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A B S T R A C T

In silico simulations have become essential for the development of diabetes treatments. However, currently
available simulators are not challenging enough and often suffer from limitations in insulin and meal absorption
variability, which is unable to realistically reflect the dynamics of people with type 1 diabetes (T1D).
Additionally, T1D simulators are mainly designed for the testing of continuous subcutaneous insulin infusion
(CSII) therapies. In this work, a simulator is presented that includes a generated virtual patient (VP) cohort and
both fast- and long-acting Glargine-100 U/ml (Gla-100), Glargine-300 U/ml (Gla-300), and Degludec-100 U/ml
(Deg-100) insulin models. Therefore, in addition to CSII therapies, multiple daily injections (MDI) therapies can
also be tested. The Hovorka model and its published parameter probability distributions were used to generate
cohorts of VPs that represent a T1D population. Valid patients are filtered through restrictions that guarantee
that they are physiologically acceptable. To obtain more realistic scenarios, basal insulin profile patterns from
the literature have been used to identify variability in insulin sensitivity. A library of mixed meals identified
from real data has also been included. This work presents and validates a methodology for the creation of
realistic VP cohorts that include physiological variability and a simulator that includes challenging and realistic
scenarios for in silico testing. A cohort of 47 VPs has been generated and in silico simulations of both CSII and
MDI therapies were performed in open-loop. The simulation outcome metrics were contrasted with literature
results.
1. Introduction

Diabetes mellitus is a chronic condition that has become a pandemic
affecting 537 million people worldwide [1]. T1D, with a prevalence
of approximately 10% of all diabetes cases, is characterized by the
self-destruction of the insulin producing beta cells in the pancreas.
This leads to a permanent lack of insulin that causes an abnormal
glucose homeostasis state of high blood glucose levels, known as
hyperglycemia, which eventually leads to chronic complications. Di-
abetes complications are both microvascular (retinopathy, neuropathy,
nephropathy) and macrovascular (coronary artery, peripheral artery
and cerebrovascular conditions), as well as other acute complica-
tions [2,3]. People with T1D rely on exogenous insulin to lower blood
glucose levels back to normoglycemia (70–180 mg/dl), which has been
established as a control objective [4]. To this end, either MDIs, CSII,
and more recently artificial pancreas (AP) have been prescribed to
them.
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Although much progress has been made on the subject, many re-
searchers are still working on more effective methods for its diagnosis
and treatment. Mathematical models that contain different sets of
parameters and nonlinear equations to describe the behavior of insulin
and glucose dynamics in patients with T1D [5–8], are a widely used
tool for creating, testing, and optimizing diagnostic and treatment
methodologies. Several studies have shown that simulators containing
the Hovorka [8] and Dalla Man models [7,9–11] are useful in develop-
ing MDI therapies and closed-loop control systems, also known as the
AP [12–18].

The Hovorka model [8] is a compartmental model of glucose ki-
netics and insulin action that represents the input–output relationship
between subcutaneous insulin infusion (as the input) and intravenous
glucose concentration (as the output) [19]. The Dalla Man model [7]
is also a compartmental model, however, this model links together
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glucose and insulin plasma concentrations with glucose fluxes (endoge-
nous glucose production, glucose rate of appearance, glucose utiliza-
tion, renal extraction) and insulin fluxes (rate of insulin appearance
from the subcutaneous tissue and insulin degradation). The latest ver-
sion of the Dalla Man model [20] also incorporates glucagon kinetics,
secretion, and action models.

Simulation tools based and defined by mathematical models are
a fundamental instrument to the investigation of diabetes treatments,
as they provide a safe and economical platform to validate treatment
strategies and control algorithms via in silico tests. A number of sim-
ulation environments exist and are available in the literature [9,12,
21–23]. The basic characteristics that define diabetes simulators are
its ability to: (1) create varied scenarios in which food intake can
be defined by the time of ingestion and the amount of carbohydrates
(CHO) consumed, (2) simulate physical exercise using a model that can
adjust exercise schedules, frequency, and intensity, (3) simulate blood
glucose control strategies that manipulate insulin and/or glucagon or
suggest rescue CHO, and (4) identify the dynamic behavior of glucose
considering a variety of variables and provide a series of results that
allow the performance of the strategy used to be evaluated.

All these simulators use VP cohorts to evaluate open and closed-loop
glycemic control strategies. For this reason, generating a physiologi-
cally adequate VP is key to effective in silico testing. Simulators can in-
corporate a simple set of parameters that represent an ‘average patient’
or multiple sets of parameters that represent a VP population [24].

The main limitations of these simulation tools are: (1) physiological
variability of insulin absorption and meals that do not reflect real
patients, (2) scenarios that do not replicate real-life characteristics
which makes the current scenarios easy to control, and (3) simulators
that are not designed for trials with MDI therapy.

In [25] it is stated that most of the studies in the literature have
investigated meals or beverages containing glucose and, for method-
ological reasons, very few studies have included other simple sugars
or complex CHO. They conclude that large evening meals containing
complex CHO provide different challenges to the management of T1D,
depending on the composition of the meals. A meal with a high
glycemic load results in a pronounced, but shorter, absorption pattern,
whereas a meal with a low glycemic load results in sustained and pro-
longed absorption and a higher overall glucose appearance. Although
published simulators may incorporate some degree of variability in the
rate of glucose appearance profiles, they are not able to simulate the
variety of mixed meals found in real-life conditions due to limitations
in the data they were built upon [26].

The consequence of these limitations is that most of today’s sim-
ulators result in scenarios that provide blood glucose dynamics that
are very easy to control. Reported results in the literature using such
simulators show that blood glucose control strategies are able to obtain
90% or higher time in the euglycemic range, and times in hyper-
glycemia or hypoglycemia are close or equal to zero [13,14,27–29] and
these results are obtained regardless of the scenario used. However,
it is later demonstrated that this behavior is not replicated in clinical
trials [30–33].

During the past 15 years, there have been changes and advance-
ments in long-acting insulin formulations. Models describing the phar-
macokinetics of long-acting insulin [34–36] model the effect of the
injected basal insulin dose. In [35], an absorption model of insulin
glargine is proposed and in [37], this model is incorporated into the
UVA/Padova simulator for simulations with MDI therapy. In [18],
the incorporation of the insulin degludec model into the UVA/Padova
simulator is described.

The objective of this work is to minimize the limitations of the
simulators present in the literature, bringing in silico simulations closer
to real-life conditions and creating a greater challenge for the design
of controllers aimed at blood glucose control in patients with T1D.
For this, a methodology to generate VP cohorts that include physi-
2

ological variations and realistic scenarios incorporating basal insulin
patterns identified in the literature and adding a library of challenging
mixed meals is presented. Additionally, the incorporation of insulin
glargine and degludec absorption subsystems into the Hovorka model
to evaluate different MDI therapies is validated.

2. Methods

2.1. Generation and validation of VP

The generation of VPs for the Hovorka model is based on public
data contained in a series of publications [21,38,39]. From these pub-
lications, it is known that 𝑉𝐺, 𝑅𝑡ℎ, 𝑅𝐶𝐿, 𝑉𝐼 , 𝑘𝑎, 𝑘𝑒, 𝐵𝐼𝑂, 𝑡𝑚𝑎𝑥, 𝑘𝑎𝑖𝑛𝑡
ave univariate distributions, whereas the two groups of parameters
𝐸𝐺𝑃0, 𝐹01, 𝑆𝐼𝐷, 𝑆𝐼𝐸 , 𝑆𝐼𝑇 } and {𝑘12, 𝑘𝑎1, 𝑘𝑎2, 𝑘𝑎3} have multivariate

distributions, in this case covariance matrices were calculated using
the patient data presented in [39]. The probability distribution of the
parameters of the Hovorka model and covariance matrices are included
in Appendix B Supplementary data 1.

The first step for the creation of VPs includes randomly generating
multiple sets of parameters using the Matlab commands 𝑚𝑣𝑛𝑟𝑛𝑑 for
multivariate parameters (uses the covariance matrix), and 𝑛𝑜𝑟𝑚𝑟𝑛𝑑 or
𝑙𝑜𝑔𝑛𝑟𝑛𝑑 (depending on the type of distribution) for univariate parame-
ters.

Next, if a randomly sampled VP does not behave in a physiolog-
ically acceptable manner, it is discarded from the final cohort. This
is determined by the following conditions: (1) all sampled parameters
for each VP have to be included within the minimum and maxi-
mum allowed values [39]; (2) a glucose–insulin model must reflect
an insulin-independent consumption of glucose that is always lower
than the endogenous glucose production, in the Hovorka model, this
is fulfilled by verifying the following relationship: 𝐸𝐺𝑃0 > 𝐹01; (3)
VPs, in the absence of insulin, must have glucose levels at steady state
that exceed 300 mg∕dl [12]; (4) VPs without external disturbances nor
variability, e.g. meals or exercise, must have an input–output relation
such that for some input basal insulin infusion, the resulting output
model basal glucose stays in the 90–160 mg∕dl band; and (5) variations
of 0.01 U∕h in the basal insulin infusion rate cannot cause a change in
basal glucose greater than 20 mg∕dl.

The VPs that meet all the established restrictions are each as-
signed a 24 h circadian pattern of insulin sensitivity, a set of adjusted
carbohydrate ratios (CR), correction factors (CF) and a basal insulin
pattern. The basal insulin for CSII therapy is adjusted in U∕h, and
is calculated depending on the desired basal glucose and for MDI
therapy is adjusted in mU and is dependent upon the time of day
it will be administered. The CR (g∕U) is generally known in clinical
practice as ‘‘Insulin to Carbohydrate Ratio’’ and represents how many
grams of CHO are covered by 1 unit of insulin, three values of CR are
calculated for three different time periods, 6:00 h–12:00 h, 12:00 h–
17:00 h, and 18:00 h–24:00 h, different meals from the meal library are
randomly selected and simulated for each (breakfast, lunch, dinner),
then we iteratively adjust the CR such that the resulting infused bolus
insulin ensures minimization of hyperglycemia, trying not to cause
postprandial hypoglycemia. The CF (mg∕dl∕U), which is defined as the
amount of blood glucose that falls with 1 unit of insulin, is calculated
following the test protocols detailed in [40] and consists of choosing
a CF that brings glucose within ±30 mg∕dl of the target value in 5 h
without falling below this limit.

2.2. Mixed meal library

The Micelab group has a mixed meal library, described in [41],
that has been incorporated into the current T1D simulator to create
more realistic scenarios. This library, see Appendix A Supplementary
data 1, can be employed to test and optimize the design of closed-
loop insulin delivery systems, insulin bolus calculators, hypoglycemia

prediction algorithms, and fault detection and supervision systems for
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Fig. 1. Classification of meals in the library.
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n AP. This library contains 𝑅𝑎 profiles from a total of 54 different meal
ompositions. The mixed meals are defined by their composition (fat,
rotein, fiber, and energy), amount of CHO, and classified according to
he Kolmogorov–Smirnov distance into large (10), medium (26), small
12), and fast (6). Fig. 1 shows the mean, maximum, and minimum
f the 4 classified groups. Each meal has a time profile of 84 values
aken with a sampling time of 5 min, which represents the glucose
ate of appearance of 7 h after the moment of the meal. For its
mplementation, the term 𝑈𝑔(𝑡) from Eq. (A.1) of the glucose subsystem
Appendix A.1) is replaced by the parameter 𝑅𝑎(𝑡) according to the time

profile corresponding to each meal.

2.3. Circadian variability of insulin sensitivity

Insulin sensitivity variability is a phenomenon identified as one
of the main challenges in the treatment of diabetes. In 2005 [42]
and 2007 [43], two clinical studies presented 24-hour basal insulin
patterns identified with data from insulin pump patients. In the first
study [42], an analysis is made of the characteristics of basal insulin
requirements by age and gender in patients with T1D. In the second
study [43], the same analysis was performed, but only for children
and adolescents. In this work, we include hourly insulin sensitivity
variability from randomly sampled basal insulin patterns according
to the results presented in Table 1 in [42], for patients between 21–
60 years of age. The procedure for generating multiple basal insulin
profiles is detailed in Appendix B.1.

Fig. 2 shows the average of 100 generated basal insulin patterns,
and it can be noted that the curve has similar behavior to that shown
in [42]. Every single basal insulin pattern is next used to accordingly
generate a unique insulin sensitivity pattern that will be given to a VP.

Insulin sensitivity is introduced into the model, in the equations in
Appendix A.2, as an hourly time-varying multiplicative factor of the
original sensitivity parameters of the Hovorka model (𝑆𝐼𝐷 𝑆𝐼𝐸 , 𝑆𝐼𝑇 ),
see Eq. (1).

𝑆𝐼𝐷(𝑡) = 𝛼(𝑡)𝑆𝐼𝐷

𝑆𝐼𝐸 (𝑡) = 𝛼(𝑡)𝑆𝐼𝐸 (1)
3

𝑆𝐼𝑇 (𝑡) = 𝛼(𝑡)𝑆𝐼𝑇 𝐼
where 𝛼(𝑡) is a picewise constant function with 24 steps representing the
factor for each hour in a day that affects the model’s insulin sensitivity.
To obtain 𝛼(𝑡), the steady-state of a VP is solved using a generated basal
rofile u, this procedure is detailed in Appendix B.2.

.4. Long-acting insulin glargine and degludec

The insulin glargine and degludec, both second-generation insulin
nalogs, aim to achieve stable glucose profiles with fewer peaks, while
inimizing the amount of nocturnal hypoglycemia in patients with
1D. The UVA/Padova research group has developed and clinically
alidated a compartmental model that describes the subcutaneous ab-
orption of insulin glargine and degludec (Appendices A.5–A.7) [18,
5].

.4.1. Glargine model
In [35], pharmacokinetic (PK) data from 3 different clinical studies

ave been used to model the subcutaneous (sc) absorption of insulin
largine. In each study, euglycemic clamp protocols were conducted in
atients with T1D and a validated radio immunoassay. The sc absorp-
ion model of both, Gla-100 and Gla-300 is a two-compartment struc-
ure proposed in [37] and incorporated in the UVA/Padova Simulator
nd validated for the Dalla Man model [37].

.4.2. Degludec model
Second-generation insulin Deg-100 provides new basal insulin ther-

pies for the treatment of T1D. In [18], a three-compartment PK model
s presented describing subcutaneous absorption of Deg-100 based on
linical data and incorporated into the UVA/Padova simulator.

Fig. 3 shows the incorporation of both models into the Hovorka
odel. In both analogs, active plasma insulin (𝐼𝑡) is considered as

he sum of the long-acting insulin concentration (𝐼𝑙𝑎 ) and the fast-
cting insulin concentration (𝐼𝑓𝑎 ) (Eq. (2)). Eq. (3)–(6), shows the
odifications of the insulin absorption subsystem (Appendix A.3) and

he insulin action subsystem (Appendix A.2) of the Hovorka model [8].
he parameters of both long-acting models are the same as reported

n [18,35] and do not vary between VPs, except for the 𝑉𝐼 parameter,
hich is identified individually for each VP.
𝑡(𝑡) = 𝐼𝑓𝑎 (𝑡) + 𝐼𝑙𝑎 (𝑡) (2)
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𝑑𝐼𝑓𝑎 (𝑡)
𝑑𝑡

=
𝑆2(𝑡)

𝑇𝑚𝑎𝑥𝐼 ∗ 𝑉𝐼
− 𝑘𝑒𝐼𝑓𝑎 (𝑡) (3)

𝑑𝑥1(𝑡)
𝑑𝑡

= −𝑘𝑎1𝑥1(𝑡) + 𝑘𝑎1𝑆𝐼𝑇 𝐼𝑡(𝑡) (4)

𝑑𝑥2(𝑡)
𝑑𝑡

= −𝑘𝑎2𝑥2(𝑡) + 𝑘𝑎2𝑆𝐼𝐷𝐼𝑡(𝑡) (5)

𝑑𝑥3(𝑡)
𝑑𝑡

= −𝑘𝑎3𝑥3(𝑡) + 𝑘𝑎3𝑆𝐼𝐸𝐼𝑡(𝑡) (6)

2.5. Simulation protocol

The proposed simulator was implemented in Matlab R2021a and
simulations were performed using an Intel(R) Core(TM) i7-4770 CPU
@ 3.40 GHz processor with 16 GB RAM. The initial cohort size was
100 VPs for the Hovorka model, of which 47 VPs met the requirements
set and were taken as valid. The Supplementary data 1. Appendix
B presents a table with all parameters of the Hovorka model of the
generated cohort.

For the generated cohort CSII therapy, a vector is created from 0.02
to 4 with a variation of 0.01 that represents the input of basal insulin
(U∕h) to the model and the one that guarantees glucose at a steady-state
(basal glucose) around 160 mg∕dl is selected. For MDI therapy, basal
insulin was adjusted based on two defined injection times at 9:00 h or
20:00 h. The insulin bolus, given at the time of the meal, is calculated
with Eq. (7) presented in [44] where 𝐶𝑅 (g∕U), 𝐶𝐹 (mg∕dl∕U) and
𝐺𝑇 𝑎𝑟𝑔𝑒𝑡 (mg∕dl) are specific parameters individually adjusted for each
VP. The 𝐼𝑂𝐵, which is defined as the amount of insulin delivered that
is still active, was modeled as proposed in [45].

𝐵𝑜𝑙𝑢𝑠 = 𝐶𝐻𝑂
𝐶𝑅

+
𝐺 − 𝐺𝑇 𝑎𝑟𝑔𝑒𝑡

𝐶𝐹
− 𝐼𝑂𝐵 (7)

The considered scenario consists of a 60 day simulation protocol
ith meals of 40, 85, and 75 grams of CHO were given at 7:30 h,
3:00 h, and 19:00 h, respectively, with a variability of 30 min in the
cheduled intake times and 10% in the CHO content. To simulate these
eals, the amount of CHO defined in the initialization of the scenario
as used to select a meal with similar characteristics from the mixed
eal library. To model continuous glucose monitoring (CGM), we fol-

ow the same procedure as in [11] where starting from the calibration
rror of the sensor they generate measurement noise additive to the
imulated blood glucose concentration.

A low frequency term of intra-patient variability is also included by
sing a sinusoidal pattern, on some parameters of the Hovorka model
𝐸𝐺𝑃0, 𝐹01, 𝑘12, 𝑡𝑚𝑎𝑥𝐼 , 𝑘𝑒) and on the long-acting insulin glargine and
egludec models (𝑚4, 𝑘𝑎). Each parameter affected by intra-patient vari-
bility becomes a time-varying parameter, and a specific 𝛽(𝑡) function
4

i

is generated individually. For example, 𝐸𝐺𝑃0 becomes time varying
by applying 𝐸𝐺𝑃0(𝑡) = 𝐸𝐺𝑃0𝛽(𝑡). The procedures to generate the 𝛽(𝑡)
ignal is detailed in Appendix C.

. Results

Using the previously described simulator, generated VP cohort and
cenario, we proceeded to test how adding the meal library and circa-
ian variability affects the simulations, and compared CSII and MDI re-
ults with real reported outcomes. In silico simulations of both therapies
ere always performed in open-loop therapy.

.1. Simulator complexity analysis

Table 1 shows the effects of combining the mixed meal library
nd circadian variability on insulin sensitivity versus the base Hovorka
odel. The outcomes for the base Hovorka model resulted in 87.6%

f the time in range (TIR) (70–180 mg∕dl) and low values of hypo-
lycemia (< 70 mg∕dl) and hyperglycemia (> 180 mg∕dl). The same
able shows how this behavior is affected by incorporating both factors
eparately; it is important to note that these cause a decrease in TIR
etrics and a notable increase in hyperglycemia values. This behavior

s shown in Fig. 4. The results suggest that the inclusion of the mixed
eal library and circadian variability resulted in more physiologically

ealistic outcomes.

.2. Outcomes for CSII and MDI therapies

To assess the performance of both therapies, Table 2, 3, 4, and 5
how the standardized CGM metrics [46] (these values are reported
s a percentage of time in the specified range), for CSII and MDI
herapies. Some of the clinical trials used in this work for comparison
urposes do not report the metrics as suggested in [46], that is, less
evere hypoglycemia (70–54 mg∕dl) and severe (< 54 mg∕dl) and less
evere hyperglycemia (180–250 mg∕dl) and severe (> 250 mg∕dl). They
re presented as a single category, including less severe and severe.
herefore, the clinical outcomes presented in Tables 2, 3, and 4 span to
ifferent ranges as compared to the ‘in silico’ outcomes. The results are
resented as the median (25th, 75th percentile). Fig. 5 shows the glucose
utcomes per day for both therapies. We can verify the physiological
lausibility of the glucose trajectories in the simulations. In addition,
upplementary data 2 shows the AGP report of two representative
atients with CSII and MDI therapy.

Table 2 shows the CSII therapy results for the nominal Hovorka
odel and with the inclusion of the meal library and circadian vari-

bility. Comparing the results with the clinical trial it can be seen that
ixed meals library and circadian variability result in more physiolog-

cally feasible VPs. Comparing the results obtained with the clinical
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Fig. 3. Glucose–insulin compartment model with the addition of the long-acting insulin glargine (red) and degludec model (blue). (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

Fig. 4. Daily aggregated CGM of the cohort of Table 1 (median + IQR). The blue curve shows the Hovorka model, the black curve the Hovorka model using the meal library,
the magenta curve the Hovorka model including circadian variability, and the red curve the Hovorka model with the meal library and circadian variability. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)
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Table 1
Effects caused by the addition of the mixed meal library and circadian variability of insulin sensitivity in the outcomes for CSII.

Performance
indicator

Nominal Hovorka
modela

Hovorka model with
mixed-meal librarya

Hovorka model with
circadian variabilitya

𝐶𝐺𝑀 (mg/dl) 136.4 (120.1–150.8) 158.1 (143.9–180.1) 153.3 (140–160)
%CV 22.9 (16.7–31) 20.6 (15–30) 23.9 (18.1–30.1)
% time CGM > 250 mg/dl 0 (0–0.6) 0 (0–8.7) 0.1 (0–4.7)
% time CGM 180–250 mg/dl 5.7 (2–25) 19.6 (9.6–35.1) 18.6 (9.3–28.4)
% time CGM 70–180 mg/dl 87.6 (63.2–96.8) 77.4 (47.1–87.4) 77.5 (60.3–89.8)
% time CGM 54–70 mg/dl 0.5 (0–3.2) 0 (0–0.5) 0.1 (0–2.7)
% time CGM < 54 mg/dl 0 (0–0.1) 0 (0–0) 0 (0–1)

aValues are reported as median, interquartile range (25th, 75th percentile).
Fig. 5. Daily aggregated CGM of the generated cohort (median + IQR) for different therapies: CSII (blue), Gla-100 9 h (black), Gla-300 9 h (magenta) and Degludec 9 h (red).
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Table 2
Outcomes for CSII therapy and clinical trial.

Performance
indicator

Nominal Hovorka
modela

Hovorka model with
variability and mixed mealsa

Clinical trial
[30]b

Median 𝐶𝐺𝑀 (mg∕dl) 136.4 (120.1–150.8) 159.9 (147.1–172.1) 174 (18)

%CV 22.9 (16.7–31) 35.4 (32.5–41.7) 40 (4)

% time CGM > 250 0 (0–0.6) 5.8 (3–11.9) 42 (10)% time CGM 180–250 mg/dl 5.7 (2–25) 26 (19.5–30.4)

% time CGM 70–180 mg/dl 87.6 (63.2–96.8) 62 (47.5–68.9) 54 (9)

% time CGM 54–70 0.5 (0–3.2) 2.9 (2.2–4.2) 3.9 (1.7–5.3)% time CGM < 54 mg/dl 0 (0–0.1) 1.6 (0.7–3)

Insulin

Basal (U/day) 23 (16.9–32.5) 22.1 (15.9–31.6) –

Basal (U/kg) 0.33 (0.23–0.44) 0.32 (0.22–0.42) 0.32 (0.10)

Bolus (U/day) 18.7 (14.4–26.2) 18.7 (14.4–26.2) –

Bolus (U/kg) 0.29 (0.18–0.37) 0.29 (0.18–0.37) 0.39 (0.13)

Total (U/day) 45.2 (32.3–55.9) 44.2 (31.3–55) –

Total (U/kg) 0.58 (0.47–0.81) 0.57 (0.46–0.79) 0.71 (0.19)

aValues are reported as median, interquartile range (25th, 75th percentile).
bValues are reported as mean, SD.
targets for CGM presented in [4], it can be noted that the TIR has a
median of 62% which is less than the 70% that represents the target
value. In the case of time in hypoglycemia and hyperglycemia the target
value is 5% and 25%, respectively and the results obtained have a
median of 4.5% and 31.8%, respectively. The glycemic variability has
a median of 35.4% and the target value is ⩽ 33%.

Tables 3 and 4 present the results for MDI therapy with insulin
glargine. Comparing the results with the clinical trial it is also con-
firmed for this therapy that the inclusion of mixed meals and circadian
variability causes a more realistic behavior in VPs. The in silico TIR for
Gla-100 and Gla-300 was 54% vs. 57.1% in the morning and 65% vs.
6

60.3% at night, very similar to the values obtained of 53.6% and 56.2%
respectively, in figure 1 of [47]. The hypoglycemic for Gla-100 6.2%
and 5.4% and for Gla-300 6.1% and 6.8%. The glycemic variability for
Gla-100 was greater than for Gla-300 in the morning, which coincides
with the characteristics reported in clinical trials on these parameters
for both analogs [37,47].

Table 5 shows the results obtained from the incorporation of insulin
degludec into the Hovorka model. It was first simulated with a fixed
dose of 0.4 U∕kg or 0.6 U∕kg as reported in [49–51] the adequacy of the
0.4 U∕kg dose was confirmed as it was close to the normal daily dose
of basal insulin observed. A lower glycemic variability can be observed
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Table 3
Outcomes for MDI therapy with insulin Gla-100, in silico and clinical trial [47,48].

Performance
indicator

Injection
time

Nominal Hovorka
modela

Hovorka model with
variability and mixed mealsa

Clinical trial
Gla-100b

𝐶𝐺𝑀
(mg/dl)

9 h 137.5 (112.6–152.7) 166.8 (154.5–185.5) 152.1 (32.8)d

20 h 117.4 (106.3–132.7) 151.3 (136.2–165.3) 169.3c

%CV 9 h 25.7 (20–37.5) 40.4 (36–47) –
20 h 29.9 (22.8–40) 38.6 (32.9–45.3) –

% time CGM
> 250 mg/dl

9 h 0.1 (0–2.4) 12.9 (5.7–18.1) 16.1c
20 h 0 (0–1.3) 5.5 (2.9–12.5)

% time CGM
180–250 mg/dl

9 h 9.6 (3.1–22.2) 24.4 (18.7–30.3) 22.8c
20 h 6.9 (2–16.4) 19.7 (15.4–23.9)

% time CGM
70–180 mg/dl

9 h 78.8 (57.2–87.5) 54 (46.8–65.1) 53.6c
20 h 73.4 (61.1–89.8) 65 (52.8–73.9)

% time CGM
54–69 mg/dl

9 h 2.3 (0–9) 3.7 (2.3–4.6)

8.2c20 h 5.1 (0.7–15.2) 3.8 (2.4–5.8)
% time CGM
< 54 mg/dl

9h 0.2 (0–4) 2.5 (1.2–4)
20 h 0.3 (0–3.7) 1.6 (0.8–3.6)

Insulin

Basal
(U/day)

9 h 39.9 (29.1–52.6)
37.5 (28.8–50.9)

30.7 (22.4–40.5) –
20 h 28.9 (22.1–39.2) –

Basal
(U/kg)

9 h 0.55 (0.41–0.7)
0.53 (0.39–0.66)

0.42 (0.32–0.54) 0.45 (0.19)d

20 h 0.41 (0.3–0.51) 0.36 (0.16)d

Bolus
(U/day)

9 h 24.3 (17.5–34.9)
24.9 (19.3–36.4)

24.3 (17.5–34.9) –
20 h 24.9 (19.3–36.4) –

Total
(U/day)

9 h 66.2 (47–84.1) 59 (40.5–71.8) –
20 h 66.4 (48.2–83.9) 58.7 (42–73.3) –

Total
(U/kg)

9 h 0.91 (0.71–1.11)
0.95 (0.72–1.12)

0.77 (0.61–0.94) 0.73 (0.27)d

20 h 0.81 (0.6–1) 0.63 (0.18)c

aValues are reported as median, interquartile range (25th, 75th percentile).
bValues are reported as mean, SD.
c[47].

d[48].
Table 4
Outcomes for MDI therapy with insulin Gla-300, in silico and clinical trial [47,48].

Performance
indicator

Injection
time

Nominal Hovorka
modela

Hovorka model with
variability and mixed mealsa

Clinical trial
Gla-300b

𝐶𝐺𝑀
(mg/dl)

9 h 128.8 (109–139.5) 161.7 (147.9–176) 158 (38)d

20 h 123.2 (106.6–139.5) 154.2 (141.1–173.2) 165.0c

%CV 9 h 26.1 (19–34.1) 37.9 (33.5–46.8) –
20 h 26.8 (20.4–37.5) 39.4 (35.2–47.5) –

% time CGM
> 250 mg/dl

9 h 0 (0–0.3) 7.8 (4–13.2) 13.6
c

20 h 0 (0–0.5) 7.5 (3.6–13.2)

% time CGM
180–250 mg/dl

9 h 6.2 (1–15.4) 23.3 (18–30.1) 24c
20 h 5.9 (0.8–18.2) 22.4 (17.3–27)

% time CGM
70–180 mg/dl

9 h 82.9 (62.1–93.7) 57.1 (49.1–64.4)
20 h 78.2 (54.3–92.8) 60.3 (47.7–69) 56.2c

% time CGM
54–69 mg/dl

9 h 3.7 (0.1–9.3) 3.7 (2.4–5)

7.3c20 h 3 (0–7.4) 4.1 (2.3–5.4)
% time CGM
< 54 mg/dl

9 h 0.2 (0–2.8) 2.4 (1.1–5.1)
20 h 0.1 (0–5.5) 2.7 (0.8–4.7)

Insulin

Basal
(U/day)

9 h 42.4 (31.7–54.4)
34.6 (26.2–48.1)

32.6 (24.4–41.8) –
20 h 26.6 (20.2–37) –

Basal
(U/kg)

9 h 0.59 (0.43–0.72)
0.49 (0.36–0.64)

0.45 (0.33–0.56) 0.49 (0.22)d

20 h 0.37 (0.27–0.49) 0.45 (0.21)d

Bolus
(U/day)

9 h 23.8 (17–32.4)
27 (19.3–39.7)

23.8 (17–32.4) –
20 h 27 (19.3–39.7) –

Total
(U/day)

9 h 71 (48.8–85.9)
67.8 (46.2–85.3)

62.2 (41.5–71.5) –
20 h 57.2 (40.3–73.2) –

Total
(U/kg)

9 h 0.96 (0.75–1.13)
0.92 (0.72–1.14)

0.8 (0.63–0.96) 0.81 (0.32)
20 h 0.78 (0.61–0.98) 0.67 (0.23)c

aValues are reported as median, interquartile range (25th, 75th percentile).
bValues are reported as mean, SD.
c[47] .

d[48].
7



Journal of Biomedical Informatics 132 (2022) 104141E. Estremera et al.

i
f
a
0
s
r
w
w
1
v
b
s
r
5
w
3

4

p
p
t
t
c

v
C
m
w
R
s
t
s
t
r
T
t
H

Table 5
Outcomes for MDI therapy with Deg-100.

Performance
indicator

Injection
time

In silico-Basal
insulin of 0.4 U/kga

In silico- Basal
insulin of 0.6 U/kga

Individually adjusted
basal insulina

𝐶𝐺𝑀
(mg/dl)

9 h 170.1 (151.4–187.9) 158.4 (142.7–169.2) 166.3 (153.6–198.1)
20 h 165.8 (147.8–191.1) 150.3 (141–171.6) 171.4 (153–191.5)

%CV 9 h 45 (34.5–49.2) 39.8 (35.9–45.2) 41.2 (35.9–47.5)
20 h 38.1 (33.2–45.2) 36.2 (32.9–41.7) 37.8 (34.3–42)

% time CGM
> 250 mg/dl

9 h 15.4 (8.7–21.8) 8.8 (3.5–13.4) 13.4 (7.2–26.6)
20 h 12.9 (5.7–19.8) 5.4 (2–10.2) 11.2 (6.4–26.7)

% time CGM
180–250 mg/dl

9 h 24.8 (19.5–28.2) 23.5 (17.3–30.4) 25.2 (19.3–29.1)
20 h 26.6 (19–32.3) 20.8 (17.4–27.4) 30.7 (23–35)

% time CGM
70–180 mg/dl

9 h 48.4 (41.4–56.1) 56.4 (46.1–67.4) 52.3 (39.6–61.6)
20 h 49.8 (41.4–65.1) 61.8 (49.4–69.5) 45.8 (38.2–54.4)

% time CGM
54–69 mg/dl

9 h 4 (2–5.9) 4.1 (3.1–5.5) 3.5 (2.2–5)
20 h 3.1 (1.3–5.4) 4 (2.1–5.5) 3.4 (1.9–4.7)

% time CGM
< 54 mg/dl

9 h 2.9 (1.1–6.9) 3.7 (1.8–5.1) 2.4 (0.8–4.9)
20 h 1.5 (0.4–4.3) 1.9 (1–4.2) 2.6 (0.7–4.6)

Insulin

Basal
(U/kg)

9 h 0.4 (0.4–0.4) 0.6 (0.6–0.6) 0.39 (0.31–0.55)
20 h 0.4 (0.4–0.4) 0.6 (0.6–0.6) 0.47 (0.35–0.6)

Bolus
(U/kg)

9 h 0.4 (0.27–0.62) 0.34 (0.2–0.51) 0.38 (0.28–0.6)
20 h 0.41 (0.28–0.62) 0.33 (0.21–0.53) 0.36 (0.26–0.53)

Total
(U/kg)

9 h 0.8 (0.67–1.02) 0.94 (0.8–1.11) 0.85 (0.64–1.06)
20 h 0.81 (0.68–1.02) 0.93 (0.81–1.13) 0.87 (0.68–1.06)

aValues are reported as median, interquartile range (25th, 75th percentile).
n the nocturnal injection, 38.1 (33.2–45.2)% and 36.2 (32.9–41.7)%
or 0.4 U∕kg and 0.6 U∕kg, respectively. In addition, a basal insulin
djustment was made and 0.39 (0.31–0.55) U∕kg and 0.47 (0.35–
.6) U∕kg were obtained at 9:00 h and 20:00 h, respectively, which is
imilar to that reported in the literature. Mean glucose, TIR, or insulin
equirements are presented in [52–55]. Particularly in [52], patients
ho received either insulin glargine or insulin detemir twice daily
ere instead given insulin degludec. The median results obtained were
66.3 (153.6–198.1) mg∕dl vs. 171.4 (153–191.5) mg∕dl for 9:00 h
s. 20:00 h in silico and 168.6 (±23.9) mg∕dl in vivo [52]. For a
asal insulin of 0.39 (0.31–0.55) U∕kg vs. 0.47 (0.35–0.6) U∕kg in
ilico and 0.4 (±0.2) U∕kg in vivo. The percentage of time in the
ange 70–180 mg∕dl obtained was 52.3 (39.6–61.6)% vs. 45.8 (38.2–
4.4)% in silico and 57.5 (±13.3)% in vivo (Table 3 of [52]). There
ere also similarities in glycemic variability of 41.2 (35.9–47.5)% vs.
7.8 (34.3–42)% in silico and 35.9 (±6.4)% in vivo (See Table 5).

. Discussion

Treating diabetes remains a challenge today and although insulin
umps and CSII are gaining ground, MDI therapy remains the most
opular treatment for T1D with slow-acting insulin formulations used
o satisfy insulin daily needs [36,56]. Simulators are an indispensable
ool to test different treatments of CSII and MDI and therefore, more
hallenging scenarios are required.

This paper presents a methodology to generate a physiologically
alid VP cohort. The simulation tools referenced in this paper have a
HO absorption model to represent the action of meals and a mixed
eal library that allows the simulation of a variety of realistic meals,
hich represents a greater challenge when testing control strategies.
egarding the variability of insulin sensitivity, it is generally repre-
ented with a sinusoidal function of the parameters that influence
his phenomenon. In this paper, we add circadian patterns of insulin
ensitivity identified through basal insulin patterns reported in clinical
rials. The addition of the mixed meal library and circadian variability
esults in outcomes that more accurately reflect real-life conditions.
his is shown in Tables 1, 2, 3, and 4 where it can be seen that
hese phenomena make the VPs more realistic compared to the nominal
ovorka model. Another advantageous feature of this work is that it
8

allows the simulation of both CSII and MDI therapies within a single
simulation tool.

To validate the results obtained with CSII therapy, they were com-
pared with trials reported in the literature. In [30], the authors con-
ducted a 12-week study with patients of both genders and of average
age of 21 years. The study outcomes report a mean glucose of 174
mg∕dl, slightly higher when compared to the median of 154.3 mg∕dl
from our in silico simulation. However, the insulin requirement ob-
tained in both cases is noticeably similar, 0.32 U∕kg vs. 0.33 U∕kg
reported in [57]. Glucose control in [30] was slightly better for VPs,
which is reflected in the differences of 54% vs. 62% in normoglycemia,
3.9% vs. 4.5% in hypoglycemia and, 42% vs. 31.8% in hyperglycemia.
This may be caused by the fact that patients were free to eat any food
and do any physical activity at any time in the clinical trial unlike our
simulation protocol.

The incorporation of the insulin glargine and degludec into the
Hovorka model allows for the simulation of MDI therapies. The re-
sults were validated by comparing them to those reported in clinical
trials, [31,32,47,48] for glargine and [49–55,58–61] for degludec. The
behavior of the plasma insulin concentration (Figs. 6 and 7) was similar
to those reported in the literature for both analogs.

In [48], a multicenter, randomized, four-arm, parallel-group study
with T1D including 275 patients for Gla-100 and 274 for Gla-300 was
conducted. Morning injection of insulin glargine time was between
prebreakfast and prelunch (inclusive) and evening at the diner until
bedtime, while participants continued using fast acting insulin to
cover meals. The insulin requirements, reported as mean (SD) for Gla-
100 was 0.45 (±0.19) U∕kg in the morning and 0.36 (±0.16) U∕kg
at night. For Gla-300 was 0.49 (±0.22) U∕kg in the morning and
0.45 (±0.21) U∕kg at night. These results are similar to those ob-
tained our simulations, reported as median (25th, 75th percentile),
for Gla-100 0.42 (0.32–0.54) U∕kg in the morning and 0.41 (0.3–
0.51) U∕kg at night. For Gla-300 was 0.45 (0.33–0.56) U∕kg in the
morning and 0.37 (0.27–0.49) U∕kg at night. The mean glucose was
152.1(±32.8) and 158.8(±38) mg∕dl for Gla-100 and Gla-300, respec-
tively, in vivo, remarkably comparable with the results obtained in
silico of 166.8 (154.5–185.5) mg∕dl and 161.7 (147.9–176) mg∕dl for
Gla-100 and Gla-300.

Degludec is an ultra-long-acting insulin analog with a flat and
reproducible pharmacodynamic profile. In [52], 29 patients with a



Journal of Biomedical Informatics 132 (2022) 104141E. Estremera et al.

v
2
t
3

c
d
a
c
d
i
a
t
s

Fig. 6. Median (IQR) of plasma insulin concentration total (blue), Gla-100, and Gla-300 (red). (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
Fig. 7. Median (IQR) of plasma insulin concentration total (blue) and Deg (red). (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)
t
H
a
b
i
s
m
e

5

m
t
e
p
t
t

mean age of 34.8 (±11.4) years with T1D who did not achieve 24 h
coverage with glargine or detemir were chosen and the effect of chang-
ing the treatment to degludec was studied. The resulting basal insulin
was 0.39 (0.31–0.55) vs. 0.47 (0.35–0.6) U∕kg in our simulations
and 0.3 (±0.1) U∕kg in the clinical trial after 12 weeks. The TIR
obtained was 52.3 (39.6–61.6)% vs. 45.8 (38.2–54.4)% in silico and
57.5 (±13.3)% in vivo. The times above 180 mg∕dl were 38.8 (±14.4) in
ivo and 25.2 (19.3–29.1)% in the range 180–250 mg∕dl vs. 13.4 (7.2–
6.6)% > 250 mg∕dl in silico (See Table 3 of [52]). The hypoglycemia
ime provided in [52] is defined by time below < 70 mg∕dl and was
.6 (±3.7)% and for our simulations it was 5.9 (3–9.9)%.

It should be noted that there are some differences in the results of
linical trials and in silico results. This is mainly because the simulation
oes not include any disturbances related to free-living conditions such
s physical activity, stress, or hormonal changes such as the menstrual
ycle. Another factor that influences the differences found are the
ifferent eating habits of each patient, which is not taken into account
n the simulator. Furthermore, the same clinical attributes of the study
nd the insulin titration algorithms were not implemented. However,
he in silico study showed similar trends to those obtained in clinical
9

tudies, especially regarding insulin requirements. t
This study presents an approach that improves upon current simula-
ion tools, yielding results that more closely reflect real-life conditions.
owever, more research is still required to improve the simulators
vailable in the literature. The main limitations of this study are given
y: (1) although 24 h patterns of variability of insulin sensitivity are
dentified and implemented into the simulator, a model that repre-
ents it is not defined, and (2) glucagon, a hormone that is becoming
ore important for the treatment of T1D, was not included in the

xperiments.

. Conclusion

The inclusion of the identified insulin sensitivity variability and a
ixed meal library into a T1D simulator provides challenging scenarios

hat is better able to mimic real-life behavior, an important feature for
valuating treatments through in silico tests. The incorporation of the
harmacokinetic model of long-acting insulin glargine and degludec
o the Hovorka model reproduces the main characteristics observed in
he literature for these analogs, which demonstrates its validity for the

esting of MDI therapies.
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ppendix A. Model equations

.1. Glucose subsystem of the Hovorka model

𝑑𝑄1
𝑑𝑡

= −[
𝐹 𝑐
01

𝑉𝐺𝐺(𝑡)
+ 𝑥1(𝑡)] + 𝑘12𝑄2(𝑡) −𝐹𝑅 +𝑈𝑔(𝑡) +𝐸𝐺𝑃0[1 − 𝑥3(𝑡)] (A.1)

𝑑𝑄2
𝑑𝑡

= 𝑥1(𝑡)𝑄1(𝑡) − [𝑘12 + 𝑥2(𝑡)]𝑄2(𝑡) (A.2)

𝐺(𝑡) =
𝑄2(𝑡)
𝑉𝐺

(A.3)

𝐹 𝑐
01 =

{

𝐹01 if 𝐺 ≥ 4.5 mmolL−1

𝐹01𝐺
4.5 otherwise

(A.4)

𝐹𝑅 =
{

0.003(𝐺 − 𝑅𝑡ℎ)𝑉𝐺 if 𝐺 ≥ 𝑅𝑡ℎ mmolL−1

0 otherwise (A.5)

A.2. Insulin action subsystem of the Hovorka model

𝑑𝑥1
𝑑𝑡

= −𝑘𝑎1𝑥1(𝑡) + 𝑘𝑎1𝑆𝐼𝑇 (𝑡) (A.6)

𝑑𝑥2
𝑑𝑡

= −𝑘𝑎2𝑥2(𝑡) + 𝑘𝑎2𝑆𝐼𝐷(𝑡) (A.7)

𝑑𝑥3
𝑑𝑡

= −𝑘𝑎3𝑥3(𝑡) + 𝑘𝑎3𝑆𝐼𝐸 (𝑡) (A.8)

A.3. Insulin absorption subsystem of the Hovorka model

𝑑𝑆1
𝑑𝑡

= 𝑢(𝑡) − 𝑘𝑎𝑆1(𝑡) (A.9)

𝑑𝑆2
𝑑𝑡

= 𝑘𝑎𝑆1(𝑡) − 𝑘𝑎𝑆2(𝑡) (A.10)

𝑑𝐼 =
𝑘𝑎𝑆2(𝑡) − 𝑘𝑒𝐼(𝑡) (A.11)
10

𝑑𝑡 𝑉𝐼
A.4. Gut absorption subsystem of the Hovorka model

𝑑𝐺1
𝑑𝑡

= −
𝐺1(𝑡)
𝑡𝑚𝑎𝑥𝐺

+ 𝐵𝑖𝑜 ∗ 𝐷(𝑡) (A.12)

𝑑𝐺2
𝑑𝑡

=
𝐺1(𝑡)
𝑡𝑚𝑎𝑥𝐺

−
𝐺2(𝑡)
𝑡𝑚𝑎𝑥𝐺

(A.13)

𝑈𝑔(𝑡) =
𝐺2(𝑡)
𝑡𝑚𝑎𝑥𝐺

(A.14)

.5. Glargine insulin model

𝑑𝐼𝑞1
𝑑𝑡

= −𝑘𝑠𝑝𝐼𝑞1(𝑡) + 𝑘 ∗ 𝐹 ∗ 𝑢𝑙𝑎(𝑡) (A.15)

𝑑𝐼𝑞2
𝑑𝑡

= −𝑘𝑎𝐼𝑞2(𝑡) + 𝑘𝑠𝑝𝐼𝑞1(𝑡) + (1 − 𝑘) ∗ 𝐹 ∗ 𝑢𝑙𝑎(𝑡) (A.16)

𝑎𝑖(𝑡) = 𝑘𝑎𝐼𝑞2(𝑡) (A.17)

.6. Degludec insulin model

𝑑𝐼𝑞1
𝑑𝑡

= −𝑘𝑑1𝐼𝑞1(𝑡) + 𝐹 ∗ 𝐷 (A.18)

𝑑𝐼𝑞2
𝑑𝑡

= −𝑘𝑑2𝐼𝑞2(𝑡) + 𝑘𝑑1𝐼𝑞1(𝑡) (A.19)

𝑑𝐼𝑞3
𝑑𝑡

= −𝑘𝑎𝐼𝑞3(𝑡) + 𝑘𝑑2𝐼𝑞2(𝑡) (A.20)

𝑎𝑖(𝑡) = 𝑘𝑎𝐼𝑞3(𝑡) (A.21)

.7. Insulin subsystem model glargine and degludec

𝑑𝐼𝑝
𝑑𝑡

= −(𝑚2 + 𝑚4)𝐼𝑝(𝑡) + 𝑚1𝐼𝑙(𝑡) + 𝑅𝑎𝑖(𝑡) (A.22)

𝑑𝐼𝑙
𝑑𝑡

= −(𝑚1 + 𝑚3)𝐼𝑙(𝑡) + 𝑚2𝐼𝑝(𝑡) (A.23)

(𝑡) =
𝐼𝑝(𝑡)
𝑉𝐼

(A.24)

Appendix B. Procedures to generate the circadian variability of
insulin sensitivity

B.1. Procedure for generation of basal insulin profile

Probability distributions are formulated how 𝑁(𝜇, 𝜎2) where 𝜇 rep-
resents the mean and 𝜎 is the standard deviation. For the generation of
basal insulin profile the following terms are introduced.

1. The number of daily insulin basal rates 𝑛𝑟 ∈ N+ is sampled and
rounded to the nearest integer following the normal distribution
𝑁(5.04, 3.35).

2. The array of insulin basal rates 𝐮 =
{

𝑢𝑛𝑝 ∪ 𝑢𝑝
}

∈ R𝑛𝑟 in U∕h. Each
basal insulin profile contains one peak basal insulin infusion, 𝑢𝑝,
which is the highest infusion throughout the day and an array
of non-peak basal infusions, 𝑢𝑛𝑝 ∈ R(𝑛𝑟−1). Here, the peak basal
rate is sampled from 𝑁(0.92, 0.13) U∕h. Then, the non-peak basal
rates can be computed taking into account that the average of
𝑢𝑛𝑝 is at least 25% lower than 𝑢𝑝 [42], as shown in Eq. (B.1).

𝑢𝑛𝑝 =
∑

𝐮 − 𝑢𝑝 <
𝑢𝑝

𝑣 (B.1)

𝑛𝑟 − 1 1 + 100
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Fig. B.8. Representative blood glucose concentration 𝑄1(𝑡)∕𝑉𝑔 . The blue curve is the Hovorka model response with 𝛼 = 1 and using 𝑢𝑏, the red curve is the Hovorka model response
with 𝛼 = 1 and using �̃�𝑏 and the black curve is the Hovorka model response with the obtained 𝛼(𝑡) and using �̃�𝑏. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
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Where 𝑣 ∼ 𝑁(30, 2.25)% is the variation percentage that en-
sures, at least with a 99.7% probability, that 𝑢𝑛𝑝 will be a
25% lower than 𝑢𝑝. After that, we randomly generate 𝑢𝑛𝑝 =
{

𝑢 ∈ (0.4𝑢𝑝, 0.8𝑢𝑝)∀𝑢 ∈ 𝑢𝑛𝑝|𝑢𝑛𝑝 =
𝑣
100 ∗ 𝑢𝑝

}

with 𝑢𝑛𝑝 ∈ R(𝑛𝑟−1).

3. The array of the duration of each basal rate 𝐝 =
{

𝑑𝑢𝑛𝑝 ∪ 𝑑𝑢𝑝
}

∈
R𝑛𝑟 in ℎ. The duration of the peak basal insulin, 𝑑𝑢𝑝 , follows
𝑁(5.2, 11.29) hours. Then, we randomly generate the non-peak
basal rates duration 𝑑𝑢𝑛𝑝 =

{

∀𝑑 ∈ 𝑑𝑢𝑛𝑝 |
∑

𝑑𝑢𝑛𝑝 = 24 − 𝑑𝑢𝑝
}

with
𝑑𝑢𝑛𝑝 ∈ R(𝑛𝑟−1).

Once generated 𝐮 and 𝐝 each basal rate is matched to its corresponding
duration. To generate the basal insulin profile each glucose rate is
distributed in the 24 h. We known that 𝑢𝑝 is distributed 80% of the
times between 2:00 h–8:00 h and 20% time CGM between 20:00 h–
2:00h [42]. The 𝑑𝑢𝑝 is then centered at either 5:00 h or 24:00 h. After
that, 𝑑𝐮𝑛𝑝 is concatenated to the ending time of the up basal rate.

B.2. Procedure for 𝛼(𝑡) generation

𝛼(𝑡) is the day hourly-varying factor affecting the model’s insulin
sensitivity. To obtain the array 𝛼, the steady state of a VP is solved using
a generated basal profile 𝐮. Then, a maximization problem is iteratively
solved, hour by hour, such that the daily steady state glucose remains
in a 30 mg/dl band.

min − 𝛼

s.t. 𝑓 (𝐱, �̃�𝑏, 𝛼) = 0
𝑄1
𝑉𝑔

∈
[−0.3𝑄1,𝑏𝑎𝑠𝑎𝑙

𝑉𝑔
,
0.3𝑄1,𝑏𝑎𝑠𝑎𝑙

𝑉𝑔

]

�̃�𝑏 = 𝑢𝑏
𝐮
𝐮

(B.2)

Where 𝐱 ∈ R8 is the state vector of the Hovorka model, 𝑓 (𝐱, �̃�𝑏, 𝛼)
epresents the nonlinear Hovorka model with the time-varying 𝛼 factor,
1,𝑏𝑎𝑠𝑎𝑙 is the steady state value of 𝑄1 when 𝑢𝑏 is used, 𝑢𝑏 is the basal

nsulin obtained when solving for 𝑓 (𝐱, 𝑢𝑏) = 0 with 𝑄1∕𝑉𝑔 = 160 mg∕dl
nd a constant 𝛼 = 1, 𝐮 is a basal pattern generated using the previous
escribed methodology, 𝐮 is the average basal insulin of 𝐮 and �̃�𝑏 is

the basal insulin pattern scaled based on the VP original basal insulin
𝑢𝑏. Basically, we introduce the scaled basal insulin to the model to
provoke variability and then we solve for 𝛼 such that the variability
in the glucose concentration state is physiologically plausible. Fig. B.8
shows the different steps involved. First, the blue trajectory shows the
base steady state of the Hovorka model without variability. Then, using
one of the scaled generated basal profiles we show in the red curve
that the variability on glucose is significantly more complex compared
to the original case. Then, we translate this effect into the 𝛼 time-
varying parameter such that glucose concentration is constrained to a
±30 mg∕dl band [42].
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Table C.6
Period and phase for the time-varying 𝛼(𝑡) for each parameter.
Parameters P (Period) 𝜑 (Phase)

𝐸𝐺𝑃0 61 0.1152
𝐹01 71 0.9324
𝑘12 59 0.2936
𝑡𝑚𝑎𝑥𝐼 31 0.5737
𝑘𝑐 37 0.8423
𝑚4 41 0.7567
𝑘6 39 0.1491

Appendix C. Procedures to generate 𝜷(𝒕)

Intra-patient variability is introduced in model parameters by ap-
plying the following product:

𝑝(𝑡) = 𝑝0𝛽(𝑡) (C.1)

here 𝑝(𝑡) represents the new time-varying parameter, 𝑝0 represents
he constant nominal parameter from the VP and 𝛽(𝑡) is a time-varying
inusoidal function of the form (C.2).

(𝑡) = 1 + 𝐴
100

sin
( 2𝜋
𝑃 ⋅ 60

𝑡 + 2𝜋𝜑
)

(C.2)

here the period 𝑃 , in hours, is different for each parameter and is
epresented by prime numbers randomly assigned between 31 and 71
o avoid periodicity between the parameters, the phase 𝜑 is randomly
elected between 0 and 1 (Table C.6 shows P and 𝜑 selected for each
arameter), the amplitude 𝐴 was set to 20 following [62]. A total of 7
odel parameters can include intra-patient circadian variability.

ppendix D. Supplementary data

Supplementary material related to this article can be found online
t https://doi.org/10.1016/j.jbi.2022.104141.
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