
Citation: Sbert, M.; Szirmay-Kalos, L.

Robust Multiple Importance

Sampling with Tsallis ϕ-Divergences.

Entropy 2022, 24, 1240. https://

doi.org/10.3390/e24091240

Academic Editors: Chun-Hung Liu,

Jwo-Yuh Wu and Peter Y. Hong

Received: 26 July 2022

Accepted: 31 August 2022

Published: 3 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

Robust Multiple Importance Sampling with Tsallis ϕ-Divergences
Mateu Sbert 1,* and László Szirmay-Kalos 2

1 Institute of Informatics and Applications, University of Girona, 17071 Girona, Spain
2 Department of Control Engineering and Information Technology, Budapest University of Technology

and Economics, 1111 Budapest, Hungary
* Correspondence: mateu@ima.udg.edu; Tel.: +34-972-418419

Abstract: Multiple Importance Sampling (MIS) combines the probability density functions (pdf) of
several sampling techniques. The combination weights depend on the proportion of samples used for
the particular techniques. Weights can be found by optimization of the variance, but this approach is
costly and numerically unstable. We show in this paper that MIS can be represented as a divergence
problem between the integrand and the pdf, which leads to simpler computations and more robust
solutions. The proposed idea is validated with 1D numerical examples and with the illumination
problem of computer graphics.

Keywords: multiple importance sampling; Monte Carlo integration; ϕ-divergence; f-divergence;
Tsallis divergence; Kullback–Leibler divergence; chi-square divergence; image synthesis

1. Introduction and Previous Work

Multiple Importance Sampling (MIS) [1,2] has been proven efficient in Monte Carlo
integration. It is able to preserve the advantages of the combined techniques and requires
only the calculation of the pdfs of all methods when a sample is generated with one
particular method. The weighting scheme applied in MIS depends on the pdfs of the
individual techniques and also on the number of samples generated with each of them.

MIS has been applied in a number of rendering algorithms, and its variance is ex-
tensively studied [1]. Several estimators have been proposed that are better than balance
heuristics with equal sample budgets [3–6]. Lu et al. [7] proposed an adaptive algorithm for
environment map illumination, which used the Taylor series approximation of the variance
around an equal sample budget case. In [8,9], different equal sample number strategies
were analyzed. Sbert et al. [10] considered the cost associated with the sampling strategies
and obtained an adaptive solution by optimizing the variance using the Newton–Raphson
method [11]. In [12], the Kullback–Leibler divergence was optimized instead of the vari-
ance. Several authors have shown that the variance of an importance sampling estimator
is equal to a chi-square divergence [13–16], which, in turn, can be approximated by the
Kullback–Leibler divergence up to the second order [17]. The optimal sample budget has
also been targeted with neural networks [15,18]. Recently, a theoretical formula has been
elaborated for the weighting functions [19]. In [16], the balance heuristic estimator was
generalized by decoupling the weights from the sampling rates, and implicit solutions for
the optimal case were given.

These techniques offer lower variance and, therefore, theoretically outperform MIS
with equal number of samples. However, equations determining the optimal weighting and
sample budget require the knowledge of the integrand and numerical solution methods. In
computer graphics, for example, this integrand is not analytically available, so previous
discrete samples should be used for the approximation, which introduces errors in the
computation. Thus, it is not guaranteed that a theoretically superior estimator also performs
better in practice.
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This paper proposes an adaptive approach to automatically determine the sampling
budgets of the combined methods based on the statistics of previous samples. To improve
the robustness, instead of directly optimizing the variance, we make the combined pdf
mimic the integrand by minimizing the divergence between them. From the possible
alternatives, the Tsallis ϕ-divergence is used since this leads to a general and stable ap-
proach. We show that finding the optimum in all cases, including also Hellinger, chi-square,
Kullbach–Leibler divergences, and the variance, boils down to a non-linear equation stating
that the γ-moments of the different combined techniques must be equal. This equation has
unique root that can be found by Newton–Raphson iteration.

The organization of the paper is the following. In Section 2, the multi-sample version
of the MIS estimator is reviewed where the number of samples allocated to each combined
technique is fixed deterministically. Section 3 summarizes the one-sample MIS estimator
where the particular sampling method is also selected randomly. In Section 4, the adaptation
of the MIS weighting functions is discussed and we argue that the adaptation should
be controlled not by the estimated variance but by an appropriately chosen divergence.
Section 5 reformulates the MIS problem as the optimization of divergences and introduces
the γ-moments. In Section 6, the details of the numerical optimization are discussed. Finally,
the results are demonstrated with numerical examples and the direct lighting solution of
computer graphics.

2. Multi-Sample Balance Heuristic Mis

Suppose we wish to estimate the value of integral
∫

f (x)dx and have m proposal pdfs
pi(x) to generate the jth sample Xij of method i in the domain of the integral. With method
i, ni independent samples are drawn, so the total number of samples is ∑m

i=1 ni = N. When
the sample numbers ni are fixed deterministically, the approach is called multi-sample.

The multi-sample MIS estimator [1] has the following expression:

F =
m

∑
i=1

1
ni

ni

∑
j=1

wi(Xij)
f (Xij)

pi(Xij)
, (1)

where the weights satisfy the normalization condition:

m

∑
i=1

wi(x) = 1.

Integral estimator F is unbiased, as its expected value µ is equal to the integral:

µ = E[F] =
m

∑
i=1

1
ni

ni

∑
j=1

∫ wi(x) f (x)
pi(x)

pi(x)dx =
m

∑
i=1

µi =
∫

f (x)dx (2)

where µi =
∫

wi(x) f (x)dx. The variance of the integral estimator is

V[F] =
m

∑
i=1

∫ w2
i (x) f 2(x)
ni pi(x)

dx−
m

∑
i=1

µ2
i

ni
. (3)

The variance of the estimator depends on the combination weights wi(x). The first
step of their definition is to propose an algebraic form. The balance heuristic states that the
weight of method i at domain point x should be proportional to the density of samples
generated by method i in this point:

wi(x) =
αi pi(x)
p(α, x)

(4)
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where αi = ni/N is the fraction of the samples allocated to method i, and p(α, x) is the
mixture pdf :

p(α, x) =
m

∑
k=1

αk pk(x). (5)

Substituting this weighting function into the MIS estimator formulas, we obtain the multi-
sample balance heuristics estimator:

F =
1
N

m

∑
i=1

ni

∑
j=1

f (Xi,j)

p(α, Xi,j)
. (6)

The variance of the balance heuristics estimator is

V[F] =
1
N

(∫ f 2(x)
p(α, x)

dx−
m

∑
i=1

αiµ
′2
i

)
, (7)

where µ′ i = µi/αi.

3. One-Sample Balance Heuristic MIS

In the one-sample version of MIS, the numbers of samples used by particular techniques
are not determined before starting the sampling process, but for each sample, the sampling
method itself is selected randomly with the probability of fraction parameter αi. As this
approach introduces additional randomization, its variance is larger than that of the multi-
sample version, but can also be used in cases when the number of total samples is less than
the number of combined methods.

The one-sample balance heuristic estimator is given by

F =
f (X)

p(α, X)
(8)

with variance

V[F ] =
∫ f 2(x)

p(α, x)
dx− µ2. (9)

4. Adaptive MIS

Having the algebraic form of the weight function, the task is to find the optimal
fractions αi with the constraint that the sum of sample numbers must be equal to the total
sample budget, i.e., ∑m

i=1 αi = 1. One possibility is to use some heuristics before starting
the sampling process. A simple example is the equal sample count MIS that sets all fractions
to be equal.

Adaptive techniques, on the other hand, try to minimize the error by controlling the
fractions on-the-fly as new samples introduce additional information. During this, the
following issues need to be considered:

• The integrals in the variance cannot be computed analytically, but must be estimated
from the available finite number of samples drawn from the sampling distribution.
This uncertainty may significantly affect the goodness of the final results.

• The optimization process should be fast and should not introduce too high overhead.

Unfortunately, the direct optimization for the variance does not meet these require-
ments. The integral of the variance can be estimated from the available samples Xi drawn
from mixture distribution p(α, x) as:

∫ f 2(x)
p(α, x)

dx = Ep

[
f 2(x)

p2(α, x)

]
≈ 1

N

N

∑
i=1

(
f (Xi)

p(α, Xi)

)2

(10)
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where Ep[ξ] is the expectation of random variable ξ of pdf p. In this estimation, the ratios of
the integrand and the pdf are squared causing high fluctuation and making the optimization
process unstable.

Thus, instead of the variance, we need other optimization targets with more robust
estimators in order to find the fractions αk during adaptation.

5. MIS as Divergence between Distributions

MIS consists in looking for a distribution p(α, x) that mimics f (x) as much as possible.
If we have non-negative integrand f (x) ≥ 0 with integral µ =

∫
f (x)dx, then the integrand

scaled down by the integral g(x) = f (x)/µ is also a distribution. The MIS problem
can be stated as finding mixture pdf p(α, x) that minimizes the divergence between two
distributions.

5.1. ϕ-Divergences

A ϕ-divergenceDϕ(q, r) [20,21] is a measure of the dissimilarity between two probabil-
ity distributions q(x) and r(x). It is defined by a convex function ϕ(t) satisfying ϕ(1) = 0:

Dϕ(q, r) =
∫

r(x)ϕ

(
q(x)
r(x)

)
dx. (11)

ϕ-divergences are always positive (by Jensen inequality) and are zero iff q ≡ r (for strict
convexity) [21].

For instance, for ϕ(t) = t log t, we obtain the Kullback–Leibler divergence:

Dϕ(q, r) =
∫

q(x) log
q(x)
r(x)

dx = KL(q, r). (12)

Note that ϕ-divergence is not symmetric, thus we have in principle two options to measure
the dissimilarity of probability densities q and r, using either Dϕ(q, r) or Dϕ(r, q). Any of
these two options can be used in practice, although they are not independent. If we define
ϕ∗(t) = tϕ( 1

t ) then Dϕ∗(r, q) = Dϕ(q, r) [22]. For ϕ(t) = t log t, we have ϕ∗(t) = − log t.
The objective of importance sampling is to make probability density p(α, x) similar

to scaled integrand g(x) = f (x)/µ, i.e., to minimize ϕ-divergence Dϕ(g, p(α)). A ϕ-
divergence is a convex function in both arguments and p(α) is a linear function of α, thus
the functional is convex in α. This will ensure the existence of a minimum. With choosing
ϕ(t) = t2 − 1, we can get the variance back as a special case of this more general approach:

V[F ] =
∫ f 2(x)

p(α, x)
dx− µ2 = µ2

∫
p(α, x)

((
g(x)

p(α, x)

)2

− 1

)
dx = µ2Dϕ(g(x), p(α, x)). (13)

The optimal MIS problem is reduced to find the minimum of Dϕ(g, p(α)) with the
constraints ∑m

i=1 αi = 1 and αi ≥ 0. Using Lagrange multipliers, the solution is

∂Dϕ(g, p(α))
∂αi

− λ = 0, (14)

which means that the derivatives of the divergence with respect to fractions αi must be the
same for each sampling method i.

The derivative can be expressed as

∂Dϕ(g, p(α))
∂αi

=
∫

pi(x)
[

ϕ

(
g(x)

p(α, x)

)
− g(x)

p(α, x)
ϕ′
(

g(x)
p(α, x)

)]
dx. (15)
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This integral is the expectation when samples are generated with pdf pi(x), thus we can
write

Epi

[
ϕ

(
g

p(α)

)
− g

p(α)
ϕ′
(

g
p(α)

)]
= Ep(α)

[
ϕ

(
g

p(α)

)
− g

p(α)
ϕ′
(

g
p(α)

)]
= λ. (16)

Equation (16) only holds when αi > 0, i.e., in the interior of the simplex domain, not on the
border.

Swapping the two distributions in the ϕ-divergence, we have another measure for
the dissimilarity between p(α) and g, Dϕ(p(α), g). Using Lagrange multipliers again, this
leads to the following equation for unknown fractions αi

∂Dϕ(p(α), g)
∂αi

=
∫

pi ϕ
′
(

p(α)
g

)
dx = λ∗. (17)

Using expected values, this option is expressed as

Epi

[
ϕ′
(

p(α)
g

)]
= Ep(α)

[
ϕ′
(

p(α)
g

)]
= λ (18)

The problem with the optimization of the variance was that in the resulting equation
the ratios of the sampled integrand and the pdf are squared (see Equation (10)), making the
equation sensitive to non-optimal pdfs. With the proper definition of ϕ, we can solve this
issue. For example, if ϕ(t) = − log t, then ϕ′ = −1/t, and the condition of optimality is

Epi

[
g

p(α)

]
= Ep

[
g

p(α)

]
= −λ∗. (19)

Remembering that g(x) = f (x)/µ, the last equation can also be written as

Epi

[
f

p(α)

]
= Ep

[
f

p(α)

]
, (20)

which contains the ratios without squaring. This gives back the solution in [23], which
is also conjectured in [16]. To further exploit this idea, we take the parametric family of
Tsallis divergences. With its parameter the compromise between the robustness of the
optimization equation and the similarity to the variance can be controlled.

5.2. Tsallis Divergences

Tsallis divergence [24] is associated with the Tsallis entropy [25]. Let us consider the
one-parameter Tsallis divergence between distributions q(x) and r(x):

DT
γ (q, r) =

1
γ− 1

(∫ qγ(x)
rγ−1(x)

dx− 1
)

(21)

=
1

γ− 1

∫ ( qγ(x)
rγ−1(x)

− r(x)
)

dx =
1

γ− 1

∫
r(x)

(
qγ(x)
rγ(x)

− 1
)

dx.

Tsallis divergence DT
γ (q, r) is a ϕ-divergence defined by

ϕ(t) =
tγ − 1
γ− 1

.

Parameter γ should satisfy γ > 0 and γ 6= 1, which guarantees that ϕ(t) exists and is
convex.
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It can be shown that limγ→1DT
γ (q, r) = KL(q, r) is the Kullbach–Leibler divergence.

When γ = 2, Tsallis divergence turns to be the chi-square divergence:

χ2(q, r) =
∫

(q(x)− r(x))2

r(x)
dx (22)

=
∫ q2(x)

r(x)
dx− 2

∫
q(x)dx +

∫
r(x)dx (23)

=
∫ q2(x)

r(x)
dx− 1 = DT

2 (q, r).

For γ = 1/2, Tsallis divergence DT
1/2(q, r) becomes the squared Hellinger distance H2(q, r):

DT
1/2(q, r) = −2

∫
(q(x)1/2r(x)1/2 − q(x))dx (24)

= 2
(

1−
∫

q(x)1/2r(x)1/2dx
)
= 2H2(q, r).

Note that H(q, r) is a true metric.

5.3. Optimal MIS Solution with Tsallis Divergence

Optimal MIS needs to find fractions αi that minimize DT
γ (g(x), p(α, x)) with the con-

straint ∑m
i=1 αi = 1. Substituting function ϕ(t) of Tsallis divergence into Equation (16), we

obtain that for all i, the quantities, called γ-moments,

Mγ,i =
∫ ( f (x)

p(α, x)

)γ

pi(x)dx = Epi

[
Fγ
]
, (25)

have to be equal. Equation (25) guarantees a global minimum, as the functionDT
γ (g(x), p(α, x))

is convex for all γ > 0. Considering the case when g(x) and p(α, x) are swapped in the
divergence, i.e., substituting function ϕ(t) of Tsallis into Equation (17), the requirement
of the equality of the γ-moments is established again, but now γ should be replaced by
1− γ. Examining Equation (20) we can realize that optimizing for γ = 1 is the same as
minimizing the cross entropy or the Kullbach–Leibler divergence. Thus, the criterion of the
equality of the γ-moments covers all cases.

5.4. Other ϕ-Divergences: Total Variation Divergence, χk
P and |χ|kP Divergences

The total variation can also be interpreted as a ϕ-divergence defined by ϕ(t) = 1
2 |t− 1|:

TV(q, r) =
1
2

∫
|q(x)− r(x)|dx

This is the only ϕ-divergence that is a true metric [26]. The condition of optimality is∫
sign(g(x)− p(α, x))pi(x)dx =

∫
sign(g(x)− p(α, x))p(α, x)dx (26)

for all i, although we can hardly use Equation (26) to approximate a solution.
ϕ-divergences also include the Pearson–Vajda χk

P and |χ|kP divergences:

χk
P(q, r) =

∫
(q(x)− r(x))k

qk−1(x)
dx, |χ|kP(q, r) =

∫ |q(x)− r(x)|k
qk−1(x)

dx

defined by the functions ϕ(t) = (t− 1)k and ϕ(t) = |t− 1|k, respectively [17]. For k = 2, we
have χ2

P(q, r) = |χ|2P(q, r) = χ2(r, q), and for k = 1, identities χ1
P(q, r) = 0 and |χ|1P(q, r) =

2TV(q, r) hold.
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6. Finding the Optimal Solution

For the sake of simplicity, we assume that two sampling methods of pdfs p1(x) and
p2(x), associated with fractions α and 1− α are combined. The mixture density is

p(α, x) = αp1(x) + (1− α)p2(x).

From the optimality condition of Equation (25), we obtain

∫ ( f (x)
p(α, x)

)γ

(p1(x)− p2(x))dx = ζ(α) = 0. (27)

This is a non-linear equation for unknown fraction α, which is solved with Newton–
Raphson iteration. The derivative of ζ(α) is

ζ ′(α) =
∂ζ(α)

∂α
= −γ

∫ f γ(x)
pγ+1(α, x)

(p1(x)− p2(x))2dx, (28)

as ∂p(α, x)/∂α = p1(x)− p2(x).
The value of ζ(α) and its derivative can be estimated in the following way. Let us

re-write ζ(α) as an expectation:

ζ(α) =
∫ f γ(x)

pγ+1(α, x)
(p1(x)− p2(x))p(α, x)dx = Ep(α)

[
f γ(X)

pγ+1(α, X)
(p1(X)− p2(X))

]
. (29)

Taking N samples {X1, X2, . . . , XN} according to pdf p(α, x), we have the estimator

ζ̂(α) =
1
N

N

∑
i=1

f γ(Xi)

pγ+1(α, Xi)
(p1(Xi)− p2(Xi)), (30)

and in the same way,

ζ̂ ′(α) = − γ

N

N

∑
i=1

f γ(Xi)

pγ+2(α, Xi)
(p1(Xi)− p2(Xi))

2. (31)

The integrals are estimated with an iterative algorithm updating α after each iteration.
Starting with α(0) = 1/2, in iteration k we draw N samples according to p(α(k−1), x),

compute ̂ζ(α(k−1)) and ̂ζ ′(α(k−1)), and use the Newton–Raphson formula to obtain updated
fraction α(k):

α(k) = α(k−1) −
̂ζ(α(k−1))

̂ζ ′(α(k−1))
. (32)

7. Numerical Examples

We present here three 1D examples. We used the Mathematica package for the compu-
tations.

7.1. Example 1

Suppose we want to evaluate the integral (see Figure 1)

µ =
∫ 3.5π

0.01
(
√

x + sin x)dx ≈ 25.3065 (33)

by MIS combining sampling methods of pdfs Gauss(2, 1) and Gauss(8, 2), where Gauss(m, σ)
stands for the normal distribution of mean m and standard deviation σ. For this example,
equal sample number MIS has variance V[F] = 24.1152, and the minimum variance is
V[F] = 13.4788.
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In Figure 2, we show the variances V[F] and V[F ] for the optimal solution of Tsallis
divergences from γ = 0.1 to γ = 8 in steps of 0.1. Dots depict the values of V[F] for the
optimal α fractions for each parameter γ using 5 Newton–Raphson iterations with 100 total
samples in each iteration.

2 4 6 8 10

0.1

0.2

0.3

0.4

Figure 1. Example 1: f (x)/µ (in blue) superimposed on the two pdfs used for MIS integration.

2 4 6 813.45

13.50

13.55

13.60

13.65

13.70

13.75

Figure 2. Example 1: Values of V[F] (dashed line) and V[F ] (continuous line) for the solution of
Equation (25) for each value of parameter γ from 0.1 to 8, in the horizontal axis. Variance V[F ]
(continuous line) is minimal when γ = 2, as V[F ] corresponds to χ2 divergence (Equation (13)). Dots
show the variance V[F] for the optimal α values for each parameter γ using 5 Newton–Raphson
iterations with 100 total samples in each iteration. Horizontal line corresponds to the minimum
variance V[F] = 13.4788. A zoom-out is shown in Figure 3.

2 4 6 8

14

16

18

20

22

24

Figure 3. Example 1. Zoom-out of Figure 2. Observe that V[F ] < V[F] except for γ = 1 where V[F ] =
V[F]. For the equal sample budget case, V[F] = 24.1152, while the minimum is V[F] = 13.4788.
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7.2. Example 2

Let us consider integral (see Figure 4)

µ =
∫ 4

−4
Gauss(−1.5, 1) + 2Gauss(1.5, 0.75)dx ≈ 2.9929 (34)

by MIS using functions Gauss(−1.5, 1) and Gauss(1.5, 0.75). For this example, equal sample
number MIS has a variance of V[F] = 0.1134, and the minimum variance is V[F] = 0.
Figures 5 and 6 present the optimal solutions and the results after 5 Newton–Raphson
iterations with 100 total samples in each iteration.

-4 -2 2 4

0.1

0.2

0.3

0.4

0.5

Figure 4. Example 2: f (x)/µ (in blue) superimposed on the two pdfs used for MIS integration.

2 4 6 8

0.0002

0.0004

0.0006

0.0008

0.0010

Figure 5. Example 2: V[F] values corresponding to the Newton–Raphson solutions for the optimal
α values (vertical axis), from γ = 0.1 to γ = 8 in steps of 0.1 (horizontal axis) for each parameter γ.
Dots show the variance V[F] for the optimal α values for each parameter γ using 5 Newton–Raphson
iterations with 100 total samples in each iteration. Minimum variance is V[F] = 0. A zoom-out is
shown in Figure 6.

2 4 6 8

0.02

0.04

0.06

0.08

0.10

Figure 6. Example 2: Zoom-out of Figure 5. The minimum of V[F] and V[F ] is 0. For equal sample
budget MIS, the variance is V[F] = 0.1134.
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7.3. Example 3

Finally, consider the approximation of the following integral (see Figure 7)

µ =
∫ π/2

0.01

(√
x + sin x

)
dx ≈ 2.3118. (35)

by MIS using functions 2− x, and sin2(x). For this example, equal sample budget MIS has a
variance of V[F] = 0.2772, and the minimum variance is V[F] = 0.09032. In Figures 8 and 9
we show the variances V[F] and V[F ] for the optimal solution for parameters from γ = 0.1
to γ = 8. Dots are the results of V[F] using 5 Newton–Raphson iterations with 100 total
samples in each iteration.

0.5 1.0 1.5

0.2

0.4

0.6

0.8

1.0

1.2

Figure 7. Example 3: f (x)/µ (in blue) superimposed on the two pdfs used for MIS integration.

2 4 6 8

0.095

0.100

0.105

0.110

Figure 8. Example 3: V[F] (dashed line) and V[F ] (continuous line), for the solution of Equation (25)
for each value of the parameter γ between 0.1 and 8, in the horizontal axis. Variance V[F ] (continuous
line) is minimal when γ = 2, as V[F ] corresponds to χ2 divergence (Equation (13)). Dots are the V[F]
values after 5 Newton–Raphson iterations taking 100 samples in total at each iteration. Horizontal
line corresponds to minimum variance, V[F] = 0.09032. A zoom-out is shown in Figure 9.

2 4 6 8

0.10

0.15

0.20

0.25

Figure 9. Example 3: Zoom-out of Figure 8. For equal sample budget V[F] = 0.2772, and minimum
is V[F] = 0.09032.
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8. Combination of Light Source Sampling and BRDF Sampling in Computer Graphics

Here we consider a classical problem of computer graphics, the combination of light
source sampling and BRDF (Bidirectional Reflectance Distribution Function) sampling. To
compute the reflected radiance Lr(~p, ~ω) of a surface point ~p at direction ~ω, the following
integral should be evaluated in the hemispherical domain of incident directions Ω:

Lr(~p, ~ω) =
∫

Ω
L(~p′, ~ω′) fr(~ω

′,~p, ~ω) cos θ′dω′ (36)

where L(~p′, ~ω′) is the radiance of point ~p′ visible from point ~p in incident direction −~ω′,
fr(~ω′,~p, ~ω) is the BRDF expressing the portion of the light beam that is reflected from
direction ~ω′ to ~ω at point ~p and θ′ is the angle between the surface normal at point ~p and
incident direction −~ω′. While solving such problems, we have two sampling methods,
p1(~ω

′) approximately mimicking the fr(~ω,~p, ~ω′) cos θ′ factor and p2(~ω
′) mimicking the

incident radiance L(~p′, ~ω′).
MIS would use a combined pdf in the following form

p(α, ~ω′) = αp1(~ω
′) + (1− α)p2(~ω

′). (37)

where the task is the optimal determination of weight α.
In order to test the proposed method, we render the classic scene of Veach [1] with com-

bined light source and BRDF sampling. The shiny rectangles have max-Phong BRDF [27]
with shininess parameters 50, 100, 500, and 1000, respectively. The four spherical light
sources emit the same power.

For each pixel, we used 50 samples in total organized in 5 iterations. The process starts
with 5 BRDF and 5 light source samples per pixel, and the per-pixel α weights are updated
at the end of each iteration. Figure 10 shows the rendered images together with the α-maps,
and we compare the original sampling techniques, equal count MIS, variance minimization,
and Tsallis divergence. The reference obtained by high number of samples is shown by
Figure 11. Table 1 depicts the Root Mean Square Error (RMSE) values. Figure 12 shows the
convergence plots.
Finally, we note that ϕ-divergences were used for global illumination as oracles for adaptive
sampling in [28].

Table 1. RMSE of different MIS methods.

Method RMSE

BRDF sampling 613
Light source sampling 295

Equal count MIS 244
Tsallis (γ = 0.01) 216
Tsallis (γ = 0.1) 213

Tsallis (γ = 0.5) (Hellinger) 215
Tsallis (γ = 1) (Kullback-Leibler) 218

Tsallis (γ = 1.5) 218
Tsallis (γ = 2) (chi-square, variance) 221

Tsallis (γ = 2.5) 254
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BRDF sampling (RMSE = 613) Light source sampling (RMSE = 295)

Equal sample count MIS (RMSE = 244) Tsallis, γ = 0.1 (RMSE = 213)

Tsallis, γ = 0.5 (Hellinger) (RMSE = 216) Tsallis, γ = 1 (Kullback-Leibler) (RMSE = 218)

Tsallis, γ = 1.5 (RMSE = 218) Tsallis, γ = 2 (chi-square, variance) (RMSE = 221)

Figure 10. Comparison of MIS weighting schemes for the direct lighting problem of computer
graphics. The left part is the image rendered with 100 rays per pixel, the right part is weight α of the
light source sampling. The RMSE is computed as the average of 30 independent executions. The (0,1)
interval of possible α values is visualized by the color bar.

Figure 11. Reference image and α-map obtained with 50,000 samples per pixel organized in 5 iterations.
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Convergence plots

Equal sample count MIS
Tsallis div. gamma=0.1
Tsallis div. gamma=0.5

Tsallis div. gamma=1
Tsallis div. gamma=1.5
Tsallis div. gamma=2.0
Tsallis div. gamma=2.5
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200
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Figure 12. RMSE as functions of the number of samples per pixel.

9. Discussion

The goal of adaptive MIS is to find the weights of given pdfs that eventually lead to
minimal integration error. The definition of the error may be application dependent, in
this paper we chose the RMSE, which describes the variance of the estimator. We argued
that instead of the direct optimization of the estimated variance, it is better to use other
measures for the optimization target since the variance estimation may strongly fluctuate if
the sample number is moderate, which prevents the adaptation process from converging
to the real optimum. The alternative criterion is the Tsallis divergence, which includes
important particular divergence types and by setting its parameter, more robust targets can
be defined.

In order to demonstrate the proposed method, we took three numerical examples and
a fundamental problem of computer graphics. We can observe in all examples that the
adaptive MIS can significantly outperform the equal sample count MIS, thus examining
adaptation strategies has theoretical and practical relevance. In the first numerical example,
none of the combinations of the two sampling pdfs could well mimic the integrand, thus the
computation errors are quite high and the influence of parameter γ is small. In the second
numerical example, the integrand is proportional to an appropriate linear combination of
the two sampling pdfs, thus zero variance estimator is possible. If parameter γ is not too
small, the method could indeed compute the integral with high accuracy. This means that
in easy integration problems, Tsallis divergence can be safely used. The third numerical
example is a more difficult, realistic case when sufficiently high number of samples are
used in each iteration step to estimate the optimization target. As expected, the optimal
value of parameter γ is close to 2 since this is the point where Tsallis divergence becomes
the variance V[F ].

In the image synthesis example, the integrand is not a weighted sum but a product
where the sampling pdfs approximately mimic the factors. In this case, no zero variance MIS
is possible. Unlike in the numerical examples, we took small number of samples for each
pixel according to practical scenarios. The small sample number made the optimization
target equation unreliable unless parameter γ is reduced from 2 that corresponds to the
variance. Looking at Figure 10, we can observe that when γ becomes smaller, the computed
weight maps become slightly less accurate in average but also less noisy, which eventually
reduces the computation error.

We have also seen in the examples that the differences between the variances corre-
sponding to the optimal values for the different parameters γ of the Tsallis divergence are
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small. This is in accordance with any ϕ-divergence being a second order approximation
of χ2 divergence [17], thus obtaining any minimum within a wide range of γ parameters
would be a good solution. Aside from γ = 2, which corresponds to V[F ], the most inter-
esting Tsallis divergence from a practical perspective is the Kullback-Leibler divergence,
corresponding to γ = 1.

10. Conclusions and Future Work

We have shown in this paper that finding the optimal weights for MIS can be presented
as finding the minimum ϕ-divergence between the normalized integrand and the impor-
tance pdf. Being convex, a ϕ-divergence allows convex optimization. We have singled
out the Tsallis divergences with parameter γ as they have the further advantage that the
equations for the optimal value consist of making the γ-moments equal. We have tested
our results with numerical examples and solving an illumination problem.

In our future work we will investigate the optimal efficiencies, i.e., taking into account
the cost of sampling. This has been done for the variance V[F ] (i.e., γ = 2) in [4,6]
where the implicit equation for the optimal solution was given. However, the efficiency
equation does not allow convex optimization. Using the γ-moments, or a different family
of ϕ-divergences, could help in obtaining a robust solution for the efficiency.
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