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Abstract: Atherosclerotic cardiovascular diseases (ASCVD) are the leading cause of morbidity and
mortality in Western societies. Statins are the first-choice therapy for dislipidemias and are considered
the cornerstone of ASCVD. Statin-associated muscle symptoms are the main reason for dropout
of this treatment. There is an urgent need to identify new biomarkers with discriminative preci-
sion for diagnosing intolerance to statins (SI) in patients. MicroRNAs (miRNAs) have emerged as
evolutionarily conserved molecules that serve as reliable biomarkers and regulators of multiple
cellular events in cardiovascular diseases. In the current study, we evaluated plasma miRNAs as
potential biomarkers to discriminate between the SI vs. non-statin intolerant (NSI) population. It
is a multicenter, prospective, case-control study. A total of 179 differentially expressed circulating
miRNAs were screened in two cardiovascular risk patient cohorts (high and very high risk): (i) NSI
(n = 10); (ii) SI (n = 10). Ten miRNAs were identified as being overexpressed in plasma and vali-
dated in the plasma of NSI (n = 45) and SI (n = 39). Let-7c-5p, let-7d-5p, let-7f-5p, miR-376a-3p and
miR-376c-3p were overexpressed in the plasma of SI patients. The receiver operating characteristic
curve analysis supported the discriminative potential of the diagnosis. We propose a three-miRNA
predictive fingerprint (let-7f, miR-376a-3p and miR-376c-3p) and several clinical variables (non-HDLc
and years of dyslipidemia) for SI discrimination; this model achieves sensitivity, specificity and area
under the receiver operating characteristic curve (AUC) of 83.67%, 88.57 and 89.10, respectively. In
clinical practice, this set of miRNAs combined with clinical variables may discriminate between SI
vs. NSI subjects. This multiparametric model may arise as a potential diagnostic biomarker with
clinical value.

Keywords: circulating microRNAs; statin intolerance; biomarkers; atherosclerotic cardiovascular
diseases; statins-adverse myalgia symptoms

Int. J. Mol. Sci. 2022, 23, 8146. https://doi.org/10.3390/ijms23158146 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms23158146
https://doi.org/10.3390/ijms23158146
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0001-5344-6573
https://orcid.org/0000-0001-9855-8173
https://doi.org/10.3390/ijms23158146
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms23158146?type=check_update&version=2


Int. J. Mol. Sci. 2022, 23, 8146 2 of 18

1. Introduction

Cardiovascular disease (CVD) remains the leading cause of mortality and morbidity
in Europe [1]. Plasmatic low-density lipoprotein (LDLc) levels is the main causal factor of
these vascular events. Statins are the cornerstone of atherosclerotic cardiovascular disease
(ASCVD) prevention worldwide. Based on the evidence of the clinical trials, the European
Society of Cardiology (ESC)/European Atherosclerosis Society (EAS) guidelines have estab-
lished a goal of 50% reduction in LDLc concentration in high and very high cardiovascular
risk patients to reduce vascular events [1,2]. Most of the trials have demonstrated a remark-
able reduction of 22% of major vascular events after five years of statin treatment [3]. Even
so, almost 80% of treated patients do not achieve recommended LDLc levels. This low
adherence to statin therapy is due to several causes, including cultural reasons, costs, side
effects and lack of effectiveness information [4].

Although statins are well tolerated, the major cause of non-adherence to treatment
is its adverse effects. The European Medicine Agency defines statin intolerance as the
inability to tolerate at least two or more statins at the lowest approved daily dose due
to the development of side effects, that began or increase during statin therapy and stop
when statin treatment was discontinued [5]. Among these side effects, statin-associated
muscle symptoms (SAMS) are the most prevalent reason for the non-adherence and/or
discontinuation of statin treatment [6]. Four SAMS forms have been described, namely
myalgia, myopathy, myositis and rhabdomyolysis. Rhabdomyolysis is the most severe
form of statin-induced muscle damage. Nevertheless, myalgia—muscle complaints without
creatine kinase elevation or major functional loss—is usually self-reported in the range of
7–29% [7]. The mechanisms involved in the pathogenesis of SAMS are still unknown. The
lack of a gold standard test or biomarker to diagnose this adverse effect, the inconsistent
definition of this reality in clinical practice, and the impact on the cardiovascular event
rates after dropping this therapy demonstrate the importance of identifying a novel and
accessible biomarker that distinguishes this population [8].

MicroRNAs (miRNAs) are small non-coding RNAs identified as important regulators
of genes involved in several biological processes [9–11]. miRNAs regulate gene expression
by degrading messenger RNAs (mRNAs), repressing protein synthesis, or interacting with
long non-coding RNAs. Their properties make them the most widely studied extracellular
RNAs as diagnostic and therapeutic-tailored markers in the cardiovascular field [12–14].
Several studies have described the relationship between statins and miRNA profiles [15–18],
but this is the first time miRNAs have been considered as an alternative diagnostic tool
related to statin intolerance detection. Therefore, we aim to determine the role of miRNA as
a peripheral biomarker to identify the statin intolerant (SI) population and thus personalize
dyslipidemia treatment in these patients at cardiovascular risk.

2. Results
2.1. Clinical Parameters between SI and NSI Patients

The anthropometrical and clinical features of the SI and NSI cohorts are shown in
Table 1.

This study included 84 patients, 39 SI patients and 45 NSI patients as the control group.
Considering the groups, the male population were larger than the female population in
NSI, but SI female (61.5%) were significantly more frequent (p = 0.01); in contrast, a lower
percentage of females (31%) was observed in the NSI group. There were no significant
differences in terms of age. The presence of ASCVD, the years of dyslipidemia (DLP)
(p = 0.003, respectively), and high blood pressure (p = 0.006) were significantly different
between cohorts. It is important to note that non-HDLc plasmatic concentration (p < 0.001)
displayed significant differences between SI and NSI groups. When considering the med-
ication intake, the use of angiotensin agonist receptors (p = 0.004), diuretic (p = 0.003),
beta-blockers (p < 0.001), alpha-blockers (p = 0.03) and aspirin (p < 0.001) was significantly
different between SI and NSI cohorts. Regarding the lipid-lowering therapy, the NSI cohort
was mostly on Rosuvastatin and, to a lesser degree, on Atorvastatin, among others, such as
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3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors or statins. The
SI group was treated using alternative lipid-lowering drugs, but nine patients refused to
use any other therapeutic option.

Table 1. Baseline demographics, clinical characteristics, and treatment of NSI and SI population.
Data are presented as mean ± SD for continuous variables and as percentage for categorical vari-
ables. The difference between NSI and SI patients was evaluated with unpaired Student t test a,
Pearson Chi-square b and Wilcoxon test c. * Therapy mostly in association. NS, no significant; ACEI:
angiotensin-converting enzyme inhibitors; ARB: angiotensin II receptor blockers; ASCVD: atheroscle-
rotic cardiovascular disease; CCB: calcium channel blockers; CPK: creatine kinase; DLP: years of
dyslipidemia; MDRD-4: glomerular filtration rates; non-HDLc: non-high-density lipoprotein choles-
terol; NSI: non-statin intolerant; OAD: oral antidiabetic drugs; PSCK-9: Monoclonal anti-proprotein
convertase subtilisin/kexin type 9; SI: statin intolerant.

Variables NSI SI p Value

n 45 39
Demographics
Age (years) a 66.6 ± 11.5 63.6 ± 10.9 NS
Sex (female, %) b 31 61.5 0.01
DLP (years) c 5.6 ± 6.3 9.1 ± 7.5 0.003
High blood pressure (%) b 73 41 0.006
Diseases
Diabetes Mellitus (%) b 38 20.5 NS
ASCVD (%) b 71 13 <0.001
Chronic kidney disease (%) b 18 12.8 NS
Analytical profile
Basal blood glucose a 118.5 ± 36.2 110 ± 44.6 NS
Non-HDLc (mg/dL) a 104.9 ± 32.7 169.9 ± 63.5 <0.001
Triglycerides (mg/dL) a 151.7 ± 97.4 164 ± 93 NS
MDRD-4 (mL/min) a 76.5 ± 25.6 82 ± 31.6 NS
Transaminase GOT (U/L) a 23.1 ± 13 23.5 ± 8 NS
Transaminase GPT (U/L) a 27.3 ± 23 24.6 ± 18.9 NS
CPK (U/L) a 82.8 ± 40.4 165.9 ± 14.7 NS
Medication
ACEI (%) b 11 2.5 NS
ARB (%) b 67 33.3 0.004
OAD (%) b 33 18 NS
Insulin (%) b 11 10.5 NS
Diuretic (%) b 51 18 0.003
CCB (%) b 31 18 NS
Beta-blockers (%) b 62 15.4 <0.001
Alpha-blockers (%) b 22 5 0.03
Aspirin (%) b 64 18 <0.001
Atorvastatin 40 mg (%) 20 -
Atorvastatin 80 mg (%) 15.5 -
Rosuvastatin 10 mg (%) 17.7 -
Rosuvastatin 20 mg (%) 35.5 -
Pitavastatin 4mg (%) 6.6 -
Simvastatin 40 mg (%) 4.4 -
PCSK9 inhibitors: Evolucumab (%) b 13 7.6 NS
PCSK9 inhibitors Alirocumab (%) b 11 2.5 NS
Fenofibrate (%) b 18 7.6 NS
Omega-3 (%) - 5.1
Colesevelam (%) - 2.5
Colestiramine (%) - 12.8
Armolipid plus * (%) - 41.0
Ezetimibe 10 mg * (%) b 42 38 NS
Acenocumarol (%) b 7 7.6 NS
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2.2. Plasma miRNA Profile in Patients with SI

To assess whether the plasma miRNAs were differentially expressed between the
groups, we first conducted screen profiling of 179 circulating miRNAs commonly found
in human plasma in ten SI and ten NSI age-matched patients (Figure 1). The established
criteria for the selection of miRNA candidates were high expression levels (median Cq < 35
and detected in at least 80% of all samples) and statistical significance (p < 0.05). A total of
10 miRNAs, let-7c-5p, let-7d-5p, let-7f-5p, miR-128-3p, miR-186-5p, miR-30e-3p, miR-376a-
3p, miR-376c-3p, miR-543 and miR-574-3p, were significantly expressed according to the
selection criteria and selected for further analysis.
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Figure 1. Color heatmap based on raw miRNA expression values where each column represents a
patient, and each row represents a miRNA. The color scale illustrates the relative expression level of
miRNAs (red and yellow represent low expression and blue and purple represent high expression).
MiRNA expression levels were normalized to miR-148a-3p and let-7b-5p. MiRNA: microRNA;
NSI: non-statin intolerant; SI: statin intolerant.

2.3. miRNAs Validation Study and Their Correlation with Clinical Parameters

We validated these ten miRNAs in 45 SI and 39 NSI individuals to confirm the diag-
nostic robustness to discriminate between NSI and SI patients. Our results showed that
let-7c-5p, let-7d-5p, let-7f-5p, miR-376a-3p and miR-376c-3p were significantly upregulated
in plasma from SI cohort versus NSI (Figure 2).
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Figure 2. Boxplots of miRNA expression levels in NSI and SI cohorts. The analysis was carried out
using qPCR. Data are presented in log2. Data represent the mean ± SEM. * p < 0.05, ** p < 0.01,
*** p < 0.005. Error bars represent SDs. NSI, non-statin intolerant; SI: statin intolerant.

We investigated the association between the differentially expressed miRNAs and
some significant clinical parameters in the SI group. No correlation was found but DLP
and non-HDLc levels (Table 2).

Table 2. Correlation between the clinical parameter (DLP and non-HDLc) and individual microRNAs
in SI subjects. DLP: years of dyslipidemia; non-HDLc: non-high-density lipoprotein cholesterol SI:
statin intolerant. Coefficient significant at p < 0.05.

microRNAs

SI Cohort

DLP (Years) Non-HDLc (mg/dL)

Pearson r p Pearson r p

Let-7c-5p −0.164 0.281 0.177 0.244
Let-7d-5p −0.079 0.603 0.226 0.131
Let-7f-5p −0.136 0.368 0.168 0.266

miR-376a-3p −0.173 0.250 0.103 0.498
miR-376c-3p −0.265 0.079 0.176 0.248

2.4. Circulating miRNA as a Biological Marker of SI

We assess the ability of the differentially expressed circulating miRNAs to distinguish
between SI and NSI patients using the AUC-ROC. Figure 3A shows that miR-376c-3p
achieved the highest AUC with a value of 0.736 (95% CI: 0.627–0.845; p < 0.001), indicating
a moderate performance. Let-7c-5p, let-7d-5p, let-7f-5p and miR-376a-3p display AUC



Int. J. Mol. Sci. 2022, 23, 8146 6 of 18

values of 0.652, 0.627, 0.688 and 0.682, respectively. Afterwards, we consider the diagnostic
potential of the 5-miRNA set to differentiate between SI and NSI individuals. The AUC
for the combination value of our miRNA panel (let-7c-5p, let-7d-5p, let-7f-5p, miR-376a-3p
and miR-376c-3p) was 0.936 (95% CI: 0.887–0.985; p < 0.001) (Figure 3B), improving the
diagnostic ability. The sensitivity, specificity and accuracy of each miRNA and the 5-miRNA
panel are shown in Table 3.
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Figure 3. ROC curves for evaluating the predictive performance of differentially expressed miRNAs
to discriminate between SI vs. NSI. (A) ROC curves for let-7c-5p, let-7d-5p, let-7f-5p, miR-376a-3p
and miR-376c-3p. (B) The ROC curve of the 5-miRNA panel combination value of let-7c-5p, let-7d-5p,
let-7f-5p, miR-376a-3p and miR-376c-3p. AUC: area under the curve; miRNA: microRNA; NSI:
non-statin intolerant; SI: statin intolerant.

Table 3. Assessment of the potential diagnostic value of differentially expressed miRNAs and the
5-miRNA panel (let-7c-5p, let-7d-5p, let-7f-5p, miR-376a-3p and miR-376c-3p) as biomarkers to categorize
statin intolerant patients. AUC: area under the curve; CI: confidence interval; miRNA: microRNA.

miRNA AUC (95% CI) Sensitivity % Specificity % Accuracy % p Value

Let-7c-5p 0.652 (0.535 to 0.770) 61.70 55.56 59.04 0.017
Let-7d-5p 0.627 (0.507 to 0.747) 52.63 58.70 55.95 0.046
Let-7f-5p 0.688 (0.573 to 0.803) 60.53 64.44 62.65 0.003

miR-376a-3p 0.682 (0.563 to 0.800) 68.89 64.10 66.67 0.004
miR-376c-3p 0.736 (0.627 to 0.845) 70.45 64.10 67.47 <0.001

5-miRNA panel 0.936 (0.887 to 0.985) 81.25 84.85 82.72 <0.001

2.5. Combination of miRNAs, Years of Dislipidemia and Non-HDLc to Categorize SI Patients

We investigated the potential value of the miRNA candidates to discriminate between
the SI vs. the NSI cohort and their association with some clinical parameters. Only years
of DLP and non-HDLc levels were significantly higher in SI patients (Figure 4A,B). We
assess the potential of these two clinical parameters to distinguish between SI and NSI
groups. The ROC curves of these factors, DLP and non-HDLc, showed AUC values of
0.700 and 0.807, respectively, indicating a moderate performance to discriminate SI from
NSI patients, whereas the combination of these two parameters achieved an AUC value
of 0.844 (Table 4). We developed a multivariate model to increase the diagnostic power to
discriminate between SI vs. NSI combining differentially expressed miRNAs, DLP and/or
non-HDLc plasmatic levels. The diagnostic performance of the 5-miRNA panel was only
slightly improved with DLP as, although the AUC value was similar, this model achieved
an accuracy of 84.81% against the 82.72% shown by the 5-miRNA panel (Figure 4C,D).
In contrast, the diagnostic ability of the 5-miRNA set and the non-HDLc concentration
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was lower than that of the 5-miRNA panel by itself, showing an AUC value of 0.855.
Interestingly, the combination of the 3-miRNA panel composed of let-7f, miR-376a-3p
and miR-376c-3p, and DLP plus non-HDLc reached the highest diagnostic performance
with an AUC value of 0.954 and an accuracy of 89.47% (Figure 4D and Table 4). We next
use the Weka data mining tool to evaluate the performance of our model using 10-fold
cross-validation. We ran all classifiers in Weka and, the most successful algorithm was Ada
Boost M1 achieving a mean training accuracy, sensitivity, specificity, MCC and AUC of
86%, 83.67%, 88.57%, 0.714 and 0.891, respectively, keeping higher diagnostic value than
the 5-miRNA panel model (Figure 5).
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non-HDLc: non-high-density lipoprotein cholesterol. * p < 0.05; *** p < 0.005.



Int. J. Mol. Sci. 2022, 23, 8146 8 of 18

Table 4. Evaluation of the potential of clinical parameters (DLP and non-HDLc) and the multivari-
ate models as SI biomarkers. AUC, area under the curve; CI, confidence interval. DLP: years of
dislipidemia; miRNA: microRNA; non-HDLc: non-high-density lipoprotein cholesterol.

Multiparametric Model AUC (95% CI) Sensitivity % Specificity % Accuracy % p Value

DLP (years) 0.700 (0.587 to 0.814) 57.89 60.00 58.54 0.017
Non-HDLc (mg/dL) 0.807 (0.703 to 0.911) 77.08 84.38 80.00 <0.001

DLP + non-HDLc 0.844 (0.751 to 0.937) 79.55 85.29 82.05 <0.001
5-miRNA panel + DLP 0.940 (0.892 to 0.989) 85.71 83.78 84.81 <0.001

5-miRNA panel + non-HDLc 0.889 (0.814 to 0.964) 85.00 81.08 83.12 <0.001
3-miRNA panel + DLP + non-HDLc 0.954 (0.911 to 0.998) 89.74 89.19 89.47 <0.001
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2.6. Kyoto Encyclopedia of Genes and Genomes Pathway and Gene Ontology Enrichment Analysis

We next investigated the biological significance of the five differentially expressed
miRNAs using GO enrichment and KEGG pathway analysis. We used the miRNet online
software (https://www.mirnet.ca, accessed on 9 November 2021) to predict the putative
targets of let-7c-5p, let-7d-5p, let-7f-5p, miR-376a-3p and miR-376c-3p. The let-7c-5p,
let-7d-5p, let-7f-5p, miR-376a-3p and miR-376c-3p were associated with 516, 394, 397,112
and 84 mRNAs in the miRNet database, respectively. Interestingly, one mRNA target,
IGF1R, was shared by these five miRNAs (Figure 6A,B). GO analysis using the WebGesalt
(WEB-based Gene Set Analysis Toolkit) computational tool showed significant enrichment
of biological processes related to response to nerve growth factor and dendrite development,
cell cycle, gene silencing and response to transforming growth factor-beta (TGF-ß), among
others (Figure 6, left panel). KEGG pathway analysis showed several pathways, the most
significant of which are the p53 signaling pathway, Forkhead members of the O class (FoxO)
signaling pathway [19,20], EGFR tyrosine kinase inhibitor resistance, and glioma (Figure 6C,
right panel). Finally, disease enrichment analysis identified that these five miRNAs might
be involved in leukemia, mitochondrial myopathy, lactic acidosis and diabetes mellitus
(noninsulin-dependent), among others (Figure 6C, bottom panel).

https://www.mirnet.ca
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3. Discussion

We investigated the circulating miRNA signature of a high and very high cardiovas-
cular risk population treated with statins. We report, for the first time, a fingerprint of
miRNAs (let-7c-5p, let-7d-5p, let-7f-5p, miR-376a-3p and miR-376c-3p) to discriminate
between SI and NSI patients. Moreover, when we add some clinical information, this
circulating miRNA set increases its accuracy remarkably.

Statins are by far the most important therapy used for the treatment and prevention of
cardiovascular diseases. Statins have widely proven their profits in primary and secondary
cardiovascular prevention [1–3]. Although usually well tolerated, statin dropout rates
and non-adherence are high after the first year of therapy, 43% and 24%, respectively [21].
The main reason is SAMS which leads to neglect of the treatment and dropout [22] and
dramatically increases cardiovascular morbidity and mortality [5,23].

The identification of SI patients is crucial to avoiding cardiovascular risk and reaching
the aims established by the guidelines [2]. These patients need to be focused differently in
order to prevent the adverse impact of statins and atherosclerosis over the years. However,
the current clinical diagnosis of SI has limitations. Clinically, there are no clues to suspect
who will present this condition. Myotoxicity shows very heterogeneous manners, and the
phenotype that includes myalgia is the most common. SAMS affects symmetrical groups of
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muscles such as pelvic and shoulder girdles or limbs; muscular weakness, cramps, and,
more rarely, increased creatinine kinase plasmatic levels may be considered an adverse
effect [24]. Some studies have proposed various scores to assess myalgia [25–27]. Several
pathological paths have been suggested to explain statins’ toxicity as the mitochondrial dys-
function through Co-enzyme Q10 deficiency, the reduction in beta-oxidation of fatty acids,
the promotion of muscular apoptosis, drug–drug interaction, exercise, or certain genetic
polymorphisms [22]. The lack of knowledge of the underlying pathological mechanism that
leads to SAMS impedes any preventive measures. Thus, the difficulty reaching a clinical
diagnosis, the lack of circulating markers or non-invasive tests to detect this side-effect,
and the dropout of the preventive therapy leads to a crucial need for a tool that solves this
problem. Some groups have related miRNAs with the effectiveness of different statins,
and their pleiotropic effect on the endothelial cells [28–31]. To our knowledge, the use of
circulating miRNAs as a diagnostic tool for SI detection remains unexplored.

In the present study, five plasmatic miRNAs, (let-7c-5p, let-7d-5p, let-7f-5p, miR-376a-3p
and miR-376c-3p) were identified as being enriched in SI patients as compared with NSI.
Moreover, together, these miRNAs showed a promising potential to discriminate between SI
and NSI cohorts. Thus, let-7c-5p is involved in muscle attenuation through the TFG-β factor;
its intracellular effector Smad3 is known to inhibit myogenesis and stimulate adipogenesis
and myofiber lipid accumulation [32,33]. Let-7f-5p, regulated by the FoxO transcription
factors family, is overexpressed in myasthenia gravis in muscle-specific tyrosine kinase
antibody seropositive [34]. Myasthenia gravis is a neuromuscular autoimmune disease
caused by antibodies which attack receptors at the neuromuscular junction. MiR-376a-3p,
proposed as a biomarker of coronary artery disease, acts by nuclear receptor-interacting
protein 1 (NRIP1) leading to the cellular apoptosis. Hence, miR-376a-3p might be related to
the effect of statins reducing the risk of coronary artery disease, however, this hypothesis
needs to be investigated [35]. Related to statin toxicity, others circulating miRNAs have
been described as miR-499 and miR-145 [36]. In 2016, Min et al., using combined in vivo
and in vitro modelling, demonstrated a release of miR-499-5p linked to muscle injury
during exercise when muscular contraction induced by carbachol is combined with statins
intake. Circulating levels of miR-1, miR-133a and miR-206 were significantly upregulated
in patients in statin therapy who practiced endurance sports and showed muscular adverse
effects [37]. Fu et al. demonstrated the statin-induced injury on the skeletal muscle
through the overexpression of miR-1a by regulating the mitogen-activated kinase 1 (MKK1)
pathway [38]. Some murine models have been used to demonstrate that moderate and
gradual exercise may have a beneficial role on statin intake and its impact on skeletal
muscle [39,40].

In the biological process analysis, we identified that these miRNAs were highly en-
riched with genes in the TGF-β pathway, suggesting that they are plausible candidates.
Recently, has been reported that TGF-β through Smad3 transcriptional repression leads to
the inhibition of myogenesis differentiation [41,42]. Myogenic differentiation and function
may need several cellular signal and growth factors, but also an appropriate environment
that may be impair by statins.

The genes predicted to be impacted by these five miRNAs are shown in Figure 6.
All miRNAs described, except let-7f-5p, shared POTEG, BEND4, POTEM and CASTOR
that are genes linked with muscular homeostasis and apoptotic processes. In this sense,
CASTOR2, among other genes, has been described as a target of the proteolytic path-
way of FoxO driving to muscular atrophy [43]. TGFβR1, common to all miRNAs except
miR-376a-3p, has been reported to affect the muscular growth and differentiation [44].
TGFβ signaling plays a critical role in regulating muscle growth and atrophy, in both
inherited and acquired myopathies [45]. It is important to note that miRNA target pre-
diction analysis identified insulin-like growth factor (IGF1) as a target gene shared by
these five miRNAs. Several studies have reported that statins regulate IGF1-R signaling
at different levels [46–48]. AKT is a key-regulator of the synthesis and degradation mus-
cle growth and regeneration through AKT/mTOR and FoxO transcription factors [49].
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IGF1 is related to statin myotoxicity by inhibiting the IGF1/AKT pathway leading to an
increased myofibrillar proteins degradation, impaired proteins synthesis. Thus, statins
inhibit AKT phosphorylation activates caspases and PAPR inducing apoptosis and, most
importantly, are closely associated with the inhibition of cholesterol synthesis at the level
of hydroxymethylglutaryl-CoA (HMG)-CoA reductase. These findings have been demon-
strated in both in vitro and in vivo models, enhancing the importance of these pathways in
statin-induced myotoxicity [49]. FoxO are a family of transcription factors that are targeted
by these miRNAs. They are implicated in the protein degradation and apoptosis. FoxO are
related to muscular atrophy and caquexia with the use of certain chemotherapy treatments
through the IGF1/AKT/FoxO pathways [50]. Finally, GO enrichment analysis revealed
significant enrichment of mitochondrial myopathy-related diseases. In agreement with
this, numerous studies have shown that mitochondria play an important role in statin-
induced myopathies. Moreover, it has been suggested that statins may have major effects
on mitochondrial function, and some of their adverse effects might be mediated through
mitochondrial pathways [51–53]. Hence, our data suggest that these circulating miRNAs
might be involved in the mechanisms of action of statins on mitochondrial function.

In this study we demonstrate that a panel of five miRNAs have a better performance
in predicting patients with SI than individual miRNAs. To the best of our knowledge, these
five circulating miRNAs have not been reported to be associated with SI. Moreover, we
present a multiparametric model that increases the discriminative power of this diagnostic
tool in clinical practice. We worked with several clinical parameters and a combination of
miRNAs. Thus, our miRNAs set, let-7f-5p, miR-376a-3p and miR-376c-3p, with two clinical
parameters such as DLP and non-HDLc concentration showed a high-yield diagnostic
accuracy with an AUC of 0.954 and an accuracy of 89.47%. A 10-fold cross-validation
evaluation to estimate the prediction performance resulted in high diagnostic accuracy
(86%) with an AUC of 0.891 supporting the robustness of the multiparametric model.

Non-HDLc, a reliable marker for cardiovascular risk and residual risk, encompasses
all lipoproteins that contain cholesterol and apo B, being closely related to atherogenic dys-
lipidemia. Thus, in any clinical context associated with insulin resistance, such as diabetes
mellitus 2, metabolic syndrome or visceral obesity, it is suggested to use non-HDLc or apo
B as a therapeutic aim rather than classic LDLc [54]. This highlights the importance of
this non-HDLc for better control of dyslipidemia [2] and an update of the risk calculation
indices has recently been published SCORE2 [55] and SCORE2-OP [56]. This update intro-
duces different variations on the original SCORE index assessing not only cardiovascular
mortality but the risk of developing a cardiovascular event. In this sense, non-HDLc has
been enhanced as a major cardiovascular risk factor with the same impact as LDLc or
global cholesterol. Thus, non-HDLc levels are equivalent in terms of risk to high blood
pressure, diabetes mellitus or chronic kidney disease. On the other hand, DLP play a key
role in ASCVD. The time of exposition to a reduced LDLc concentration is independent of
the reduced mechanism used; the clinical benefit to more decreased LDLc levels, whether
genetically or pharmacologically, is determinant; the lower and the earlier the better [57].

We expose a circulating miRNAs fingerprint as an accessible and helpful tool for SI
diagnosis. In addition, we propose a multiparametric model, a panel of three miRNAs
and two clinical parameters, that detects patients with this adverse event with the highest
diagnostic value reported to date. The bioinformatics analysis leads to the biological and
molecular processes present in this entity. This proposal permits a therapy-tailored strategy
to avoid the dropout of a crucial therapy and offer an alternative to treat patients with high
cardiovascular risk.

Our current study has several limitations. Firstly, our sample was prospectively
recruited from the outpatient clinic. The size of the study sample, recruited from various
Lipid Units and Cardiology Departments, did not allow us to obtain a robust multivariate
logistic regression model. Furthermore, a larger sample size is needed to validate these data.
As a consequence, these results should be extended and replicated to a larger population
before the novel biomarkers can be routinely applied in clinical practice. Finally, even
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though databases registered the expression of the parental genes, we have no confirmation
about the direct secretion of these circulating miRNAs into the extracellular space. Hence,
the association of miRNAs with SI and all the interactions are putative. Therefore, larger
confirmative studies on circulating miRNAs are needed to generate a better, reproducible
prognostic signature for SI.

4. Materials and Methods
4.1. Study Population and Design

This is a multicenter prospective case-control study. Patients were recruited from
three field centers (Puerta del Mar University Hospital, Cádiz; Virgen del Rocio Univer-
sity Hospital, Sevilla; and Reina Sofia University Hospital of Córdoba, Spain). Inclusion
criteria were patients over 18 years old with a high and very high cardiovascular risk in
treatment with statins referred to the Lipid Unit of these centers. We have focused on
the most frequent symptom, SAMS [5]. A total of 84 consecutive subjects (Figure 7) were
included and divided into two different cohorts: (i) SI patients (n = 39) and, (ii) patients
non-intolerants to statins (NSI) (n = 45). SI group was defined based on the European
Medicine Agency criteria [5]. Before including these patients in the study, we applied the
2019 ESC/EAS Lipid Management Guidelines, which establish the requirement to offer
the patient alternative dosing such as every other day or twice a week with Atorvastatin,
Pitavastatin or Rosuvastatin. All patients included dropped out of the alternative proposed
due to intolerance to statins. All patients recruited were high or very high cardiovascular
risk based on the classification of the cardiovascular risk grade of the ESC/EAS guidelines
(Table 5) [2]. ASCVD can be documented as either clinical or unequivocal based on imaging.
In the clinical branch, ASCVD includes previous acute coronary syndrome (myocardial in-
farction or unstable angina), stable angina, coronary revascularization procedures including
percutaneous coronary intervention, coronary artery bypass graft or arterial revasculariza-
tion procedures, ischemic stroke, and peripheral arterial disease. Conditions considered to
explicitly document ASCVD on imaging include findings known to be predictive of clinical
events, such as significant plaque on coronary angiography or coronary tomography scan
(a multivessel coronary disease with two major epicardial arteries having >50% stenosis) or
on carotid ultrasound.

Table 5. Cardiovascular risk criteria based on the 2019 ESC/EAS guidelines used to the recruitment
of patients [2]. ASCVD: atherosclerotic cardiovascular disease; DM: diabetes mellitus; CKD: chronic
kidney disease; CVD: cardiovascular disease; eGFR: estimated glomerular filtration rate; FH: familial
hypercholesterolemia; SCORE: Systematic coronary risk estimation. Adapted from Ref. [2]. Copyright
2019. The European Society of Cardiology and the European Atherosclerosis Association 2019.

Very High CVD Risk High CVD Risk

Presence of ASCVD clinically/imaging.
Total cholesterol over 310 mg/dL,
LDLc over 190 mg/dL or blood

pressure ≥ 180/110 mmHg.
DM patients with target organ damage or

at least three major risk factor or early
onset of DM type 1 with a length over

20 years.

DM patients without target organ damage.
Over 10 years with DM.

Severe CKD
(eGFR < 30 mL/min/1.73 m2).

Moderate CKD
(eGFR = 30–39 mL/min/1.73 m2).

A calculated SCORE ≥ 10% for 10 years
risk of fatal CVD.

A calculated SCORE ≥ 5% and < 10% for 10 years’
risk of fatal CVD.

FH with a ASCVD or with another major
risk factor. FH without any other major risk factor.



Int. J. Mol. Sci. 2022, 23, 8146 13 of 18

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 13 of 19 
 

 

Severe CKD 
(eGFR < 30 mL/min/1.73 m2). 

Moderate CKD  
(eGFR = 30–39 mL/min/1.73 m2). 

A calculated SCORE ≥ 10% for 10 years risk of fatal 
CVD. 

A calculated SCORE ≥ 5% and < 10% for 10 years’ risk of fatal 
CVD. 

FH with a ASCVD or with another major risk factor. FH without any other major risk factor. 

 
Figure 7. The flowchart of the study design. This figure illustrates the experimental workflow of the 
study including screening and validation. MiRNA: microRNA; NSI: non-statin intolerant; SI: statin 
intolerant. 

Exclusion criteria were patients over 80 years old or with marked frailty, intensive 
physical activity, heavy alcohol consumption and patients who presented chronic inflam-
matory, autoimmune or neoplasia disease or other pharmacological therapies that inter-
fere with the metabolic pathways of the different statins. Subjects with high training exer-
cise workload, previous muscular symptoms, myopathy disease, high levels of creatine 
kinase levels or hypothyroidism were excluded from the study. 

Detailed anthropometric, clinical and pharmacological information was obtained 
from each subject including cardiovascular risk factors and previous vascular events. All 
patients performed a blood test including thyroid, hepatic, kidney, lipid profiles and cre-
atine kinase at the inclusion moment. Our institution’s ethics committee (Comité de Ética 
de la Investigation de Cádiz) approved the study protocol. The study was performed in 
full compliance with the Helsinki II Declaration. All participants provided written in-
formed consent.  

3.2. Blood Collection 
Ten milliliters of peripheral blood were collected in K2-ethylenediaminetetraacetic 

acid tubes after 10 h overnight fasting and were immediately centrifuged (1500 g, 15 min, 
4 °C). The blood was processed within 4 h after isolation. The upper layer containing 
plasma was divided into aliquots and stored at −80 °C until further analysis. 

Figure 7. The flowchart of the study design. This figure illustrates the experimental workflow
of the study including screening and validation. MiRNA: microRNA; NSI: non-statin intolerant;
SI: statin intolerant.

Exclusion criteria were patients over 80 years old or with marked frailty, intensive
physical activity, heavy alcohol consumption and patients who presented chronic inflam-
matory, autoimmune or neoplasia disease or other pharmacological therapies that interfere
with the metabolic pathways of the different statins. Subjects with high training exercise
workload, previous muscular symptoms, myopathy disease, high levels of creatine kinase
levels or hypothyroidism were excluded from the study.

Detailed anthropometric, clinical and pharmacological information was obtained
from each subject including cardiovascular risk factors and previous vascular events. All
patients performed a blood test including thyroid, hepatic, kidney, lipid profiles and
creatine kinase at the inclusion moment. Our institution’s ethics committee (Comité de
Ética de la Investigation de Cádiz) approved the study protocol. The study was performed
in full compliance with the Helsinki II Declaration. All participants provided written
informed consent.

4.2. Blood Collection

Ten milliliters of peripheral blood were collected in K2-ethylenediaminetetraacetic
acid tubes after 10 h overnight fasting and were immediately centrifuged (1500× g, 15 min,
4 ◦C). The blood was processed within 4 h after isolation. The upper layer containing
plasma was divided into aliquots and stored at −80 ◦C until further analysis.

4.3. RNA Isolation

Total RNA was extracted from 200 µL of plasma using the miRNeasy Serum/Plasma
Advanced Kit (Qiagen, Hilden, Germany) according to the manufacturer’s instructions. A
total of 200 µL of plasma aliquots were used to obtain enough final volume. During the
extraction, 3.5 µL of miRNeasy Serum/Plasma Spike-In Control (1.6 × 108 copies/µL of
the C. elegans miR-39 miRNA mimic) were added to each sample as an internal control.
RNA was eluted in 20 µL of RNase-free water.

4.4. MiRNA Real-Time Reverse Transcriptase-Polymerase Chain Reaction

To evaluate miRNA expression levels and profiles of SI and NSI groups, an analy-
sis of 179 miRNA species known to be present in human serum was performed using
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miRCURY LNA RT Kit (Qiagen, Hilden, Germany) for reverse transcription, miRCURY
LNA SYBR Green PCR Kit (Qiagen) for quantitative real-time (qRT-PCR) amplification
and Human Serum/Plasma Focus, miRCURY LNA miRNA Focus PCR panels (Quiagen,
Hilden, Germany) according to the manufacturer’s instructions. Raw cycle threshold (Cq)
values were inter-plate calibrated using UniSp3. Cqs above 35 cycles were censored at the
minimum level observed for each miRNA. As housekeeping miRNA for data normaliza-
tion, we selected the most stably expressed pair of miRNAs (miR-148a-3p and let-7b-5p)
as determined by the Normfinder algorithm [58]. Accordingly, each single miRNA was
normalized as ∆Cq = mean (CqmiR-148a-3p and let-7b-5p)—Cq miRNA. MiRNA levels
were log-transformed before being used in the statistical analyses.

4.5. Validation of miRNA Profiles

For the validation study, each selected miRNA candidate was quantified using miR-
CURY LNA miRNA Custom PCR Panels (Qiagen, Hilden, Germany). RNA was reverse
transcribed using the miRCURY LNA RT Kit (Qiagen, Hilden, Germany). qRT-PCR was
performed using miRCURY LNA SYBR Green PCR Kit (Qiagen, Hilden, Germany), as previ-
ously described [59] and amplification curves were evaluated with CFX Manager™ software
(BioRad). The specificity of the amplification was corroborated by melting curve analysis.

4.6. miRNA-Gene Network Analysis

The miRNAs obtained were tested using the miRNet database (https://www.mirnet.ca,
accessed on 9 November 2021) to predict the targeted genes. A database analysis to
identify the biological function was performed using gene ontology (GO) enrichment
analysis (http://geneontology.org/, accessed on 9 November 2021) [60] and the Kyoto
Encyclopedia of Genes and Genomes (KEGG) http://www.genome.jp/kegg/, accessed on
9 November 2021) [61]. The Search Tool for the Retrieval of Interacting Genes (STRING)
database (http://www.string-db.org/, accessed on 9 November 2021) [62] was used to
analyze the protein–protein interaction networks.

4.7. KEGG and GO Term Enrichment Analysis

The miRNet online software (https://www.mirnet.ca, accessed on 9 November 2021)
was used to predict the targeted genes and to construct the miRNA–mRNA regulatory
network. The WebGestalt (WEB-based GEne SeT AnaLysis Toolkit) [63] computational
tool was performed for KEGG pathway and GO terms analysis. GO term analysis was
employed to determine the involvement of the 5 differentially expressed miRNAs in
biological processes and diseases.

4.8. Statistical Analysis

Continuous variables are shown as mean ± standard deviation. Categorical variables
are expressed as frequency and percentage of patients (%). Outliers were identified through
the Rout method, using a Q = 1% [64]. The normal distribution of each variable was verified
with the Shapiro–Wilk test. Intergroup comparisons of miRNAs levels were performed
using non-parametric Mann–Whitney and Kruskal–Wallis rank tests for continuous vari-
ables. An analysis of differences between groups was performed using the analysis of
variance. ROC curves that characterize the diagnostic performance of candidate miRNAs
and logistic regression models were plotted to determine the area under the curve (AUC)
and the specificity and sensitivity of the optimal cut-offs. ROC curves were generated
by plotting sensitivity against 1-specificity. Data were presented as the AUC and 95%
confidence intervals. The changes in p-values of their variables were evaluated by the
Wald test and a likelihood ratio. Training was performed with 10-fold cross-validation
using Waikato environment for knowledge analysis (Weka) data mining tool. The statistical
software package R was used for all analyses (Team RC. R: A Language and Environment
for Statistical Computing. https://www.r-project.org, accessed on 9 November 2021).

https://www.mirnet.ca
http://geneontology.org/
http://www.genome.jp/kegg/
http://www.string-db.org/
https://www.mirnet.ca
https://www.r-project.org
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5. Conclusions

In conclusion, we identified for the first time a signature of five miRNAs differentially
expressed in the SI population. Our multiparametric model also combined circulating
miRNAs and clinical variables, and emerges as a potential clinical tool to identify patients
with muscular toxic effects as a result of statins. In daily practice, this panel with accessible
clinical parameters may improve the accuracy and may lead to a tailored-treatment strategy
improving the cardiovascular risk and outcome of these patients.

Author Contributions: R.T. and A.M. conceived the experiments; A.M., O.M., F.F., A.G.-E., J.S.R.R.,
O.C., A.P.-S. and E.A.-V. recruited the subjects; F.B. and A.P.-S. conducted the experiments, and
analysed the results; R.T., A.M., F.B. and A.P.-S. wrote the manuscript. All authors reviewed the
manuscript. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by grants in the framework of the European Regional Develop-
ment Fund (ERDF) Integrated Territorial Initiative (ITI PI0048-2017 and ITI PI0017-2019), a research
grant from the Spanish Society of Cardiology for Basic Research in Cardiology (PI0012-2019), Plan
Propio de INIBICA (PI-INBICA 2019-13), Foundation Progreso y Salud PEER (2020-019).

Institutional Review Board Statement: The study was conducted in accordance with the Declaration
of Helsinki and approved by the Andalusian Ethic Committee Board (protocol code FIB-ATO 2018-01;
date of approval 3 May 2010).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the
study. Written informed consent has been obtained from the patients for paper publication.

Data Availability Statement: Data transparency is guaranteed. The datasets generated during
and/or analyzed during the current study are available from the corresponding author on reasonable
request. We used various software for functional enrichment and statistical analysis. All of them are
cited in our manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

Ethics Approval: The study protocol was approved by the Andalusian Biomedical Research Ethics
committee. The study was performed in full compliance with the Declaration of Helsinki.

Abbreviations

ACEI Angiotensin-converting enzyme inhibitors
ARB Angiotensin II receptors blockers
ASCVD Atherosclerotic cardiovascular diseases
AUC Area under the ROC curve
CCB Calcium channel blockers
CI Confidence interval
CPK Creatine kinase
CVC Cardiovascular disease
DLP Years of dyslipidemia
ESC European Society of Cardiology
EAS European Atherosclerosis Society
FoxO Forkhead members of the O class family
GO Gene Ontology
HDLc High-density lipoprotein cholesterol
KEGG Kyoto Encyclopedia of Genes and Genomes
LDLc Plasmatic low-density lipid
miRNAs MicroRNAs
Non-HDLc Non-HDL cholesterol
NSI Non-statin intolerant
SAMS Statin-associated muscle symptoms
SD Standard deviation
SI Statin intolerant
STRING Search Tool for the Retrieval of Interacting Genes



Int. J. Mol. Sci. 2022, 23, 8146 16 of 18

References
1. Catapano, A.L.; Graham, I.; De Backer, G.; Wiklund, O.; Chapman, M.J.; Drexel, H.; Hoes, A.W.; Jennings, C.S.; Landmesser, U.;

Pedersen, T.R.; et al. 2016 ESC/EAS Guidelines for the Management of Dyslipidaemias. Eur. Heart J. 2016, 37, 2999–3058.
[CrossRef] [PubMed]

2. Mach, F.; Baigent, C.; Catapano, A.L.; Koskinas, K.C.; Casula, M.; Badimon, L.; Chapman, M.J.; De Backer, G.G.; Delgado, V.;
Ference, B.A.; et al. ESC Scientific Document Group (2020). 2019 ESC/EAS Guidelines for the management of dyslipidaemias:
Lipid modification to reduce cardiovascular risk. Eur. Heart J. 2020, 41, 111–188. [CrossRef] [PubMed]

3. Cholesterol Treatment Trialists’ (CTT) Collaboration; Baigent, C.; Blackwell, L.; Emberson, J.; Holland, L.E.; Reith, C.; Bhala, N.;
Peto, R.; Barnes, E.H.; Keech, A.; et al. Efficacy and safety of more intensive lowering of LDL cholesterol: A meta-analysis of data
from 170,000 participants in 26 randomised trials. Lancet 2010, 376, 1670–1681. [CrossRef]

4. Banach, M.; Stulc, T.; Dent, R.; Toth, P.P. Statin non-adherence and residual cardiovascular risk: There is need for substantial
improvement. Int. J. Cardiol. 2016, 225, 184–196. [CrossRef] [PubMed]

5. Rosenson, R.S.; Baker, S.K.; Jacobson, T.A.; Kopecky, S.L.; Parker, B.A. The National Lipid Association’s Muscle Safety Expert
Panel. An assessment by the Statin Muscle Safety Task Force: 2014 update. J. Clin. Lipidol. 2014, 8, S58–S71. [CrossRef]

6. Toth, P.P.; Granowitz, C.; Hull, M.; Anderson, A.; Philip, S. Long-term statin persistence is poor among high-risk patients with
dyslipidemia: A real-world administrative claims analysis. Lipids Health Dis. 2019, 18, 175. [CrossRef]

7. Stroes, E.S.; Thompson, P.D.; Corsini, A.; Vladutiu, G.D.; Raal, F.J.; Ray, K.K.; Roden, M.; Stein, E.; Tokgözoğlu, L.;
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