin content and crystallinity index 
appear in both Fig. 3; Table 5 as important features. 
Since crystallinity index and flow index (n) were not 
considered as practical parameters, they were not con-
sidered to be retained in the final model, even though 
they were simulated. On the other hand, chemical 
composition was preserved for initial testing, and 
later in conjunction to other features, even the ones 
that did not present at first as the most relevant. HPH 
energy requirement is an example of parameter that 
was selected to be maintained in the modelling since 
it is a process parameter of easy acquirement and pro-
vided good performance.

Regarding the performance of the models pre-
sented in Table 4, for the random forest models one 
can observe that when all features were used, the 
best results were attained. However, they account 
for 11 inputs, among which there are both easier and 
harder to measure properties. When model 2 is run, 
which consisted in five inputs, comparable results are 
achieved. Other combinations were tried, one of them 
being model 3, the final subset of features chosen 
for this algorithm. In this case, we get slightly worse 

Table 4  Modelling results for different combinations of features for aspect ratio

*Feature 1: Total lignin (wt%); Feature 2: Cellulose (wt%); Feature 3: Hemicellulose (wt%); Feature 4: HPH - Energy consumption 
(kWh/kg); Feature 5: Extractives (wt%)

Algorithm Features selected Type of set MAE MAPE RSME R²

Random forest (17 estimator forest) Model 1: All 11 features Train 9.747 8.79 14.025 0.930
Test 9.813 5.97 16.918 0.927

Model 2: Features
1–5*

Train 10.019 9.02 14.237 0.928
Test 8.722 5.37 15.265 0.941

Model 3: Features 1,2,4* Train 10.019 9.02 14.237 0.928
Test 8.723 5.37 15.265 0.941

Linear regression Model 1: all 11 features Train 4.755 5.40 5.353 0.990
Test 8.689 13.13 13.538 0.954

Model 2: Features
1–5*

Train 7.108 7.25 10.826 0.958
Test 15.398 16.36 16.673 0.930

Model 3: Features 1–4* Train 7.108 7.25 10.826 0.958
Test 15.398 16.36 16.673 0.930

Artificial neural network Model 1: all 11 features
(11-22-1)

Train 1.576 1.23 3.887 0.995
Test 6.488 6.64 7.283 0.987

Model 2: Features
1–5*
(5-10-1)

Train 5.760 4.10 11.020 0.957
Test 8.544 6.29 12.610 0.960

Model 3: Features 1–4*
(4-8-1)

Train 10.209 6.65 19.733 0.861
Test 16.431 11.27 26.374 0.824
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MAE and MAPE, but very similar RSME and R² 
compared to model 1, but exact performance of model 
2, indicating that extracts (wt%) and hemicellulose 
(wt%) were not necessary for good performance. In 
this case, we had only three features selected which 
made use of very easy to measure parameters. For 
the linear regression models, when all features were 
used as inputs, again very good results are obtained, 
but this would not be a practical case. When the 
number of features is diminished to the subset used 
for model 2, the model still performs well. When the 
number of features is decreased to the final subset 
chosen, the exact results are gathered. Finally, for the 
ANN, model 1 presents very satisfactory results, as 
already expected for an all-feature simulation. Model 

2, which used the same features as model 2 of LR, 
performed the best among all simulations for neural 
networks and was chosen as the final one. Model 3 
performed worse and was discarded. Other combi-
nations apart from these three presented here were 
tested, but they were not considered suitable for the 
application as well, either for low performance, either 
for requiring not the most interesting inputs.

Therefore, all final models selected were created 
using easily obtainable parameters as input features. 
Summarizing them, for LR, they were: cellulose 
(wt%)  (x1), hemicellulose (wt%)  (x2), total lignin 
(wt%)  (x3) and energy requirement in the HPH 
(kWh/kg)  (x4). RF employed three input features, 
the same as LR except hemicellulose (wt%). ANN 
required the highest number of factors, encompass-
ing total lignin (wt%), cellulose (wt%), hemicel-
lulose (wt%), extractives (wt%) and HPH energy 
consumption (kWh/kg). The first four belong to the 
chemical composition of the pulps, but, instead of 
requiring chromatography or advanced detectors, 
they can be estimated via the typical TAPPI meth-
ods (TAPPI 2020), consisting basically on gravi-
metrical determinations and the use of oven dry-
ing, filtration, and cheap reagents. It is worth noting 
that, although these gravimetrical methods were 
followed in the source work (Serra-Parareda et  al. 
2021c), they could be, to a certain point, further 
simplified towards in-line optical measurements in 
industrial applications. For instance, the conjugated 
structures of lignin absorb ultraviolet radiation 
(~ 280  nm), and they also have unique absorption 
bands in infrared spectra (Nader et al. 2022).

Fig. 3  Six most relevant 
features according to feature 
importance in the inherent 
function for aspect ratio RF 
modelling

Table 5  Absolute values for Pearson correlation coefficient 
between features and aspect ratio (output of interest)

Feature Pearson correla-
tion coefficient

Hemicellulose content 0.8870
Crystallinity Index 0.8407
Cellulose content 0.7690
Total lignin content 0.7092
Flow index (n) 0.6042
Extractives 0.5489
Consistency index “k” 0.4778
Transmittance at 600 nm 0.4142
Cationic demand 0.3857
HPH– Energy consumption 0.2377
Ash 0.0095



 Cellulose

1 3
Vol:. (1234567890)

Additionally, it is possible to observe that the 
final models chosen for each algorithm encompass a 
distinct number of features or combination of them. 
These differences between the number and types of 
variables among the algorithms occur due to their dif-
ferent principal of function. The parameters required 
for good modelling will not necessarily be the same 
among the models, and this discrepancy remains 
a valid point to use for evaluation and comparison 
between algorithms. Considering the current knowl-
edge on the effects of chemical composition on nano-
cellulose properties, the selection of input variables in 
this regard, such as the weight percentages of lignin 
and cellulose (common to all models), can be deemed 
consistent. For instance, lignin has been alleged to 
be detrimental for aspect ratio (Li et  al. 2016), as a 
lignin-rich cell wall grants lower deformability in 
the ulterior conversion to nanocellulose. Likewise, 
a significant influence of the extent of fibrillation, 
expressed in this case as energy consumption, was 
expected. Such energy demand is directly propor-
tional to the differential pressure exerted, according 
to Bernoulli’s principle (Serra-Parareda et  al. 2022), 
and thus it is inferred that the more energy supplied, 
the more nanostructured (ligno)cellulosic fibers 

become. The reason lies in the native structure of the 
fiber itself, which, in a top-down sequence, is made 
out of fibrils with increasing aspect ratio, ending with 
the extremely slim elementary fibrils that constitute 
each microfibril. The lower the number of elemen-
tary fibrils that (L)CMNFs encompass, the higher the 
aspect ratio.

Performance of the predictive models

The LR model for the aspect ratio can be seen in 
Eq.  7. The RF model consisted in a 17-estimator 
forest. ANN’s architecture comprised the aforemen-
tioned 5 inputs in the first layer, 10 neurons in the 
only hidden layer of the system and 1 output—aspect 
ratio. The activation function used in the hidden layer 
was the sigmoid function and the linear function was 
used for generating the final prediction.

Figures  4, 5 and 6 show the target values versus 
the predicted values for aspect ratio from LR, RF and 
ANN models, respectively. Bar plots in said figures 
refer to real values. Cross markers refer to prediction 

(7)
ŷ = −636.84x

1
− 411.66x

2
− 347.57x

3
+ 43.43x

4
+ 804.50

Fig. 4  Target versus LR 
prediction values of CMNF 
aspect ratio
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Fig. 5  Target versus RF 
prediction values of CMNF 
aspect ratio

Fig. 6  Target versus ANN 
prediction values of CMNF 
aspect ratio
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values. Levels 1 to 5 indicate the increase in the 
applied energy, accordingly to the five levels of HPH 
intensity presented in Table 1.

From these plots, it is verified that all algorithms 
failed to predict accurately the point BKSP_level_1 
and that all BKSP points are not as precisely met 
as the other groups of samples were. This may be 
because they presented very high aspect ratios, and 
therefore this data point was regarded as an outlier. 
Nonetheless, ANN model was able to capture the 
trend that BKSP samples took better than the other 
models, regarding the energy intensity increase, 
as noticeable in Fig.  6. Analyzing each model, as 
expected, LR provided linear relations for each group 
of samples, which is not quite the best for describ-
ing them, with exception of UKSP group. In spite of 
that, interestingly, it resulted in a better R² (0.9508), 
RMSE (12.221) and MAE (8.766) than RF model. 
This one was able to catch the non-linearity in the 
increase of the aspect ratio in each group, but did not 
quite meet some experimental values. In this way, 
its MAPE of 8.18% was lower than LR’s (9.07%), 
but the other metrics were worse: MAE of 9.760, 
RMSE of 14.448 and R² of 0.9313. The best model 
that was able to grasp the trends and had better qual-
ity of performance was the ANN model. ANN seized 
to represent almost perfectly the increasing trends and 
differences from each group of samples, at the same 
time it predicted very precise values (with exception 
of BKSP, as stated above). Metrics for ANN model 
were: MAE of 6.317, MAPE of 4.54%, RMSE of 
11.356 and R² of 0.9575. All performance indicators 
are gathered in Table 6.

Despite the limitations specified above, all models 
presented an R² above 0.9 and mean percent errors 
lower than 10%. Also, they were able to capture the 
increase of aspect ratio as the energy intensity applied 
in the HPH grew, as well as being able to differenti-
ate each group of samples. Perhaps ANN performed 
better than other models and was able to catch the 

nuances of the trends because of the activation func-
tion, which was sigmoidal, but at the expense of using 
more input variables. From Figs. 4, 5 and 6, one can 
observe that the increase in the aspect ratio is not lin-
ear and the behavior of the trend is different for each 
kind of treated pulp. For instance, BTMP does not 
show an increase in AR when there is an increase in 
the energy applied, apart from the BTMP_level_1 to 
BTMP_level_2 samples. This particularity is very 
different from what the other groups of samples show. 
TMP and UKSP resemble a linear increase, however, 
BKSP shows a large jump from BKSP_level_1 to 
BKSP_level_3 and forth on. ANN is a more complex 
algorithm, where different hyperparameters can be 
tuned in order to improve performance. As discussed 
above, it is able to grasp intricate relationships. 
Therefore, it is noticeable that, regarding the ability to 
simulate trends, LR did the poorest job, whilst the RF 
model performed in average and the ANN model per-
formed very well, being evident that a more elaborate 
algorithm resulted in a better grasp of the complexity 
of the problem.

If the performance of these models satisfy nano-
cellulose manufacturers, they could be used for the 
predictive monitoring of key properties of the CNF 
suspension itself and of the end product. For instance, 
CNFs with high aspect ratio are entangled to a larger 
extent and, consequently, attain better barrier proper-
ties when used to coat packaging paper (Wang et al. 
2021).

Yield of nanofibrillation

On the input parameters

Similarly to the aspect ratio, out of the large number 
of combinations tested, Table  7 presents the results 
for the top three combinations of features chosen to 
predict the nanofibrillation yield. Statistical parame-
ters are displayed for the sake of comparison between 
distinct groups of parameters and their influence on 
the performances in the train and test subsets.

As it can be seen from Table  7, in this case, the 
modelling also started with all the features for the 
three algorithms. Afterwards, mainly final nano-
cellulose properties are present in the modelling. 
This is also due to the funneling of parameters that 
was done based on the models with a subset of fea-
tures that performed better and on the two guidelines 

Table 6  Performance metrics for the three ML models regard-
ing aspect ratio prediction

Model MAE MAPE (%) RMSE R²

RF 9.760 8.18 14.448 0.9313
LR 8.766 9.07 12.221 0.9508
ANN 6.317 4.54 11.356 0.9575
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presented in the Experimental section. Furthermore, 
the features that were presented as most important for 
the RF models and that had higher absolute values 
of Pearson coefficient for the LR model were taken 
into consideration. These parameters can be seen in 
Fig. 7; Table 8.

It is possible to observe that transmittance, cati-
onic demand, HPH energy consumption and consist-
ency index (k) appear in both Fig.  7; Table  8. For 

this reason, they were chosen to be tested first and 
later in conjunction to other features, even the ones 
that did not present at first as the most relevant. For 
instance, extractives (wt%) did not appear as one of 
the most relevant factors in terms of the Pearson cor-
relation coefficient. However, it contributed to the 
performance of the LR model more significantly than 
other parameters of the chemical composition, such 
as ash (wt%) or cellulose (wt%). It is important to 

Table 7  Modelling results for different combinations of features for yield of nanofibrillation

*Feature 1: Cationic demand (µeq/g); Feature 2: Transmittance at 600 nm (%); Feature 3: HPH - Energy consumption (kWh/kg); 
Feature 4: Consistency index “k”; Feature 5: Extractives (wt%)

Algorithm Features selected Type of set MAE MAPE RSME R²

Random forest (40 estimator forest) Model 1: All 11 features Train 0.0124 14.53 0.0188 0.832
Test 0.0199 43.92 0.0226 0.788

Model 2: Features
1–5*

Train 0.0120 14.44 0.0177 0.851
Test 0.0180 38.27 0.0198 0.838

Model 3: Features
1–3*

Train 0.0136 17.44 0.0172 0.858
Test 0.0135 34.19 0.0167 0.884

Linear regression Model 1: all 11 features Train 0.0097 11.13 0.0110 0.942
Test 0.0159 42.55 0.0211 0.815

Model 2: Features
1–5*

Train 0.0111 14.01 0.0129 0.921
Test 0.0105 27.00 0.0137 0.922

Model 3: Features
1–4*

Train 0.0122 14.94 0.0157 0.883
Test 0.0117 23.75 0.0122 0.938

Artificial neural network Model 1: all 11 features
(11-11-1)

Train 0.0056 6.939 0.0068 0.978
Test 0.0095 16.481 0.0098 0.960

Model 2: Features
1–5*
(5-5-1)

Train 0.0041 5.412 0.0062 0.981
Test 0.0047 9.190 0.0048 0.990

Model 3: Features
1–4*
(4-4-1)

Train 0.0057 6.035 0.0076 0.972
Test 0.0059 9.544 0.0073 0.978

Fig. 7  Six most relevant 
features according to feature 
importance in the inherent 
function for yield of nanofi-
brillation RF modelling
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highlight that, in the case of the Pearson correlation 
coefficient, the values presented regard the individual 
relevance of each feature with respect to the output of 
interest. Although the correlation coefficient value for 
extractives (wt%) was low, when taken into account 
in conjunction with the other features (transmittance, 
cationic demand, HPH energy consumption and con-
sistency index) it helped to better fit the response. The 
improvement in the metrics, mainly in the train sub-
set, can be observed in Table 7, where models 2 and 3 
are compared.

From Table 7, one can observe that the best results 
were achieved also by a three-input model for the 
random forest, which had better performance when 
comparing to a model with all the initial features and 
with a 5-input one. In the case of LR, the all-feature 
model has a more drastic difference between train 
and test sets, which is not very good, once this may 
indicate overfitting. For model 2, the performances of 
both subsets are both more similar and better when 
comparing to models 1 and 3, thus it was selected 
as the chosen one. Finally, for the neural network, 
it was possible to obtain very good models with all 
the examples in the table, maintaining the topology 
scheme of the same number of neurons in the input 
and hidden layer. Thus, in this case, model 3 (4 input) 
was chosen as the best one. Other combinations apart 
from these three presented here were tested, but they 
were not considered suitable for the application as 
well, either for low performance, either for requiring 
not the most interesting inputs.

Therefore, in order to summarize the choices of 
final models for the yield of nanofibrillation, the final 
inputs selected were as follows. For LR model: trans-
mittance at 600  nm  (x1), cationic demand (µeq/g) 
 (x2), consistency index k  (x3), extractives (wt%)  (x4), 
and HPH energy requirement (kWh/kg)  (x5). For the 
ANN model, all inputs above were used, with excep-
tion of extractives, totalizing four inputs. RF required 
even less features, being only three: cationic demand, 
transmittance and HPH energy supply. Regardless 
of the number of features used in each model, all of 
them are low-cost inputs that can be easily measured. 
In particular, the three factors for the RF model can 
be roughly quantified in real time, in-line, and by 
rapid and non-destructive methods: potentiometry 
with ion-selective electrodes for the cationic demand 
(although the accurate determination would require a 
titration), photometry at a single wavelength to detect 
the loss of intensity of the incident light, and direct 
reading of electric power. Should the resulting com-
bination of measurements be related to an unaccept-
ably low yield, recycling for further fibrillation would 
be triggered, automating the common decision in a 
typical batch process. Extractives can be determined 
gravimetrically after a solid–liquid extraction with 
organic solvents, while the consistency index, directly 
proportional to the apparent viscosity, would require 
a rheometer (Xu et  al. 2016; Serra-Parareda et  al. 
2021c).

It is noticeable that the majority of these inputs are 
related to either a process parameter (HPH energy 
requirement) or final nanocellulose characteristics 
(cationic demand, transmittance and consistency 
index). These are consistent with literature as well. 
A higher differential pressure, as aforementioned for 
the aspect ratio, causes more disruption, and there-
fore it generates more nanofibers. This same effect, 
the fact that the proportion of nano to microfibers 
increases, is also related to higher transparency, i.e., 
higher transmittance within the visible light spec-
trum, since smaller particles scatter light to a lesser 
degree (Movsesyan et al. 2022). The cationic demand 
is due to the remaining negatively-charged functional 
groups in (ligno)cellulosic pulps, be it carboxylates 
from the hydrolysis of lignin/hemicellulose ester 
bonds, glucuronic acid units in hemicelluloses, and 
even polarized hydroxyl groups. In pulps, most of 
them do not interact with the titrating polyelectrolytes 
during the determination of the cationic demand, as 

Table 8  Absolute values for Pearson correlation coefficient 
between features and yield of nanofibrillation (output of inter-
est)

Feature Pearson correla-
tion coefficient

Transmittance at 600 nm 0.9363
Cationic demand 0.8966
HPH – Energy consumption 0.7703
Consistency index “K” 0.5706
Ash 0.4530
Flow index (n) 0.4168
Crystallinity Index 0.3425
Cellulose content 0.3105
Total lignin content 0.2845
Hemicellulose content 0.2546
Extractives 0.0779
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they are inside the fiber, but mechanical disruption 
makes them easily accessible, which is why surface 
charge is so robustly correlated to the specific sur-
face area (Serra-Parareda et  al. 2021b). Regarding 
the rheological behavior, it is well known that pulps 
and nanocellulose suspensions, in general, experi-
ence thinning with shear (n < 1), but, besides that, 
reducing the particle size has complex effects on the 
apparent viscosity. On the one hand, the frequency 
of particle–solvent and particle–particle interactions 
should increase with decreasing particle size (e.g., 
by nanofibrillation). On the other hand, the viscosity 
of nanocolloids is known to increase with increasing 
particle size (Wang et al. 2011). In any case, what we 
often observe when increasing nanofibrillation is that 
the consistency index and the flow behavior index do 
not follow the same trends (Aguado et al. 2022), and 
thus the apparent viscosity itself is not as adequately 
correlated to the yield of nanofibrillation as the con-
sistency index from the Ostwald–De Waele equation.

Aspect ratio and yield share a common mechani-
cal basis, as the progressive breakdown of a fiber into 
its constituting fibrils implies the generation of thin-
ner particles. Not only do these thinner fibrils have 
higher aspect ratio, but they are also less prone to 
gravitational effects given their lower hydrodynamic 
radius. However, fibrils do not follow a Stokian set-
tling behavior (Kim et al. 2021), and their interlock-
ing and entanglement are ubiquitous when their con-
centration is high enough. Therefore, the behavior of 
dilute suspensions is not necessarily correlated to the 
gel-forming capabilities of highly entangled systems 
(Sanchez-Salvador et  al. 2020). In other words, the 
aspect ratio and the yield of nanofibrillation are inde-
pendent responses that, nonetheless, may be affected 
by some factors in a qualitatively similar way.

Performance of the predictive models

The multiple LR model can be seen in Eq. 8. The RF 
model was built as a 40-estimator forest, with a mini-
mum of two samples in each final leaf. ANN’s final 
topology was 4–4–1, meaning 4 inputs in the input 
layer, 4 neurons in the hidden layer, and 1 output in 
the output layer. In the hidden layer, the activation 
function used was Rectified Linear Unit (ReLu) and 
the output function was the linear function. The dif-
ference between each activation function resides in 
the fact that the linear function is defined by a line, 

whereas ReLu, despite its name, is a nonlinear trans-
fer function which is calculated as max(0.0, x), which 
means that, for negative inputs, it returns a value of 
zero and when the input is positive, it returns the 
same value.

Figures  8, 9 and 10 show experimental values 
against the predicted outputs of RF, LR and ANN, 
respectively. Similar to the aspect ratio plots, columns 
in these figures represent actual values, while cross 
markers refer to predicted values. Levels 1 to 5 indi-
cate the increase in energy consumption (Table 1).

Likewise, as with aspect ratio, RF model per-
formed worse than LR and ANN is the best model 
among them. Analyzing Fig.  8, it is visible that RF 
model missed multiple targets, mainly in TMP sam-
ple group, which is reflected in its R² of 0.8720, the 
poorest of all three models. MAE, MAPE and RSME 
also were the biggest ones, being: 1.358, 20.79% and 
1.712, as displayed in Table  9. This behavior might 
be due to a couple of reasons, for instance the robust-
ness of the RF algorithm, or maybe also due to the 
principle of function of this technique, which con-
sists in averaging the target values of the train sam-
ples that fall into a specific range (Géron 2019). 
Figure  9 shows how LR predicted yields. It meets 
better the targets, but still not so precisely. Never-
theless, its R² is above 0.9, being 0.9255. It predicts 
better the TMP group than RF model did, although it 
does not quite fit the trend for points TMP_level_3, 
TMP_level_4 and TMP_level_5. Other groups were 
represented better in terms of tendencies related to 
increase of HPH energy and yield of nanofibrillation 
(%). MAE, MAPE and RSME for LR can be checked 
in Table  9. Again, ANN model presented the best 
results in terms of both performance and capturing of 
trends. It achieved the highest R² of 0.9749 and low-
est MAE, MAPE and RSME, being 0.577, 6.74% and 
0.758 respectively. From Fig. 10, it can be seen that it 
almost met all points precisely, as it effectively cap-
tured all group trends.

Similar conclusions inferred for aspect ratio can 
be drawn for nanofibrillation yield. For example, 
all models were able to grasp, some in a better level 
than others, the increase in yield when HPH energy 
increased too. Also, they were able to differentiate 
each group of samples, considering they belong to 
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Fig. 8  Target versus RF 
prediction values for yield 
of nanofibrillation (%)

Fig. 9  Target versus LR 
prediction values for yield 
of nanofibrillation (%)
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different treated pulps. Here, it is possible to state 
again that an increase in the complexity of the model 
resulted in a better tendency prediction. But this time, 
RF model did the poorest job, while LR operated rea-
sonably and ANN performed very well. This same 
order is respected when it comes to comparing the 
prediction quality metrics.

Regarding the usefulness of these models, they 
could be applied in processes where either stable dis-
persions, homogeneous distribution, and low particle 
size are required, or in the opposite case, e.g., where 
nanocelluloses are used as adsorbents and need to be 
recovered by sedimentation or other means (Ho and 
Leo 2021). Indirectly, it is known that the yield of 
nanofibrillation exerts a positive influence on the ten-
sile strength of nanocellulose-based films (Espinosa 

et al. 2020) and nanocellulose-reinforced paper sheets 
(Ehman et al. 2020).

Conclusions

In the current study, three different machine learn-
ing algorithms, namely multiple linear regression 
(LR), random forests (RF) and artificial neural net-
works (ANN), were applied in order to predict two 
important nanocellulose properties: aspect ratio 
and yield of nanofibrillation. Features required for 
obtaining satisfactory results were related mainly to 
the chemical composition of the pre-treated pulps, 
HPH intensity, and easy-to-measure nanocellulose 
parameters. The findings of the current work show 
that one can use different machine learning models 
to obtain pieces of information on yield and aspect 
ratio depending on the availability of measurements 
and sensors. Regarding the particularities of each 
property, the yield of nanofibrillation was more 
challenging to model than the aspect ratio of (L)
CMNFs. Even though all models showed good per-
formances, ANN outplayed RF and LR models in 
terms of the correlation coefficient (0.975 for yield, 

Fig. 10  Target versus ANN 
prediction values for yield 
of nanofibrillation (%)

Table 9  Performance metrics for the three ML models regard-
ing yield of nanofibrillation prediction

Model MAE (%) MAPE (%) RMSE (%) R²

RF 1.358 20.79 1.712 0.8720
LR 1.101 16.61 1.306 0.9255
ANN 0.577 6.74 0.758 0.9749
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0.96 for aspect ratio), MAE, MAPE, and RMSE. 
These results might be due to the greater complex-
ity of the ANN model. However, the random forest 
approach used two factors less in the case of aspect 
ratio and one less in the case of yield of nanofibril-
lation, while still attaining an acceptable predic-
tion power, at least for the morphological property. 
The overall indications are that machine learning 
algorithms have great potential in predicting these 
two important and often overlooked parameters 
for (L)CMNF suspensions, since very good results 
were obtained from relatively simple models and 
easily obtainable and low-cost inputs, not requir-
ing advanced analytical techniques. The models 
obtained so far are a first step towards the aim of 
better controlling the production of nanocellulose. 
A limitation that must be highlighted here is the 
number of samples, which is quite low. Therefore, 
future steps involve the inclusion of more data to 
continuously improve the prediction and gener-
alization capacity of the models. Also, it would be 
interesting to include in the model different types of 
pulps, coming from both wood and non-wood feed-
stock, and other types of pre-treatment.
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