
This is a peer-reviewed author manuscript version of the article:

Coll, N., Fort, M. and Sellarès, J.A. On the overlap area of a disk and a
piecewise circular domain. Computers & Operations Research, vol. 104
(April 2019), p. 59-73. DOI https://doi.org/10.1016/j.cor.2018.11.007

The Published Journal Article is available at:

https://doi.org/10.1016/j.cor.2018.11.007

© 2021. This manuscript version is made available under the CC-BY-NC-
ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.1016/j.cor.2018.11.007
https://creativecommons.org/licenses/by-nc-nd/4.0/

 Elsevier Editorial System(tm) for Computers

& Operations Research

 Manuscript Draft

Manuscript Number: COR-D-18-00208R2

Title: On the overlap area of a disk and a piecewise circular domain

Article Type: Research Article

Keywords: Decision support systems; facility placement; service coverage;

continuous space; graphics processing unit (GPU)

Corresponding Author: Dr. Marta Fort,

Corresponding Author's Institution: Universitat de Girona

First Author: Narcis Coll, Dr.

Order of Authors: Narcis Coll, Dr. ; Marta Fort; J.Antoni Sellarès, Dr.

Abstract: We provide an approach to solve the problem of locating a disk

so that its overlap area with a piecewise circular domain is near-optimal

when considering partial converage. To this purpose, we introduce the

concept of overlap area map. Both, overlap area maps and near-optimal

locations, provide useful tools for solving problems related to the

placement, for example, of emergency warning sirens, cellular towers or

radio receiving stations, that are commonly encountered in the location

science field.

We present parallel algorithms on graphics processing units (GPUs) for

computing an overlap area map and obtaining a set of near-optimal

locations from the overlap area map. {These algorithms have as a key

element the overlap area computation process to which we pay special

attention.} In addition, we describe a way of visualizing the obtained

solutions. Integration of computation and visualization facilitates

decision makers, with an iterative what-if-analysis process, to gain more

information in order to facilitate the selection of an appropriate

location. Finally, we also provide and discuss experimental results

showing the efficiency and scalability of our approach.

Highlights for “On the overlap area of a disk and a piecewise circular domain”

Narcís Coll, Marta Fort and J. Antoni Sellarès

• We provide optimal and near-optimal locations for a disk according to its overlap area

with a piece-wise circular domain

• We provide a regular and a non-regular approach which uses a refinement process

• We describe and theoretically analyze a sequential and a parallel algorithm to solve the

problem by using CUDA architecture

• We visualize the obtained information highlighting the optimal locations and analyze the

experimental results obtained with the implementation of the proposed algorithms

• We compare the provided strategies in terms of efficiency theoretically and

experimentally

Highlights (for review)

On the overlap area of a disk and a piecewise circular domain

Abstract

We provide an approach to solve the problem of locating a disk so that its overlap area with a piecewise circular domain
is near-optimal when considering partial converage. To this purpose, we introduce the concept of overlap area map.
Both, overlap area maps and near-optimal locations, provide useful tools for solving problems related to the placement,
for example, of emergency warning sirens, cellular towers or radio receiving stations, that are commonly encountered
in the location science field. We present parallel algorithms on graphics processing units (GPUs) for computing an
overlap area map and obtaining a set of near-optimal locations from the overlap area map. These algorithms have as a
key element the overlap area computation process to which we pay special attention. In addition, we describe a way
of visualizing the obtained solutions. Integration of computation and visualization facilitates decision makers, with
an iterative what-if-analysis process, to gain more information in order to facilitate the selection of an appropriate
location. Finally, we also provide and discuss experimental results showing the efficiency and scalability of our
approach.

Keywords: Decision support systems, facility placement, service coverage, continuous space, graphics processing
unit (GPU)

1. Introduction

Location science is a part of operations research and management science concerned with the placement of a
limited set of facilities in order to optimize (minimize or maximize) at least one objective function: coverage, cost,
travel distance, etc.

A large number of problems locating facilities use the concept of coverage. A demand is covered by a facility if
the distance or travel time between the demand and the facility is less than a certain predetermined value called the
coverage radius. For example, a house is covered by a fire station if the time of travel from the station to the house is
less than ten minutes. The problems of coverage are of great applicability when planning the location of facilities for
both public and private sectors.

Often, complete coverage of all demand in a region is not possible due to budgetary limitations on the number
of facilities that can be sited. Thus, limited resources must be efficiently managed and regional demand should be
covered to the greatest extent possible.

1.1. Background

The maximal covering location problem (MCLP), introduced by Church and ReVelle [8], seeks to identify the
locations for a specific number of facilities in such a way that the coverage is maximum within a desired service
distance. Both the demand and the location of the facilities are finite sets of points, and a demand point is considered
covered if it lies inside the disk centered on a facility with radius equal to the specified service distance. Exacts
algorithms for solving the MCLP are provided in [8, 14]. Since the MCLP is NP-Hard [28], exact methods may
be inefficient for practical use. Thus, various heuristic methods that allow faster solution times with near-optimal
results have been proposed [8, 13, 19, 29, 17, 30, 22]. Many different adaptations and extensions of MCLP have been
introduced [4, 32, 18]. Non-trivial extensions include, for example, gradual coverage in which the basic coverage
yes/no covering function is replaced by more general decreasing functions in the distance separating the user from the
facility, thereby modeling partial coverage [9, 2, 3, 16, 21]. When facilities and demand are discrete and point-based,
the MCLP based approach is appropriate, but in many practical cases the demand and/or candidate facility locations

Preprint submitted to Journal XXX October 25, 2018

*Manuscript
Click here to view linked References

http://ees.elsevier.com/cor/viewRCResults.aspx?pdf=1&docID=29662&rev=2&fileID=288698&msid={7E8C77F0-D9DA-44D1-9958-CEC79BE3AC21}

are continuously distributed over space, thus new approaches have been developed that help to improve the accuracy
of the obtained solution.

The planar maximal covering location problem (PMCLP) under the Euclidean distance, originally defined by
Church in [6] considers siting facilities in continuous space while representing demand as discrete points. In order to
solve the PMCLP, properties that allow the discretization of continuous regions of the plane where to locate facilities
are used. It turns out that a discrete and finite set of potential locations can be proven to contain an optimal coverage
solution assuming binary coverage, that is, a demand object is either covered or not by a facility. This set of candidate
locations is formed by finding the intersection of all circles of radius the specified service distance centered at each
discrete demand location. These points are referred to as the circle intersection point set (CIPS). Then, the CIPS are
used with MCLP to efficiently solve the PMCLP. Nevertheless, representing the demand in a discrete way introduces
inaccuracies in the obtained solution [15].

In most real cases, the location of the demand and the candidate locations are continuously distributed over a
region of the plane [26]. As an example, when locating emergency warning sirens, it is important for sirens to be
audible anywhere in a given region. Another example is when locating cellular towers, calls could be placed and/or
received at any location in a region. In a similar way, emergency warning sirens and cellular equipment can effectively
be sited almost anywhere since these types of facilities can be mounted on posts or existing structures. Murray and
Tong in [25] present the extended planar maximal covering problem assuming Euclidean distance (EPMCE). They
extend the work of [6] by modeling the demand as a finite union of spatial objects (points, lines or polygons). They
derive a finite set of potential facility sites from continuous space, referred to as polygon intersection point set (PIPS),
and prove that the PIPS contains an optimal solution to the EPMCE. The EPMCE is solved as a discrete MCLP
using the PIPS. However, this model often introduces significant errors in the obtained solution since, as in the case
of the PMCLP, it does not maximize coverage because partial coverage is not taken into account in the objective
function [34]. Partial coverage on rectangular demand and rectangular service zones (PMCLP-PCR) is studied in [1]
by Bansal and Kianfar. The PMCLP-PCR problem has important applications in multi camera view-frame selection to
maximize the partial coverage of rectangular regions. In [33], in the context of earth-observing satellites, was studied
the single camera version of this problem by taking into account not only the covered area but also the quality of the
obtained images. Murray et al. [27] introduce the continuous maximal coverage problem (CMCP) under the Euclidean
distance, in which the demand is considered present everywhere within the region and the facilities can be located
anywhere in the plane. In [23], Matisziw and Murray solve the CMCP for a single facility, with the assumption of
uniformly distributed demand and a disk-like service area for the facility. In both papers, computationally prohibitive
geometry-based approaches are used that only guarantee optimality for the one single facility case [34]. Solving
exactly the CMCP, even for locating a single facility, is difficult and computationally very expensive because an
infinite number of locations must be considered, both for the demand of service and for the installation of the facilities.
Therefore, standard optimization techniques for solving discrete location models are not applicable to the CMCP, and
new efficient methods are required to solve it.

Furthermore, there has been also some related work on the problem that we study in this paper in the computational
geometry field. Given two simple polygons P and Q with n and m vertices, respectively, Mount et al. [24] gave
an algorithm to compute their maximum overlap under translation in O(n2m2) time. Cheong et al. [5] proposed
an algorithm to approximate the maximum overlap using random sampling techniques. Given ε > 0, with high
probability the additive error is ε ·min{area(P), area(Q)} and the running time is O(n+ (m2ε−4 log2 m)). More recently,
Cheng and Lam [7] presented an algorithm to approximate the maximum overlap of two polygons P and Q, built
upon the framework of Cheong et al. [5]. Polygons P and Q may have multiple holes. If n denotes the total number
of vertices in P and Q, the running time of the algorithm is O(n2ε−3 log1.5 n log(n/ε)). If one of the two polygons is
convex, the additive error with high probability is ε · area(P) and the running time can be improved to O(n log n +
ε−3 log2.5 n log((log n)/ε)).

Therefore, the inefficiency of the existent methods, the large volume of data to be processed and the nature of
the problem turn the parallel algorithms into a solution to explore in order to solve this problem. Moreover, the
programmability and high computational rates of graphics processing units (GPU) make them a powerful platform for
computationally demanding tasks where it is needed to process a large amount of data or perform a lot of operations.
Parallel processing capability of the GPU allows you to split complex computing tasks into thousands of smaller
tasks that can be run simultaneously. This capability allows for the solution of many problems with the GPU in a
fraction of the time required by the CPU. The GPUs have quickly become an standard industry that powers millions

2

of PCs, notebooks, workstations and supercomputers around the world. In particular, the general purpose computing
on GPUs (GPGPU), as a way to reduce execution times, is being used by many researchers in several computational
fields ranging from numerical computing operations and physical simulations to knowledge discovery, data mining
and bioinformatics geometry processing [20, 12].

1.2. Problem formalization
In this paper we focus on the one-facility case of the CMCP with the assumption of uniformly distributed demand,

and a disk-like service area for the facility. The facility can be located anywhere on the plane, its service area is not
necessarily completely contained within the piecewise circular domain and partial coverage is taken into account. See
Figure 1 for a motivational example.

b)

c) d)

a)

Figure 1: a) Polygonal domain to be partially covered by facilities with circular service coverage; b) Domain partially covered by two facilities; c)
Piecewise circular domain not yet covered; d) New facility partially covering the piecewise circular domain.

Considering partial coverage forbids us to use a pre-computed set of area values of several predefined regions, each
one of which could be considered either covered or not covered in its totality. On the contrary, we have to compute
a huge number of intersection areas. If these areas were computed in the way used by Geographical Information
System (GIS) commercial software, that is, by first obtaining the part of the polygon included in the disk, and second
computing the area of such part, the intersection between the polygon and thousands of disks would have to be
computed and, consequently, a huge memory space would be needed. Hence we have the aim to obtain a fast and
robust enough way to exactly compute the overlap area of a disk and piecewise circular domain.

Moreover, an inherent limitation of the one-facility CMCP is that only one optimal location is returned as the
answer, which in many cases is very expensive to compute and in general is also too restrictive. However, near-
optimal solutions that could be considered by experts as even more appropriate than that of the optimal one, possibly
exist. Thus, our goal is to approximately solve the problem by providing a set of suitable near-optimal locations, that
is, locations that cover an area that differs by a prefixed constant from the area covered by an optimal location.

A piecewise circular curve, pwc-curve, is a finite ordered list of connected circular arcs and line segments (that
can be considered as circular arcs with infinite radius). The arcs and line segments are the edges, and the points where
these edges intersect are the vertices of the pwc-curve. A pwc-curve is closed if its first and last vertices coincide,
and weakly simple if some pair of non-adjacent edges may intersect but the edges do not cross. A piecewise circular
region, pwc-region, is a set whose boundary is a closed weakly simple pwc-curve. A pwc-region with holes is a
pwc-region from which the union of the interiors of a finite number of enclosed pwc-regions, has been removed. The
enclosing pwc-region is named outer component and the enclosed pwc-regions holes. The boundaries of the outer
component and the holes are pairwise disjoint, and the holes are empty. A piecewise circular domain, pwc-domain, is
the union of a finite collection of non overlapping pwc-regions with holes.

3

Let Dr(q) be the disk of center q ∈ R2 and radius r > 0. From now on, consider that r is constant. Given a
pwc-domain P, we denote A(q) the overlap area of Dr(q) with P. If there were a location q satisfying A(q) = πr2, q
would be an ideal solution of the covering problem. However, in the general case the covering problem does not have
ideal solutions. Let A be the maximum value of A(q) and consider the set of optimal locations

OL = {q ∈ R2 | A(q) = A} .

Since the set OL can be just a single point, we are interested in computing a larger set of near-optimal locations. Given
ε > 0, we define the set OLε of ε-optimal locations by:

OLε = {q ∈ R2 | A − A(q) ≤ ε} .

Our principal goal is to efficiently compute an approximation of the set OLε.

1.3. Our contributions

In this paper we develop an approach to solve the CMCP for a single facility under the Euclidean distance, with the
assumption of uniformly distributed demand and taking into account partial coverage. The prohibitive running times
of the existing approximation algorithms for solving the problem, motivated us to design a GPU parallel approach to
efficiently find an approximate solution. Initial versions of this paper, one dealing with polygonal domains and the
other with pwc-domains, were presented in two informal workshops [10, 11].

We start presenting the strategy we designed to efficiently and robustly compute the exact overlap area between a
disk and a pwc-domain. To the best of our knowledge, this is the first paper describing how to compute this area in an
efficient and exact way.

Next, we propose grid-based algorithms to compute a discrete overlap area map and obtain a discrete set of ε-
optimal locations from the discrete overlap area map. Note that, since each ε-optimal location represents not only a
point but also all the points contained in the grid cell centered on that point, we could say that we obtain a continuous
solution defined by a set of discrete points. On the other hand, as it is usually done, the space occupied by a facility
is represented by a single point, and hence we deal with a simple approximation of the facility. Moreover, slightly
moving the location of the facility does not affect much on the final coverage area. Hence, it is reasonable to use an
approach that, like ours, provides approximate solutions. In addition, to improve the understanding of the problem,
we have designed an interface to visualize the obtained overlap areas hightlighting the ε-optimal locations. This
integration between computation and visualization facilitates, to decision makers, the obtention of an approximately
optimal location for a new facility. Indeed, they can use an iterative what-if-analysis process in which the allowed
absolute error ε and the discretization size can be changed. Each iteration is intended to provide additional detail to
ensure a better understanding of the problem in order to be able to obtain a better solution. The short response times
for computing and visualizing the results facilitate the interaction with the user.

Finally, we provide and discuss experimental results obtained with the implementation of our algorithms that
show the efficiency and scalability of our approach. We do not compare our results with the previously existent papers
because this is the first time that this problem is solved in the way it is setted in this paper. As it is explained in the
previous work, the existent papers do not consider partial coverage and most of them place more than one facility.
Hence, comparing our algorithm with the previous once would be completely unfair.

1.4. Organization of the paper

The remainder of the paper is organized as follows. In section 2, we describe the efficient way we designed
to compute the area of the overlap between a disk and a pwc-domain. Section 3 provides a grid-based approach
to compute a discrete overlap area map from which we obtain a discrete set of ε-optimal locations. In section 4,
we sketch a sequential and present a parallel algorithm for computing a discrete overlap area map and a set of ε-
optimal locations, based on the grid-based approach provided in the previous section, together with their space and
time complexity analysis. In section 5, we present an discuss experimental results, including the visualization of the
solutions, and the analysis of the running times. We end the paper with the conclusions in section 6.

4

2. Overlap area computation

We need an efficient way to compute the area of the overlap between a disk Dr(q) and a pwc-domain. The strategy
we present here is based on Green’s theorem [31], often used to compute areas in calculus, and on several geometrical
observations that allows analyzing several specific and well defined cases.

To start with, note that the overlap area can be computed as the area of the overlap between the disk and the outer
components of the domain minus the area of overlap between the disk and each one of the holes. Along this section
we provide a way to exactly and efficiently compute the area A(q) = area(Dr(q)

∩
R) of the overlap of Dr(q) with

a pwc-region R without holes. This area A(q) can be computed in time proportional to the number n of the vertices
of R as follows. By placing the origin O of the coordinate system at q, the area A(q) is equal to the area of overlap
between Dr(O) and R. Given a point p lying on the boundary B of R, we consider the point p defined as follows: if p
is contained in Dr(O) then p = p, otherwise p equals to the radial projection of p onto Dr(O). Consider now the curve
B defined by

B = {p/p ∈ B} .
Observe (see Figure 2) that the poly-curve B: 1) is weakly simple; 2) can be continuously approximated by simple
closed curves; 3) encloses a region whose area equals A(q). Thus, the area A(q) can be computed by using Greens’s
theorem as follows:

A(q) =
1
2

∫
B
−ydx + xdy .

Figure 2: Obtaining B from B.

Moreover, taking into account that a circular arc or a segment intersects a circle in at most two points, the curve B
can be expressed as a closed piecewise curve B =

∪m−1
i=0 Bi (m ≤ 3n) where each curve Bi with endpoints pi and pi+1

corresponds to one of the next cases:

Case 1: Bi is a segment contained in Dr(O).

Case 2: Bi is a circular arc contained in Dr(O).

Case 3: Bi is a pwc-curve exterior to Dr(O) satisfying that the intersection between Bi and the half-line with origin O
and direction vector −−→Opi equals pi (see Figure 3).

Consequently, it holds:

A(q) =
1
2

∫
B
−ydx + xdy =

1
2

m−1∑
i=0

Ii ,

with

Ii =

∫
Bi

−ydx + xdy =
∫ b

a

∣∣∣∣∣∣ x(t) x′(t)
y(t) y′(t)

∣∣∣∣∣∣ dt ,

where (x(t), y(t)), t ∈ [a, b], is a parametrization of the curve Bi. Next, we discuss on the parametrization of each Bi

and how to compute Ii depending on the case to which the curve corresponds.

5

Figure 3: Bi is exterior to Dr(O).

Case 1: Bi is a segment contained in Dr(O). The segment Bi = Bi can be parameterized by:

(x(t), y(t)) = pi + t(pi+1 − pi), t ∈ [0, 1] .

Then, it holds:
(x′(t), y′(t)) = pi+1 − pi

and

Ii =

∫ 1

0
det(pi + t(pi+1 − pi), pi+1 − pi)dt = det(pi, pi+1) .

Case 2: Bi is a circular arc contained in Dr(O). The arc Bi = Bi can be parameterized by:

(x(t), y(t)) = (ci1 + R cos(θi + t), ci2 + R sin(θi + t)), t ∈ [0, βi] ,

where ci = (ci1, ci2) is the center of the arc Bi, R is its radius, θi is the oriented angle between the x axis and the vector
−−→ci pi, and βi is the oriented angle between the vectors −−→ci pi and −−−−→ci pi+1. Then, it holds:

(x′(t), y′(t)) = (−R sin(θi + t),R cos(θi + t)) ,

and

Ii =

∫ βi

0
ci1R cos(θi + t) + ci2R sin(θi + t) + R2dt =

= ci1R(sin(θi + βi) − sin(θi)) − ci2R(cos(θi + βi) − cos(θi))+

+R2βi = det(ci, pi+1 − pi) + R2βi . (1)

Case 3: Bi is a pwc-curve exterior to Dr(O) with endpoints pi and pi+1. Let p0
i+1, p1

i+1, ..., pk
i+1 = pi+1 be the

intersection points between the curve Bi and the half-line with origin O and direction vector −−−−→Opi+1. The curve Bi

can be divided into two parts B1
i and B2

i . The part B1
i connects pi with p0

i+1, while the part B2
i connects p0

i+1 with
pk

i+1 = pi+1. The second part B2
i can be also divided into k pieces according to the points p0

i+1, p1
i+1, ..., pk

i+1 = pi+1
(see Figure 4).

Let B2, j
i be the piece of B2

i that connects p j
i+1 with p j+1

i+1 . Then, we have:

Ii =

∫
Bi

−ydx + xdy =
∫

B
1
i

−ydx + xdy +
∫

B
2
i

−ydx + xdy =
∫

B
1
i

−ydx + xdy +
k−1∑
j=0

∫
B

2, j
i

−ydx + xdy. (2)

Consider now the simple closed curve determined by the union between B2, j
i and the oriented segment si, j = p j+1

i+1 p j
i+1.

Since this curve is external to the disk Dr(O) and the projection si, j onto Dr(O) of each si, j vanishes to the point pi+1,
for each j it holds that

0 =
∫

B
2, j
i

−ydx + xdy +
∫

si, j

−ydx + xdy =
∫

B
2, j
i

−ydx + xdy + 0. (3)

6

=

=

Figure 4: Bi subdivision process.

Consequently, from (2) and (3) we have:

Ii =

∫
Bi

−ydx + xdy =
∫

B
1
i

−ydx + xdy.

Let Ai be the shortest oriented arc on Dr(O) that connects the point pi+1 with the point pi and let Bi,i be the closed
curve determined by B1

i ∪ p0
i+1 pi+1 ∪ Ai ∪ pi pi (see Figure 5). Since B1

i does not cross the half-line with origin O and
direction vector −−→Opi, it holds that Bi,i is simple. Then, Ii can be computed by:

Ii =

∫
Bi,i

−ydx + xdy −
∫

Ai

−ydx + xdy ,

since the radial projection onto Dr(O) of the segments p0
i+1 pi+1 and pi pi are, respectively, the points pi+1 and pi.

The line integral over Ai is a particular case of (1) when ci = (0, 0), R = r and βi is the oriented angle αi between
the vectors −−−−→Opi+1 and −−→Opi. Then, it holds: ∫

Ai

−ydx + xdy = r2αi .

The result of the line integral over Bi,i depends on the orientation of Bi,i and on whether the disk Dr(O) is interior
or exterior to Bi,i. Let ni be the number of intersections between Bi and the half-line h with origin O in the direction
of the vector −−−→Opi. According to ni and αi, there are three cases to consider (see Figure 5):

Case 3a: ni is odd and αi > 0. Then, Dr(O) is interior to Bi,i and Bi,i is oriented counterclockwise. Consequently,∫
Bi,i

−ydx + xdy = 2πr2 and Ii = r2(2π − αi) .

Case 3b: ni is odd and αi < 0. Then, Dr(O) is interior to Bi,i and Bi,i is oriented clockwise. Consequently,∫
Bi,i

−ydx + xdy = −2πr2 and Ii = −r2(2π + αi) .

Case 3c: ni is even. Then, Dr(O) is exterior to Bi,i. Consequently,∫
Bi,i

−ydx + xdy = 0 and Ii = −r2αi .

Thus, taking into account all the above, we compute the area A(q) as follows. We initialize A(q) to 0 and an exterior
curve Γ to empty, and then the boundary edges, segments or arcs, of the pwc-region are sequentially processed. Given
an edge e, first the change of origin of coordinate system is applied to its points. Next:

• if e is a segment exterior to Dr(O) or e is an arc whose supporting circle is exterior to Dr(O) then:

7

Case 3a: odd, > 0 Case 3b: odd, < 0

Case 3c: even

Figure 5: Exterior chain cases.

– if Γ is empty or e does not intersect the half-line with origin at O that passes through the initial point of Γ,
e is joined to Γ,

– otherwise, the integral over Γ is added to A(q) and Γ is initialised with e,

• otherwise, the integral over Γ is added to A(q), Γ is initialised empty, e is split according to the intersection
points with the boundary of Dr(O), and the integral over each part of e is added to A(q).

Finally, A(q) is divided by 2.

3. Computing a set of ε-optimal locations

In this section we describe our approach to obtain an approximation of the set OLε of ε-optimal locations, which
relies on area maps. We define the area map as the function that maps every point q ∈ R2 to the overlap area A(q).
Thanks to following lemma the search for ε-optimal locations can be reduced to the minimum bounding box of P.
Consequently, the computation of an approximation of the area map can be restricted to this bounding box.

Lemma 1. At least a location optimizing A(q) belongs to the region delimited by the convex hull CH(P) of the pwc-
domain P. Consequently, it also belongs to the minimum bounding box of P.

Proof. Assume that q0 is an optimal location such that q0 < CH(P), and denote q̃0 the closest point to q0 among all
the points in CH(P) (see Figure 6). Let L be the line through q̃0 which is orthogonal to the segment q̃0q0. The line
L subdivides the plane in two half-planes H1 and H2, being H1 the half-plane that contains q0. It holds that no point
of CH(P) is included in H1. Suppose the contrary and let q be a point of CH(P) included in H1. Then, the segment
qq̃0, which is included in CH(P) because CH(P) is convex, would intersect the disk centered at q0 with radius ∥q0q̃0∥
which contradicts the fact that q̃0 is the point of CH(P) closest to q0. Consequently, we have that:

Dr(q0) ∩CH(P) ⊆ Dr(q0) ∩ H2 ⊆ Dr(q̃0) . (4)

Taking into account that
Dr(q0) ∩ P ⊆ Dr(q0) ∩CH(P) , Dr(q0) ∩ P ⊆ P

and (4) we also have that:

Dr(q0) ∩ P ⊆ Dr(q̃0) ∩ P . (5)

From (5) we conclude that A(q̃0) ≥ A(q0). �
8

L

L

Figure 6: Observe that Dr(q0) ∩CH(P) ⊆ Dr(q̃0).

In the following sections two different approximations of the area map depending on ε are obtained. First, a basic
regular approach that uses a uniform grid provides a uniform ε-area map (section 3.1), then, a nonuniform ε-area map
is obtained by locally refining an initial grid (section 3.2).

3.1. Uniform ε-area map

The minimum bounding box of the pwc-domain P is sampled with a uniform grid Gdε composed of square cells
of side length dε. The length dε is chosen according to Theorem 1, which uses Lemma 2. The set of centers of the
cells of Gdε , denoted by Cdε , is used to obtain the discrete graph defining the uniform area map

UAMε = {(c, A(c)) | c ∈ Cdε } .

Let Aε be the maximal area over the centers of Cdε , and

OCε = {c ∈ Cdε | A(c) = Aε} .

By Theorem 1, if c ∈ OCε the absolute error A(c) − A, the difference between the value A(c) and the optimal overlap
area value assuming that the center can be placed anywhere, is smaller or equal than ε > 0. That is, all the centers in
OCε are ε-optimal locations.

Lemma 2. Given two points q1 and q2 satisfying ∥q1q2∥ ≤ 2r, then |A(q1) − A(q2)| ≤ 2r∥q1q2∥.

Proof. If ∥q1q2∥ ≤ 2r, we have that Dr(q2) ∩ P is included in the union of Dr(q1) ∩ P and the lune L(q2, q1) =
Dr(q2) \ Dr(q1) (see Figure 7). Thus,

A(q2) ≤ A(q1) + area(L(q2, q1)) .

Moreover, taking h = ∥q1q2∥ and by using Taylor expansion, we have:

area(L(q2, q1)) = 2r2 arcsin
(

h
2r

)
+

h
2

√
4r2 − h2 ≤ 2rh .

Consequently A(q2) ≤ A(q1) + 2r∥q1q2∥ and, by interchanging q1 and q2, A(q1) ≤ A(q2) + 2r∥q1q2∥. �

Theorem 1. Given ε > 0, if the grid side length dε satisfies

dε ≤ min
{

2
√

2r,
ε
√

2r

}
,

then the absolute error A − A(c) ≤ ε, where c ∈ OCε.

9

2

1

(1, 2)

(2, 1)

Figure 7: Lunes L(q1, q2) and L(q2, q1).

Proof.
Given a point q in a cell of center c and side length d, we have that ∥qc∥ ≤ d/

√
2. Then, if d is taken satisfying

d ≤ 2
√

2r, accordingly to Lemma 2 we have:

A(q) ≤ A(c) + 2r∥qc∥ ≤ A(c) +
√

2dr . (6)

Consequently, fixed ε > 0, and according to (6), an ε absolute error can be guaranteed by choosing the side length
dε of a square grid cell satisfying:

dε ≤ min
{

2
√

2r,
ε
√

2r

}
,

because, in such a case:
A = A(q) ≤ A(cq) +

√
2dεr ≤ Aε + ε = A(c) + ε ,

where q is an optimal location, cq is the center of the cell containing q and c ∈ OCε.
�

3.2. Nonuniform ε-area map
Using the grid Gdε on the entire bounding box of P wastes many grid cells in areas where are not necessary.

Moreover, it may be computationally demanding in time and memory requirements. Using a global refinement method
would have the same problems, thus, we propose a local grid refinement method that starts with a coarser grid of side
length d0 > dε and refines only some specific cells until the required dε precision is achieved.

The local grid refinement strategy identifies the cells to be refined, named parent cells, according to lemma 3 and
lemma 4 which hold for d ≤

√
2r. They provide a filtering criterium to quickly detect the terminal cells that should

not be refined because their points: i) can not be ε-optimal locations (Lemma 3) or ii) are all ε-optimal locations for
being ideal locations, i.e. their overlap area achieves the πr2 upper bound (Lemma 4).

Lemma 3. Let c0 be a cell center that along the refinement process provisionally maximizes the overlap area. If
dε ≤ d ≤ 2

√
2r and A(c) +

√
2dr < A(c0) −

√
2dr for the center c of a grid cell g, then no point of g is an ε-optimal

location.

Proof. From (6) we know that given a point q ∈ g we have:

A(q) ≤ A(c) +
√

2dr ,

and consequently:
A(q) < A(c0) −

√
2dr ≤ A −

√
2dr .

Then, since d fulfills that dε ≤ d ≤ 2
√

2r, it holds:

A − A(q) >
√

2dr ≥
√

2dεr ≥ ε .

Consequently, no point q ∈ g can be an ε-optimal location. �
10

Lemma 4. Assume that Dr(c) covers the grid cell g, i.e. d ≤
√

2r, and that c is an ideal location, i.e. A(c) =
area(Dr(c)∩ P) = area(Dr(c)) = πr2. Then, if each center c′ of each one of the eight cells adjacent to cell g is also an
ideal location, any point of the cell g is an ideal location.

Proof. The union F of the set of all disks of radius r whose center belongs to the cell g is the r-offset of the cell g.
Observe in Figure 8 that, when d ≤

√
2r, the union of the eight disks of radius r centered at the center of the grid cells

adjacent to cell g together with the disk Dr(c) is a simply connected set that covers the r-offset F. Consequently, since
the union of the eight disks is included in P, the r-offset F is also included in P and any point of the cell g is an ideal
location. �

Figure 8: The union of the nine disks covers the cell offset.

To obtain the nonuniform ε-area map NUAMε several refinement steps are used. An initial coarse grid Gd0 with
dε < d0 ≤

√
2r is considered, its cells centers define the set of possible locations Cd0 . The overlap area associated to

these points is computed and the terminal and parent cells of Gd0 are identified according to lemmas 3 and 4. Next
the i-refinement step, in this case for i = 1, starts. A new length di with dε ≤ di < di−1 is determined and a child grid
Gdi with cells of side length di is placed on each parent cell. To be able to use Lemma 4 and classify the cells of Gdi ,
the grid is enlarged adding two auxiliary rows and columns surrounding it. We consider Cdi the set of all the centers
providing from the grids Gdi and C̃di the enlarged set of centers containing also those providing from the auxiliary
cells. The overlap area of the disks centered at the points in C̃di are computed. Meanwhile, the terminal and parent
cells for the next (i + 1)−refinement step are selected from the centers in Cdi . The refinement process ends at the
S−refinement step when dS ≤ dε in which case an ε-absolute error is guaranteed. The graph defined by the terminal
cell centers detected at the i-refinement step (0 ≤ i ≤ S) and their overlap areas is denoted by NUAMi. Similarly,
the set of terminal optimal locations obtained until step i is denoted OCi. At the end of the process NUAMS is the
NUAMε and OCS is the desired OCε.

3.3. Approximating the set of ε-optimal locations and visualizing the ε-area map
The set of ε-optimal locations is approximated by the union of the cells falling in one of the next two cases:

Case 1: The center c of the cell is a ε-optimal location, i.e. A(c) = Aε.

Case 2: The center c of the cell is not a ε-optimal location, but the cell may contain ε-optimal locations, i.e.

A(c) + ε ≥ Aε − ε .

Furthermore, to improve the understanding of the obtained solutions, we visualize the obtained area map approx-
imation (Figure 9) by painting:

• the centers in Case 1 in red if they are ideal solutions and in orange otherwise.

• the centers in Case 2 in green.

11

Figure 9: Image of a uniform ε-area map. The set OCε contains ideal solutions and is painted in red. The cells that may contain ε-optimal locations
are painted in green, the rest of analyzed cells in a blue.

• the rest in a blue color gradation according to the overlap area of each location, the darker the blue a point is
colored the smaller its overlap area is.

The visualization of the area map approximation facilitates the task of the decision makers. It provides locations
for a new facility that according to ε are considered good enough. This allows them to can take into account additional
criteria (availability, suitability of the environment or installation costs) to choose the best one. The approach permits
using an iterative what-if-analysis process in which the absolute error ε or the number of refinement steps used to
obtain the NUAMε can be changed.

In fact, the differences between the area map obtained from the UAMε and the NUAMε can also be easily seen
visualizing them (Figure 10). It intuitively shows how the refinement process achieves the same accuracy requiring
less memory space and execution time (which is also theoretically and experimentally proved in Section 4.3 and
Section 5).

Figure 10: Uniform area map (left) versus nonuniform area map (right).

4. Algorithms description

In this section we describe a sequential and a parallel algorithm to obtain the ε-overlap area maps and their ε-
optimal locations, together with an algorithm to visualize them. We first sketch the sequential algorithm and then
describe in detail the GPU parallel one, we also provide their complexity analysis and their theoretical comparison.

12

For simplicity in the writing, we sometimes identify a cell with its center. Hence even though the sets Cdi and C̃di

contain cell centers we may talk about the cells in Cdi or C̃di when referring to the cells whose centers are contained
in Cdi or C̃di .

4.1. Sequential implementation

The sequential algorithm proceeds, according to the results of Sections 2 and 3, as follows (for further details,
specially about lines 2), 3), 6), 7) and 9) see Section 4.2):

Algorithm 1: Sequential algorithm
1) store P and compute its bounding box
2) determine d0 with dε ≤ d0 ≤

√
2r

3) obtain the initial grid Gd0 and the cell centers Cd0

4) compute A(c), the overlap area of P and the disks centered at c, for each c ∈ Cd0

5) while di > dε with 0 ≤ i ≤ S do
6) determine di+1 < di

7) classify the cells in Cdi

8) identify the parent cells of Cdi

9) obtain Cdi+1 and C̃di+1

10) compute A(c) for each c ∈ C̃di+1

11) increment i
12) endwhile
13) visualize the obtained results

The bottleneck of this sequential algorithm is the computation of the overlap area of P with the considered disks.
To exactly compute the overlap area of the pwc-domain P and a given disk it is necessary to determine which parts of
the disk covers P, and this is not possible by only finding the intersection points of P with the disk. Thus, we have
to traverse P and, consequently, is not possible to use indexed structures, like regular grids or quad-trees, to avoid
considering some parts of P. However, the computation of these overlap areas can be fully parallelized, as well as
the classification of the analyzed cells and the obtention of the child cell centers. Thus, we next present the parallel
version of this sequential algorithm.

4.2. Parallel implementation
The parallel version of the algorithm also uses the results presented in Sections 2 and 3. The GPU-parallel

algorithm is sketched in the following pseudocode, where the steps shared with the sequential version are marked in
italics, and explained in detail next.

Algorithm 2: Parallel GPU algorithm
1) store P and compute its bounding box
2) transfer P to the GPU
3) determine d0 with dε ≤ d0 ≤

√
2r

4) obtain the initial grid Gc0 and the cell centers Cd0

5) transfer Cd0 to the GPU
6) compute A(c) for each c ∈ Cd0 (parallel)
7) transfer the area information to the CPU
8) delete Cd0 from the GPU
9) while di > dε with 0 ≤ i ≤ S do
10) determine di+1 < di

13

11) classify the cells in Cdi (parallel)
12) identify the parent cells of Cdi (CPU)
13) transfer the parent cells centers to the GPU
14) obtain Cdi+1 and C̃di+1 (parallel)
15) compute A(c) for each c ∈ C̃di+1 (parallel)
16) transfer the computed areas and centers to the CPU
17) delete C̃di+1 from the GPU
18) increment i
19) endwhile
20) delete P from the GPU
21) visualize the obtained results

To describe the algorithm in detail it is subdivided in the following steps:

A) Pwc-domain P storage: (lines 1), 2));
B) Gd0 and Cd0 determination (lines 3)-5));
C) Parallel overlap areas computation (lines 6)-8), 15)-17));
D) di+1 determination (line 10));
E) Parent cells identification (lines 11)-13));
F) Cdi and C̃di determination (i > 0) (line 14));
G) Results visualization (line 21)).

Next we remark the main issues of each of these steps.

A) Pwc-domain P storage
The vertices of P are stored in pwc-curve order (see Figure 11). Two consecutive vertices are either adjacent in P

or correspond to two different pwc-curves. We first store the vertices defining the outer regions and then those defining
the holes. Two consecutive vertices of the same pwc-curve define an edge, and the first vertex of each pwc-curve is
also repeated as its last vertex. We also store, in vectors, the position of the first vertex of each pwc-curve and for
each circular arc: the angle it defines and the radius and center of its supporting circumference. To know whether an
edge is a line segment o a circular arc we use an array of integers. If vi is the starting point of a line segment edge or
the ending vertex of a pwc-curve it stores a −1. An integer value j ≥ 0 indicating the position, in the corresponding
vectors, of the information associated to the circular arc going from vi to vi+1 is stored otherwise.

hc =

hr =

hα =

hv =

hp =

nv = 10

nc = 2

nh = 0

c0

c1

c2
r0

r1 r2

v0 v1

v2

v3v4

v5

v6

v8

v9

α1
α0

α2

-1 -1 -1 1 -1 -10 -1 -12

r0 r1 r2

α0 α1 α2

hsc = 0 7

c0 c1 c2

v0 v1 v2 v3 v4 v5 v6 v7 v8 v9

Figure 11: Pwc-domain representation

To solve the problem in the GPU we transfer the pwc-domain P there. We use: hv the array of real values storing
the vertex coordinates; hsc the integer array storing the starting position of each pwc-curve; nv, nc and nh, three inte-
ger values with the number of vertices, enclosed pwc-curves and holes, respectively; hp the integer array to store the
integers encoding whether the edge from vi to vi+1 is a line or a circular segment; and three extra real arrays hr, hc and

14

hα, with the radii, centers and angles of the circular arcs, respectively. The center of the supporting circumference of
a circular arc from vi to vi+1 is (hc[2 j], hc[2 j + 1]), its radius hr[j] and the angle defined by its arc is hα[j], wherever
j = hp[i] ≥ 0. LetHP denote all these GPU-arrays and integers needed to represent and store P in the GPU.

B) Gd0 and Cd0 determination
Let ka × kb be the size of the initial coarse grid. The integers ka and kb are at least 2 and are determined so that

the grid has squared cells with side length d0 ≤
√

2r. We can start with d0 =
√

2r. Since the grid should cover the
a × b minimum bounding box of P, we take ka = ⌈a/d0⌉ and kb = ⌈b/d0⌉. We center the pwc-domain in the grid and
determine the grid cell centers defining Cd0 (see Figure 12). The centers coordinates are stored in an array, traversing
the grid in a row first fashion. After obtaining them in the CPU, they are transferred to the GPU, where are stored in
a real vector hq of size nq = 2kakb.

a

b

ka = 6 kb = 13d0 =
p

2r N0 = kakb = 78

Figure 12: Gd0 centered at P, the centers of Cd0 marked in crosses.

C) Parallel overlap areas computation
This computation is required twice along the algorithm (lines 6) and 15)). The aim is to compute the areas A(q) =

Dr(q) ∩ P, with q ∈ Cd0 in line 6) and q ∈ C̃di for i ≥ 1 in line 15). Let Q denote the corresponding set of centers and
hq of size nq the GPU-vector storing Q.

The areas are parallelly computed using a thread per point q ∈ Q and a kernel that has as input hq, nq, r and HP
, and as output two real arrays ha and haM of size nq and 1, respectively. Array ha contains the computed areas and
haM the obtained optimal value. The thread with global index idg is associated to the point q ∈ Q with coordinates
(hq[2idg], hq[2idg + 1]). To compute A(q) the thread traverses P as is explained in Section 2. When all the edges of P
have been considered, the obtained overlap area is stored in ha[idg]. Then, haM[0] is updated with an atomic operation
whenever the already obtained optimal area has not reached the ideal value πr2.

Since each thread analyzes all the vertices of P, it is worth to use shared memory to let the threads cooperate to
transfer HP from the global to the shared memory. Being B the block size used, storing HP in the shared memory
requires 6B real and B integer values of shared memory per block. The number of pwc-curves defining P, hc, is
usually smaller than B. Hence, the first hc threads of the block, those whose local index idl fulfills 0 ≤ idl < hc, store
hsc in the shared memory. Then, to start with, each thread transferees a vertex to shared memory. It stores hv[idl]
and hp[idl], and if j = hp[idl] , −1 also hc[j], hr[j] and hα[j] to the idl position of the corresponding vectors in the
shared memory. When all these vertices of P have been analyzed by all the threads, the information of the next B
vertices of P is transferred. It obviously requires two synchronization points, one after transferring the vertices to the
shared memory and the other after processing the transferred vertices.

When the kernel ends, hq is deleted from the GPU and ha and haM are transferred to the CPU but not deleted from
the GPU because they are used later.

D) di+1 determination
If di > dε a new refinement step is required and di+1 has to be determined, which is equivalent to choose the size the

child grid Gdi+1 . Since the cells to refine are squared cells, we use child grids of size ki+1 × ki+1 with 2 ≤ ki+1 ≤ kGPU ,
kGPU is a GPU-depending constant discussed in step E) and in Section 5.

15

The value of ki+1 can be provided by the user or computed according to the refinement needs, if possible, a pre-
fixed number S of as regular as possible refinement steps. In the latter case, ki+1 should be ⌈ S√d0/dε⌉ truncated to
the interval [2, kGPU]. Hence, the value di+1 is set to be di/ki+1. However, when di+1 becomes smaller than dε, i.e.
i + 1 = S , we take kS = ⌈dS−1/dε⌉ and dS = dS−1/kS .

E) Parent cells identification
When the (i + 1)-refinement step is required, the parent cells of Cdi need to be identified. They are obtained after

classifying all the cells of Cdi into terminal or parent cells by using the results of Section 3.2.
Accordingly, the classification uses all the areas computed at i-refinement step which are those corresponding to

Cd0 for i = 0 and to C̃di ⊃ Cdi for i > 0. Two kernels proceeding slightly different are used depending on whether
i = 0 or i > 0. However, both classify the cells in Cdi in parallel. Each thread considers a cell of Cdi and classifies it
by storing, in the integer array hr of size |Cdi |, a 0, 2 or 1 depending on whether the cell can not contain any ε-optimal
location (Lemma 3), is ideal (Lemma 4) or should be refined (see Figure 13). Both kernels have as output hr and as
input the computed areas ha, the size of ha (i.e. |Cd0 | or |C̃di | i > 0), the dimensions of Gdi and two real values aD and
aI . The values aD and aI are the threshold values of Lemmas 3 and 4, i.e. aD = Ai − 2

√
2dir, where Ai is the optimal

area obtained at the i-refinement step, and aI = πr2.

0 0 0 1 1 1 1 1 0 0 1 1 0

0 0 0 1 2 1 1 0 0 0 1 1 1

0 1 1 1 2 1 0 0 0 0 1 1 0

1 1 1 1 1 1 0 0 0 0 0 0 0

1 1 1 1 1 1 0 0 0 0 0 0 0

0 0 0 1 1 1 0 0 0 0 01 0

hr 0 0 00 0 0 11

Figure 13: Cells classification into terminal (discarded/ideal) cells (labeled with a 0 or 2) or parent cells (labeled with a 1).

The kernel used in the first refinement step, i = 0, which analyzes the cells of the initial ka × kb grid Gd0 , is
called associated to two dimensional CUDA-grid of threads. A two-dimensional CUDA-grid is used so that the
threads in a block share as much areas as possible when checking Lemma 4 (see Figure 14). The thread with global

Figure 14: Cells classification kernel for i=0. A 6 × 15 two-dimensional CUDA-grid with 3 × 5 CUDA-blocks. The areas transferred to shared
memory by the threads (squares) of a block dashed.

identifier (idxg, idyg), within the two-dimensional CUDA-grid, considers the cell (idxg, idyg) of the ka × kb grid Gd0

and classifies it. Its area is stored in ha[pos] with pos = idxgkb + idyg. Hence, the cell can not contain optimal points
when ha[pos] < aD; it is ideal if ha[pos] = aI and its 8 neighbors too; or a parent cell otherwise. When Ai achieves
the ideal value, Lemma 4 is used and the areas are transferred from the global to the shared memory. If B′ × B′′ is the
size of the two-dimensional block used, the existent (B′+2)× (B′′+2) potentially used areas in a block are transferred
to the shared memory (dashed region of Figure 14). Each thread transferees the area of its cell and the threads of
the block boundary also transferee the areas of its existing exterior neighbors (represented in arrows in Figure 14).
Obviously, a synchronization point after transferring the area is needed.

16

The kernel used in the rest of the i-refinement steps (i ≥ 1) is called with a one-dimensional CUDA-grid of C̃di

threads. Each block becomes responsible of µ ≥ 1 complete child grids (see Figure 15), this is the reason why k is
upperbounded by the GPU-depending constant kGPU . Each thread transferees an area value to shared memory. After

1 2 3 4

5 6 7 8 9 10 11 12

13 14 15 16 1917 18

20 21 22 23 24

25 26 27 3026

31 32 33 34 35 36

k = 3
Child
grid

2928

1 2 3 ... 34 35 36

µ = 3

Figure 15: Cells classification kernel for i = 1 > 0. The parent cells of Gd0 enumerated above and grouped per blocks (µ = 3). Below the
representation of ha in the GPU, k = 3.

transferring the areas, only the threads whose cell belongs to Cdi classify the cell and store the corresponding 0, 1 or
2 in hm.

Once the kernel has classified all the cells, ha is deleted from the GPU and hm is transferred to the CPU where the
resultant integer vector is traversed, the parent cells are extracted and their centers are stored in an array. The parent
cells centers are used in the next step where the child grids are build and the classification of the cells in Cdi is reused
later in the visualization process.
F) Cdi and C̃di determination (i > 0)

The centers of the already identified parent are transferred to the GPU where are used to center, in each of them, a
new child grid of size ki+1 × ki+1. In the case that the ideal area has been reached, i.e. Ai = πr2, the grid Gdi is enlarged
adding the extra rows and columns mentioned in Section 3.2 (see Figure 16). Thus, a k× k grid with k ∈ {ki+1, ki+1+2}

Figure 16: A child grid of size k = 3, with its real (black crosses) and auxiliary (red circles) cell centers.

is centered in each of the Ri parent cells centers. It is done with Rik2 threads, and hence, each thread determines a
point of C̃di+1 . The first k2 threads build the child grid centered at the first parent cell, the next k2 those centered at the
second one, and so one. The child centers are stored in the resized array hq which now has size Rik2. The cells centers
of the same child are stored in consecutive positions by traversing the child grid in a row first fashion (see Figure 15).
The set C̃di+1 is maintained in the GPU-array hq, but also transferred to the CPU where is also needed.

G) Results visualization
To visualize the solution, we paint the center of the terminal cells obtained along the process. Hence, not all the

analyzed points (Figure 17 a) are visualized (Figure 17 b).

17

a) b)

Figure 17: Centers of the analyzed: a) real cells, b) terminal cells.

4.3. Complexity analysis

In this section, we provide the complexity analysis of the sequential and the parallel strategy concerning both the
worst case time and the space complexity analysis. Finally, we theoretically compare the time and space complexity
of the parallel and the sequential algorithm which is, by now, the best known sequential algorithm to solve this prob-
lem. Since the details have been provided for the parallel version of the algorithm, we start by analyzing in detail the
complexity of the parallel algorithm and next use the observations done to give the complexity of the sequential one.

Parallel algorithm complexity analysis
First each kernel and refinement step are analyzed separately and then the whole algorithm analysis is provided.

Let Ni denote |Cdi | for i ≥ 0, hence, N0 = kakb and Ni = Rik2
i for i > 0. Note that when Ai−1 is the ideal area, 4(ki+1)Ri

extra auxiliary cells are used in the area computation, however the number of considered cells is in O(Ni).
Time complexity analysis: The time complexity analysis of a parallel algorithm usually analyzes the worst case total
work done by the algorithm, which is the number of executed operations over all the processors or threads in the worst
case, and the execution time of the algorithm when p threads are used.

We start analyzing the worst case total work done at the refinement step i.
The parallel work involves that done by the kernels used in the: i) Parallel overlap areas computation. It is

executed by as many threads as points has to analyze. Each thread computes an area A(c) analyzing the nv edges of P
in O(1) time per edge (note that P has as many edges as vertices) doing O(nv) work. Since O(Ni) points are analyzed,
the total work done by this kernel is of O(nvNi). Its execution time when pi threads are used is of O(nvNi/pi) where
pi = O(Ni). However, when Ai is not the ideal area O(Ni) atomic operations are done. ii) Parent cells identification
which classifies the cells in Cdi−1 with O(Ndi−1) threads. Each thread considers one grid cell and does at most 9 = O(1)
checks. Hence, the kernel does O(Ni−1) total work using Ni−1 threads doing O(1) work each. Its execution time when
pi−1 threads are used is O(Ni−1/pi−1) with pi−1 = O(Ni−1). iii) Cdi and C̃di determination. It C̃di by using one thread
per point in C̃di doing O(1) work each. Again its execution time when pi = O(Ni) threads are used is of O(Ni/pi).

The sequential work consists of: i) determining di and ki which is done in O(1) and ii) selecting the parent cells
using the obtained classification which takes O(Ni−1) time.

According to this analysis we can state that the:

Total work done in parallel to handle the ith refinement step is w0 = O(nvN0) and wi = O(Ni−1 + nvNi) for i > 0.
Meanwhile O(Ni−1) work is done in the CPU. Thus, w0 = O(nvNo) and wi = O(Ni−1 + nvNi) for i > 0.
Considering the whole refinement process which has S refinement steps, the total work is of

w =
S∑

i=0

wi = O(nvN0) +
S∑

i=1

O(Ni−1 + nvNi) =

=

S∑
i=0

O(nvNi) +
S−1∑
i=0

O(Ni) =
S∑

i=0

O(nvNi) = O(nvN).

Obtaining an accurate upper-bound of Ni is really difficult. Denoting by di the length of the grid cell considered
at step i, we can state that Ni = O(⌈(⌈a/di⌉)(⌈b/di⌉). But, as it is shown in Section 5, in real applications it is
much smaller. Thus, the total work done by the whole algorithm is w = O(nvN).

18

Execution time of the parallel part of our algorithm is t0 = O(nvN0/p0) and ti = O(Ni−1/pi−1 + nvNi/pi) for i > 0
with pi = O(Ni) ∀i ≥ 0. Consequently, in the best case it is O(nv). Thus, considering the S refinement steps,
the execution time of the parallel part of our algorithm becomes

tp = O

nv

S∑
i=0

Ni

pi
+

S−1∑
i=0

Ni

pi

 = O

nv

S∑
i=0

Ni

pi

 .
In the best case, when pi = O(Ni), it becomes O(nvS).

When the part solved in the CPU is also considered the execution time becomes O(N0 + nvN0/p0) for the first
step and O(Ni−1 + Ni−1/pi−1 + nvNi/pi) for i > 0.
Hence, we finally obtain that the execution time of the whole algorithm is

tp = O

 S∑
i=0

Ni + nv

S∑
i=0

Ni

pi

 = O

N + nv

S∑
i=0

Ni

pi

which in the best case becomes O(N + nvS).

Space complexity analysis: Storing the domain requires 2nv + 4nc real and nv + nc + 3 integer values in the global
memory, where nc is the number of pwc-curves. The first kernel also uses 6B real and B integer values in the shared
memory per block and 3Ni real values to store the centers coordinates and the computed overlap areas. Thus, it has a
space complexity of O(nv + nc + Ni) = O(nv + Ni). Considering the whole refinement process, the maximal amount of
memory used in the first kernel is O(nv + Nmax), where Nmax = max

i=0···S
Ni.

The second kernel does not use P nor the centers coordinates, but, since the second kernel is called whenever a
new refinement step is needed we do not delete P from the global memory. Thus, P is transferred only once to the
GPU and used when it is needed. On the other hand, the center coordinates are deleted from the global memory as
soon as the first kernel ends because they are not used again. Hence, in the second kernel we need the already O(Ni−1)
computed areas and Ni−1 integer values to classify the cell centers. Thus the amount of memory needed is O(Ni−1). It
also uses shared memory, the amount of shared memory needed in a block with B threads is O(B). During the whole
refinement process it requires O(Nmax + B) memory.

The third kernel needs the Ri parent cell centers obtained from the Ni−1 analyzed cells and computes the new O(Ni)
cell centers. Thus, since Ni = O(k2

i Ri), the amount of memory needed at time step i is O(Ri + Ni) = O(Ni). During the
whole refinement process it requires O(Nmax) memory.

Concerning the information stored in the CPU, we maintain P using the same amount of global memory used in
the GPU, O(nv), and the coordinates of all the analyzed O(N) cell centers with their area and classification (when it is
obtained). It represents O(N) extra information.

Sequential algorithm complexity analysis
After analyzing the complexity of the parallel algorithm, we can easily obtain the time complexity of the sequen-

tial version. As before, the time complexity of the first refinement step is O(nvN0) and for i > 0 it is O(Ni−1 + nvNi).
When all the refinement process is considered the time complexity becomes again t = O(nvN). Note that since the
areas are computed exactly both in the parallel and the sequential algorithm the refinement process will lead to the
same analyzed N centers.

Theoretical comparison between the parallel and the sequential algorithm
The standard measures to theoretically compare a parallel and a sequential algorithm are the parallel speedup

and the work efficiency of the parallel algorithm. These two measures are referred to the time complexity t of the
best known sequential algorithm to solve the problem and the execution time tp and the total work w of the parallel
algorithm, respectively.

These measures are used to compare our parallel and sequential algorithms. Note that the proposed sequential
algorithm is the best known sequential algorithm to solve the problem and thus we are fairly comparing the parallel
algorithm versus the sequential one.

19

Work efficiency: If w is the total work of the parallel algorithm, the work efficiency is defined as the ratio w
t . In our

case, it is
w
t
= O(nvN/nvN) = O(1).

It means that all the work done in the parallel strategy is also done in the sequential one which is the optimal
work efficiency.

Theoretical parallel speedup: The theoretical parallel speedup of a parallel algorithm with execution time complex-
ity tp is the ratio t

tp
. In our case

t
tp
= O

 nvN
nvN

p + N

 = O
(

pnv

nv + p

)
.

Note that this ratio is due to the fact that each refinement step is partially solved sequentially.

The parallel speedup of the part that is solved in parallel within each refinement step i is ti
tpi
= O

(
nNi

nvNi/pi

)
= O(pi).

If we consider the best parallel case were the number of threads is maximal, then pi = Ni and ti
tpi
= O

(
nvNi
nv

)
=

O(Ni). Which means that the speedup is the number of analyzed centers because all the work is done in parallel.

Space complexity comparison: The space complexity of both the sequential and parallel algorithm is O(nv + N).
Thus, the space complexity of the parallel algorithm is again optimal.

5. Experimental results

This section starts with the experimental setting, continues with the interaction process with the user and the
results visualization, and ends analyzing the provided algorithms in terms of running times. The presented running
times show that: the provided parallel algorithm is fast and robust and much better than the best sequential algorithm;
using a refinement process instead of starting with a finer grid of size dε makes sense; that using the algorithm of
Section 2 to compute the areas is worth. We do not compare our results with those of the previous existent algorithms,
because, as we said, it is the first algorithm designed to solve this problem. Existent studies do not consider partial
coverage and most of them are designed to place more than one facility. Hence the comparison of our algorithm with
the existent ones would be completely unfair.

5.1. Experimental setting

The algorithms have been implemented in C++, for the parallel part Cuda C has been used and the visualization
is done by using OpenGL. The running times presented in this section have been obtained using a Inter(R) Core(TM)
i7-4790CPU with a Tesla k40 active GPU.

We have considered several ε, r, S and f values and a pwc-domain. The used domain is extracted from a polygonal
chain representing Los Angeles city the second-largest city in the United States1. This city is embedded in a bounding
box of 47km of width and 71km of height and its perimeter is of about 550km. The original polygon was defined by
4943 edges determining one single component with 8 holes, see Figure 18 a). We have assumed that the city has been
partially covered by four disks of different radii which have been extracted from the domain. It has yield to the pwc-
domain of Figure 18 b) which is the one we consider and refer as ’LA domain’ along this section. This pwc-domain
is defined by 3569 edges and has 8 pwc-curves, two are outer components defining two different regions and the rest
define six holes of the bigger component. The bonding box containing ’LA domain’ measures 40.28km of width and
54.64km of height and its perimeter is of 496km.

1Obtained from OpenStreetMap! https://www.openstreetmap.org

20

a) b)

Figure 18: Original polygonal domain b) pwc-domain after partial covering the original one with 4 discs.

5.2. Interaction and visualization process
As we mentioned at the beginning of the paper, computing exact optimal locations is in many cases very expensive

and, in general, is also too restrictive because sub-optimal solutions could be considered by experts as even more
appropriate than an optimal one. Thus, we compute and visualize the overlap area map which facilitates the work of
the decision makers. The fast running times of our algorithms propitiate the interaction with the user in an iterative
what-if-analysis process in which the user can easily change several parameters, such as the radius, the initial grid, the
error tolerance to obtain suitable locations. Moreover, we do not only provided the ε-optimal locations, but visualize
all the obtained information which far from providing too much information allows the user to easily visualize what
happens on the whole domain.

In Figure 19, we can see the influence of the radius of the considered disk on the obtained ε-optimal locations.
The ε-optimal locations are painted in green and the rest in a blue gradation (the darker the smaller the area). Note
that, as expected, the smaller the radius the more ε-optimal locations exist. In the figure the smallest considered disk
has a radius of 2.5km, the others of 3.3km, 12.5m and the largest, which covers the whole domain, has a radius of
29.2km. For the first two considered radii ideal cells have been found, thus the optimal obtained area is πr2, and the

a) b) c) d)

Figure 19: Overlap area map for a disk or radius: a) 2.5km, b) 3.3km, c) 12.5km and d) 29.2km.

disk is fully contained in the domain. Meanwhile, the optimal area obtained for the larger disk corresponds to the
region area because the domain is fully contained in the disk. The tolerance used in these images is of ε = 0.07km2

and four refinement steps are used in each of them. Obtaining the last result is quite slower because we refine almost
all the blue and all the green area until the desired tolerance is reached.

Let us also see the influence of ε on the obtained results. Figure 19 is obtained with ε = 0.07km2. In Figure 20 a)
and b) r = 3.3km and ε is of 0.35km2 and 0.0035km2, respectively. Figure 20 c) is a zoom of an interesting region of
Figure 20 b) that allows a more in deep visualization of the refinement process. In Figure 20 d) and e) it is r = 29.59km,
ε = 3.5km2 and 0.35km2, respectively. In both cases the interesting area can be fully identified.

5.3. Running times
Finally, several running times are presented. In them we can see the influence of the radius r, the allowed error ε

and the number of refinement steps S . The considered radius are of 2.5, 7.5, 10 and 12.5 km, the allowed error varies

21

a) b) c)

d) e)

Figure 20: Overlap area map with different r and ε values.

from 0.0035 and 0.7 km2, and the number of refinement steps goes from 1 to 6. The running time decreases increasing
r and ε and using the refinement process. However the optimal number of refinement steps is not always 6, it depends
on ε and r. In fact S = 4 tends to provide fast running times and thus it is a good number of refinement steps.

Figure 21 provides the experimental results related to the uniform ε-area map. We can see the running times of the
sequential-CPU and the parallel-GPU strategies together with the number of analyzed cells, i.e. of areas computed,
when using a uniform grid. The figure presents results associated to ε-errors of 0.035, 0.07, 0.35 and 0.7 km2. The two
smallest ε values are not presented because the obtained running times are much bigger, and if they are represented,
only those two running times can be guessed from the chart.

Figure 21: Uniform ε-area map running times

Figure 22 presents the running times of the non-uniform strategy in the first and second columns, and the number
of cells analyzed in each case in the third one. In order to obtain the results for each specific number of refinement
steps S , we tried to proceed as explained in Section 4.2. However, sometimes starting with that initial grid implies
needing more refinement steps to reach dε. In this case, we reduce the initial side length by a factor of 0.8 as many
times as needed until S steps suffice to reach to the desired dε side length.

The first column shows the running times of the sequential version of the algorithm which is, again, always slower
than the parallel one, whose running times are presented in the second column. It is not surprising, because the areas
computation, which is the bottleneck of the algorithm, is completely paralellized within each refinement step. Hence,
parallelizing the algorithm makes sense. Comparing Figures 21 with the last four values of each char of Figure 22
placed on the right of the grey vertical line, we can see how the refinement is worth. The refinement divides by 10,
approximately, the running time in most of the cases. Hence, from the running times we deduce that the refinement

22

Figure 22: Non-uniform ε-area map running times

speeds up the process. However, the third column corroborates it, as we mentioned in Section 4.3, the refinement
process saves work because the number of analyzed cells in the uniform ε-area map decreases notoriously with the
refinement.

6. Conclusions and future work

In this paper we solve the problem of locating a disk so that its overlap area with a piecewise circular domain
is near-optimal when considering partial coverage. The proposed solutions, which exactly computes the covered
area, involves computing many times the overlap area of a piecewise circular domain and a disk. Even though these
computations are the bottleneck of our approach, since they are independent one from the other, we parallelize them.
Moreover, we design and provide an efficient strategy, that can be run either in the CPU or GPU, to exactly compute
the overlap area of a disk and a pwc-domain which uses Green’s theorem and takes into account several geometric
properties.

We propose two grid-based approaches for computing a discrete set of ε-optimal locations obtained from discrete
ε-area maps. We start presenting a way to compute a uniform ε-area map. Next it is improved by using a refinement
process which leads to a non-uniform ε-area map. The obtained non-uniform ε-area map depends on the chosen
number of refinement steps and on the inital coarse grid, however, all the existent ε-optimal location are always

23

obtained regardless of the initial grid used. According to the mathematical basis, the obtained ε-optimal locations do
not represent only the center of the grid cell but all the points contained in the cell. Hence, we somehow provide a
continuous solution defined by a discrete set of points that define regions that contain ε-optimal locations. In fact, if
someone considers that the ε-guaranteed error is not sufficient and wants to keep on approximating the solutions to
the optimal ones, the ε-optimal solutions could be used as seeds for a typical gradient algorithm used in optimization
problems.

In the paper we sketch a sequential and a parallel algorithm to be run on a CPU and a GPU, respectively, for
computing the ε-area maps and the set of ε-optimal locations. Both strategies were implemented and the experimental
results demonstrated that the parallel version is robust and much faster than the sequential one. Moreover, using the
refinement process is worth. We observed that using four refinement steps and considering

√
2r, the provided thresold,

for defining the coarse grid tends to provide good results. We also presented the theoretical space and time complexity
analysis of the algorithms that, not only, corroborated the obtained experimental running times, but also proved that
the GPU-parallel algorithm is theoretically optimal.

Finally, in order to improve the understanding of the problem, we described and implemented a way of visualizing
the obtained overlap area maps by highlighting the near-optimal locations. The short response times for computing
and visualizing the results allow the user to solve the problem through a practical interactive what-if-analysis process.

As future work we are interested in considering signal blockage due to obstacles and circular sector service areas
instead of perfect circular coverage for the service area.

7. Acknowledgments

Work partially funded by the Ajut per la millora de la productivitat cientı́fica/UdG/3/Ref. MPCUdG2016-031UdG-
52211-C2-2-R. We also acknowledge NVIDIA Corporation for the donation of the Tesla K40 GPU.

[1] M. Bansal and K. Kianfar, Planar maximum coverage location problem with partial coverage and rectangular demand and service zones,
INFORMS Journal on Computing, 29 (2017), pp. 152-169.

[2] Berman, O. and D. Krass: The Generalized Maximal Covering Location Problem, Computers & Operations Research 29, 563581 (2002).
[3] Berman, O., D. Krass and Z. Drezner: The Gradual Covering Decay Location Problem on a Network, European Journal of Operational

Research 151, 474480 (2003).
[4] O. Berman, Z. Drezner and D. Krass: Generalized coverage: New developments in covering location models, Computers & Operations

Research 37, 16751687 (2010).
[5] O. Cheong, A. Efrat, S. Har-Peled, Finding a guard that sees most and a shop that sells most, Discrete & Computational Geometry 37(4)

(2007) 545-563.
[6] R.L. Church, The planar maximal covering location problem, Journal of Regional Science 24(2) (1984) 185–201.
[7] S.W. Cheng, C.K. Lam, Shape matching under rigid motion, Comput. Geom. Theory Appl. 46(6) (2013) 591–603.
[8] R.L. Church, C. ReVelle, The Maximal Covering Location Problem, Papers of the Regional Science Association 32 (1974) 101–118.
[9] R. L. Church and K. L. Roberts, Generalized coverage models and public facility location, in Papers of the Regional Science Association,

1983, pp. 117-135.
[10] N. Coll, M. Fort, J.A. Sellarès, Computing the maximum overlap of a disk and a polygon with holes under translation, XVI Encuentros de

Geometrı́a Computacional (2015) 57–60.
[11] N. Coll, M. Fort, J.A. Sellarès, Computing the maximum overlap of a disk and a piecewise circular domain under translation, European

Workshop on Computational Geometry (EuroCG) (2016) 223–226.
[12] Y. Cai, S. See (Eds.), GPU Computing and Applications, Springer Singapore, (2015).
[13] Daskin, M. S., Network and Discrete Location: Models, Algorithms and Applications, John. Wiley and Sons, Inc., New York, 1995.
[14] B. T. Downs, Jeff Camm, An exact algorithm for the maximal covering problem, Naval Research Logistics 43(3): 435 461, 1996.
[15] T. Drezner, Z. Drezner, Replacing continuous demand with discrete demand in a competitive location model, Naval Research Logistics 44

(1997) 81-95.
[16] Z. Drezner, G. O. Wesolowsky, and T. Drezner, The gradual covering problem, Naval Research Logistics (NRL), vol. 51, pp. 841-855, 2004.
[17] L.G.A. Espejo, R.D. Galvão, B. Boffey, Dual-based heuristics for a hierarchical covering location problem, Computers & Operations Re-

search, 30 (2) (2003), pp. 165-180.
[18] R.Z.Farahani, N. Asgari, N. Heidari, M. Hosseininia, M. Goh, Covering problems in facility location: A review, Computers & Industrial

Engineering, 62 (2012), pp. 368-407.
[19] R.D. Galvão, Charles ReVelle, A Lagrangean heuristic for the maximal covering location problema, European Journal of Operational Re-

search 88 (1996) 114-123.
[20] W.W. Hwu (Ed.), GPU Computing Gems Emerald Edition, Morgan Kaufmann, (2011).
[21] O. Karasakal and E. K. Karasakal, ”A maximal covering location model in the presence of partial coverage, Computers & Operations

Research, vol. 31, pp. 1515-1526, 2004.
[22] J.M. Lee, Y.H. Lee, Tabu based heuristics for the generalized hierarchical covering location problema, Computers & Industrial Engineering,

58 (4) (2010), pp. 638-645.

24

[23] T.C. Matisziw, A. T. Murray, Siting a facility in continuous space to maximize coverage of a region, Socio-Economic Planning Sciences 43
(2009) 131-139.

[24] D.M. Mount, R. Silverman, A.Y. Wu, On the area of overlap of translated polygons, Computer Vision and Image Understanding 64(1) (1996)
53–61.

[25] A.T. Murray, D. Tong, Coverage Optimization in Continuous Space Facility Siting, Int. J. Geogr. Inf. Sci. Vol. 21(7) (2007) 757–776.
[26] A.T. Murray, Geography in coverage modeling: exploiting spatial structure to address complementary partial service of areas, Ann Assoc Am

Geogr 95(4) (2005) 761–772.
[27] A.T. Murray, T.C. Matisziw, H. Wei, D. Tong, A Geocomputational Heuristic for Coverage Maximization in Service Facility Siting, Trans-

actions in GIS 12(6) (2008) 757–773.
[28] N. Megiddo, E. Zemel, S.L. Hakimi, The maximum coverage location problem, SIAM Journal of Algebraic and Discrete Methods 4(2) (1983)

253–261.
[29] Resende, M.G.C.: Computing Approximate Solutions of the Maximum Covering Problem with GRASP, Journal of Heuristics 4, 161177

(1998).
[30] ReVelle, C., M. Scholssberg and J. Williams: Solving the maximal covering location problem with heuristic concentration, Computers &

Operations Research 35, 427435 (2008).
[31] K.F. Riley, M.P. Hobson, S.J. Bence, Mathematical methods for physics and engineering, Cambridge University Press, 2010, ISBN 978-0-

521-86153-3
[32] L.V. Snyder, Covering problems, Foundations of Location Analysis H. A. Eiselt and V. Marianov (Eds.), Springer-Verlag, Chapter 6, (2011)

109–135.
[33] D. Song, A. van der Stappen, and K. Goldberg, Exact algorithms for single frame selection on multiaxis satellites, IEEE Transactions on

Automation Science and Engineering 3, 16-28 (2006).
[34] R. Wei, A.T. Murray, Continuous space maximal coverage: Insights, advances and challenges, Computers and Operations Research 62 (2014)

325-336.

25

