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A Swarm Optimizer with Modified Feasible-Based 
echanism for Optimum Structure in Steel Industry  

 

 

act 

tudy proposes a swarm optimizer with a modified feasible-based mechanism approach for

g an optimum design for steel frames. The proposed optimization approach addresses the

em of stagnation possibility in the traditional particle swarm optimization in which none

 particles tries to explore a position better than the previous best position for multiple

ers of iterations. This method is based on accelerated particle swarm optimization and big

big crunch optimization algorithms. In addition, a modified feasible-based mechanism is

to correct the particle’s position. The new method’s performance is evaluated by solving

tructural problems to minimize the weight of steel frames. The results show that the

ized designs obtained by the proposed algorithm are better than those found by the

eting algorithms from the literature. Keywords: swarm optimizer; big bang-big crunch

ization; optimum design; modified feasible-based mechanism; steel industry. 

troduction  

he main aim of structural optimization is to reduce the weight of the structures and at the

 time have a safe design. To this end, researchers present plenty of methods to optimize

tructures. These methods are categorized into two groups: deterministic and probabilistic

ods, which are based on mathematical programming and stochastic ideas, respectively

y engineering design problems are too complex to be handled with mathematica

ramming methods. Therefore, for such cases, nature-inspired or meta-heuristic search
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rithms model natural phenomena” [1]. Unlike mathematical optimization, meta-heuristic

h methods do not require the data as in the conventional mathematical programming and

 have better global search abilities than the classical optimization algorithms [2-4].  

n the past few decades, many meta-heuristic methods have been developed [5-13] and

ied for the optimum design of structures. Pezeshk et al. [14] performed the optimal design

ane steel frames using the genetic algorithms (GA) and later in the other studies, it has

 utilized to design steel frame structures [15-17]. Kameshki and Saka [18] found optimum

ns of plane steel frames with semi-rigid connections using a GA-based method and a

etrically nonlinear analysis. Moreover, Saka [19] used a harmony search (HS) algorithm

der to design the sway frames. Camp et al. [20] and Kaveh et al. [21] used the ant colony

ization (ACO) for the optimum design of steel frame structures. Kaveh and Talatahar

nted different optimization methods to optimize the skeletal structures [22-25]. In these

es, an improved ACO (IACO) [22], imperialist competitive algorithm (ICA) [23], hybrid

ang-big crunch (HBB-BC) [24], and charge system search (CSS) algorithm [25] were

nted and validated. In the other two studies, Aydoğdu et al. [26, 27] found optimum

ns of space steel frames with a firefly-based algorithm (FA) and artificial bee colony

C) algorithm. Degertekin [28] utilized the HS algorithm for the optimum design of stee

es. Furthermore, Toğan [29] utilized the teaching–learning-based optimization (TLBO) to

n planner steel frames.  In the other study, Kaveh and Talatahari [30] presented the hybrid

ony particle swarm ant colony (HPSACO) methodology to find an optimum design for

rent types of structures. In addition, Kaveh and Zakian [31] utilized CSS and HS

rithms for the design of steel frames. In the other study, Talatahari et al. [32] combined the

 strategy algorithm with differential evolution (ES-DE) for optimum design of the frame
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ization can be found at [33,34]. 

inding optimum design of structures, especially large-scale ones, is one of challenging

lems in the field of engineering. The reason is due to large-number of variables which

ts a large-scale search space in on hand and difficulty of analyzing and controlling the

 number of nonlinear constraints on the other hand. To fulfill handle this problem, one way

 introduce more efficient methods to reduce the required computational cost. There are

ed works that address this challenging problem, such as [35-37]. This aim is covered in

paper by presenting Developed Swarm Optimizer (DSO) [10] and Feasible-based

anism as advanced methods.  DSO is based on the accelerated particle swarm optimizer

O) and big bang–big crunch optimization (BB-BC) optimization algorithm. In this paper

DSO method is adapted for solving two frame structures and compared with other

rithms. Furthermore, a modified feasible-based mechanism is utilized to correct the

cle's position. The results show that the proposed method has a better result when

pared to those from the literature. 

ormulation of optimum design of steel frames according to AISC-LRFD 

he purpose of size optimization of frame structures is to minimize the weight of the

ture, W, through finding the optimal sections of members, in which all constraints exerted

e problem must be satisfied, simultaneously. Thus, the optimal design of frame structures

e formulated as: 

: 

[𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3, … , 𝑥𝑥𝑛𝑛]                                                                (1) 

inimize: 
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𝑊𝑊(𝑋𝑋) = �Ƴ𝑖𝑖 .
𝑛𝑛𝑛𝑛

𝑥𝑥𝑖𝑖 . 𝐿𝐿𝑖𝑖                                                                (2) 
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𝑖𝑖=1

e xi, Ƴi and Li are the area, material density and length of the steel section selected for

ber group i, respectively. Here, the objective of finding the minimum weight structure is

cted to several design constraints, including strength and serviceability requirements [38]

lacement constraint: 

= �
𝛿𝛿𝑖𝑖
𝛿𝛿𝚤𝚤�
� − 1 ≤ 0   𝑖𝑖 = 1,2, … ,𝑛𝑛𝑛𝑛 

                                                               (3) 

r constraint, for both major and minor axis: 

𝑉𝑉𝑢𝑢
𝜙𝜙𝑣𝑣𝑉𝑉𝑛𝑛

− 1 ≤ 0   𝑖𝑖 = 1,2, … ,𝑛𝑛𝑛𝑛                                                                (4) 

traints corresponding to the interaction of flexure and axial force are as follows: 

⎩
⎪
⎨

⎪
⎧ 𝑃𝑃𝑢𝑢
𝜙𝜙𝑐𝑐𝑃𝑃𝑛𝑛

+
8
9
�
𝑀𝑀𝑢𝑢𝑢𝑢

𝜙𝜙𝑏𝑏𝑀𝑀𝑛𝑛𝑛𝑛
+

𝑀𝑀𝑢𝑢𝑢𝑢

𝜙𝜙𝑏𝑏𝑀𝑀𝑛𝑛𝑛𝑛
� − 1 ≤ 0  𝑓𝑓𝑓𝑓𝑓𝑓  

𝑃𝑃𝑢𝑢𝑢𝑢
𝜙𝜙𝑐𝑐𝑃𝑃𝑛𝑛

≥ 0.2

𝑃𝑃𝑢𝑢
2𝜙𝜙𝑐𝑐𝑃𝑃𝑛𝑛

+ �
𝑀𝑀𝑢𝑢𝑢𝑢

𝜙𝜙𝑏𝑏𝑀𝑀𝑛𝑛𝑛𝑛
+

𝑀𝑀𝑢𝑢𝑢𝑢

𝜙𝜙𝑏𝑏𝑀𝑀𝑛𝑛𝑛𝑛
� − 1 ≤ 0  𝑓𝑓𝑓𝑓𝑓𝑓  

𝑃𝑃𝑢𝑢𝑢𝑢
𝜙𝜙𝑐𝑐𝑃𝑃𝑛𝑛

< 0.2
⎭
⎪
⎬

⎪
⎫

  

  𝑖𝑖 = 1,2, … ,𝑛𝑛𝑛𝑛 

(5) 

e nn is the number of nodes; δi, 𝛿𝛿𝑖̅𝑖 are the displacement of the joints and the allowable

acement, respectively; nm is the number of members; Vu is the required shear strength; Vn

e nominal shear strength which is defined by the equations in Chapter G of the LRFD

ification [38]; ϕv is the shear resistance factor ϕv=0.9; Pu is the required strength (tension

mpression); Pn is the nominal axial strength (tension or compression); ϕc is the resistance

r (ϕc=0.9 for tension, ϕc=0.85 for compression); Mu is the required flexural strength; i.e.

oment due to the total factored load (Subscript x or y denotes the axis about which bending

rs.); Mn is the nominal flexural strength determined in accordance with the appropriate
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equations in Chapter F of the LRFD Specification [38] and ϕb is the flexural resistance 87 
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ction factor (ϕb=0.9 ) according to AISC-LRFD [38]. 

Nominal strengths 

ased on AISC-LRFD [38] specification, the nominal tensile strength of a member, based

ielding in the gross section, is equal to: 

𝐹𝐹𝑦𝑦𝐴𝐴𝑔𝑔 (6) 

e Fy is the member's specified yield stress and Ag is the gross section of the member. The

inal compressive strength of a member is the smallest value obtained from the limit states

exural buckling, torsional buckling, and flexural–torsional buckling. For members with

pact and/or non-compact elements, the nominal compressive strength of the member for

imit state of flexural buckling is as follows: 

𝐹𝐹𝑐𝑐𝑐𝑐𝐴𝐴𝑔𝑔 (7) 

re Fcr is the critical stress based on flexural buckling of the member, calculated as: 

 𝜆𝜆𝑐𝑐 =
𝐾𝐾𝐾𝐾
𝑟𝑟𝑟𝑟

�𝐹𝐹𝑦𝑦
𝐸𝐸
≤ 1.5     𝐹𝐹𝑐𝑐𝑐𝑐 = �0.658𝜆𝜆𝑐𝑐2�𝐹𝐹𝑦𝑦 (8) 

 𝜆𝜆𝑐𝑐 =
𝐾𝐾𝐾𝐾
𝑟𝑟𝑟𝑟

�𝐹𝐹𝑦𝑦
𝐸𝐸

> 1.5     𝐹𝐹𝑐𝑐𝑐𝑐 = �
0.877
𝜆𝜆𝑐𝑐2

� 𝐹𝐹𝑦𝑦 (9) 

e l is the laterally unbraced length of the member, K is the effective length factor, r is the

rning radius of gyration about the axis of buckling and E is the modulus of elasticity. 

Effective length factor K 

n order to calculate the nominal compressive strength, the effective length factor, K, should

etermined for each member. This factor can be computed using the frame buckling
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monograph [38]. For sway frames, the effective length factor for columns is computed as 103 
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ws: 

𝑖𝑖𝐺𝐺𝑗𝑗 − 36
𝐺𝐺𝑖𝑖 + 𝐺𝐺𝑗𝑗)

=
𝛼𝛼

tan𝛼𝛼
 (10) 

∑ 𝐼𝐼𝑐𝑐𝑐𝑐 𝑙𝑙𝑐𝑐𝑐𝑐⁄
∑ 𝐼𝐼𝑏𝑏𝑏𝑏 𝑙𝑙𝑏𝑏𝑏𝑏⁄   , 𝐺𝐺𝑗𝑗 =

∑ 𝐼𝐼𝑐𝑐𝑐𝑐 𝑙𝑙𝑐𝑐𝑐𝑐⁄
∑ 𝐼𝐼𝑏𝑏𝑏𝑏 𝑙𝑙𝑏𝑏𝑏𝑏⁄    (11) 

e α=π/K, i and j subscripts correspond to end-i and end-j of the compression member, and

cripts c and b, in building structures, refer to columns and beams connecting to the join

r consideration, respectively. Parameters I and l in the above equations, represent the

ent of inertia and unbraced length of the member, respectively. 

 Review of Optimization Algorithms 

ince the utilized algorithm is based on the PSO and BB-BC algorithms, here a brief review

ese algorithms is described in the following subsections and then in the next section, the

 algorithm will be presented. 

Particle Swarm Optimization 

he PSO is based on a metaphor of social interaction, such as bird flocking and fish

oling, and is developed by Eberhart and Kennedy [8]. The PSO simulates a commonly

rved social behavior, where members (particles) of a group (swarm) tend to follow the

of the best of the group. In other words, the particles fly through the search space and their

ions are updated based on the best positions of individual particles denoted by 𝑷𝑷𝑖𝑖𝑘𝑘 and the

position among all particles in the search space represented by 𝑷𝑷𝑔𝑔𝑘𝑘. 

procedure of the PSO is reviewed below: 

 Step 1: Initialization. An array of particles and their associated velocities are initialized

with random positions. 
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best and the best of them corresponding to the minimum objective function will be the

first global best. 

 Step 3: Solution construction. The velocity and location of each particle are changed to

the new position using the following equations: 

1 = 𝑿𝑿𝑖𝑖𝑘𝑘 + 𝑽𝑽𝑖𝑖𝑘𝑘+1 (12) 

1 = 𝜔𝜔𝑽𝑽𝑖𝑖𝑘𝑘 + 𝑐𝑐1𝑟𝑟1 ⊗ �𝑷𝑷𝑖𝑖𝑘𝑘 − 𝑿𝑿𝑖𝑖𝑘𝑘� + 𝑐𝑐2𝑟𝑟2 ⊗ �𝑷𝑷𝑔𝑔𝑘𝑘 − 𝑿𝑿𝑖𝑖𝑘𝑘� (13) 

e, 𝑿𝑿𝑖𝑖𝑘𝑘 and 𝑽𝑽𝑖𝑖𝑘𝑘 are the position and velocity for the ith particle at iteration k; ω is an inertia

ht to control the influence of the previous velocity; r1, and r2  are two random numbers

rmly distributed in the range of (0, 1); c1 and c2 are two acceleration constants; 𝑷𝑷𝑖𝑖𝑘𝑘 is the

position of the ith particle up to iteration k; 𝑷𝑷𝑔𝑔𝑘𝑘 is the best position among all particles in

warm up to iteration k and the sign “⊗” denotes element-by-element multiplication. 

 Step 4: Local and global best updating. The objective function of the particles is

evaluated and thus 𝑷𝑷𝑖𝑖𝑘𝑘 and 𝑷𝑷𝑔𝑔𝑘𝑘  are updated if the new positions are better than the

previous one. 

 Step 5: Terminating criterion control. Steps 3 and 4 are repeated until a terminating

criterion is satisfied.  

he accelerated PSO (APSO) [39] is an improved variant of the standard PSO in which the

city vector is updated as: 

1 = 𝑽𝑽𝑗𝑗𝑘𝑘 + 𝑐𝑐1 × 𝒓𝒓𝒓𝒓𝑗𝑗𝑘𝑘 + 𝑐𝑐2 × �𝑷𝑷𝑔𝑔𝑘𝑘 − 𝑿𝑿𝑗𝑗𝑘𝑘� (14) 

e, 𝒓𝒓𝒓𝒓𝑗𝑗𝑘𝑘 is a random vector whose elements are normally distributed with zero mean and a

standard deviation. Therefore, the new position vector in the APSO is written as: 

1 = (1 − 𝑐𝑐2) × 𝑿𝑿𝑗𝑗𝑘𝑘 + 𝑐𝑐1 × 𝒓𝒓𝒓𝒓𝑗𝑗𝑘𝑘 + 𝑐𝑐2 × 𝑷𝑷𝑔𝑔𝑘𝑘 (15) 
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he BB–BC method developed by Erol and Eksin [9] consists of two phases: a big bang

e, and a big crunch phase. During the big bang phase, new solution candidates are

omly generated around a “center of mass”, which is later calculated in the big crunch phase

 respect to their fitness values. After the big bang phase, a contraction operation is applied

g the big crunch. In this case, the contraction operator takes the current positions of each

idate solution in the population and its associated fitness function value and computes a

r of mass.  

procedure of the BB-BC is reviewed below: 

 Step 1: Initialization. Initial generation of candidates in a random manner in the search

space (the first big bang).  

 Step 2: Individual best creation. Calculate the fitness function values for all of the

candidate solutions. The initial candidates are considered as the first individual bes

value to minimize the objective function.  

 Step 3: Finding the center of mass. The center of mass is calculated by Eq (16), (the

big crunch phase): 

=
∑ 1

𝑓𝑓𝑗𝑗𝑘𝑘
𝑁𝑁
𝑗𝑗=1 𝑿𝑿𝑗𝑗𝑘𝑘

∑ 1
𝑓𝑓𝑗𝑗𝑘𝑘

𝑁𝑁
𝑗𝑗=1

 (16) 

e Xj is the position of jth solution, 𝑓𝑓𝑗𝑗𝑘𝑘 is a fitness function value of this point at the kth

tion, and N is the population size. 

 Step 4: Solution construction. Calculate the new candidate fitness values around the

center of mass and update the center of mass using Eq (17), (second big bang): 

𝑛𝑛 = 𝑿𝑿𝑐𝑐𝑘𝑘 + 𝒓𝒓𝒓𝒓𝑗𝑗𝑘𝑘 ⊗  
𝛼𝛼�𝑿𝑿𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑿𝑿𝑚𝑚𝑚𝑚𝑚𝑚�

𝑘𝑘 + 1
 (17) 
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r bounds of the design variables, respectively; 𝒓𝒓𝒓𝒓𝑗𝑗𝑘𝑘 is a random vector from a standard

al distribution, and α is a parameter for limiting the size of the search space. 

 Step 5: Terminating criterion control. Steps 2-4 are repeated until a terminating

criterion is satisfied. 

eveloped Swarm Optimizer 

he developed swarm optimizer (DSO) was recently developed by Sheikholeslami and

tahari [10] to solve water network systems. Based on the fact that one of the importan

vantages of the PSO is its higher speed of convergence with a higher possibility of

rsity loss which leads to an undesirable premature convergence, the DSO was proposed [9]

hich the process of escaping from a local optimum is dealt with. In this algorithm, the

ification in the PSO is conducted in which the previously defined center of mass in the

C method is inserted in the position updating process of the PSO. The procedure of the

 is summarized in the following steps: 

 Step 1: Initialization. Initialize an array of particles with random positions. 

 Step 2: Local best, global best and center of mass creation. Calculate the fitness

function values for all of the candidate solutions. Local best, global best and center of

mass are determined. 

 Step 3: Solution construction. This step contains two phases: 

Step 3.1: Global searching. Global searching of the DSO method is performed by

adding the big crunch phase of the BB-BC algorithm into the APSO according to Eq

(18): 

1 = (1 − 𝑐𝑐2) × 𝑿𝑿𝑗𝑗𝑘𝑘 + 𝑐𝑐1 × 𝒓𝒓𝒓𝒓𝑗𝑗𝑘𝑘 + 𝑐𝑐2 × �𝒓𝒓𝟏𝟏𝑗𝑗𝑘𝑘 ⊗ 𝑷𝑷𝑔𝑔𝑘𝑘 + (1 − 𝒓𝒓𝟏𝟏𝑗𝑗𝑘𝑘 ) ⊗𝑿𝑿𝑐𝑐𝑘𝑘� (18) 
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where, 𝒓𝒓𝟏𝟏𝑗𝑗𝑘𝑘  is a random vector uniformly distributed in the range of [0, 1]. Eq. (18) contains 185 
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 parts: (i) part one represents the influence of the previous position toward the curren

ion, (ii) part two makes the algorithm explore the whole search space effectively, and (iii)

three represents the cooperation among the particles in finding the global optimal solution

Step 3.2: Local searching. In the local searching step, each particle generates a solution

(𝒁𝒁𝑗𝑗𝑘𝑘) around the global best-center of mass points which can be calculated using a

normal distribution: 

= 𝑁𝑁 ��𝒓𝒓𝟏𝟏𝑗𝑗𝑘𝑘 ⊗ 𝑷𝑷𝑔𝑔𝑘𝑘 + (1 − 𝒓𝒓𝟏𝟏𝑗𝑗𝑘𝑘 ) ⊗𝑿𝑿𝑐𝑐𝑘𝑘�,𝜎𝜎� (19) 

n order to account for the information received over time that reduces uncertainty abou

lobal best position, σ in the kth iteration is modeled using a non-increasing function as: 

𝒓𝒓𝒓𝒓𝑗𝑗𝑘𝑘 ⊗
𝛼𝛼�𝑿𝑿𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑿𝑿𝑚𝑚𝑚𝑚𝑚𝑚�

𝑘𝑘 + 1
 (20) 

e 𝒓𝒓𝒓𝒓𝑗𝑗𝑘𝑘 is a random vector from a standard normal distribution, and α is a parameter for

ing the size of the search space. 

 Step 4: Constraint handling methods and fitness finding: This step is performed in two

phases, as: 

Step 4.1: Position correction. For both solutions generated in global and local steps, if

they move out of the search space, their positions are corrected using the harmony

memory (HM) concept of the HS method. 

Step 4.2: Problem-specified constraint handling. The modified feasible-based

mechanism is performed as described in the next subsection.  

 Step 5: Update global best and center of mass positions. The new best global and center

of mass are updated and stored. 

 Step 6: Terminating criterion control. Steps 2-5 are repeated until a terminating

criterion is satisfied. 
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Step 5 

Step 5 

flowchart of the DSO is shown in Figure 1. 

 

Figure 1. Flow-chart of DSO algorithm. 
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In the proposed DSO algorithm, a modified feasible-based mechanism (FBM) is also used 213 
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ndle the problem-specific constraints. In the original FBM, also known as constrain

ament selection, pair-wise solutions are compared using the following rules: 

 Rule 1: Any feasible solution is preferred to any infeasible solution. 

 Rule 2: Between two feasible solutions, the one having a better objective function value

is preferred. 

 Rule 3: Between two infeasible solutions, the one having a smaller sum of constrain

violation is preferred. This sum is calculated by: 

 = �max (0,𝑔𝑔𝑖𝑖(𝑿𝑿))

𝑛𝑛𝑔𝑔

𝑗𝑗=1

 (21) 

e gj is the jth inequality constraint, X is the set of decision variables, and ng is the tota

ber of inequality constraints. 

y using the first and third rules, the search tends to the feasible region rather than the

sible region, and the second rule persuades the search to remain in the feasible region with

 solutions. In order to overcome to maintain diversity population problem, in the proposed

, an additional rule is added and defined as follows [10]: 

 Rule 4: Infeasible solutions containing slight violations of the constraints (from 0.01 in

the first iteration to 0.001 in the last iteration) are considered as feasible solutions. 

y applying Rule 4, the particles can approach the boundaries and can move towards the

al minimum with a high probability. Figure 2 shows the flowchart of the modified feasible-

d mechanism. 
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Figure 2. Flow-chart of FBM. 

umerical examples  

n this section, the performance of the DSO algorithm is investigated by solving two real-

frame structures, containing: 

135-member, 3-story, 3D frame 

1026-member, 10-story, 3D frame 

or these examples, the simple DSO [40], UBB–BC [41], UMBB–BC [41], UEBB–BC

 UPSO [42], CSS [43] and ISA [44] were utilized before. In the DSO method, the BB-BC

rithm was combined with an accelerated PSO algorithm to improve the searching ability

e agents in the search space, therefore, the new method can find the minimum structura

ht. Optimal results were compared with the literature to demonstrate the validity of the

osed approach. The optimization algorithms were coded in MATLAB while structura

Feasible solution 

 

CP1 & CP2 are feasible solutions  

CP3 & CP4 are infeasible solutions  

 

CP1 & CP2 are selected 

Infeasible solution 

 

Objective function of 
CP1 is better than CP2 

Constraint violation of CP3 is less than CP4 

CP1 is selected 

CP3 is 
selected 

If constraint violation of 
CP4 is between 0.01 and 

0.001 

CP4 is 
selected 

Feasible solution 
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analysis was performed with the SAP2000 software. In this study, the total number of 246 

para  247 

origi  248 

that  249 

these 250 

cons  251 

summ 252 

5.1.E 253 

T  254 

mem  255 

exam , 256 

E=20  257 

stabi  258 

syste  259 

mem , 260 

inne  261 

the t . 262 

All o 263 

sizin  264 

one s  265 

elem  266 

brac  267 

as 1  268 

colu  269 

direc 270 
Jo
ur

na
l P

re
-p

ro
of

meters is the same as its original variant of DSO. As a result, since the parameters of the

nal DSO was evaluated in Ref. [10], we here utilized the same values. It is worth to note

one may reach better performance for the presented method by tunning the parameters for

 problems, however we aim to evaluate the abilities of the method without such time-

uming process. The details of the numerical examples and optimum results are

arized in the following subsections. 

xample 1:  design of a 135-member 3-story steel frame 

his example contains 135 elements including 66 beams, 45 columns and 24 bracing

bers as indicated in Figure 3. The geometry, load combination and other details of the

ple are taken from [43]. The material properties for this example are modulus of elasticity

0 GPa, yield stress, Fy=248.2 MPa, and unit weight of the steel, ρ=7.85 ton/m3. The

lity of the structure is provided through moment-resisting connections as well as bracing

ms (inverse V - type) along the x directions. The 135-member frame is placed into 10

ber groups. The columns are grouped into four sizing variables in a plan level as corner

r, side x–z and side y–z columns, and they are assumed to have the same cross-section over

hree stories of the frame. The columns grouping in the plan level is illustrated in Figure 4

f the beams in each story are grouped into one sizing variable, resulting in three beam-

g design variables for the frame. Similarly, all the bracings in each story are grouped into

izing variable, resulting in three bracing-sizing design variables for the frame. The beam

ents are continuously braced along their lengths by the floor system, and columns and

ings are assumed to be unbraced along their lengths. The effective length factor, K, is taken

for all beams and bracings. The K factor is conservatively taken as 1.0 for buckling of

mns about their minor (weak) direction, and for buckling of columns about their major

tion, the K factor has been calculated from Section 2.2. 
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O reported in the literature are summarized in Table 1. This work found the best design

all corresponding to a structural weight of 38.18 tons. Optimized weights reported in the

ture were heavier than the present study and equal to 55.66, 47.3, 45.67 and 38.91 tons

PSO, UBB-BC, UMBB-BC and UEBB-BC, respectively. The DSO algorithm needs 1000

ses to complete the optimization process which is almost equal to those of the UBB-BC

B-BC and UEBB-BC i.e., 880, 1794 and 1235, respectively. It is clear the proposed DSO

rithm has a good performance compared to those other improved BB-BC-based

rithms.  
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Figure 3. 3D view of the 135-Member 3-story steel frame. 282 
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Figure 4. Columns grouping of 135-member 3-story steel frame in plan level, [41]. 

 

Table 1: Optimum designs obtained for 135-member 3-story steel frame. 

lement 

roup 

Optimal W-shape sections 

UPSO [42] UBB-BC [41] UMBB-BC [1] UEBB-BC [41] Current work 

CG1a W8X28 W10X39 W30X90 W21X62 W16X40 

CG2 W33X118 W27X84 W14X48 W14X48 W27X84 

CG3 W40X167 W40X149 W40X215 W36X150 W24X76 

CG4 W14X53 W18X65 W27X84 W21X68 W21X62 

B1a W14X30 W21X44 W14X34 W18X40 W16X36 

B2 W24X55 W16X40 W12X35 W18X35 W21X44 

B3 W16X26 W10X22 W18X35 W16X26 W14X22 

BR1a W14X30 W27X84 W21X44 W8X24 W6X25 

BR2 W14X149 W16X26 W10X22 W16X26 W6X20 

BR3 W27X84 W21X44 W6X15 W6X15 W6X15 

ght (ton) 55.66 47.3 45.67 38.91 38.18 

 denotes column group with respect to Fig. 4, B: beams, BR: bracings. 
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5.2.Example 2: design of a 1026-member 10-story steel frame 288 

T  289 

geom  290 

cons  291 

elem  292 

well  293 

mem  294 

in bo  295 

ever t 296 

colu  297 

brac l 298 

grou l 299 

of 32  300 

leng  301 

leng  302 

brac  303 

been - 304 

shap 305 

306 
Jo
ur

na
l P

re
-p

ro
of

he 10-story steel frame indicated in Figure 5 is selected as the second example. The

etry, load combination and other details of the example are taken from [41]. The frame

ists of 1026 structural members, including 580 beams, 350 columns and 96 bracing

ents. The stability of the structure is provided through moment-resisting connections as

 as bracing systems (X - type) along the x directions. For optimizing purposes, the 1026

bers of the frame are placed under 32 member groups. The member grouping is considered

th plan and elevation levels. At elevation level, the structural members are grouped in

y three stories except the first story. At the plan level, columns are considered in 5 differen

mn groups as depicted in Figure 6; beams are divided into outer and inner beams, and

ings are assumed to be in one group. Therefore, based on both elevation and plan leve

pings, there are a total of 20 column groups, 8 beam groups, 4 bracing groups, and a tota

 design variables. The unbraced lengths of all beam elements are set to one-fifth of their

ths and columns and bracings are assumed to be unbraced along their lengths. The effective

th factor, K, for buckling of columns about their minor direction as well as beams and

ings is taken as 1, and for buckling of columns about their major direction, the K factor has

 calculated from Section 2.2.  The cross-sections of the elements are selected from 267 W

e sections in the optimization processes. 
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Figure 5. 3-D view of the 1026-Member 10-story steel frame. 
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Figure 6. Columns grouping of 1026-member 10-story steel frame in plan level, [41]. 

he optimization results of the proposed method are compared with the ones reported in

iterature in Table 2. The DSO found the optimum structural weight of 544.14 tons

mized weights reported in literature equal to 557.95, 634.12, 612.05,584.93, 559.32 and

17 tons for the simple DSO [40], UBB-BC [41], UMBB-BC [41], UEBB-BC [41], CSS

and ISA [44], respectively. The DSO algorithm needs 21,000 analyses to complete the

ization process which equals the simple DSO [40]. It is clear the proposed DSO algorithm

ind better results than those other algorithms in the literature. The convergence history of

roposed method for this example is shown in Figure 7. 

Table 2: Optimum designs obtained for 1026-member 10-story steel frame. 

ies Groups 

Optimal W-shape sections 

UBB-BC 

[41] 

UMBB-

BC [41] 

UEBB-

BC [41] 
CSS [43] 

DSO 

[40] 

ISA [44] Current 

work 

 

CG1a W27X258 W24X492 W33X201 W27X368 W40X211 W40X277 W36X194 

CG2 W27X161 W27X146 W24X146 W40X183 W12X96 W21X182 W33X141 

CG3 W27X102 W21X101 W24X104 W27X146 W33X201 W27X161 W21X147 

CG4 W27X146 W27X161 W40X174 W40X149 W21X122 W33X201 W27X194 

CG5 W27X146 W27X258 W40X321 W12X152 W21X182 W12X120 W36X160 

IBa W27X84 W21X44 W27X84 W10X33 W18X46 W16X26 W18X46 

OBa W27X84 W27X84 W27X84 W16X40 W21X62 W24X76 W6X25 
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4 

CG2 W27X146 W24X162 W36X245 W30X148 W14X176 W24X131 W21X166 

CG3 W27X84 W24X131 W36X135 W40X149 W33X241 W33X118 W40X174 

CG4 W27X102 W40X174 W33X118 W24X146 W36X135 W33X118 W24X104 

CG5 W27X114 W27X102 W44X262 W10X100 W21X111 W21X111 W30X132 

IB W27X84 W27X84 W16X26 W27X102 W14X34 W24X76 W16X26 

OB W27X84 W30X90 W36X135 W24X68 W33X141 W24X62 W40X167 

BR W27X84 W40X149 W21X62 W10X60 W10X54 W12X72 W16X67 

7 

CG1 W27X161 W40X235 W27X258 W27X129 W36X135 W30X173 W24X192 

CG2 W27X114 W24X131 W18X106 W14X159 W24X117 W36X170 W14X120 

CG3 W27X84 W30X90 W33X130 W30X108 W21X93 W14X109 W24X104 

CG4 W27X84 W18X86 W27X94 W14X120 W27X94 W33X221 W24X146 

CG5 W30X99 W14X90 W24X192 W21X93 W14X82 W14X145 W16X67 

IB W27X84 W21X44 W21X44 W21X73 W21X57 W30X99 W24X55 

OB W27X84 W30X108 W21X73 W24X68 W24X84 W24X55 W21X83 

BR W27X94 W33X118 W30X90 W10X49 W12X65 W16X31 W12X53 

0 

CG1 W27X84 W36X194 W18X86 W21X44 W10X22 W12X26 W18X55 

CG2 W27X146 W27X146 W21X50 W14X109 W14X132 W14X132 W33X130 

CG3 W27X84 W40X174 W36X135 W10X68 W16X100 W33X141 W18X65 

CG4 W27X84 W21X62 W33X201 W27X146 W30X191 W12X79 W14X109 

CG5 W27X84 W24X76 W30X108 W40X215 W27X146 W16X50 W14X311 

IB W27X84 W14X30 W21X57 W16X45 W16X31 W14X26 W18X40 

OB W27X84 W16X31 W16X26 W16X36 W16X67 W24X55 W21X62 

BR W27X84 W33X118 W18X76 W8X31 W8X40 W14X43 W10X49 

eight (ton) 634.12 612.05 584.93 559.32 557.95 549.17 544.14 

 denotes column group with respect to Fig. 6, IB: inner beams, OB: outer beams, BR: bracings. 
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igure 7. Convergence history of the proposed method for 1026-member 10-story steel 

frame. 

Statistical Analysis 

statistical results of the optimum design procedure for the DSO and the proposed method

d on 30 independent optimization runs are presented in Table 3. It is concluded that the

osed method is able to provide better results than the standard DSO method by considering

ean and standard deviation results. 

e 3.  Statistical results for the DSO and the proposed methods based on 30 independen

. 

Algorithm Example Best Mean Std. 

DSO 3-Story 42.35 50.65 5.29 

 10-Story 557.95 621.21 58.17 

Current 

work 

3-Story 38.18 43.95 3.26 

10-Story 544.14 582.35 35.36 

onclusions 
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d mechanism for the optimum design of the frame structures. The proposed DSO method

sed on accelerated PSO and BB-BC optimization algorithms.  For evaluating the

stness of the proposed method, two real-size structures were optimized and compared with

r metaheuristic algorithms in the literature. The optimization algorithm was implemented

terfacing MATLAB with the SAP2000 structural analysis code. The results indicated tha

roposed method had better result when compared to those algorithms in the literature and

o a lighter structure. As future works, more complicated structures can be considered as

ptimization problem. In this way, the number of constraint and complexity of search space

increase and the requirement of advanced algorithms become clearer.  Also, improving the

nt method to handle the structural problems with less computational cost is always

esting research.  
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ract

study proposes a swarm optimizer with a modified feasible-based mechanism approach

inding  an  optimum  design  for  steel  frames.  The  proposed  optimization  approach

sses the problem of stagnation possibility in the traditional particle swarm optimization

ich none of the particles tries to explore a position better than the previous best position

ultiple  numbers  of  iterations.  This  method  is  based  on  accelerated  particle  swarm

ization  and  big  bang-big  crunch  optimization  algorithms.  In  addition,  a  modified

le-based  mechanism  is  used  to  correct  the  particle’s  position.  The  new  method’s

rmance is evaluated by solving two structural problems to minimize the weight of steel

s. The results show that the optimized designs obtained by the proposed algorithm are

 than those found by the competing algorithms from the literature.

ords: swarm optimizer; big bang-big crunch optimization; optimum design; modified

le-based mechanism; steel industry.
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