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Abstract: Several harmonization techniques have recently been proposed for connectomics/networks
derived from resting-state functional magnetic resonance imaging (rs-fMRI) acquired at multiple sites.
These techniques have the objective of mitigating site-specific biases that complicate its subsequent
analysis and, therefore, compromise the quality of the results when these images are analyzed
together. Thus, harmonization is indispensable when large cohorts are required in which the data
obtained must be independent of the particular condition of each resonator, its make and model,
its calibration, and other features or artifacts that may affect the significance of the acquisition. To
date, no assessment of the actual efficacy of these harmonization techniques has been proposed.
In this work, we apply recently introduced Information Theory tools to analyze the effectiveness
of these techniques, developing a methodology that allows us to compare different harmonization
models. We demonstrate the usefulness of this methodology by applying it to some of the most
widespread harmonization frameworks and datasets. As a result, we are able to show that some
of these techniques are indeed ineffective since the acquisition site can still be determined from the
fMRI data after the processing.

Keywords: rs-fMRI; harmonization; information theory; neuroscience; multi-site acquisition

1. Introduction

Magnetic resonance imaging (MRI) is an imaging modality that allows, among other
things, the monitoring and sensing of the neuronal activity in the brain. Several drivers
are raising the application horizons of MRI imaging. To mention the main ones, MRI is
innocuous and non-invasive, resonators are steadily becoming less expensive, and with
increasing capabilities, the knowledge of the human brain’s anatomy and physiology is
turning more definite and precise, and new analysis techniques are able to extract subtle,
latent information that is fundamental to several research and clinical purposes. In par-
ticular, resting-state functional magnetic resonance imaging (rs-fMRI) is able to capture
interactions between brain regions that, in turn, can lead to evaluating several biomarkers
of interest. Currently, acquisitions obtained from rs-fMRI data make it possible to thor-
oughly study several aspects of the human brain function, both in healthy subjects and
those diagnosed with neurological or even psychiatric conditions, including Alzheimer’s
disease [1,2], schizophrenia [3,4], and autism spectrum disorder [5,6]. In order to carry
out these studies correctly and obtain an adequate statistical significance, it is necessary
to have a high number of acquisitions, which is not always possible in a single site and
session. Therefore, the number of studies using images acquired at multiple sites has
been increasing over the years [7–10]. This allows the speeding up the data collection
and analysis process, and increasing the sample size naturally leads to greater predictive
power and more sophisticated studies. Multi-site acquisition is also critically important
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to be able to generalize the analysis results or when investigating low prevalence or rare
disorders [11,12].

However, multi-site data studies often introduce unwanted acquisition heterogeneities
or artifacts that can greatly impact the significance of the results derived from them [13–16].
This variability (which is not biological or anatomical in origin) is due to various causes
that are difficult or impossible to control, including electromechanical differences between
different equipment, manufacturers, and models, different arrangements of magnetic field
density and signals of radiofrequency (even among similar equipment), the variation in the
sizes of the voxels, the parameters and acquisition sequences of the scanners, the calibration
carried out, etc. [17–19]. For these reasons, the generation of harmonization techniques
between different sites is a subject that is attracting an ever-growing interest within neu-
roimaging. In the last decade, a large number of methods have been developed [20] capable
of applying mathematical or statistical concepts to reduce unwanted variabilities produced
during acquisition without compromising the quality of the anatomical or physiological
information obtained. Among these methods, ComBat [21–24] stands out, having great
popularity thanks to its good results since its adaptation from the field of genomics to
neuroscience in 2017 [25,26]. Since then, new techniques based on and/or inspired by
ComBat have emerged with the aim of further improving the ability to generalize the
results obtained [27–31].

However, other perspectives on the full understanding of human brain functioning
appear to be mandatory. In particular, the structure and dynamics of graphs and networks
in general (from social to neural networks, on a wide spectrum of scales) are of paramount
importance in many scientific fields in which the collective behavior of a network of entities
is relevant. Neuroscience does not escape this paradigm since it is possible to derive neural
graphs (called connectomes) from the information extracted from rs-fMRI data, among other
modalities. Having high-quality connectome information enables a significant amount of
studies related to mental health and neurocognitive conditions. Recently, some methods
derived from Information Theory and Statistical Complexity began to be applied in this field.
In particular, Amico et al. [32] introduced a framework combining two different theoretical
information measurements for fixed structural topology systems over which different
communication processes are taking place, with the aim of exploring communication
dynamics in large-scale brain networks. Similarly, Luppi and Stamatakis [33] combined
network topology and Information Theory to construct representative brain networks.
In spite of these successful recent examples, the topic is still open to further research, so
we recommend the interested reader to refer to the thesis of Bonmati [34], the book by
Piasini and Panzeri [35], or the review by Farahani et al. [36] for further insights into
this topic. In other contexts, these tools have been recognized for their ability to create
a robust characterization of complex phenomena, especially in time series analysis (e.g.,
biosignals, cryptocurrencies, etc.) [37,38]. However, the analysis of complex networks
through a characterization within this theoretical framework (for example, Shannon Entropy,
Statistical Complexity and Fisher Information [39]) has not yet been applied to connectomics.

In this paper, we present the use of Network Entropy and Network Fisher Information
(and the Shannon–Fisher causal plane) to assess the robustness of several rs-fMRI harmo-
nization techniques. Specifically, studies were performed on four multi-site datasets under
four different processing approaches: unharmonized, applying the ComBat method [21],
applying the CovBat method [28], and applying the traveling-subject method [31]. The
results show that, depending on the method used, the harmonization is not entirely suc-
cessful since our techniques continue to be able to determine the acquisition sites after
the harmonization was applied, which shows the existence of site-related biases that are
not completely mitigated. These results demonstrate the relevance and applicability of
Statistical Complexity and Information Theory to rs-fMRI data analysis, and (to the best
of our knowledge) the contribution presented here would be the first application of this
theoretical framework in brain connectomics. See Figure 1.
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Figure 1. Overview of our technique to analyze, with the help of Information Theory, the effectiveness
of the harmonization techniques for multi-site acquired data. From a set of multi-site fMRI data, we
generate the Phase Interaction Matrix and, from there, we verify in the Shannon–Fisher plane the
quality of the application of different harmonization techniques.

2. Materials and Methods
2.1. Datasets

In this section, we describe the different datasets used for testing. Since the aim is to
compare the sites within each multi-site dataset, we can see that it does not matter that each
downloaded dataset had different processing steps already applied. Further, it is worth
noting that three of the datasets are given as sets of time series (IMPAC, ABIDE, and ADHD-
200), while one was given as a set of connectivity matrices of Pearson correlation values
(SRPBS). See below.

2.1.1. IMPAC

The IMaging-PsychiAtry Challenge [40] dataset contains rs-fMRI scans from 34 different
sites of 1127 subjects, of which 537 are diagnosed with autism spectrum disorder, and
the rest are healthy control subjects. The signals extracted from the images are based on
seven different atlases: MSDL (39 ROIs), Harvard-Oxford (48 ROIs), Basc064 (64 ROIs),
Basc122 (122 ROIs), Basc197 (197 ROIs), Craddock (249 ROIs), and Power (264 ROIs). The
code used for extracting the time series can be found at https://github.com/ramp-kits/
autism/blob/master/preprocessing/extract_time_series.py, (accessed on 15 April 2022 ).
The imaging parameters are not available for this dataset, but instructions about how to
obtain the repetition times can be found at https://github.com/ramp-kits/autism/issues/36,
(accessed on 15 April 2022).

https://github.com/ramp-kits/autism/blob/master/preprocessing/extract_time_series.py
https://github.com/ramp-kits/autism/blob/master/preprocessing/extract_time_series.py
https://github.com/ramp-kits/autism/issues/36
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2.1.2. ABIDE

ABIDE [41] is a publicly accessible repository of 20-site rs-fMRI data from 17 different
international institutions. The dataset is composed of scans of 539 individuals diagnosed
with autism spectrum disorder and 573 healthy control individuals. However, because some
data had downloading problems, the number of total subjects was reduced from 1112 to
884. The image acquisition parameters can be found at https://fcon_1000.projects.nitrc.
org/indi/abide/, (accessed on 15 April 2022). The data were preprocessed using the
standard pipeline DPARSF (Data Processing Assistant for Resting-State fMRI Toolbox),
which is based on the parametric statistical mapping. Finally, the time series were extracted
following the definitions of seven different atlases: Talaraich–Tournoux (97 ROIs), Harvard-
Oxford (111 ROIs), AAL (116 ROIs), Eickhoff–Zilles (116 ROIs), Dosenbach (161 ROIs), Craddock
(200 ROIs), and Craddock (400 ROIs). Details of the atlases used and the pipeline can be found at
http://preprocessed-connectomes-project.org/abide/Pipelines.html, (accessed on 15 April
2022), while the scan parameters for each site are available at http://fcon_1000.projects.
nitrc.org/indi/abide/abide_I.html, (accessed on 15 April 2022).

2.1.3. ADHD-200

As part of the International Neuroimaging Datasharing Initiative (INDI), the ADHD-200
dataset [42] is a collaboration of 8 imaging sites, composed of neuroimaging data from 362
children and adolescents diagnosed with Attention Deficit Hyperactivity Disorder (ADHD)
and 585 typically developing controls (total 947 subjects). As some scans had downloading
problems or missing data, the number of subjects used in this work was reduced to a total of
768 subjects. The data were preprocessed using the Athena pipeline, which is based on tools
from the AFNI and FSL software packages. The time series extracted from the images are
based on six different atlases: Talaraich–Tournoux (97 ROIs), Harvard-Oxford (111 ROIs),
AAL (116 ROIs), Eickhoff–Zilles (116 ROIs), Craddock (190 ROIs), and Craddock (351 ROIs).
The data can be found at https://www.nitrc.org/frs/?group_id=383, (accessed on 15 April
2022), and details of the pipeline at https://www.nitrc.org/plugins/mwiki/index.php/
neurobureau:AthenaPipeline, (accessed on 15 April 2022). The imaging parameters are
detailed at http://fcon_1000.projects.nitrc.org/indi/adhd200/, (accessed on 15 April 2022).

2.1.4. SRPBS

This dataset [43,44] includes data from subjects with four different diagnoses and
healthy control subjects who were examined at nine sites corresponding to eight insti-
tutions. Of the 805 participants, 482 are healthy, 161 have a major depressive disorder,
49 have autism spectrum disorder, 65 have obsessive-compulsive disorder, and 48 have
schizophrenia. Each participant underwent a single session of rs-fMRI for 5 to 10 min. The
time series extraction procedure is detailed in the work by Yamashita and co-authors [31],
where 268 regions of interest were delineated. Of note, participants who reported high
levels of head movement were excluded, resulting in a reduction in the size of the dataset
to 637 subjects. It is worth mentioning that this dataset also includes traveling-subject data,
and it thus could be applicable to the traveling-subject harmonization methodology. The data
are available at https://bicr.atr.jp/dcn/en/download/harmonization/, (accessed on 15
April 2022), while scan parameters can be found at https://bicr.atr.jp/rs-fmri-protocol-2/,
(accessed on 15 April 2022).

2.1.5. Traveling-Subject Dataset

As will be explained in a later section, the traveling-subject dataset [31] is necessary
to estimate measurement bias across sites in the SRPBS dataset. It is composed of data of
9 healthy participants that were scanned at each of 12 sites, which included the 9 sites in
the SRPBS dataset, producing a total of 411 scan sessions.

https://fcon_1000.projects.nitrc.org/indi/abide/
https://fcon_1000.projects.nitrc.org/indi/abide/
http://preprocessed-connectomes-project.org/abide/Pipelines.html
http://fcon_1000.projects.nitrc.org/indi/abide/abide_I.html
http://fcon_1000.projects.nitrc.org/indi/abide/abide_I.html
https://www.nitrc.org/frs/?group_id=383
https://www.nitrc.org/plugins/mwiki/index.php/neurobureau:AthenaPipeline
https://www.nitrc.org/plugins/mwiki/index.php/neurobureau:AthenaPipeline
http://fcon_1000.projects.nitrc.org/indi/adhd200/
https://bicr.atr.jp/dcn/en/download/harmonization/
https://bicr.atr.jp/rs-fmri-protocol-2/
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2.2. Connectivity

We started by applying a bandpass filter of 0.04–0.07 Hz to the BOLD time series
to select adequate low frequencies. Then, the instantaneous phases φi(t) of each region
i were estimated by applying the Hilbert transform to the filtered signals. The phase
coherence Pij(t) between two regions i and j at a time t was calculated using the cosine of
the phase difference, as shown in Equation (1).

Pij(t) = cos (φi(t)− φj(t)). (1)

Since the Hilbert transform expresses signals in polar coordinates, using the cosine
function makes two regions have a phase coherence close to 1 when their time series are
in phase, 0 when they are orthogonal, and −1 when they are out of phase. In this way,
the phase interaction matrix P(t) represents the instantaneous phase synchrony between
each of the regions [45,46]. This procedure results in a matrix of size N × N × T for each
subject, where N is the number of regions and T is the total number of points in the
time series:

〈P〉 =
∞

∑
t=0

P(t)
T

. (2)

Since T is a different value for each subject, the temporal dimension was eliminated
by averaging each of the matrices over time. The procedure detailed above was applied to
the IMPAC, ABIDE, and ADHD-200 datasets. For the SRPBS dataset, on the other hand, we
worked with correlation matrices since the data provided by the dataset correspond to the
Pearson correlation coefficient’s values are widely used in previous studies.

2.3. Harmonization

As introduced in the previous section, to reduce potential biases and non-biological
variances introduced by different acquisition sites and scanners, there are various methods
of data harmonization. In this work, the effectiveness of three of them is evaluated. One is
ComBat [21–23], which is probably the most accepted and widely used in the literature. The
second is CovBat [28], which is a refined and improved version of ComBat. The last one is
the traveling-subject method, whose authors have shown that it can be more effective than
ComBat in certain cases [31]. Below we briefly describe their main features. It is important
to emphasize that in this work, for both ComBat and CovBat, the biological covariates to be
protected during the removal of scanner/site effects were defined as the gender, age, and
diagnosis of each of the subjects.

2.3.1. ComBat

The ComBat technique, originally created to be used in Genomics analysis, is perhaps
the most commonly used for the harmonization of brain connectivity data. It is based on
Bayes’ empirical method, assuming that errors in the data can be corrected by adjusting
the means and variances of the different acquisition sites. It has been shown to be able
to eliminate site differences while adequately maintaining biological variability [24,26].
Defining ytjv as the evaluation at site t, participant j. and characteristic v, the ComBat
regression model can be written as

ytjv = αv + Xtjβv + γtv + δtvεtjv, (3)

where αv is the average connectivity of the feature v, Xtj is the design matrix for the
covariances of interest, and βv is the regression vector of coefficients corresponding to
X. In turn, γtv and δtv represent the additive and multiplicative terms of the site i for the
feature v, respectively, while εtjv represents an error term assumed to arise from a normal
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distribution with zero mean and variance σ2
v . The values harmonized by ComBat are then

defined as:

yComBat
tjv =

ytjv − α̂v − Xtj β̂v − γ∗tv
δ∗tv

+ α̂v + Xtj β̂v, (4)

where γ∗tv and δ∗tv are the empirical Bayesian estimates of the parameters γtv and δtv.
Therefore, biological and non-biological terms are modeled and estimated to algebraically
eliminate the additive and multiplicative effects of the sites. The calculations were made us-
ing the library available at https://github.com/Jfortin1/ComBatHarmonization, (accessed
on 15 April 2022).

2.3.2. CovBat

The method called Correcting Covariance Batch Effects (CovBat) was proposed to remove
site effects in mean, variance, and covariance. It was built on top of the ComBat framework,
assuming that the features follow Equation (3). However, the error vectors εtjv may be
spatially correlated and differ in covariance across sites, so this method modifies principal
component scores to shift each within-site covariance to the pooled covariance structure.
This means that the first term of Equation (4) is assumed to have a mean of 0, but its
covariance matrix Σ may differ between sites. Therefore, principal component analysis
(PCA) is performed to obtain an estimation of the eigenvalues λ and eigenvectors φ of Σ.
The principal component scores are defined as

ξtjk = µtk + ρtkεtjk, (5)

where εtjk is a zero-mean normal distribution and µtk and ρtk are the center and scale
parameters corresponding to principal components k = 1, 2, · · · , K where K is a hyperpa-
rameter selected to capture the desired proportion of the variation in the observations. The
parameters are estimated by finding the values that bring each site’s mean and variance in
scores to the pooled mean and variance. Then, the site effects are removed via

ξCovBat
tjk =

ξtjk − µ̂tk

ρ̂tk
. (6)

The CovBat-adjusted residuals are obtained as

eCovBat
tj =

K

∑
k=1

ξCovBat
tjk φ̂k +

q

∑
l=K+1

ξtjl φ̂l . (7)

Adding the intercepts and covariates’ effects, the harmonized values result in

yCovBat
tjv = eCovBat

tjv + α̂v + Xtj β̂v. (8)

2.3.3. Traveling-Subject Method

This method is based on the identification of measurement biases, sampling biases,
disorder factors, and subject factors. The measurement bias m for each site is defined as the
deviation of the connectivity value between each pair of regions of interest from its average
over all sites and is due to the differences between the properties of the scanners involved.
The sampling bias s, introduced due to differences in participant groups between sites, is
assumed to be different for subjects diagnosed with different disorders. Disorder factors
d are defined as deviations from control subjects. In turn, the factors of the subjects p are
calculated as the deviation of the connectivity from the average of the participants.

All the biases and factors mentioned above are estimated by fitting a linear regression
model using ordinary least squares with L2 regularization. The connectivity value v for
subject j is then given by

yjv = xm
j mv + xs

j sv + xd
j dv + xp

j pv + const + e, (9)

https://github.com/Jfortin1/ComBatHarmonization
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where const represents the average connectivity between all participants and e the noise.
The vectors xm, xs, xd, and xp are one-hot encoded. It is difficult to separate differences
between sites using a single dataset because the two types of biases defined are correlated
across sites. Therefore, in order to use this method, it is necessary to have an extra dataset
(the so-called traveling-subject dataset), where the participants are constant; that is, it must
be composed of scans of a constant set of healthy subjects in each of the sites in the original
dataset. This is why the measurement bias is estimated only using the traveling-subject
dataset. It is precisely the acquisition of this traveling-subject dataset that presents the
main problem of the technique, since it requires that the same reference subjects physically
travel to all the acquisition sites, with the consequent logistic problem that this implies.
Finally, matching is achieved by subtracting the estimated measurement biases m̂v from
the connectivity values, resulting in

yTraveling
jv = yjv − xm

j m̂v. (10)

2.4. Assessment of Harmonization Quality

In this subsection, we will introduce the specific theoretic information foundations that
we use in this work. As already mentioned, the measures and methods derived from this
background are capable of assessing the actual effectiveness of the different harmonization
measures. Readers familiar with Information Theory, Shannon entropy, Fisher Information,
and the causality-complexity plane can skip the reading of this subsection.

2.4.1. Information Theory Measures

A key aspect of Information Theory is the concept of entropy as a measure of the
uncertainty involved in the outcome of a random variable or process. These outcomes,
in turn, are related to the probabilities (or relative frequencies) of the possible values that
the variable or process may hold. Then, as the first step in our application of Information
Theory in the context of rs-fMRI, it is necessary to define the probability distribution for the
data. Our strategy was to binarize both the averaged phase interaction matrices and the
correlation matrices using a threshold value of 0.5. Any other nontrivial threshold can be
applied, and experiments show that the results to be exposed below are robust with respect
to this choice in a wide range (f.e., from 0.2 to 0.8). Connections with values greater than
the threshold were assigned to 1, while the others were assigned to 0. In this way, each of
the new matrices results in an adjacency matrix A that represents the neural graph of a
subject model of the given threshold. Once obtained, the probability that a random walk
goes from a node i of a graph to any other node j is calculated. This probability distribution
pi→j is defined for each node as

pi→j =

{
0, aij = 0
1/ki, aij = 1

(11)

where ki is the degree of the node, and its value is obtained as ki = ∑j aij.

2.4.2. Shannon Entropy

Based on the P(i) distribution, the Shannon Entropy for each node can be defined as

S [P(i)] = −
N−1

∑
j=1

pi→j ln (pi→j), (12)

where P(i) = {pi→j : j = 1, ..., N} is the probability distribution vector associated to node i.
In turn, the Normalized Nodal Entropy for node i is obtained as

H(i) =
S [P(i)]

ln(N − 1)
. (13)
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Finally, the Normalized Network Shannon Entropy (SE) is calculated by averaging the
Normalized Nodal Entropy over the entire network, resulting in

H =
1
N

N

∑
i=1
H(i). (14)

SE is a global disorder measure commonly used in various applications of Information
Theory. An advantage of SE in networks is that it is relatively insensitive to substantial
changes in distributions that are concentrated in a small region of space. Therefore, it is
able to quantify the heterogeneity of networks: H → 0 for sparse networks andH → 1 for
fully connected networks.

2.4.3. Fisher Information

Fisher Information is a statistical model aimed at measuring how much information
about an unknown parameter can be obtained from a sample. In other words, it assesses
the amount of information that an observable random variable within a population carries
about an unknown parameter of the distribution that models the population. Using the
notation of the previous subsection, the Normalized Fisher Information for a node i is
given by

F (i)[P(i)] =
1
2

N−1

∑
j=1

[√
pi→j+1 −

√
pi→j

]2

. (15)

Then, the Normalized Network Fisher Information (FI) is defined as

F =
1
N ∑

i
F (i)[P(i)]. (16)

This measure can be interpreted in various ways, for instance, the ability to precisely esti-
mate a parameter, the amount of information that can be extracted from a set of measures,
or the state of disorder of a system. Unlike Shannon Entropy, Fisher Information is a local
measure based on the gradient of the underlying distribution, so it is significantly sensitive
to localized disturbances in small regions.

2.4.4. Shannon–Fisher Plane

The use of the Shannon–Fisher plane was originally proposed by Vignat and Bercher [47],
who defined it to show that through the simultaneous examination of both Shannon
Entropy and Fisher Information, the non-stationary behavior of a complex signal may be
characterized. Without any assumption on the nature of the data, the Shannon–Fisher area
can be simply defined as:

D = {(H,F ) | 0 ≤ H ≤ 1, 0 ≤ F ≤ 1} (17)

Using this plane, we can find that our system lies in a very ordered state when the
Shannon Entropy H ∼ 0 and the Fisher Information F ∼ 1. However, when the system
stays in a very disordered state, we obtain that H ∼ 1 and F ∼ 0 [48]. In general, it is
widely accepted that the Shannon–Fisher Information plane is an effective tool to contrast
global and local characteristics of a given probability distribution. In our case, and as
performed by Freitas et al. [37], each of the networks is placed in the Shannon–Fisher plane
that arises from the two measurements that have been explained in the previous sections.

2.5. Quantification Measures

We define the null hypothesis as that the population median of all of the sites are
equal, the Kruskal–Wallis [49] test was used twice to quantify the magnitude of the ef-
fects of the acquisition sites for SE and FI. All possible combinations of datasets, atlases,
and harmonization methods were analyzed: 21 cases with no harmonization, 21 cases
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harmonized with ComBat, 19 cases with CovBat, and 1 case with the traveling-subject
method. It is worth noting that two cases (ABIDE/Craddock400/CovBat and ADHD-
200/Craddock351/CovBat) are missing due to limitations in computing resources. As
stated in a previous section, for the traveling-subject method, an extra dataset is needed,
so the only possible case to evaluate that method is the one from the SRPBS dataset. The
transformation p′ = − log p was applied to the p-values obtained with the test to facilitate
the comparison and interpretation of the results.

3. Results
3.1. Quantitative Analysis

Table 1 shows the comparison of the harmonization methods for the different datasets,
atlases, and Information Theory measures, while the figures in the next subsection visually
illustrate the performance of each method described in this manuscript. Analyzing the
results for the case without the harmonization stage, it is observed that the influence of
the acquisition site is considerable, even more so in the IMPAC database. In addition,
the impact is greater in the SE measure than in the FI measure for all cases and in the atlases
with a larger number of ROIs for most cases (ABIDE/Dosenbach is the largest exception).
When applying the ComBat method, substantial improvements are obtained in all cases,
i.e., the site influences are unnoticeable and not statistically significant, achieving p ≥ 0.05
in 12 cases. The harmonization is still better for the atlases with lower amounts of ROIs,
but now the impact on the Information Theory measures is reversed: for all cases, the site
effects are stronger for FI than for SE. The data for which the quality of the harmonization
obtained are the lowest comes from the ADHD-200 dataset. This is due, as can be seen in
Figure 2, to the existence of an outlier that may come from severe misalignments present
in the scan of that particular subject. The CovBat method achieves similar results, slightly
outperforming ComBat in most cases, especially when applied to atlases with no more than
200 ROIs. Finally, the traveling-subject method also represents an improvement over the
case without harmonization, but it is almost insignificant compared to ComBat and CovBat.

3.2. Visualization

The relationships observed by analyzing Table 1 can also be visualized by plotting
the Shannon–Fisher plane for the different cases. In this subsection, the most relevant
results for the analysis are presented, while the others can be found in the Supplementary
Material. The first row of Figure 3 shows the distribution of all the subjects of the IMPAC
dataset within the Shannon–Fisher plane without previously applying a harmonization
technique. Acquisition sites 28 and 31 present a significant distance from the center, so they
are shown separately in the figures. In the second row, the planes corresponding to the
ComBat method are presented, where the distribution is grouped in a much more uniform
way. The same happens in the third row for the CovBat method.

In Figure 4, both the effectiveness of ComBat/CovBat and the inability of the traveling-
subject method to harmonize the measures extracted from the SRPBS dataset are evident.
For the unharmonized case, we can observe that sites 5 and 6 lay outside the “cloud” of
the rest of the measures, which can be attributed to acquisition differences due to already
mentioned factors other than the biological ones (e.g., differences in the actual equipment,
differences in the used functional BOLD MRI sequence settings, improper calibration,
etc.) This separation is no longer appreciable after the application of ComBat or CovBat
but remains practically unchanged with the traveling-subject method.

Figures 2 and 5 show the resulting planes after applying the ComBat and CovBat
methods to, respectively, the ABIDE dataset and the ADHD-200 dataset. As can be seen at
the bottom left of the planes corresponding to the ADHD-200 dataset, there is an outlier
that could not be removed with any harmonization method, probably caused by some kind
of misalignment in the scanning device.
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(a)

(b) (c)

Figure 2. Shannon–Fisher planes for ADHD-200/Harvard-Oxford with different harmonization
methods. Each point corresponds to a different subject in the dataset and each color to a different
acquisition site. (a) Unharmonized. (b) ComBat. (c) CovBat.

Table 1. Transformed p-values obtained with the Kruskal–Wallis test for the components of the
Shannon–Fisher plane. Bold values represent p′ ≤ 1.301, which corresponds to p ≥ 0.05 and,
therefore, evidence is not enough to reject the null hypothesis.

Normalized Network Shannon Entropy Normalized Network Fisher Information
Dataset Atlas ROIs

Unharmonized ComBat CovBat Traveling Unharmonized ComBat CovBat Traveling
MSDL 39 131.949 0.242 0.075 - 24.794 4.586 1.012 -
Harvard-Oxford 48 137.060 0.663 0.449 - 34.342 6.264 7.326 -
Basc064 64 131.723 0.333 0.099 - 37.705 2.725 1.860 -
Basc122 122 149.840 1.206 0.511 - 87.554 10.588 8.960 -
Basc197 197 159.513 2.413 1.531 - 117.111 19.124 13.914 -
Craddock 249 166.695 3.684 4.069 - 123.781 29.584 20.274 -

IMPAC

Power 264 178.503 6.156 8.997 - 136.231 53.021 37.682 -
Talaraich–Tournoux 97 27.416 0.002 0.000 - 12.251 1.260 0.479 -
Harvard-Oxford 111 26.954 0.077 0.000 - 15.395 2.254 0.645 -
AAL 116 29.131 0.009 0.000 - 19.490 2.355 0.926 -
Eickhoff–Zilles 116 27.150 0.009 0.000 - 19.323 2.347 0.799 -
Dosenbach 161 104.905 2.649 1.828 - 82.129 47.327 28.534 -
Craddock 200 41.585 0.258 0.000 - 34.443 7.527 3.341 -

ABIDE

Craddock 400 61.355 0.682 - - 53.694 16.122 - -
Talaraich–Tournoux 97 100.340 8.189 4.377 - 58.882 15.115 13.039 -
Harvard-Oxford 111 102.636 6.248 3.334 - 55.904 16.440 12.654 -
AAL 116 102.823 8.783 5.476 - 58.034 17.995 15.119 -
Eickhoff–Zilles 116 103.621 9.090 6.269 - 61.557 19.405 14.527 -
Craddock 190 114.141 12.894 6.650 - 75.404 34.502 28.517 -

ADHD-200

Craddock 351 120.486 15.716 - - 88.681 51.375 - -
SRPBS - 268 77.116 0.285 2.137 72.149 27.700 4.349 4.813 18.049



Brain Sci. 2022, 12, 1219 11 of 16

(a) Unharmonized, all sites (b) Unharmonized, site 28 (c) Unharmonized, site 31

(d) ComBat, all sites (e) ComBat, site 28 (f) ComBat, site 31

(g) CovBat, all sites (h) CovBat, site 28 (i) CovBat, site 31

Figure 3. Shannon−Fisher planes for IMPAC/MSDL with different harmonization methods. Sites
28 and 31 are shown separately for each case to emphasize the impact of harmonization. Each
point corresponds to a different subject in the dataset and each color to a different acquisition site.
(a–c) Unharmonized. (d–f) ComBat. (g–i) CovBat.
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(a) (b)

(c) (d)

Figure 4. Shannon−Fisher planes for SRPBS with different harmonization methods. Each point
corresponds to a different subject in the dataset and each color to a different acquisition site.
(a) Unharmonized. (b) ComBat. (c) CovBat. (d) Traveling-subject.

(a)

(b) (c)

Figure 5. Shannon−Fisher planes for ABIDE/Dosenbach with different harmonization methods.
Each point corresponds to a different subject in the dataset and each color to a different acquisition site.
(a) Unharmonized. (b) ComBat. (c) CovBat.
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4. Discussion and Conclusions

These results provide new evidence about the importance of having techniques capable
of removing unwanted biases caused by the acquisition sites from rs-fMRI images in order
to merge data obtained by means of different scanners without incurring methodological
errors. A set of tools based on Information Theory was presented to discern the quality of
harmonization techniques for multi-site rs-fMRI measurements, allowing the quality of
such techniques to be verified. This set of tools, when applied to data harmonized with
different techniques, makes it possible to determine if there are still traces of the original
locations or if the data are reliable for the subsequent specific treatment depending on the
problem to be treated. We should mention that part of inter-site heterogeneity might be
caused by differences in sample demographics (e.g., race, education, background), which
cannot be addressed with the harmonization methods presented here. On the other hand,
we observed that the tools performed best with a low number of ROIs, as shown in the
Results Section. This is probably due to the finer granularity and higher detail associated
with a higher-order (i.e., with more ROIs) atlas, which allows capturing more inter-subject
features (i.e., biological features that do not depend on the site). Further, variability in fMRI
imaging parameters across sites may affect the quality of harmonization. In general, we
observed that ABIDE, IMPAC, and ADHD-200 MRI scan parameters vary a lot from site to
site. As a consequence, this could induce a lot of variability in the BOLD SNR obtainable
from each site. Given that the rs-fMRI connectivity metrics have sensitive fMRI BOLD SNR,
this, in turn, could have an impact on the effectiveness of harmonization. For instance,
as we mentioned, the disalignment in some individual cases may force ComBat and CovBat
to fail to fully harmonize the full ADHD dataset, as can be seen in Figure 2, which could
be due to differences in MRI imaging parameters between that site and other sites in the
ADHD dataset, and between individual runs.

In general, we observe that the theoretical information analysis reveals that ComBat
and CovBat provide better results than the traveling-subject method, showing that these
tools are effective in discerning the subtle details of the registration site that were not
removed by the harmonization method. As a rule of thumb, we could say that CovBat pro-
vides the best results for datasets with less than 200 ROIs, while ComBat excels otherwise.
The harmonization effectiveness of both Normalized Network Shannon Entropy (SE) and
Normalized Network Fisher Information (FI) measures seem to deteriorate as the number
of ROIs in the parcellation schemes increases. This could be due to variations between
sites in the fMRI SNR. SE measures uncertainty, and thus a larger number of ROIs implies
smaller sizes, which makes them more sensitive to variations in fMRI SNR and hence
variability in scanning parameter-related site effects. FI, in turn, measures information,
and thus a larger number of ROIs will be more sensitive to site effects as they yield more
information about the site.

It is worth noticing that the results obtained in this work do not correspond to those
obtained by Yamashita and co-authors [31], where they achieved a greater reduction
in measurement bias using their traveling-subject method than with other techniques,
i.e., ComBat. This dichotomy could be an indication that their harmonization technique is
useful in specific analyses, as performed in their paper, but is not robust to other processing
methodologies, such as Information Theory measures. In particular, our analysis of the
original data with the Shannon–Fisher plane revealed that the site-related information was
not completely removed by the harmonization process, which may render the method
inadequate for further comparative analysis, while ComBat presents a more general and
robust performance. Another disadvantage of the traveling-subject method is its high cost
and time consumption due to the need for a large group of participants to travel to all the
sites involved. Therefore, applying this method to correlation matrices requires a wider
logistic basis to achieve significant harmonization, while both ComBat and CovBat present
very good results.

Finally, it is worth mentioning that the workflow presented in this paper cannot
be applied directly to images obtained with rs-fMRI studies; it is necessary to have the
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corresponding BOLD time series. Hence, for this study, from the wide spectrum of existing
harmonization methods [20], we used the three compatible with this type of data. One
interesting avenue for further research is to extend the workflow to more general types of
information, which could be performed by properly defining the respective information
theoretical measures. Further, for future work, we consider it relevant to be able to extend
the analysis through the Shannon–Fisher plane to graphs and probabilistic networks
(without requiring prior thresholding). Finally, we will investigate if these results can also
be reproduced using the Pearson correlation matrix instead of the phase interaction matrix.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/brainsci12091219/s1, Figure S1: Shannon-Fisher planes for IM-
PAC/MSDL with different harmonization methods; Figure S2: Shannon-Fisher planes for IMPAC/
Harvard-Oxford with different harmonization methods; Figure S3: Shannon-Fisher planes for IM-
PAC/Basc064 with different harmonization methods; Figure S4: Shannon-Fisher planes for IM-
PAC/Basc122 with different harmonization methods; Figure S5: Shannon-Fisher planes for IM-
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