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Abstract
The B2B scheduling optimization problem consists of finding a schedule of a set of meetings between pairs of participants, 
minimizing their number of idle time periods. Recent works have shown that SAT-based approaches are state-of-the-art 
on this problem. One interesting feature of such approaches is the use of implied constraints. In this work, we provide an 
experimental setting to study the impact of using these implied constraints in MaxSAT B2B instances. To this purpose and 
due to the reduced number of existing real-world B2B instances, we propose a random B2B instance generation model, 
which reproduces certain features of these problems. In our experimental analysis, we show that the impact of using some 
implied constraints in the MaxSAT encodings depends on the characteristics of the problem, and we also analyze the benefits 
of combining them. Finally, we give some insights on how a MaxSAT solver is able to exploit these implied constraints.
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Abbreviations
B2B	� Business-to-business
B2BSOP	� B2B scheduling optimization problem
noimp	� B2BSOP MaxSAT encoding with no implied 

constraints
imp1	� B2BSOP MaxSAT encoding with implied 

constraint 1 (see Eq. 17)
imp2	� B2BSOP MaxSAT encoding with implied 

constraint 2 (see Eq. 18)
imp12	� B2BSOP MaxSAT encoding with both implied 

constraints
PAR	� Penalized average runtime

1  Introduction

Business-to-business (B2B) events consist of meetings 
between people with similar interests. They are typically 
held in business networking events. The B2B scheduling 
problem is the problem of finding a feasible schedule for a 
set of requested meetings between pairs of participants, sub-
ject to participants’ availability and accommodation capac-
ity. To the best of our knowledge, there are a few works 
dealing with this problem [4–8, 12].

The B2B scheduling optimization problem (B2BSOP) 
considered in this work was introduced in [5]. It consists 
of finding a feasible B2B schedule that minimizes the num-
ber of idle time periods in the participants’ schedule. Side 
constraints are added to ensure fairness among participants, 
e.g., by restricting the maximum difference in the number of 
idle time periods between participants’ schedules. A further 
refinement could consist of (additionally or alternatively) 
minimizing the duration of those idle time periods.

The B2BSOP has been successfully addressed by means 
of relatively straightforward CP and Pseudo-Boolean for-
mulations [5], and further investigated with specialized CP 
and MIP formulations [12], and with partial MaxSAT spe-
cialized encodings [6]. A thorough comparison of all these 
models is analyzed in [4].

In this work, we focus on the MaxSAT encoding for the 
B2BSOP [4, 6]. This encoding represents B2B instances 
as partial MaxSAT formulas [10], where some clauses are 
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marked as hard whereas others are marked as soft, and the 
goal is to find an assignment to the Boolean variables of 
the propositional formula that satisfies all hard clauses and 
falsifies the minimum number of soft clauses. In this encod-
ing, the falsification of a soft clause represents the existence 
of an idle time period for some participant. This MaxSAT 
encoding clearly dominates the other existing formulations 
on real-world instances, in which, moreover, the addition of 
implied constraints appears to be beneficial [4].

There exist some works in the literature showing the ben-
efits of using implied constraints or redundant encodings in 
SAT [2, 3, 9]. However, the lack of varied real-world B2B 
instances makes it difficult to hold this claim for the prob-
lem at hand. In this paper, we try to overcome this limita-
tion by providing a parameterized random generator of B2B 
problem instances. The development of random problem 
generators sharing the majority of real-world instance fea-
tures was already stated in [13] as one of the most important 
challenges in propositional search. The main goal of these 
generators is two-sided. On the one hand, these generators 
allow to increment the set of available instances sharing the 
main characteristics of the existing ones. On the other hand, 
these random models allow us to create instances with any 
desired property given an appropriate parametrization.

In this work, we present a generator of random B2B 
instances, which is parameterized in several ways to repro-
duce certain characteristics of real-world B2B problems. 
This allows us to get some insights on the benefits of using 
implied constraints to solve B2B instances, depending on 
the characteristics of the problem. In particular, we show 
that the impact on the performance of the MaxSAT solver 
(in terms of solving time) when those implied constraints 
are used, depends on the density and the shape of the prob-
lem. By density we refer to the ratio between the number 
of meetings and the accommodation capacity. By shape we 
refer to the configuration of the accommodation capacity, 
i.e., the ratio between time slots and locations. Following the 
insights observed in random B2B instances, we also analyze 
the impact that using those implied constraints has on solv-
ing real-world MaxSAT B2B instances. Finally, we study 
the performance of a MaxSAT solver solving B2B problems 
and observe that the existence of these implied constraints 
helps to improve its performance, since its branching heu-
ristic focuses on the variables of those implied constraints, 
and this reduces the solving times. This is a revisited and 
extended version of the work presented in [7]. In particular, 
the analysis of the impact of implied constraints on real-
world B2B instances and on the performance of the MaxSAT 
solver is completely new.

The rest of this work is organized as follows. In Sect. 2 
we provide the definition of the B2BSOP and a MaxSAT 
encoding for such a problem. In Sect. 3 we present the pro-
posed random generation model of B2B instances. Section 4 

describes the results of our experimental evaluation. Finally, 
we conclude in Sect. 5.

2 � Definitions

In this section we precisely reproduce the definition of the 
B2BSOP and a MaxSAT encoding of it [4].

Definition 1  (B2BSOP-h) Given a set of participants P , a 
list of time slots T  , a set of available locations L  and a set 
of meetings M ⊂ P ×P between pairs of participants to be 
scheduled, the B2B scheduling Optimization Problem with 
homogeneity h consists of finding a total mapping from M  
to T ×L  , minimizing the total number of idle time periods 
and such that: 

	 (i)	 Each participant has at most one meeting scheduled 
in each time slot.

	 (ii)	 At most one meeting is scheduled in a given time slot 
and location.

	 (iii)	 The difference between the number of idle time peri-
ods among all participants is at most h, where by an 
idle time period we refer to a group of consecutive 
idle time slots between two consecutive meetings 
involving the same participant.

Notice that this definition does not consider as idle time 
periods any free time slot before (resp. after) the first (resp. 
last) meeting scheduled for a participant.

Further constraints like to consider meetings fixed in a 
certain time slot or session (i.e., group of consecutive time 
slots), meeting precedences, and forbidden time slots for a 
certain participant, among others, are analyzed in [4]. In this 
work, however, we mainly focus on the basic definition of 
the B2BSOP as stated above.1

Parameters. Each instance is defined by the following 
parameters: |M| is the number of meetings, |T| is the number 
of available time slots, |L| is the number of available loca-
tions, and |P| is the number of participants. The function 
meetings ∶ P → ℙ(M) represents the set of meetings involv-
ing each participant, i.e., meetings(p) = {m ∈ M | p ∈ m} for 
any participant p ∈ P (where ℙ(M) is the powerset of M ).

Variables. We define the following propositional 
variables:

•	 schedulei,j : meeting i is held in time slot j.
•	 usedSlotp,j : participant p has a meeting scheduled in time 

slot j.

1  Some real-world B2B instances analyzed in Sect. 4 do have fixed 
meetings and forbidden time slots for some participants.
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•	 meetingHeldp,j : participant p has a meeting scheduled at 
or before time slot j.

•	 endHolep,j : participant p has an idle time period finishing 
at time slot j.

We also use some auxiliary variables that will be introduced 
when needed.

In what follows, we use several Boolean global constraints 
with the following meaning: exactly(k, S) states that exactly k 
variables in S are set to true, atMost(k, S) states that at most k 
variables in S are set to true, and sortingNetwork(S, sl) states 
that sl is the sorted list of Boolean variables of S. These 
constraints can be encoded in several ways into SAT, being 
cardinality networks [1] the most promising approach on this 
problem, according to the experiments in [4].

Constraints. All constraints are hard if not explicitly 
defined as soft constraints.

At most one meeting involving the same participant is 
scheduled in each time slot.

Each meeting is scheduled in exactly one time slot.

The number of meetings scheduled in a give time slot is 
bounded by the number of available locations.

To be able to minimize the number of idle time periods 
we introduce channeling constraints between the variables 
schedule , usedSlot and meetingHeld.

If a meeting is scheduled in a certain time slot, then that 
time slot is used by both meeting participants.

where p1
i
 and p2

i
 are the two participants of meeting i.

In the reverse direction, if a time slot is used by some 
participant, then one of the meetings of that participant is 
scheduled in that time slot.

For each participant p and time slot j, meetingHeldp,j is true 
if and only if participant p has had a meeting at or before 
time slot j.

(1)
atMost(1, {schedulei,j ∣ i ∈ meetings(p)}) ∀p ∈ P, j ∈ T

(2)exactly(1, {schedulei,j ∣ j ∈ T}) ∀i ∈ M

(3)atMost(|L|, {schedulei,j ∣ i ∈ M}) ∀j ∈ T

(4)
schedulei,j → (usedSlotp1

i
,j ∧ usedSlotp2

i
,j) ∀i ∈ M, j ∈ T

(5)usedSlotp,j →
⋁

i∈meetings(p)

schedulei,j ∀p ∈ P, j ∈ T

(6)¬usedSlotp,1 → ¬meetingHeldp,1∀p ∈ P

Optimization. Minimization of the number of idle time 
periods is achieved by means of soft constraints. An idle 
time period can be identified when a participant has no meet-
ing in a certain time slot, has a meeting in the next time slot, 
and has had a meeting before. We reify this situation with 
the endHole variables.

Variable endHolep,j is true if and only if participant p has 
an idle time period finishing at time slot j.

Variables sortedHolep,1,… , sortedHolep,⌊(�T�−1)∕2⌋ are the 
unary representation of the number of idle time periods of 
each participant p.2

[Soft Constraint] A participant does not have idle time 
periods.

Homogeneity. We find the maximum and minimum num-
ber of idle time periods among all participants, and enforce 
homogeneity by bounding their difference.

(An approximation to) The unary representation of the 
maximum and minimum number of idle time periods among 
all participants are respectively max1,… ,max⌊(�T�−1)∕2⌋ 
and min1,… ,min⌊(�T�−1)∕2⌋ , as defined by the following 
constraints.

The difference between the maximum and minimum number 
of idle time periods can be at most h.

(7)
(¬meetingHeldp,j−1 ∧ ¬usedSlotp,j) →

¬meetingHeldp,j∀p ∈ P, j ∈ T ⧵ {1}

(8)usedSlotp,j → meetingHeldp,j∀p ∈ P, j ∈ T

(9)
meetingHeldp,j−1 → meetingHeldp,j∀p ∈ P, j ∈ T ⧵ {1}

(10)
endHolep,j ↔

(

¬usedSlotp,j ∧ meetingHeldp,j ∧ usedSlotp,j+1
)

∀p ∈ �, j ∈ � ⧵ {|�|}

(11)
sortingNetwork([endHolep,j ∣ j ∈ �],
[sortedHolep,j ∣ j ∈ �]) ∀p ∈ �

(12)¬sortedHolep,j ∀p ∈ P, j ∈ 1..⌊(�T� − 1)∕2⌋

(13)sortedHolep,j → maxj ∀p ∈ P, j ∈ 1..⌊(�T� − 1)∕2⌋

(14)
¬sortedHolep,j → ¬minj ∀p ∈ P, j ∈ 1..⌊(�T� − 1)∕2⌋

2  Notice that the number of possible idle time periods of each partici-
pant is strictly smaller than the half of time slots since every idle time 
period requires two meetings scheduled before and after it.
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Implied Constraints: From the constraints defined for the 
problem, the following two sets of implied constraints on 
usedSlot variables are identified:

(1) The number of meetings of a participant p as derived 
from usedSlotp,j variables must match the total number of 
meetings of p.

(2) The number of participants having a meeting in a given 
time slot is bounded by twice the number of available 
locations.

Although other implied constraints can be defined [4], their 
impact in practice seems to be limited. In particular, the 
implied constraints analyzed in this work help to solve a 
number of B2B problems (that would remain unsolved oth-
erwise), whereas additional implied constraints only help to 
(slightly) reduce their solving times. We conjecture that this 
phenomenon is due to the ability of the analyzed implied 
constraints to detect that a partial schedule is already infea-
sible in earlier stages. For this reason, we do not consider 
other additional constraints in our study.

As shown by the experimental evaluation presented in 
[4], using the implied constraints defined in Equations 17 
and 18 is in general beneficial. However, it remains unclear 
the precise contribution of each implied constraint in the 
observed improvements on the performance of the MaxSAT 
solver, due to the limited number of existing B2B instances 
and their heterogeneity.

3 � A Random B2B Instances Generator

In this section we present a model for the generation of ran-
dom B2B problems. To model these problems, we consider 
a number of participants P = |P| and a number of meetings 
M = |M| . A key question is how these M meetings are dis-
tributed among these P participants.

The set of B2B instances provided in [6] consists of 20 
instances: five instances obtained from real-world data, 
plus 15 crafted instances derived from the real ones. As we 
cannot draw general conclusions about probability distribu-
tions from this reduced set of instances, we present a simple 
model to generate random B2B instances. This model, called 
B2Brand, is based on an uniform probability distribution of 
meetings between pairs of participants in P.

(15)difj ↔ minj XOR maxj ∀j ∈ 1..⌊(�T� − 1)∕2⌋

(16)atMost(h, {difj ∣ j ∈ 1..⌊(�T� − 1)∕2⌋})

(17)exactly(|meetings(p)|, {usedSlotp,j ∣ j ∈ T}) ∀p ∈ P

(18)atMost(2 × |L|, {usedSlotp,j ∣ p ∈ P}) ∀j ∈ T

Definition 2  (B2Brand) Let P be a number of participants, 
with P > 1, and M, T and L the number of meetings, time 
slots, and locations, respectively. A random B2B instance 
from the B2Brand model is a set of M distinct meetings, 
independently selected by randomly choosing with uniform 
probability two distinct participants, whose identifiers range 
from 1 to P. Additionally, the instance must satisfy the fol-
lowing necessary feasibility conditions.

–	 The number of meetings M is bounded by the maximum 
combinations of two participants: 

–	 The number of meetings M is bounded by the event 
capacity: 

–	 Each participant can have at most T meetings: 

 where |meetings(p)| is the number of meetings of par-
ticipant p.

–	 The number of meetings M is bounded by the combina-
tions of participants and time slots: 

For the sake of simplicity, we assume a single meeting for 
each pair of participants.

Notice that the last condition can be derived from Eq. (21) 
by summing up the number of meetings of every participant.

The model is parametric in the number of participants P 
and in the number of meetings M. However, it also needs the 
number of time slots T and locations L to check the feasibil-
ity conditions defined. Notice that if any of those conditions 
is not satisfied, the B2B instance is trivially unsatisfiable. In 
particular, we define these feasibility conditions within the 
model because if the number of meetings is close to 

(
P

2

)
 but 

T ≪ P , then there would exist (with high probability) a num-
ber of participants requesting more meetings than available 
time slots, and hence it would not be possible to schedule all 
of them i.e., the problem will be unsatisfiable. Forbidding 
this case, the extreme instance with M ≈ P ⋅ T∕2 and P ≫ T  
will contain many participants requesting T meetings, i.e., 
many observations close to the maximum. In our experience, 
we have found this kind of participant to be very frequent in 
the real instances from [6].

Note also that the previous feasibility conditions do not 
guarantee the instance to be feasible. Let us consider for 
example a B2B instance with three participants, the three 
possible meetings between them, two time slots, and two 

(19)M ≤

(
P

2

)

(20)M ≤ T ⋅ L

(21)|meetings(p)| ≤ T ∀p . 1 ≤ p ≤ P

(22)M ≤
P ⋅ T

2
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locations. In this problem, the four feasibility conditions 
are satisfied. However, it is easy to see that the instance is 
unfeasible.

In what follows, we use this model to generate random 
families of B2B instances, and we study the performance 
of the solving process on the use of the implied constraints. 
This study aims to check whether it is beneficial to use them 
or not, and in which situations it is more useful to use one or 
another. In particular, we focus our study on two features of 
the problem: the density and the shape.

Definition 3  (Density) Given a positive number of meet-
ings M, time slots T and locations L, the density d of a B2B 
instance is the relation between the number of meetings M 
and the accommodation capacity T ⋅ L,

Notice that if the density of a B2B instance is greater 
than one, the instance is necessarily unfeasible. The opposite 
is not true. For example, the density of the instance men-
tioned before with 3 participants, the three possible meetings 
between them, two time slots, and two locations is d = 3∕4 , 
but this instance is unfeasible. In fact, increasing the number 
of locations, i.e., decreasing the density, does not modify 
its feasibility. Therefore, unfeasible instances with density 
smaller than one do exist.

Definition 4  (Shape) Given the accommodation capacity 
T ⋅ L , the shape s of a B2B instance is defined as the rela-
tion between the number of time slots T and the number of 
locations L,

Finally, we remark that this model does not represent 
all features of real-world instances. For instance, using this 
model we cannot generate a large number of participants 
requesting a number of meetings far from the mean. In par-
ticular, there could exist passive participants in some B2B 
events. These participants are characterized by requesting 
no meetings (i.e, they attend the event because other par-
ticipants request meetings with them). In this case, using a 
different probability distribution to randomly select the two 
participants of each meeting, rather than uniform, would 
probably be a more suitable choice. However, our model 
seems adequate to model B2B instances similar to the 
known real-world ones.

Another simplification of the B2Brand model is related 
with secondary requirements of the problem, such as forbid-
den time slots and fixed meetings or sessions, among oth-
ers. In random B2B instances generated with the B2Brand 
model, we do not consider this kind of additional constraints.

(23)d =
M

T ⋅ L

(24)s =
T

L

4 � Experimental Evaluation

In this section, we evaluate the impact on the solver perfor-
mance of the use of implied constraints in MaxSAT B2B 
instances. To do so, we first generate a benchmark of random 
B2B instances,3 and we solve them with and without using 
implied constraints. The goal of these experiments is to iden-
tify those cases for which the use of some implied constraint 
is beneficial. Then, we validate these observations of random 
B2B instances on real-world instances. Finally, we conjec-
ture the reasons for the success of using implied constraints 
based on some observations from the MaxSAT solver.

4.1 � Experimental Setup

In the experiments, we generated a set of random B2B 
instances differing in the configuration of their density and 
shape. Each configuration of density and shape contains 10 
random instances, and a total of 36 different configurations 
were generated, resulting in a total of 1440 different ran-
dom MaxSAT B2B instances. All experiments are run with 
a timeout of 2 h (7200 s). As in [6], a value of homogeneity 
h = 2 was used.4 Each B2B instance was encoded without 
using implied constraints, as well as with implied constraint 
1 (Eq. 17), implied constraint 2 (Eq. 18), and both of them. 
From now on, we refer to these methods as noimp, imp1, 
imp2 and imp12, respectively. In our analysis, we use the 
Open-WBO [11] MaxSAT solver. This is a well-known Max-
SAT solver which has been ranked as one of the best (non-
portfolio) solvers in the industrial partial MaxSAT tracks of 
the last MaxSAT Evaluations. The experiments have been 
executed on Intel Xeon E3-1220v2 machines at 3.10 GHz 
with 8 GB of RAM.

In our analysis, we represent the Penalized Average Runt-
ime 1 (PAR1), which is the average of the runtime used to 
solve the set of instances in a configuration, assigning to 
unsolved instances the used timeout (i.e., 7200 s). We use 
PAR1 due to the low number of timeouts. For each configu-
ration, we depict a box-and-whisker plot, which represents 
the maximum, minimum, median, and quartiles 1 and 3 of 
the runtimes. In the analysis of real-world B2B instances, 
where the number of timeouts increases, we also consider 
the PAR10 runtime (i.e., assigning 10 times the timeout to 
unsolved instances).

3  The generator can be found at https://​www.​ugr.​es/​~jgira​ldez/.
4  We also tested, instead of using homogeneity (i.e., the maximum 
difference between the number of idle periods of every two partici-
pants), to use an upper-bound on that number, but we did not observe 
any difference neither in the optimums nor in the solver performance.

https://www.ugr.es/%7ejgiraldez/
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4.2 � Random B2B Instances

Based on the definitions of density and shape, we can easily 
create families of random B2B problems by setting different 
values to the parameters of the B2Brand model. In all the 
experiments, the random B2B instances have P = 40 par-
ticipants, which is a realistic number of participants accord-
ing to existing real-world B2B instances [4]. In a first batch 
of experiments, we analyze the hardness of random B2B 
problems with respect to their density. To this purpose, we 
fix the number of time slots T and the number of locations 
L, and generate several families of B2B random instances 
varying the number of meetings M. We do the same experi-
ment for four different combinations of T and L (i.e., four 
different shapes), where the product T ⋅ L is the same. There-
fore, we represent the same densities in the four plots (since 
we evaluate the same values of M and the product T ⋅ L is 
always the same). In particular, we generate the following 
B2B random instances: P = 40 , M = {70, 90, 110, 130, 150} , 
and (i) T = 20 and L = 8, (ii) T = 16 and L = 10, (iii) T = 10 
and L = 16 , and (iv) T = 8 and L = 20 . Figure 1 shows the 
results of this experiment.

We first observe that the lower the density is (i.e., the 
lower number of meetings M), the easier the instance 
becomes for the four encodings. This phenomenon is more 
clear as the shape gets higher (i.e., with a high number of 
time slots T w.r.t. the number of locations L). This happens 
in the four shapes analyzed. This is expected since finding 
the optimum schedule of a lower number of meetings seems 
to be an easier task.

A second observation related with the encodings is that 
the encoding without implied constraints noimp always 
performs worse than the other three, whereas the encoding 

with both implied constraints imp12 always shows the 
best performance.

Interestingly, for the encodings with only one implied 
constraint (imp1 and imp2), we can distinguish some 
cases where one performs better than the other. In par-
ticular, when the density is low, the encoding with the first 
implied constraint imp1 seems to perform faster. See, for 
instance, the case with M = 90 , T = 16 and L = 10 (bot-
tom left plot in Fig. 1), for which imp1 is clearly faster 
than imp2. On the contrary, when the density is high, 
imp2 seems to outperform imp1. See, for instance, the 
case with M = 150 , T = 10 and L = 16 (top right plot in 
Fig. 1), where imp2 solves the 10 instances of the family 
whilst imp1 only solves two. We summarize these results 
in Observation 1.

Observation 1  Using the implied constraint 1 (imp1) seems 
to be more interesting when the density is small. On the con-
trary, the implied constraint 2 (imp2) seems to be more rel-
evant when the density is high. Overall, using both implied 
constraints (imp12) is always beneficial.

In a second batch of experiments, we analyze the hard-
ness of random B2B instances with respect to their shape. 
To this purpose, we fix the number of meetings M and the 
number of time slots T, and generate several families of B2B 
random instances varying the number of locations L. We do 
the same experiment for four different values of M (i.e., four 
different densities). Notice that we represent the same shapes 
in the four plots. In particular, we consider the following 
cases: P = 40 , T = 20 , L = {8, 12, 16, 20} , and (i) M = 80

, (ii) M = 100, (iii) M = 130 , and (iv) M = 150 . Figure 2 
shows the results of this experiment.

Fig. 1   PAR1 (in seconds) 
of solving some random 
B2B families of instances, 
with and without using 
implied constraints, vary-
ing their density d. Instances 
are generated using the 
B2Brand model with P = 40 , 
M = {70, 90, 110, 130, 150} , 
and (i) T = 8 and L = 20 (top 
left), (ii) T = 10 and L = 16 (top 
right), (iii) T = 16 and L = 10 
(bottom left), and (iv) T = 20 
and L = 8 (bottom right)
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We observe that the higher the density is (i.e., the 
lower number of locations L), the harder the B2B instance 
becomes. This happens in the four cases analyzed, 
although it occurs more clearly as the density gets higher 
(i.e., with a high number of meetings M). This is expected 
since reducing the number of available locations reduces 
the possible parallelism among meetings, possibly creating 
some idle periods for some participants. Thus, finding the 
optimum schedule may be a harder task.

Again, using no implied constraints (noimp) is always 
worse than using any, whereas using both (imp12) is 
always better than the other three options.

Interestingly, as in the previous analysis, in this sec-
ond experiment of B2B random instances (varying their 
shape) we can also distinguish some configurations in 
which using only one implied constraint performs bet-
ter than using the other. In particular, when the shape is 
high, the encoding with the first implied constraint imp1 
seems to perform faster. See, for instance, the case with 
L = 16 and M = 130 (bottom left plot of Fig. 2), for which 
imp1 is clearly faster than imp2. On the contrary, when 
the shape is low, imp2 seems to outperform imp1. See, 
for instance, the case with L = 12 and M = 150 (bottom 
right plot of Fig. 2), where imp2 solves most of the B2B 
instances of the family, but imp1 only solves one. We 
summarize these results in Observation 2.

Observation 2  Using the implied constraint 1 (imp1) seems 
to be more interesting when the shape is high. On the con-
trary, the implied constraint 2 (imp2) seems to be more 
relevant when the shape is low. Overall, using both implied 
constraints (imp12) is always beneficial.

The intuition behind these observations may be con-
nected to the relation between the implied constraints and 
the number of locations and time slots. In particular, the first 
implied constraint depends on the number of meetings of 
each participant, and this number is bounded by the number 
of time slots. The second implied constraint depends on the 
number of locations. Notice that since we are using cardi-
nality networks to encode these constraints, the smaller the 
number of time slots is, the better for the encoding of the 
first implied constraint, and similarly with the number of 
locations and the second implied constraint. Overall, using 
both implied constraints seems to facilitate finding and prop-
agating contradictions faster either when a participant has 
been scheduled more meetings than their actual meetings 
(i.e., implied constraint 1), or when a time slot has been 
scheduled more meetings than the number of available loca-
tions (i.e., implied constraint 2).

4.3 � Real‑World B2B Instances

Here we want to check if the previous observations are also 
valid in real-world B2B instances. Notice that in the case 
of real-world instances, the combinations of T and L are 
limited ( to obtain feasible non-trivial instances). Therefore, 
the number of perturbed problems (from the original ones) 
is smaller. In this experiment, we use the 20 real-world B2B 
instances from [6].

In Fig. 3 we represent the runtime of solving these real-
world B2B instances varying the density d, with a fixed 
shape s. To fix the shape of these problems, we use the origi-
nal numbers of time slots and locations, and we increase both 
of them in the same proportion. Based on Observation 1, we 

Fig. 2   PAR1 (in seconds) of 
solving some random B2B fam-
ilies of instances, with and with-
out using implied constraints, 
varying their shape s. Instances 
are generated using the 
B2Brand model with P = 40 , 
T = 20 , L = {8, 12, 16, 20} , 
and (i) M = 80 (top left), (ii) 
M = 100 (top right), (iii) 
M = 130 (bottom left), and (iv) 
M = 150 (bottom right)
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predicted that imp1 is more beneficial with small densities, 
imp2 for high density, and imp12 shows good performance 
in all cases. From the results, we observe that this obser-
vation is also valid in the set of real-world instances. For 
example, when Δd = −40% , the fastest encoding in solving 
all instances is imp1. Also, imp2 solves one instance more 
than imp1 when Δd = 0% . Finally, imp12 is, in general, 
the best choice. To support this claim, in Table 1 we report 
some statistics for this experiment. We provide the PAR1 
and PAR10 runtimes. Notice that the penalization in PAR1 is 
small, thus it is useful for comparing the runtime of configu-
rations where the majority of instances were solved. On the 
other hand, using PAR10 especially penalizes timeouts, and 
thus it is useful when some instances were not solved. From 
these results, we observe that imp12 is the fastest method 
in solving hard instances (see Δd = 0% ), but it is also a good 
choice when the instances are easy (see Δd = −40% ). In this 
last case, the differences between imp1 (the fastest method) 
and imp12 are small. Therefore, this observation seems to 
remain valid on this benchmarks.

In Fig. 4 we represent the runtime of solving some real-
world B2B instances varying the shape s, with a fixed den-
sity d. To do so, we increase/decrease T and L in the same 
proportion.5 The prediction from Observation 2 is that imp1 
seems to be more useful than imp2 for small shapes, and 
vice-versa, while imp12 is always beneficial. This claim 
can be observed from the plot. Also, in Table 2 we report 
some statistical results. When the number of timeouts is 
small, we consider more appropriate to compare the PAR1 
scores. We observe that the PAR1 of imp1 is very close to 
the PAR1 of imp2 for small values of Δs (see Δs = 0% ), 

even when it solves one instance less, suggesting that it is 
much faster in the rest. However, as ΔT  increases, imp2 
tends to be faster than imp1. Finally, we can observe than 
imp12 dominates the other encodings. Therefore, this sec-
ond observation also seems to be valid in real-world B2B 
problems.

4.4 � Performance of the MaxSAT Solver

Finally, we conjecture why the use of implied constraints is 
beneficial to improve the performance of the solver. In the 
following figures, all Boolean variables are grouped into 
the high-level variables and constraints they encode (see the 
horizontal lines). The high-level variables are the following: 
schedule , usedSlot and meetingHeld are directly the ones of 
the encoding; exactlyOne are the auxiliary variables encod-
ing that each meeting is scheduled in a time slot exactly 
once; tableCount are the auxiliary variables encoding that 
at most one meeting is scheduled in a time slot and location; 
imp1 and imp2 are the auxiliary variables encoding the 
implied constraints; the rest are the auxiliary variables to 
deal with optimization and homogeneity.

In Fig. 5 we represent the branching variables on which 
the solver decided along its execution, for the encodings 
noimp (top left), imp1 (top right), imp2 (bottom left) and 
imp12 (bottom right), for a random B2B instance generated 
with the B2Brand model and low density ( P = 40 , M = 90 , 
T = 16 and L = 10 ). For simplicity, we only represent the 
results of a single instance. However, we have found the 
same behavior in all instances we have analyzed. Accord-
ing to Observation 1, instances with low density are solved 
faster by imp1 (and imp12). The runtime and the number 
of decisions of each encoding are reported in Table 3.

Since this instance is solved by imp12 in 126,770 deci-
sions, we only represent the first 130,000 decisions for the 

Fig. 3   PAR10 (in seconds) of solving real-world B2B instances, with 
and without using implied constraints, varying their density d, and 
with a fixed shape, i.e., ΔT = ΔL

Fig. 4   PAR10 (in seconds) of solving real-world B2B instances, with 
and without using implied constraints, varying their shape s, and with 
a fixed density, i.e., fixed T ⋅ L

5  For distinct values of T and L, increasing/decreasing them in the 
same proportion does not ensure that its product continues being the 
same. However, this does happen in our real-world instances.
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four encodings. However, the behavior shown in the plots is 
the same during the whole execution.

We remark that Open-WBO uses a CDCL SAT solver 
internally (we used its default version, with Glucose 3.0). In 
CDCL solvers, after each conflict, the variables involved in 
it are increased their activity, and these activity counters are 
used by the branching heuristic to select the next decision 
variable. Therefore, these decisions give an intuition about 
where the search was performed.

We observe that in four encodings, variables schedule , 
usedSlot , meetingHeld and exactlyOne are very active dur-
ing the whole execution. This is expected since they rep-
resent the most important variables of the problem. When 

Table 1   Statistics of solving 
real-world B2B instances, 
varying their density d, for a 
fixed shape s (with ΔT = ΔL)

#s stands for the number of solved instances. The best results are marked in bold

Δd = −40% Δd = −20% Δd = 0%

#s PAR1 PAR10 #s PAR1 PAR10 #s PAR1 PAR10

noimp 20 3777.3 3777.3 20 7194.7 7194.7 18 30048.6 159648.7
imp1 20 62.7 62.7 20 154.3 154.3 18 14704.3 144304.3
imp2 20 4527.5 4527.5 20 5527.8 5527.8 19 12937.8 77737.8
imp12 20 110.1 110.1 20 114.9 114.9 20 2060.5 2060.5

Table 2   Statistics of solving 
real-world B2B instances, 
varying the shape s, for a fixed 
density d (with T ⋅ L fixed)

 #s stands for the number of solved instances, and the best results are marked in bold

Δs = 0% Δs = 10% Δs = 20%

#s PAR1 PAR10 #s PAR1 PAR10 #s PAR1 PAR10

noimp 18 30048.7 159648.7 5 108228.3 1080228.3 3 122503.3 1224103.3
imp1 18 14704.3 144304.3 8 92829.1 870429.1 3 122409.9 1224009.9
imp2 19 12937.8 77737.8 9 87409.0 800209.0 3 127373.3 1228973.3
imp12 20 2060.5 2060.5 11 68465.1 651665.1 5 113262.9 1085262.9

Fig. 5   Branching variables 
decided by the solver along 
its execution, for a random 
B2B instance with low density 
(P = 40,M = 90,T = 16,L = 10) , 
during their first 130, 000 
decisions (solved by imp12 in 
126, 770 decisions)
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Table 3   Runtime and number of decisions required to solve the B2B 
problem with low density of Fig.  5: a random B2B instance with 
P = 40,M = 90,T = 16,L = 10

Encoding Runtime No. of decisions

No implied constraints (noimp): 175.42 s 2,362,611 dec.
Implied constraint 1 (imp1): 7.69 s 223,729 dec.
Implied constraint 2 (imp2): 36.08 s 521,272 dec.
Implied constraints 1 and 2 (imp12): 5.07 s 126,770 dec.
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we use one implied constraint only, this implied constraint 
is very active. Also, when we use both implied constraints, 
they reinforce their activity mutually and, therefore, the 
performance of the solver improves. This phenomenon is 
clear from the plot, but we can analyze it in detail during 
the whole execution. For instance, in the encoding imp2, 
25.08% of the decisions correspond to this implied con-
straint. When using the encoding imp12, the percentage 
of decisions on the variables of the implied constraint 2 is 
22.24% of the total. Therefore, the use of imp1 reduces the 
need of using imp2, and hence, the instance is solved faster.

In Fig. 6 we represent the results of the same experi-
ment using an instance with high density ( P = 40 , M = 150 , 
T = 10 and L = 16 ). Again, we only represent results for a 
single instance but conclusions are general for the family. 
According to Observation 1, instances with high density are 
solved faster by imp2 (and imp12). This is also the case 
of this instance, whose runtime and number of decisions are 
reported in Table 4.

In this case, it is worth noticing that, although imp2 
needs a larger number of decisions to solve the formula, it 
solves it much faster. This suggests that imp1 spends much 
more time in propagations, to find a conflict. In fact, it can 
be observed in Fig. 6 that the variables of this implied con-
straint are almost never decided during the whole execution 
(except at the beginning of the search). On the contrary, 
imp2 makes more conflicting decision, but they propagate 
faster. As a consequence, the instance is solved much faster 
by imp2. Also, the encoding imp2 took 8.62% of its deci-
sions on the Boolean variables from this implied constraint. 
When using both implied constraints imp12, the decisions 

on the variables of the second implied constraint represent 
the 22.26% of the total number of decisions.

We also checked these effects on some real B2B instances. 
The encoding imp1 is more efficient for the instance 
forum-14, taking 4.45% of its decisions on this constraint. 
When using both implied constraints, this increases up to 
6.03% of the decisions. Similarly, the encoding imp2 is 
more efficient solving the instance tic-13crafc, with 
a 15.45% of decisions on this constraint. When using both 
implied constraints, these decisions are 47.80% . This sug-
gests that the previous hypothesis is also valid in real-world 
B2B instances.

5 � Conclusions and Future Work

In this work, we have provided an experimental study of 
the impact of using implied constraints in B2B scheduling 
problems using MaxSAT-based encodings.

Fig. 6   Branching variables 
decided by the solver along 
its execution, for a random 
B2B instance with high 
density ( P = 40,M = 150,
T = 10, L = 16 ), during their 
first 40, 000 decisions (solved 
by imp12 in 24, 169 decisions)
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Table 4   Runtime and number of decisions required to solve the B2B 
problem with high density of Fig.  6: a random B2B instance with 
P = 40,M = 1500,T = 10,L = 16

Encoding Runtime No. of decisions

No implied constraints (noimp): 51.55 s 820,327 dec.
Implied constraint 1 (imp1): 51.35 s 778,518 dec.
Implied constraint 2 (imp2): 36.26 s 1,462,374 dec.
Implied constraints 1 and 2 (imp12): 0.56 s 24,169 dec.
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Due to the limited number of real-world instances, we 
have proposed a random B2B instances generator, using 
a model based on an uniform probability of a participant 
requesting a meeting with another participant. Using this 
generator, we have generated families of random B2B 
instances, and studied the strengths and weaknesses of using 
implied constraints depending on the characteristics of the 
instance. We have focused the analysis on the density (i.e., 
the ratio between the number of meetings and the accom-
modation capacity) and the shape (i.e., the configuration of 
the accommodation capacity, expressed as the ratio between 
time slots and locations).

We have observed that there exists a duality in the bene-
fits of using the two implied constraints studied in this work. 
For small densities or high shapes, we have seen that it is 
more useful to use the implied constraint imp1. On the con-
trary, for high densities or low shapes, the second implied 
constraint imp2 is more beneficial. Overall, the use of both 
implied constraints results in a very good performance in 
all cases.

As future work, we propose to extend this analysis in 
three different directions. First, we plan to extend our ran-
dom B2B model to incorporate passive participants. As 
stated before, this can be achieved using a different probabil-
ity distribution when choosing the two participants of each 
meetings, rather the uniform distribution used in the cur-
rent model. Additionally, the random model can be extended 
by introducing secondary constraints, like forbidden time 
slots and fixed sessions (e.g., morning and afternoon meet-
ings). Second, we propose to study solver heuristics that, 
for instance, prioritize taking decisions on the most rele-
vant variables of the model (e.g., the variables that encode 
the implied constraints imp1 or imp2), depending on the 
characteristics of the problem, like the density or the shape. 
Finally, we plan to study further cardinality constraints to 
solve B2B problems, and their impact on the characteristics 
of the instances (such as density and shape).
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