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Abstract

Consider two point sets in the plane, a set of points of interest and a set of query points that is used to establish
distance restrictions with respect to the set of points of interest. A nearest/farthest spatial skyline query retrieves
the subset of desirable or relevant points of interest, called skyline points, such that no other point of interest is
simultaneously closer to/farther from all the query points. The nearest/farthest top-k spatial skylines, are the best
k nearest/farthest spatial skylines among the existent ones. All these queries find applications in decision-making
support systems, facility location, crisis management and in trips or events planning. To take into account that
each point of interest has a different importance, a weight is assigned to each of them and multiplicative weighted
Euclidean distances are used. In this paper, we study, for the first time, the nearest and farthest spatial skyline
queries when multiplicative weighted Euclidean distances are considered. We prove that most of the properties of the
traditional non weighted nearest and farthest spatial skyline queries are no longer true under the weighted Euclidean
distance and, consequently, the strategies used for solving non weighted spatial skyline queries are not usable in the
weighted case. We present a sequential and a parallel algorithm, to be run on the CPU and on a Graphics Processing
Unit, respectively, for solving nearest/farthest weighted spatial skyline queries and to extract the nearest/farthest
top-k spatial skylines. We provide the time and space complexity analysis of both algorithms together with their
theoretical comparison. We also have developed a simple interface to deal with weighted spatial skyline queries which
allows to visualize and store in a file the obtained spatial skylines. Finally, we present and discuss experimental
results obtained with the implementation of the proposed sequential and parallel algorithms.

Key words: Computer science; Decision-making support System; Nearest and farthest spatial skyline query; Weighted
Euclidean distance; Graphics Processing Unit (GPU)

1. Introduction

In this paper, we study nearest and farthest spatial skyline queries when multiplicative weighted Euclidean
distances are considered. This problem has applications in facility location, crisis management or in trips
or events planning. For instance, when planning a trip, a nearest spatial skyline query helps to select the
set of desirable hotels regarding their distance to museums, historical buildings or beaches. By the other
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side, when we plan the construction of a holiday center, a farthest spatial skyline query helps in identifying
suitable locations far away from garbage dumps, noisy places or chemical plants.
The two main elements of a spatial skyline query are a set of points of interest and a set of query points

used to establish distance restrictions with respect to the set of points of interest. A point of interest is
relevant or desirable if it is better than any other point of interest. From now on, these points will be called
skyline points.
Since the resulting set of skyline points can be too large and, in practice, many times it is preferable to

identify a small number of points among the skyline points, we specify a ranking function that reflects the
relevance of each point in the skyline. This ranking or scoring function allows to retrieve the subset of the
best k lowest or highest scored skyline points which are called the top-k spatial skylines.

By analyzing the applications of the problem, we notice that the Euclidean distance may not be able to
simulate a realistic scenery. In practice, there exist points of interest (e.g., hotels, shops, garbage dumps)
with different attraction or repulsion capabilities, say with different importance. To take into account the
importance of the points of interest, we assign a weight to each of them. Experts take available information
of the points of interest (prestige, price, magnitude, services, etc) and then aggregate these factors to obtain
their weights [8,9]. In this way, we reflect that relevance depends on distance and importance. This is done
according to the model presented in [4] which is widely used in location analysis [12–14,27]. We associate to
each facility a multiplicative weighted Euclidean distance defined by the product of the Euclidean distance
and the inverse of the facility weight, hence the higher the weight, the smaller the weighted distance with
respect to the Euclidean distance. The formal definition can be found in Section 3.1.

To the best of our knowledge, nearest and farthest spatial skyline queries considering multiplicative
weighted Euclidean distances have not received attention so far, although they have practical applications
as we show in the next examples

1.1. Motivational examples

As we briefly mentioned before, solving spatial skyline queries can help, for example, to select desirable
hotels of a city taking into account, but not exclusively, their proximity to a set of query points. The
traditional spatial skyline points chose the desirable hotels taking into account, only, their distance to a set
of query points. But this scenery is not realistic. When users chose a hotel, they obviously take into account
the distance of the hotel to a set of query points they want to visit, but they also take into account several
other aspects related to the hotel, such as the price or the opinion of the previous users. These other aspects
are used to assign an attraction value to the hotel which is used to weight the distance to that hotel. The
bigger the weight associated to a hotel, the higher its attraction power and the less important becomes the
distance when the weighted Euclidean distance is used. The Euclidean distance is divided by the weight of
the hotel simulating the hotel attraction power of that hotel.
The spatial skyline points are those points that are not dominated by any other point. A point p dominates

point p′ if p is better placed than p′ with respect to all the query points, in terms of proximity. Hence, what
determines whether a point dominates another is their relative position when they are sorted according to
the proximity to the query points. Assigning weights to the hotels and using them to compute the proximity
produces alterations in this relative order and consequently produces changes in the obtained skyline points.
This will not happen if we assign weights to the queries Q. Adding weights to the queries will produce
changes in the distance values but not in their sorting. Hence assigning weights to the queries may have
sense but is useless because it has no effects in the obtained output.
Next, we provide two specific examples showing the existent differences between taking and not taking

into account the weights to compute the spatial skyline points.

Example 1. Consider the set of hotels and the set of tourist points of interest of a given area of Barcelona.
A potential tourist can use the results of a nearest spatial skyline query to decide which hotel to book with
the goal of being close to most of the city’s tourist attractions. In Figure 1 we can see the results obtained
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when multiplicative non-weighted (a) and weighted (b) Euclidean distances are considered. The weights
associated to the hotels correspond to the real rating from 0 to 5 given by the users mapped to an integer
rating from 0 to 10. Its value is used to gradate the red color when the restaurant is painted, the darker the
color, the smaller the weight.

a) b)

Fig. 1. Desirable hotels (in green) of Barcelona to visit the blue tourist attractions considering a) non weighted b) weighted

distance

Note that the results obtained differ significantly depending on whether or not the weight of the hotels is
considered. Not all the points in the convex hull of Q are weighted spatial skyline points, meanwhile all are
unweighted spatial skyline points. Furthermore, some points quite far from the convex-hull of Q can become
weighted spatial skyline points, but they will rarely be unweighted spatial skylines. Finally, in general, the
number of skylines tends to diminish when weights are considered.

Example 2. Consider now the group of hotels and a set of noisy nightlife places such as Mercabarna a
wholesale market or tipycal places where people go to have fun in Barcelona, such as: Plaç del Sol, Plaça
Reial, Plaça de la Mercè, Passeig Colom or Nova Mar Bella Beach. A potential tourist can use the results of
a farthest spatial skyline query to decide which hotel to book with the aim of avoiding crowds, noise, etc. In
Figure 2 we can see, again, the results obtained when multiplicative non-weighted and weighted Euclidean
distances are considered and a bit closer to Q.

Notice, once again, that the results obtained differ significantly depending on whether or not the weight
of the hotels is considered. In this case, we find farthest weighted skyline points much closer to the points
of Q, the unweighted spatial skyline points tend to always be on the boundary of P .

Many of the properties used to solve non weighed spatial skyline queries are not further true in the
weighted case. For example, neither the convex hull nor the Voronoi diagram can be used to accelerate
the weighted skylines computation. In the non weighted case, efficient index structure with a regular space
partition (e.g., Q+Tree [37]) are used to reduce the number of dominance tests, but the properties allowing
their use mainly rely on the triangular inequality that is no longer true when weights are considered. Hence,
most of the results and strategies based on geometric properties that allow avoiding computations, such as
those used in the unweighted case, are not generalizable to the weighted case. Consequently, we use robust
and simple methods that do not rely on the triangular inequality. One of these methods is the brute force
algorithm that requires scanning the set of points of interest once for each point. This brute force method
can be parallelized by determining, independently, if each point of interest is a skyline point.
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a) b)

Fig. 2. Desirable hotels of Barcelona (in green) to avoid the blue frequented places considering a) non weighted b) weighted
distance

1.2. Our contributions

In this paper, we study, for the first time, nearest and farthest weighted spatial skyline queries, i.e. nearest
and farthest spatial skyline queries considering multiplicative weighted Euclidean distances.
Computing the similarity with a not metric function makes that most of the strategies used for solving

non weighted spatial skyline queries are not usable in the weighted case. Moreover, we can not take benefit
of the data structures usually used to avoid tests. However, we can take advantage of the fact that, the
weighted spatial skyline queries can be solved in a highly parallelizable brute force algorithm which allows
us to obtain a fast approach to solve the problem with the GPU.

Our main contributions are:

– We summarize the geometric properties used to solve the spatial skyline queries under the Euclidean
distance and analyze them under the weighted Euclidean distance. In fact, we show that most of them
are not valid when considering multiplicative weighted Euclidean distances, mainly because we are not
using a metric function.

– We solve, in working towards practical solutions, the nearest and farthest spatial weighted skyline
queries with a sequential algorithm, but also with a GPU-parallel algorithm, under CUDA architecture.
We theoretically and experimentally analyze both approaches and show the efficiency, robustness and
fast running times of the parallel one. We also present several images to visualize the desired spatial
skylines or top-k spatial skylines.

1.3. Organization of the paper

After presenting the main idea of the spatial skyline problems, we organize the remainder of the paper
as follows. We present related work, including the traditional skyline problems, in Section 2. In Section 3,
we study the properties of the spatial skyline problem under the weighted Euclidean distance and compare
them with the Euclidean spatial skyline problem properties. In Section 4, we present the sequential and the
parallel algorithm to solve the weighted spatial skyline problem and theoretically analyze and compare them.
In Section 5, comments on how the top-k spatial skylines can be obtained are provided. In Section 6, the
presented algorithms are experimentally analyzed and compared. In Section 7, the conclusions are presented.
We also provide an Appendix that summarizes the properties and existent algorithms to solve the nearest,
farthest and top-k version of the problem under the non-weighted Euclidean distance.
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2. Related work

Next, we give an overview of the works related to Spatial Skyline Queries. As we mentioned above, in the
the Appendix we describe, in detail, the properties and algorithms provided in the literature to solve Spatial
Skyline Queries under the Euclidean distance.

Basic Skylines. Given a set P of n points in Rd, a skyline query returns the points of P , called skyline
points, that are not dominated by any other point. A point p dominates another point q if it is better than or
equal to q in all dimensions and better than q in at least one dimension. Depending on the context, ”better”
means that has lower or higher coordinate values. Skyline queries have been studied in different disciplines.
For example, in Computational Geometry it is known as the problem of the maximum vector [18] and in
Operations Research as the Pareto-optimal set problem [22].
A commonly used example is assisting a tourist in choosing a set of interesting hotels in a city (see Figure

3). Each of the hotels has two attributes: room price and distance to the beach. For a tourist who prefers a
low-cost hotel close to the beach, hotels h1, h2 and h3 are interesting, these are exactly the skyline of the
hotels in Figure 3.

Fig. 3. Skyline of a hotel search scenario

Skyline queries were first studied as maximal vectors [22]. Börzsönyi et al. [5], that introduced skyline
queries for database applications, presented divide-and-conquer techniques and index structures to solve the
problem in O(n logd−2 n+ n log n) time. Since then, a number of different sequential [21,33,18] and parallel
[6,31,28] algorithms for the basic skyline computation have been proposed. In [42] there is a good summary
of them.
The top-k dominating query returns the k objects that dominate the maximum number of objects in a

given dataset [33,46,17,26]. Since the top-k dominating query identifies the most desirable objects, it is a
decision making tool used to rank objects in many life applications.
For completeness, we want to mention that the basic skyline problem has some generalizations. For

instances, there exist studies dealing with dynamic skylines queries, where there is a moving point of interest,
this makes that the distance from this point to the candidates changes [33,38,41,24]. Some other papers
discuss the reverse skyline queries which study the changes in the set of skylines when a new candidate
is added. The solutions to this last problem are based on the dynamic problem [7,16]. There also exist
skylines queries in temporary databases, where the period of validity or existence of the candidates changes
throughout the year, for example simulating hotels opening only in summer [20].

Spatial Skylines with Euclidean distance. Given a set P of n data points and a set Q of m query points
in the plane, the nearest spatial skyline query (NSSQ) retrieves the points of P such that no other point of
P is closer to all of the query points of Q simultaneously. Let us see an example. A visitor of a trade fair
identifies a set of city locations, say for example the central train station c and the exhibition center venue
v, and wants to select interesting hotels in terms of Euclidean distance. Considering the scenery depicted in

5



Figure 4, we want to select the hotels that are no father simultaneously from c and v than any other hotel.
Thus, the spatial skyline hotels h1, h2 and h4 with respect to c and v are the most interesting hotels for the
visitor. This problem is a two-dimensional problem, because for each hotel two properties are analyzed. The
analyzed elements can be turned into real data and each candidate can be mapped into a point in R2 with
coordinates equal to the distance to the beach and its price. Thus, it can be transformed to a traditional
skyline problem of dimension 2.

Fig. 4. Nearest spatial skyline hotels: h1, h2 and h4

There can be applications of this problem in other areas, such as: events organization, disaster management
decisions or facility location, among others. For instance, suppose that the members of a multidisciplinary
task team that work in different offices, need to meet together regularly. The set of query points corresponds
to the locations of the offices where the members usually work and the set of points of interest to the
potential locations for their weekly meetings. Then, the best location for their weekly meeting is one of the
skyline points. In disaster management, suppose that several residential buildings, defining the set of points
of interest, must be evacuated because of several explosions or fires defining the query points. The first
buildings to be evacuated are the spatial skylines buildings. Finally, consider a business plan for opening
a number of shops, points of interest, near a set of residential areas, that define the set of query points.
Again, the best locations for opening the new shops are the spatial skyline locations. Crisis management
applications is another example. Assume that a number of waterborne infectious disease cases were confirmed
at different locations. People who live at spatial skyline places with respect to those locations should be
alerted and examined first, because there might be a higher probability that these people may have been
exposed to contagious water.

Analogously, given a set P of n data points and a set Q of m query points in the plane, the farthest spatial
skyline query (FSSQ) retrieves the points of P such that no other point of P is farther from all of the query
points of Q simultaneously. Such queries are helpful in identifying spatial locations faraway from undesirable
locations, e.g., unpleasant facilities (nuclear power plants, garbage dumps or chemical plants) or business
competitors (hotels, restaurants). Figure 5 illustrates an example where we aim at finding an optimal subset
of locations among 7 potential locations for a new park. We want the park to be far, in terms of Euclidean
distance, from two query points that represent a chemical plant and a garbage dump. The most desirable
locations for the park are the farthest spatial skyline locations p3, p6 and p7.

Any NSSQ or FSSQ problem can be treated as a basic d-dimensional skyline query, considering for each
point of interest its distance to each query point. Applying the method of Börzsönyi et al. [5] nearest and
farthest spatial skyline queries can be solved in O(n logm−2 n+ n log n) time if all the O(nm) distances are
already computed. Note that distances need to be recomputed for each different data set query Q. The goal
of existent approaches is to efficiently solve spatial skyline queries, exploiting the geometric properties of the
problem, without such transformation [38,39,3,23,35,25]. Sharifzadeh and Shahabi [38,39] first introduced
spatial skyline queries and presented R-tree based and Voronoi-based algorithms for solving the problem.
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Fig. 5. Farthest spatial skyline parks: p3, p6 and p7

By exploiting geometric properties, they avoid the exhaustive examination of all the point pairs in P and Q.
Bhattacharya et al. [3], reduce the spatial skyline problem to the problem of finding data points that have
non-empty cells in an additively weighted Voronoi diagram under convex distance function. The weights of
the Voronoi diagram are derived from the co-ordinates of the points of P and the convex distance function is
derived from Q. They present a randomized incremental algorithm to find the set of non-dominated points.
No results of the algorithm implementation are reported. Lee et al. [23] take advantage of some geometric
properties to sort the candidate points from less to greater distance to a query point to speedup the answers.
This is, by now, the best existing sequential algorithm to solve the NSSQ problem. The same paper also
provides an approximate algorithm to select a representative subset of skylines at a much lower cost. They
also analyze the problem when considering a dynamic set of query points. Finally, Wenly et al. [42] provide
the only existent parallel solution for the NSSQ problem that uses the MapReduce technique.
The furthest spatial skyline query FSSQ problem has been studied in [45]. First the problem is solved

with a baseline algorithm and, then, an efficient progressive algorithm is proposed. The latter significantly
outperforms the former by exploiting spatial locality. They also develop an efficient approximation algorithm
to trade accuracy for efficiency.

General spatial skylines. General spatial skyline query (GSSQ) was introduced at the same time by Lin
et al. under this name [25] and by Soudani and Baraani-Dastgerdi under the name of the spatial nearest
neighbor skyline query [35]. Instead of a single set of query points, they considered several sets of query
points Q1, Q2, ..., Ql of different types. In this case, it is wanted to select, for example, the set of desirable
hotels among a set of candidates such that there is no other hotel that has a beach, a shopping center, a
public transport stop and a museum closer. Therefore, the query or candidate points are analyzed in relation
to the distance to the nearest point of each set of query points Qi.

Spatial skyline queries with non-Euclidean distance. There exist algorithms to obtain the skylines using
road-network distances [39] and Manhattan distance [36]. They both face the same problem but analyzing
proximity with a different distance function. In fact, the only difference is the way in which proximity is
measured because both use a metric function that has exactly the same properties as the Euclidean distance.

Top-k spatial skyline queries. In this case, the subset of the top-k spatial skylines is selected among all
the existent spatial skylines. The top-k spatial skylines are the k skylines optimizing a specific objective
function. There are several papers dealing with top-k spatial skylines [32,40]. Son et al. [40] deal with top-k
spatial skylines under Manhattan and Euclidean distances. Particularly, they improve an existent approach
for the Manhattan distance and present a solution to obtain the top-k skylines.

Recently, different aspects have been added in the spatial skyline problem such as uncertainty or sematics.
Elmi and Min [10] develop efficient techniques to compute the spatial skyline over uncertain data. On the
other hand, Sohail et al. [34] propose two new types of queries, which enrich the semantics of the conven-
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tional spatial queries by introducing social relevance components.

3. Nearest and farthest weighted skyline queries

In this section, we formalize the problem tackled in this paper which deals with the multiplicative weighted
Euclidean distance and the nearest and farthest spatial skyline points. We start by defining the multiplicative
weighted Euclidean distance and then analyze the properties and particularities of the spatial skyline points
under this distance (mainly in comparison with those of the Euclidean distance).

3.1. Multiplicative weighted Euclidean distances

Let P be a set of points in the plane. Assume that each p ∈ P is associated with a positive real weight
wp > 0. The multiplicative weighted (Euclidean) distance dp(q) from the location p ∈ P to an arbitrary
point q is defined as dp(q) = (1/wp) d(p, q), where d(p, q) denotes the Euclidean distance between points p
and q. Note that, the multiplicative weighted distance is a non-metric, it is not symmetric and the triangle
inequality does not hold because the weights are point-depending.

As an example, in Figure 6 we have a set P of seven points and the squared query point q. In Figure 6 a),
where the Euclidean distance is considered, q has one point at distance u, two points at distance 2u, three
points at distance 3u and one point at distance 4u. In Figure 6 b) multiplicative weighted distances are
considered and the weights of the points of P are represented in brackets. In this case, P has two points
at weighted distance u from q, one point at weighted distance 2u, two points at weighted distance 3u
and two points at weighted distance 4u. Note that, in Figure 6 b) the point placed on the smallest semi-
circumference has a weighted distance of 4u with respect to q, meanwhile the point placed on the greatest
semi-circumference is only at weighted distance 2u from q.

q

u

u 2u 3u 4u a) q

(2)

(3)

(1) (1/2)
(1/4)

(2/3)

(3)
3u

2u

u

4u u
3u 4u

b)

Fig. 6. a) Euclidean distances, b) Multiplicative weighted Euclidean distances

The multiplicative weighted distance transforms the shape of several geometric structures that have been
used in the literature to solve the problem under the unweighted distance. Their definition and properties
under the non weighted distance are summarized in the Appendix. Next, we analyze how they behave under
the weighted distance.

– Bisector between pi and pj , b(i, j): the locus of points at identical distance to pi and pj , i.e.

b(i, j) = {s ∈ R2 | dpi(s) = dpj (s)} = {s ∈ R2 | d(pi, s)/d(pj , s) = wpi/wpj}.

When wpi/wpj ̸= 1 it defines the Apollonius circumference which has center cij = (w2
pi
pj−w2

pj
pi)/(w

2
pi
−

w2
pj
) and radius rij = wpiwpjd(pi, pj)/|w2

pi
−w2

pj
|. The center cij is aligned with points pi and pj and

does not separate them. On the contrary, when the weights are the same it defines a straight line.
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a) b)

Fig. 7. a) Bisector circles for several ratios k = wpi/wpj , b) A Voronoi Diagram under weighted Euclidean distance

Figure 7 a) provides several examples of bisector circles b(i, j) for fixed points pi and pj corresponding
to different values of k = wpi/wpj , where k ≥ 1 is assumed without loss of generality. The circles always
surround point pj . As k grows, the radius of the circles decreases and the center becomes closer to
pj . On the contrary, as k diminish the radius of the circles increases and the center of the circles goes
away from pj . In the special case of k = 1 (wpi = wpj ), the bisector becomes a straight line (circle of
infinite radius).

– Closest region to pi with respect to pj , r(pi, pj): the closed planar region bounded by b(i, j) containing
pi. It may either by the interior or the exterior of the circle defined by b(i, j). Regarding Figure 7 a)
the closest region to pj is the interior of the circle and to pi the exterior one.

– Voronoi diagram of P : the partitioning of the plane that associates each point pi ∈ P to a region of
the plane consisting of all the points closer to pi than to any other pj ∈ P − {pi}. When the weighted
Euclidean distance is considered, the closest region to a point may be not convex nor connected and its
boundary is defined by straight line, circular and parabolic arc segments [1]. Figure 7 b) is a weighted
Voronoi diagram with one non connected region.

3.2. Nearest and farthest weighted skyline queries

Let P be a set of n weighted points and Q be a set of m query points in the plane. Next, we provide several
definitions that are analogue to those of the traditional spatial skyline points presented in the Appendix.
Assume that pi and pj are two weighted points of P and take into account that the definitions are provided
with respect to the set Q of query points.

3.2.1. Nearest weighted spatial skyline queries

We will say that:

– pi spatially dominates pj from near ⇐⇒ dpi(qk) ≤ dpj (qk) ∀qk ∈ Q and ∃ql ∈ Q dpi(ql) < dpj (ql).

– pi is not spatially dominated by pj from near ⇐⇒ ∃qk ∈ Q with dpi(qk) < dpj (qk) or dpi(qk) =

= dpj (qk) ∀qk ∈ Q ⇐⇒ qk ∈ r(pi, pj).

– pi is a nearest spatial skyline point ⇐⇒ pi is not spatially dominated from near by any other pj ∈ P

⇐⇒ ∀pj ∈ P − {pi}, ∃qk ∈ Q | qk ∈ r(pi, pj).
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The goal of a nearest weighted spatial skyline query is to retrieve the set NWSSQ(P,Q) of all the nearest
spatial skyline points of the set P with respect to Q:

NWSSQ(P,Q) = {pi ∈ P | ∀pj ∈ P − {pi}, ∃qk ∈ Q | qk ∈ r(pi, pj)} .

Let us see with an example the different results obtained with a nearest spatial skyline query depending
on whether weights are taken into account or not. Consider the scenery represented in Figure 8 a). In Figure
8 b) weights are not taken into account, and the nearest spatial skyline hotels are h1, h2 and h4. In Figure
8 c) hotels have assigned weights wh1 = wh2 = wh3 = wh4 = 1, wh5 = 6, wh6 = 2, wh7 = 5, and the nearest
weighted spatial skyline hotels are h5 and h7.

Fig. 8. b) Nearest spatial skyline hotels: h1, h2 and h4; c) Nearest weighted spatial skyline hotels: h1, h2 and h4.

3.2.2. Farthest weighted spatial skyline queries

We will say that:

– pi spatially dominates pj from far ⇐⇒ dpi(qk) ≥ dpj (qk) ∀qk ∈ Q and ∃ql ∈ Q dpi(ql) > dpj (ql).

– pi is not spatially dominated by pj from far ⇐⇒ ∃qk ∈ Q with dpi(qk) > dpj (qk) or

dpi(qk) = dpj (qk) ∀qk ∈ Q ⇐⇒ qk ∈ r(pj , pi).

– pi is a farthest spatial skyline point ⇐⇒ pi is not spatially dominated by any other pj ∈ P

⇐⇒ ∀pj ∈ P − {pi}, ∃qk ∈ Q | qk ∈ r(pj , pi).

The goal of a farthest weighted spatial skyline query is to retrieve the set FWSSQ(P,Q) of all the farthest
spatial skyline points of the set P with respect to Q:

FWSSQ(P,Q) = {pi ∈ P | ∀pj ∈ P − {pi}, ∃qk ∈ Q | qk ∈ r(pj , pi)} .

Next, we present an example of farthest spatial skyline showing the difference between considering
weighted or unweighted points. Consider the scenery represented in Figure 9 a) with P = {p1, p2, . . . , p7}
and Q = {c, g}. In Figure 9 b) P is a set of unweighted points and the farthest spatial skyline parks
are p3, p6 and p7. In Figure 9 c) P is a set of weighted points, the weights associated to its points are
wp1 = wp2 = wp5 = wp7 = 1, wp5 = 6, wp3 = wp4 = wp6 = 2. In this case, the farthest weighted spatial
skyline points are p5 and p7.
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Fig. 9. b) Farthest unweighted spatial skyline: p3, p6 and p7; c) Farthest weighted spatial skyline parks: p5 and p7;

3.3. Top-k skylines

Sometimes, as it happens with the traditional spatial skylines, after determining the skylines there are
still too many desirable points to choose. In these cases, extracting the best k ones is useful. With this aim,
users specify some ranking or scoring function f that reflects the relevance of each point in the skyline.
A scoring function f is said to be monotone if and only if for any two points p, p′, such that dp(q) ≤ dp′(q)

for every q ∈ Q, implies f(p) ≤ f(p′). Typical monotone scoring functions ([32,40]) are:

δmax(p) = max
q∈Q

dp(q),

δmin(p) = min
q∈Q

dp(q), and

δsum(p) =
∑
q∈Q

dp(q).

The top-k skylines are those minimizing the monotone scoring function in the from near case and those
maximizing it in the from far case.

Along the paper, and from now on, we will omit the from near/far, or nearst/farthest specification when-
ever possible and we will add them when it is necessary for the understanding of the paper. Accordingly,
we will talk about the weighted spatial skyline points and denote the set as WSSQ(P,Q). We also use the
terms spatial skyline points and non spatially dominated points interchangeably.

3.4. Weighted spatial skyline properties

When using the weighted Euclidean distance, some of the well known properties of the traditional spatial
skyline points under the Euclidean distance presented in the Appendix still hold. But most of them turn to
be not true. Next, we provide several lemmas and observations related to the geometric properties of the
weighted spatial skyline queries. Most of them point out differences between the weighted and unweighted
version of the problem.

Observation 1 Let E(Q) denote the subset of extreme points of Q, those defining the convex hull of Q (see
the Appendix for further details). It may happen that E(Q) ⊂ r(pi, pj) while pi does not spatially dominate
from near pj and pj does not spatially dominate from far pi.
For example in Figure 10, E(Q) is contained in r(pi, pj), but pi does not spatially dominate from near pj

and pj does not spatially dominate from far pi.

11



Fig. 10. Example for Observations 1 and 3

Observation 2 The bisector of two points in P may intersect CH(Q) while one of the weighted points
spatially dominates the other from near or does not spatially dominate it from far.
Next follows an example of each of the two cases. In Figure 11 a) the bisector of pi and pj intersects

CH(Q), but pi dominates from near pj . In Figure 11 b) the bisector of pi and pj intersects CH(Q), but pj
dominates from far pi.

Observation 3 The set of weighted skyline points of P with respect to Q does not depend only on E(Q).
For example, in Figure 10 the point pi dominates from near pj with respect to E(Q), but pj is not

dominated from near by pi with respect to Q. Point pj dominates from far pi with respect to E(Q), but pi
is not dominated from far by pj with respect to Q.

Observation 4 A point of P inside CH(Q) may not be a nearest nor a farthest skyline point.
For example, in Figure 11 a) the point pj is inside CH(Q) but it is not a nearest skyline point because pi

dominates it from near. In Figure 11 b) the point pi is inside CH(Q) but it is not a farthest skyline point
because pj dominates it from far.

a) b)

Fig. 11. Examples for Observations 2, 4 and 5: a) from near, b) from far

Observation 5 If the Voronoi region of a point of P intersects with CH(Q), the point may not be a nearest
skyline point and the point may dominate from far an other point of P .
In Figure 11 a) the Voronoi region of pj intersects with CH(Q) but pj is not a nearest skyline point

because pi dominates it from near. In b) the Voronoi region of pj intersects with CH(Q) and pj dominates
from far pi.

Lemma 1 Let p ∈ P be the closest point to a point q ∈ Q, assuming uniqueness, i.e.

∀p′ ∈ P − {p}dp(q) < dp′(q),

then p is a weighted spatial skyline point from near.
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Lemma 2 Let p ∈ P be the farthest point to a point q ∈ Q, assuming uniqueness, i.e.

∀p′ ∈ P − {p}dp(q) > dp′(q),

then p is a weighted spatial skyline point from far.

Lemma 3 [Transitivity] If pi spatially dominates pj and pj spatially dominates pk; then pi spatially domi-
nates pk.

We do not provide the profs of the lemmas because they are trivial and can be directly adapted from
those for the unweighted case.

3.5. Unweighted versus weighted spatial skyline queries comparison

Many of the properties used to solve unweighed spatial skyline queries are not true when weights are
associated to the points of P . In this section we analyze it in depth. Figure 12 provides a summary of the
properties of the nearest and farthest spatial skyline problems for the unweighed and weighted problem. It
also summarizes the properties used in each of the existent algorithms to determine the unweighted skyline
points which are described in the Appendix.
As it can be seen in the table, most of the existent algorithms for the unweighted case use E(Q), the

Voronoi diagram and the shape of several geometric regions such asD(qk, pi) or r(pi, pj) to reduce the number
of tests done. However, according to the observations related to the weighted spatial skyline points, neither
the convex hull nor the Voronoi diagrams can be used to accelerate the weighted skylines determination.
On the other hand, the geometric regions they use to bound the area where the skylines can be found,
called search and dominator regions, can be analogously defined and would still contain the weighted skyline
points. But, meanwhile under the unweighted Euclidean distance these regions are unions or intersections of
circles and can are easily approximated or bounded, under the weighted distance they turned to be bounded
by circular arcs and may have several disconnected components. Their irregular shapes make them difficult
or impossible to bound or approximate. Moreover, in the unweighted case, several data structures are used
to reduce the number of dominance tests, but the properties allowing their use mainly rely on the triangular
inequality that does no longer hold when weights are considered. Finally, there also exist several properties
used in the unweighted case that are proven by considering an arbitrary point in R2 and assuming that it
is a point of P . These proves can not be generalized to the weighted case, an arbitrary point p ∈ R2 can
not be considered as a point of P because points of P have a weight associated. Since the weight can not
be arbitrarily chosen, because its value notoriously affects results, many of the proved results and strategies
used for the unweighted case do not generalize to the weighted one.
As it can also be seen in Figure 12, there are two basic properties that are used in all the algorithms

used for the non-weighted case: the reduction of Q to E(Q) and answering the dominance test by checking
whether b(pi, pj) intersects CH(Q). They can not longer be used with the weighted distance. By taking into
account the properties used in each of the existent algorithms for the unweighted case, we conclude that: i)
BF algorithm can be extended to the weighted case, but its accelerated version, ABF , can not. ii) B2S2

and V S2 are not adaptable because they relay on the geometric shape of the search and dominator regions
which can no longer be easily determined nor bounded. iii) DS, the fastest known sequential algorithm,
simplifies the problem by using E(Q) (wich can not be done) and uses the transitivity of the dominance
relation (which still holds). Hence, it can be adapted. iv) PA is based on the triangular inequality of the
Euclidean distance which is not fulfilled and, hence, it can not be adapted to the weighted case. v) BBFS
uses the shape of the search regions to accelerate the process, which makes it not adaptable to the weighted
case neither.
It is not surprising that most of the properties and algorithms can not be extended to the weighted case

because the nature of the problems are completely different. The weight makes that each point of P derives
to |Q| virtual points. Each point p ∈ P is virtually placed at a different location for each query of Q. This is
represented in Figure 13 where the set of points P is virtually transformed to {p1,j , p2,j} according to each
qj ∈ Q.
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Fig. 12. Geometric properties and algorithms summary

4. Weighted spatial skyline obtention

In this section, we present two algorithms to solve the weighted spatial skyline problem. One of them
solves the problem sequentially in the CPU and the other takes advantage of the parallel and compute
capabilities of the GPU to accelerate the process. The GPU has been used in last years to accelerate the
resolution of many problems and it is shown that it provides very good results [11–15,43,44]. Hence, we want
to exploit its parallel and compute capabilities to try to solve the problem faster in parallel.
The sequential algorithm, which is called the weighted distance sorting algorithm, WDS, is an adaptation

of DS, the fastest known algorithm for the unweighted case (see the Appendix), to the weighted Euclidean
distance. The parallel proposal is a parallel version of the brute force algorithm under the weighted distance,
PWBF , which is based on the brute force algorithm,BF (see the Appendix). These two presented algorithms
are theoretically analyzed and compared in terms of time and space complexity. As we already justified in
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Fig. 13. P = {p1, p2} is virtually transformed to {p1,j , p2,j} according to qj ∈ Q = {q1, q2, q3}

Section 3 they do not use data structures such as Q-trees nor exploit geometric properties because the
weighted Euclidean distance is a non metric function. On the other hand, transforming this problem to a
traditional spatial skyline implies doing extra computations and requires using much more memory than
solving it as a spatial skyline problem. Hence, this option is also discarded.

4.1. Sequential algorithms

The WDS sequential algorithm solves the problem in four main steps:
1. Sort P according to the distance to q̃, an arbitrary point of Q
2. Set the closest point of P to q̃, p0, as a WSSQ
3. Set each pi ∈ P not dominated by any of the points already stored in WSSQ as a WSSQ
4. Report WSSQ

Concretely, the WDS algorithm starts sorting the points of P according to their weighted distance to an
arbitrary point q̃ ∈ Q. If the problem is solved from-near, the points of P are sorted by increasing distance
order to q̃, so that, after sorting, dpi(q̃) ≤ dpj (q̃) whenever i < j and pi, pj ∈ P . Meanwhile, when solving
the problem from-far they are sorted by decreasing distance order, so that, once sorted, dpi(q̃) ≥ dpj (q̃),
whenever i < j.
After sorting P , we store the first point of P in WSSQ for being a spatial skyline (due to Lemmas 1

and 2). Then, we analyze the points pi ∈ P in increasing distance order and determine whether they are
spatial skylines by checking wether point pi is dominated by any of the currently detected spatial skyline
points (those stored in WSSQ). If it is not dominated, it is a spatial skyline and consequently is added
to WSSQ. Lemma 3 (which states that any not-skyline point pi will be dominated by one of the already
detected skyline points pj with j < i) guarantees that the obtained WSSQ contains all the spatial skylines
points. The pseudocode of the algorithm is provided in Figure 14.

Fig. 14. WDS sequential algorithm pseudocode
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To determine whether point pi ∈ P is dominated by point p̃j ∈ WSSQ a dominance test is performed.
This test depends on whether we solve the problem from-near or from-far. When it is solved from-near pi
is not dominated by pj if there exist a point q ∈ Q closer to pi than to pj . Hence we traverse Q computing
and comparing the distances dpi(q) and dpj (q). As soon as we find a point q ∈ Q with dpi(q) < dpj (q)
we know that pj does not dominate pi and the dominance test is answered. If for all q ∈ Q the inequality
dpi(q) ≥ dpj (q) holds, the point pj dominates pi and hence pi is not a spatial skyline. When the problem
is solved from-far, pi is not dominated by pj if there exists a point q ∈ Q farther from pi than to pj .
Consequently, the test is answered as soon as we find a point q with dpi(q) > dpj (q), in this case pi is not
dominated by pj . See Figure 15 for the pseudocode of the dominance test.

Fig. 15. Dominance test pseudocode

Complexity analysis. We denote n = |P |, m = |Q| and r = |WSSQ(P,Q)| ∈ O(n) and analyze, first, the
memory and, then, the running time requirements of the WDS. The algorithm only stores P , Q and WSSQ,
hence its memory requirements are O(n+m+ r) = O(n+m). Concerning the time complexity, it requires
O(n log n) to sort P according to the distance to q̃ ∈ Q and performs at most O(nr) dominance tests that
take O(m) time each, in the worst case. It leads to a worst case time complexity of O(n log n+ nmr). Since
r = O(n) and there exist cases in which the number of skylines is O(n), in the worst case, the complexity of
this algorithm is O(n2m). On the other hand, there also exist sceneries in which the n dominance tests can
be solved in O(1) time and where r = O(1); in this best case, the algorithm could run in O(n log n) time.

4.2. Parallel algorithm

By using the parallel computing capability of the GPU, we design a parallel robust algorithm that im-
proves the running time of the sequential algorithm. In fact, we present the parallel version, PWBF, of the
brute force algorithm under the weighted distance. The PWBF algorithm can be subdivided in three main
parts (see the pseudocode in Figure 16).

1. Transfer information to the GPU Before calling the kernel, P is transferred to a GPU global mem-
ory array hP and Q to a GPU constant memory array chQ. Since |Q| tends to be small it can be
directly transferred to constant memory, a very fast access memory (similar to the shared memory)
without problems of coalesced accesses.

2. Perform the dominance tests in the GPU The kernel output is stored in array hS. The kernel is
launched considering n threads, one per point of P . Each thread considers its corresponding point
pi = hP [i] and determines whether pi is a skyline by analyzing as many points of hP and chQ as
necessary. As before, it looks for a point pj ∈ P , j ̸= i, dominating pi. If it is found, pi is not a skyline.
To check whether pj dominates pi, the thread computes and compares the distances from pi and pj
to the points in chQ (as it is done in the sequential algorithm). Once the thread has determined if pi
is a skyline, it stores the information in hS (an uninitialized output integer array of size n stored in
global memory). The thread sets hS[i] to 1 if pi is a skyline or to 0 otherwise.
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Fig. 16. PWBF algorithm pseudocode

3. Extract the skyline points in the CPU Finally, hS is transferred to a CPU array S which is tra-
versed to store in WSSQ all the points P [i] occupying positions with S[i] equal to 1.

Note that in step 2, all the threads analyze the set hP to determine whether their corresponding point pi
is a skyline. We use this fact to make that the threads in a block cooperate to transfer hP from global to
shared memory in blocks of BLOCK SIZE size. It requires two synchronization points: one after the thread
transfers a point of hP to shared memory, and the other after the thread has finished analyzing the points
stored in shared memory. Moreover, the kernel has to be carefully programmed because those threads that
had already determined that their associated point is dominated have to keep on transferring points to
shared memory. However, the threads that have already finished will not analyze them.
Something similar could be done withQ if it contains too much points to be stored in constant memory. The

constant memory size depends on the device properties, but it can typically store up to 8000 points, which
represents a huge cardinality for Q. Constant memory has a very fast access and generally the cardinality
of Q would allow storing it in constant memory. It makes this type of memory the best kind of memory to
store Q. However, if Q was too big, it can be stored in global memory and posteriorly transferred to shared
memory per blocks with thread-cooperation, as we are doing with P .

Complexity analysis. We start analyzing the GPU and CPU memory requirements of the algorithm.
Concerning the GPU, it stores arrays hP and hS in global memory, hP is transferred to shared memory in
blocks of BLOCK SIZE, and chQ is stored to constant memory. Accordingly, it uses 3n real and n integer
values in global memory, 2n real values in constant memory and 3BLOCK SIZE real values in shared
memory per block. Among all, it needs O(n +m) memory in the GPU. In the CPU we store P , Q, S and
WSSQ, i.e. it requires O(2n+m+ r) = O(n+m) memory.
Typically the time complexity analysis of the parallel algorithms analyze the worst case total work and

the execution time of the algorithm when p threads are used, which is what we analyse next. The worst case
total work is the number of executed operations over all the processors or threads. In the parallel part of
the algorithm n threads are used and each thread does O(nm) work in the worst case. The final sequential
part that traverses S to determine WSSQ does O(n) work. Hence, the total work done by the algorithm,
in the worst case, is O(n2m). On the other hand, the execution time of the parallel part of algorithm when
p ∈ O(n) threads are considered is O(n2m/p) and the extraction of WSSQ has an execution time of O(n).
Consequently, the execution time of PWFB is O(n2m/p + n) = O(n2m/p). If instead of the worst case
we analyze the best case, each thread does O(1) work leading to a total work of O(n) done by p = O(n)
threads. Taking into account the sequential extraction of WSSQ which requires O(n) work and time, the
total work is O(n) in the best case, and the execution time O(n/p+ n) = O(n) as well.
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To end with we want to mention that the small memory requirements of the kernel allows exploiting all
the parallel capabilities of the GPU by setting p as big as possible according to the hardware limitations.
In practice p is limited by the maximum number of threads a device can handle in parallel, but some times
it may have to be diminished to accelerate the running times due to the amount of memory used by the
threads of each block. The memory requirements per block of this algorithm are really small and hence this
algorithm allows us to make use of all the parallelism of the GPU without problems. Going a bit further
in this analysis, since the number of multiprocessors of the devices is limited, designing parallel algorithms
that need a huge number of threads and that each thread did few work is not a good option. The number
of threads needed and the work done per thread have to be balanced. This is the reason why we parallelize
the brute fore algorithm in this way, each thread determines wether a point p ∈ P is or is not a weighted
spatial skyline point and makes up to n dominance tests. Making that each thread did a single dominance
test would lead to a strategy that would need n2 threads and each thread would have done O(m) work, a
huge number of threads doing too few work each.

4.3. Theoretical comparison between the parallel and sequential algorithm

By comparing the complexities of the parallel and sequential presented strategies, we can see that the
total work done in the worst case for the sequential WDS algorithm is output-dependent, meanwhile that
of parallel PWBF algorithm is independent from the output. Hence, in general, the total work complexity
of the PWBF algorithm is worse than that of the WDS. Moreover, in the case that the output is as big as
possible, both complexities coincide. Since an important part of the work done by PWBF is performed in
parallel, it would turn PWBF to a more efficient algorithm than WDS in terms of running time.

Apart from this initial observations, the standard measures to theoretically compare a parallel and a
sequential algorithm are the parallel speedup and the work efficiency of the parallel algorithm. They refer,
respectively, to the time complexity t of the best known sequential algorithm to solve the problem, which is
WSD, and the execution time tp and the total work w of the parallel algorithm, WDS. Next, we use these
measures to compare WDS and PWBF.

Work efficiency: it is defined as the ratio w
t , which in our case is

w

t
= O(n2m/rnm) = O(n/r).

It reflects that PWBF does more work than the WDS, which is due to the fact that WDS is output
dependent and PWBF is not.

Theoretical parallel speedup: it is given by the ratio t
tp
, which in our case is

t

tp
= O

(
rnm
n2m
p

)
= O

(p r

n

)
.

Again, the extra work done by PWBF algorithm penalises it. This ratio would generally be greater
than 1 and PWBF would theoretically perform better than WDS. However, for very small outputs the
theoretical parallel speedup would be smaller than 1, which would mean that WDS algorithm would
perform better than PWBF. Hence, the worst scenery for PWBF are problems with a very small
number of spatial skyline points.

Space complexity comparison: The space complexity of both algorithms is O(n+m). Thus, the space
complexity of the parallel algorithm is optimal.

Accordingly, even though the PWBF parallel algorithm does more work than the sequential WDS one,
it proceeds in parallel and will perform better than WDS except for cases in which very small outputs, in
percentage, were obtained.
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5. Top-k skylines

When the user is interested in the top-k skylines, the spatial skyline points have to be evaluated ac-
cording to a scoring function, and then the k skylines being better scored are selected. The user must
provide the integer value k and select a scoring function among the typical scoring functions presented in
Section 3.3. In the particular case in which k is greater than the number of skylines, all skylines are returned.

In this section, we adapt or complet the presented algorithms so that they report the top-k skylines.
We differentiate two sceneries depending on whether the user directly asks for the top-k spatial skylines or
contrarily he/she asks for the top-k after determining the spatial skylines. In the latter case, using the GPU
makes no sense, transferring the skylines back to the GPU is too expensive in comparison with the work
needed to extract the top-k skylines in the CPU. However, in the former case, both, the sequential WDS
and the parallel PWBF algorithms can be adapted. Next, we detail the particularities of each algorithm.

Top-k extraction once the skylines are known: To determine the top-k skylines once the skylines have
already been detected, we traverse sequentially, in the CPU, array WSSQ. The scoring function is
evaluated for each p ∈ WSSQ and the top-k scoring values, together with the skylines were they are
achieved, are stored. During the scoring function evaluation the already obtained value is compared
with the k-th obtained one so that a skyline could be discarded of being a top-k skyline as soon as
possible. For instance, if we are interested in minimizing the maximal distance, as soon as the max-
imal distance of the current skyline to a point of Q is bigger than the k-th one, that skyline can be
discarded. When it happens, we stop evaluating the scoring function of that point and start analyzing
another skyline.

Top-k extraction from the beginning: In this case, we evaluate the scoring function of each spatial
skyline point just after detecting it. Hence, the scoring function is only evaluated for the spatial sky-
line points (as before). Note that the scoring value can not be computed during the dominance tests
because, to obtain it, all the points of Q have to be considered. Meanwhile, the dominance tests for
those points that are spatial skyline points usually partially analyze Q. We have guarantees that a
dominance test analyzes the whole set Q if and only if the point is dominated and, hence, if and only
if it is discarded as a skyline point. Hence, we adapt the presented algorithms as follows:

Top-k WDS Sequential algorithm Once we detect that a point is a skyline, its scoring function
value is computed. While it is being computed it is compared with the current kth value, and it
is again discarded as soon as possible. Finally, the spatial skyline point is stored, if and only if, it
is one of the top-k spatial skyline points. Hence, we only maintain the top-k skylines which are
always stored in a sorted way according to their scoring values.

Top-k PWBF Parallel algorithm Each thread determines whether its associated point pi, stored
in hP [i], is a skyline point. If it is a skyline, the thread evaluates the scoring function at pi by
traversing chQ. Finally, each thread stores in the i-th position of an output uninitialized real array:
the value of the scoring function of pi, when it is a skyline, or a −1, otherwise (see the pseudocode
in Figure 17). This real output array is transferred to the CPU where it is traversed while the
top-k values and their positions are determined (only the positive values are considered, the −1
values are ignored). The weighted points occupying these positions are the top-k weighted sky-
line points. Obtaining the top-k skyline points in the GPU is not appropriate, it requires sorting
them performing many global memory accesses and atomic operations leading to a slower strategy.

Complexity analysis. Determining the top-k weighted spatial skylines in the CPU, either after detecting
the r skylines or directly, requires O(rm) time to evaluate the scoring function and O(r log k) time to
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Fig. 17. Top-k PWBF algorithm pseudocode

determine the top k, i.e. O(rm+ r log k) extra time. It requires O(k) extra space.
Concerning the parallel algorithm, the modifications in the PBF algorithm makes that each of the r

threads detecting spatial skylines does O(m) extra work. Since the work needed to determine the skyline
points is O(nm), obtaining the value of the scoring function does not increment the order of complexity of
the work done by the threads. In fact, it does again O(rm) extra work. Hence, the complexity analysis of the
parallel part of the algorithm does not change. We have to add the time needed to obtain the top-k values in
the CPU which is O(n+r log k) extra time. Hence, the total work done by this algorithm is O(mn2+r log k)
and when p ∈ O(n) threads are used the execution time becomes O(mn2/p + n + r log k). Concerning the
extra space, it can be done with O(k) extra space.

6. Experimental results

In this section we provide the experimental settings, present a simple interface we used to deal with the
problem, and analyze the running time performance of the presented algorithms.

6.1. Experimental settings

All the implementations have been done in C++, Cuda C has been used for the parallel part, and the
visualization is done by using OpenGL. The experimental results have been obtained using an Intel Core
i7-7700 CPU @3.6GHz with 32GB of RAM and a GPU Nvidia GTX 1060 6GB. Experiments have been
mainly done with synthetic data. Real weighted data sets are not easy to obtain, even thought, we build a
small real weighted data set.

As synthetic data we consider several sets P of cardinality varying from 2K to 100K and we considered sets
Q having from 50 to 150 queries because according to its role in the problem its cardinality has to be much
smaller than that of P . Sets P and Q have been randomly generated using the standard C++ random li-
brary within a squared domain [0, 1]×[0, 1] and the weights have also been randomly generated within [0, 10].

As real data we work with a set P defined by 379 points corresponding to the locations of the hotels
of the seaside city of Barcelona (in the south-west of Europe) that are registered at OpenSteetsMap, a
collaborative project to create a free editable map of the world, [29] in July 2018. We considered the hotels
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with latitude between 2.100 and 2.25 and longitude between 41.38 and 41.44 mapped to points in the square
[0, 1]× [0, 1] maintaining the original width-height ratio. As weights we consider the between 0 and 5 clients-
given metadata-score, of October 2018, mapped to integer numbers between 0 and 10. This score is obtained
from google, there, each hotel has a punctuation based on customer reviews. The better the hotel, the higher
the score. The set of queries Q is defined by 8 tourist places of Barcelona: El Born, Sagrada Familia, La
Pedrera (Gaudi house), El Liceu, Agbar Tower, The Cathedral, Tibidabo and Montjüıc Castel which are
displaced along the whole city. These sets are represented in Figure 19. We did not managed to find any
bigger set of real data with a set of weighted points of interest. There exist several sets of points of interest
but all of them are unweighted. Hence, they are not suitable to test our algorithms which are specially
designed for weighted points of interest. Setting their weights arbitrarily turn that real data to synthetic
data and is not fare.

6.2. Results visualization

We have developed a simple interface to deal with the weighted spatial skyline problem which allows to
easily obtain, visualize and store the sets P , Q and WSSQ. Sets P and Q can be placed manually, generated
randomly or read from a .json or binary file. The user can zoom-in and out with the mouse and also select
any of the points to edit it modifying its coordinates or weight. The set WSSQ is computed once all the
parameters are specified. If desired, the used data and the obtained WSSQ set can be stored in .json or
binary files.
In Figures 18 and 19 the obtained results for a synthetic and the real data set are respectively shown.

In them queries are colored in blue, the weighted points are gradated in red according to their weight, the
darker the smaller the weight, and the obtained skylines are remarked with a green background.
Figure 18 corresponds to the spatial skyline points obtained with a set P with 1000 weighted points and

a set Q with 50 queries. The nearest and farthest skylines are remarked with the green square in the first
row and the top-10 ones in the second one. Note that the images reflect that: i) not all the points in the
convex hull of Q are weighted skyline points, ii) the nearest skylines tend to be not too far from the points
of Q, and iii) the farthest ones are either in the center of Q or to the boundaries of P .
Figure 19 presents the real data sets used. The images correspond, from left to right, to all the nearest

skyline points, the top-5 ones and all the farthest skyline points. We do not extract the 5-top farthest
skylines because there only exist 8 points in c) and 3 in f). Concerning the top-5 nearest ones, somehow,
one could expect that the top-5 ones where selected closer to the city center, where the density of hotels is
greater. However, they are quite displaced to the left due to the query point placed al the top-left corner
of the image, which corresponds to Montjüıc Castel. In the second row, we solved the same problems after
eliminating Montjüıc Castel from Q. In this case, the nearest skylines and the top-5 ones are mainly in the
center of the city and of Q. Meanwhile there disappear the furthest skylines that were located in the city
center that are present in the image of the first row.

6.3. Performance analysis

In this section we analyze the running times of our algorithms testing them with several synthetic data
sets. We present the running time of WDS and PWBF algorithms. According to our experimentation,
extracting the top−k skylines, independently of whether it is done a posteriorly or form the beginning, does
not produce important changes on the running times. In fact, the most important delay does not exceed
60 milliseconds. Hence, there would be no visible differences between the graphics we would obtain with
the running times obtained to determine the top-k spatial skylines and those presented in Figures 20 and 21.

Figures 20 and 21 provide the information related to the performance of the sequential WDS and the
parallel PWBF algorithms when several sets of points of interest are considered. Each of its charts contains
information of 14 different settings corresponding to different |P | and, even though we ran the algorithms
in several cardinalities of Q, the results of the figures correspon to sets Q with cardinality fixed to 100.
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a) b)

c) d)
Nearest Farthest

Fig. 18. In red 1000 weighted points, in blue 50 query points, in green all the skylines in a) and b), the top-10 in c) and d)

We run the algorithm with many paris of sets P and Q. The obtained running times corroborate that,
having |P | and |Q| fixed, the more skylines we obtain the longer the execution time is. To clearly show this
fact, among the analyzed pairs of sets P and Q, we selected sets P and Q providing a small and a big number
of spatial skyline points and we report the obtained running times. Concretely, the results obtained with
sets leading to a small output, at most the 20% of the points of P are skylines, are provided in Figure 20.
On the other hand, those results corresponding to sets with a big output, at least the 70% of the points
of P are skylines, are represented in Figure 21. After analyzing the configurations leading to small and big
outputs, we noticed that when the differences between the weights associated to the points of P decrease,
the number of skylines increase. Meanwhile, when the differences between the weights increase, the number
of skylines decrease.
Figures 20 and 21 contain several experimental results. In chart a) we can see the size of the outputs,

the number of spatial skyline points, when we solve problem from near (salmon color) and from far (ocher
color). We can see that generally there are more nearest than farthest spatial skyline points. In the remain-
ing parts of the figure, left charts correspond to solving the problem from near and the right ones from far.
They contain information of WDS colored purple and of PWBF colored blue. Charts b) and c) contain
the running times of the presented algorithms. It can be clearly seen that WDS is always slower than
PWBF , for both the near and farthest case and independently that we obtain a small or big output. To
easily visualize how many times PWBF is faster than WDS, in charts d) and e) we present the speedup
of PWBF with respect to the WDS. These speedups vary from 2 to 10 when we obtain small outputs and
from 5 to 45 for big outputs. Finally, in charts f) and g) we provide the number of computations done for
each algorithm to solve the problem. As it is expected, PWBF does much more computations than the
WSD, but since they are done in parallel, its running times are better than those of the WSD. Note that,

22



a) b) c)

d) e) f)
Nearest Top-5 nearest Farthest

Fig. 19. In red the hotels of Barcelona, in blue 6 (top) and 5 (bottom) query points, in green the obtained skyline hotels

WSD is really eficient when a small output is obtained because it does a very small number of dominance
tests. In this case, PWBF does more than 6 times more operations than WSD. Meanwhile, with big out-
puts both algorithms increment the number of operations done, PWBF still does more operations than
WDS, but it turns to double the operations done by WSD. This fact, that is expected from the algorithms
desing, is experimentally corroborated in charts f) and g). Analyzing a bit more these figures, we see how
the speedup of the PWBF increases when the difference between the number of operations done by the
algorithms diminishes. When it happens the parallelism of PWBF is really exploited because it does not
much extra work but it is done in parallel. However, independently from the extra work done, PWBF
is always faster than WSD. Hence, the parallel PWBF algorithm outperforms the sequential WSD in
all the cases except for the smallest from near case in which case the running times are almost the same.
Hence, exploiting the parallel capabilities of the GPU is worthwhile and drives to a robust and fast algorithm.

7. Conclusions and future work

We have presented, theoretically studied and sequentially and parallelly solved the spatial skyline problem
under the weighted Euclidean distance for the first time. These queries find applications in decision-making
support systems, facility location, crisis management and in trips or events planning.
We have proven that most of the properties of the traditional spatial skyline problems are no longer true

under the weighted Euclidean distance, which does not fulfill the triangular inequality. The from near, from
far and top-k versions of the problem have been analyzed. Two fast and robust algorithms to solve the
problem have been presented in detail, one runs sequentially in the CPU (WDS) and the other exploits the

23



a)

b) c)

d) e)

f) g)

Fig. 20. Synthetic data dealing to a small output: a) Output size. Running times of WDS and PWBF from: b) near c) far.
Speedup of PWBF vs. WDS from: d) near, e) far. Number of computations done from: f) near, g) far

parallel capabilities of the GPU (PWBF). These algorithms have been analyzed and compared theoretically
and experimentally. The parallel algorithm outperforms the sequential one by a factor between 6 and 10
in most of the analyzed settings as it was predicted by the theoretical complexity analysis comparison.
We have also compared these two algorithms with several other described, implemented and tested parallel
algorithms to solve the problem and that have been discarded to be slower.
We also developed a simple interface to work with the problem that allows to easily visualize the obtained

solution and to store it in a .json or binary file. Since the obtained solution sometimes still has too much
candidates, we allow the user to obtain the top-k spatial skylines according to a scoring function that can
be selected among four predefined ones. However, the scoring function could easily be defined by the user
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a)

b) c)

d) e)

f) g)

Fig. 21. Synthetic data dealing to a big output: a) Output size. Running times of WDS and PWBF from: b) near c) far.
Speedup of PWBF vs. WDS from: d) near, e) far. Number of computations done from: f) near, g) far

meanwhile it only depends on the distances from the skyline to the query points. We allow the user to first
obtain the skylines and then identify the top−k among them, or to directly determine only the top-k ones.

As future work, we are interested in combining nearest and farthest spatial skyline queries to retrieve a
subset of points of interest such that no other point of interest is simultaneously closer to a set of desirable
facilities and farther from a set of undesirable facilities. For example, to select a set of desirable hotels of
a city located near tourist attractions and sights of interest and, by the other side, far away from noisy
nightlife places. Moreover trying to put the current work into a broader context, we will study whether the
nearest and farthest spatial skyline queries may concern the decision analysis of some place choice applying
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this study in game theory [19,47].
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Appendix A. Nearest and farthest spatial skylines under Euclidean distance

In this Appendix, we provide the background for the spatial skyline queries. We start with the formal
definition of the problem, the most important and used properties of the unweighted spatial skyline queries
and the existent algorithms designed to solve them. Several of these properties and most of the algorithms
relay on geometric aspects that are not true when a not metric function is used to measure proximity, which
is the case of the multiplicative weighted Euclidean distance. We do not extensively provide all the existent
properties but only those that are meaningful for the new results we present in this paper. We start with the
more studied problem, the nearest spatial skyline queries, continue with the farthest spatial skyline problem
and end with the nearest and farthest top-k spatial skyline queries.

A.1. Nearest spatial skyline queries

We denote by P a set of n points of interest and by Q a set of m query points in the Euclidean plane.
The Euclidean distance between points p and q is denoted d(p, q).

When referring to the nearest spatial skyline queries (under the Euclidean distance), it is said that:

– pi spatially dominates from near pj ⇐⇒ d(pi, qk) ≤ d(pj , qk) ∀qk ∈ Q and ∃ql ∈ Q d(pi, ql) < d(pj , ql)

– pi is not spatially dominated from near by pj ⇐⇒ ∃qk ∈ Q with d(pi, qk) < d(pj , qk)
or d(pi, qk) = d(pj , qk)∀qk ∈ Q
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– pi is a nearest spatial skyline point ⇐⇒ pi is not spatially dominated from near by any other point
of P

According to the previous definitions, the terms nearest spatial skyline points and non spatially dominated
points from near can be interchangeably used. In the example of Figure 4, point h2 spatially dominates
from near h5 but it is not spatially dominated from near by any other point of P . Hence h2 is a spatial
nearest skyline point. The same happens with h1 and h4.

In fact, the nearest spatial skyline query is formally defined as the problem of retrieving the setNSSQ(P,Q)
of all the nearest spatial skyline points of the set P with respect to Q, or equivalently all the points that
are not spatially dominated from near by any point in P :

NSSQ(P,Q) = {pi ∈ P | ∀pj ∈ P − {pi}, pi is not spatially dominated from near by pj} .
The nearest spatial skyline points can be easily obtained by checking, for each point in P , whether it

is spatially dominated from near by any other point in P with respect to Q. However, there exist several
geometric properties of the set of nearest spatial skyline points that restrict the region where the nearest
spatial skyline point can be located. These properties can be used to design more efficient algorithms avoid-
ing some dominance tests. Next, we summarize the most important definitions and lemmas of the nearest
spatial skyline points.

– Closest region to pi with respect to pj : r(pi, pj) is the set of points of the Euclidean plane closer to pi
than to pj , it is the half plane containing pi and delimited by the bisector b(pi, pj) of the points pi and
pj . The bisector b(pi, pj) is the locus of equidistant points between pi and pj that defines the straight
line perpendicular to the line connecting pi and pj through their midpoint.

– Convex hull of Q: CH(Q) denotes the convex hull or convex envelope of the set of points Q which is
the smallest convex set that contains Q. Its vertices are called extreme points and define the set E(Q).

– Voronoi diagram of P : V D(P ) denotes the Voronoi diagram of P defined by the planar partition of
the Euclidean plain in to |P | cells, one associated to each point pi ∈ P , called the Voronoi cell of pi
which contains the points of plane that are closer to pi than to any other point in P \ {pi}.

– Independent region of p and q: D(q, p) is the disk centered at q and radius d(q, p) [42].

– Search region also called Independent Region Group of pi with respect to Q: SR(pi, Q) includes pi and
all the points of P that are not spatially dominated by pi, and hence the spatial skyline is contained
in SR(pi, Q) ∀pi ∈ P . It is defined as

SR(pi, Q) =
∪

qk∈Q

D(qk, pi).

– Dominator region of pi with respect to Q: denotes the region that is dominated by pi, it is defined as

DR(pi, Q) =
∩

qk∈Q

D(qk, pi) .

The search and dominator regions restrict the region where the skyline points can be located to a bounded
region of the Euclidean plane and provide a characterization of the skyline points. This is stated in the fol-
lowing lemmas extracted from [38,39,23,42].

Lemma 4 The spatial skyline is contained in the intersection of all the search regions which is, meanwhile,
contained in the intersection of the search regions of the points of any subset P ′ ⊂ P , i.e.

NSSQ(P,Q) ⊂
∩

pi∈P

SR(pi, Q) ⊂
∩

pi∈P ′

SR(pi, Q) for any P ′ ⊂ P.
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Lemma 5 A point pi is a skyline point if and only if it is the only point of P contained in its dominator
region DR(pi, Q), i.e.

pi is a skyline point ⇐⇒ P ∩DR(pi, Q) = {pi}.

According to Lemma 5 the spatial skyline can be obtained as the set of points of P whose dominator
region does not contain any other point of P , i.e.

NSSQ(P,Q) = {pi ∈ P |P ∩DR(pi, Q) = {pi}}.

There also exist several other important properties that help in the detection of the spatial skyline and
that are used in the algorithms proposed to solve the problem.

Lemma 6 Being q ∈ Q and pi ∈ P , any point p ∈ D(q, pi) ∩ P can only be dominated by a point of
P ∩D(q, pi).

Lemma 7 If E(Q) ⊂ r(pi, pj) then pi spatially dominates pj.

Lemma 8 The bisector of two data points in P intersects the interior of CH(Q) if and only if they do not
spatially dominate each other.

Lemma 9 The set of skyline points of P with respect to Q depends only on E(Q), which defines CH(Q).

Lemma 10 Each point p ∈ P that is inside CH(Q) is a skyline point.

Lemma 11 The closest point pj ∈ P to point qk ∈ Q, assuming uniqueness, is a spatial skyline point.

Lemma 12 Each p ∈ P whose Voronoi cell intersects the interior of CH(Q) is a spatial skyline point.

Lemma 13 If point pi ∈ P spatially dominates pj ∈ P and pj spatially dominates pk ∈ P , then pi spatially
dominates pk.

A.1.1. Existent algorithms
There exist several approximated and exact algorithms to solve nearest spatial skyline queries under the

Euclidean distance. Among them, we briefly explain the most relevant and used ones. We do not pay at-
tention to the approximated ones because are not directly related to our work. We explain the force brute
algorithm to solve the problem, the fastest sequential one and the most known algorithm used until the
fastest one was presented. Finally, we also present the fastest parallel algorithm.

The simplest algorithm, the brute force algorithm (BF ), analyzes all the pairs (pi, pj) ∈ P ×P with i ̸= j
and performs its dominance test, i.e. it checks whether pj dominates pi. If pi is not dominated by any point
pj ∈ P −{pi} the point pi is set as a spatial skyline. The dominance test associated to pi and pj can be done
considering the half-space of pi with respect to pj , h(pi, pj). Since pj dominates pi if all the points of Q are
closer to pj than to pi; it is checked whether there exists a point qk ∈ Q lying in h(pi, pj). If such a point
exists for every qj , pi is stored as a skyline point. Checking wether a point pi ∈ P is a spatial skyline point
with this algorithm takes O(nm) time in the worst case. Hence, the total time complexity of this force brute
algorithm O(n2m). This algorithm can be easily improved by considering E(Q) instead of Q (Lemma 9),
this reduces the worst case time complexity to O(n2m′), where m′ = |E(Q)|. Moreover, the dominance test
can be also accelerated by using Lemma 8 and an appropriate algorithm to check whether the bisector of
the two points intersects the convex polygon CH(Q), the time complexity of these accelerated brute force
algorithm (ABF ) is reduced to O(n2 logm′).

Sharifzadeh et al [38] proposed the Branch and Bond spatial skyline algorithm (B2S2) that searches the
spatial skyline candidates by visiting an R-tree from top to bottom which avoids several dominance tests.
They also presented the Voroni-based Spatial Skyline (V S2) which starts with the closest data points to
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query points and searches in the space by visiting the neighbors of the visited data points over the Voronoi
diagram. They used Lemmas 4, 5, 9, 10, and 15. In their experiments V S2 preformed better than B2S2.
However, themselves posteriorly show that the version of the V S2 that had proposed was not completely
correct and fixed the errors in [39] by using Lemma 12. Fixing the errors lowered the performance of the
algorithm, but it was still the best algorithm at that moment.

Posteriorly, Lee et al. presented the fastest known algorithm in [23], which we call distance-sorting (DS).
They manage to notoriously reduce the number of tests done. After reducing Q to E(Q) (Lemma 9) they
select an arbitrary point q ∈ E(Q) and sort the points of P according to increasing distance to q. Then, they
start finding the spatial skyline points; the closest point to q is a spatial skyline point (Lemma 15) and the
rest of points of P are analyzed in increasing distance to q order. They use the transitivity of the dominance
property and the fact that the point being analyzed can only be spatially dominated by the already detected
skyline points (Lemma 13). It drastically reduces, in practice, the number of performed dominance test.
Again to check whether a point is dominated by any of the already obtained skylines, they check whether
the bisector of the two points intersects the CH(Q) (Lemma 8). This algorithm takes O(m logm) to con-
struct the convex hull, O(n log n) to sort P in increasing distance order, and preforms O(|S|) dominance
tests in O(logm′) time each, where S denotes the set of non-dominated points. Since generally m < n it
leads to a total time complexity of O(n(|S|m + log n). Lee et al. [23] also provide a fastest approximate
algorithm to solve the problem that consists in computing the V D(P ) and CH(Q) and approximate the
skyline by the set of spatial skyline points as the points of P whose Voronoi cell intersects the interior of
CH(Q) which is a subset of the real skyline.

The first parallel approach (PA) to detect the spatial skyline was presented in [42]. The approach relays
on Lemma 9, 6 and 4. The base idea is that, each search region is the union of several disks that define an
independent region when looking for spatial skyline points (Lemma 6). Hence, they chose the search region
defined by a point p ∈ P which is called the independent region pivot and manage to turn the problem
into m′ independent problems, one for each of the disks defining the search region. These m′ problems are
solved in parallel. In fact, they propose a three-phase MapReduce-based solution. In the first phase they
calculate CH(Q), Q is partitioned, several local convex hulls are first output and then merged to produce
the global convex hull. In the second MapReduce-phase they determine the independent region pivot, they
look for the point p ∈ P whose search region has minimal area; the area of the search regions is first locally
and then globally minimized. Finally, in the third phase each point of P is associated to the independent
regions defining the search region of the chosen pivot, where it is contained. Then |E(Q)| independent spatial
skyline problems are solved in parallel by using the independent regions and only the points contained in
the independent region. They also avoid dominance tests by taking advantage of the pruning regions, which
are defined by circular ring sectors, because the points inside these regions are dominated. The algorithm
also uses two multi-level grids and ends by eliminating potentially repeated skyline points. This is necessary
because the same skyline can be obtained in different independent regions and hence there will appear
duplicated in the output.

A.2. Farthest spatial skyline queries

The farthest spatial skyline query problem was first introduced in 2013 by You et al in [45]. In that paper,
they reverse proximity for remoteness. A point of interest p ∈ P is desirable if no other point p′ ∈ P is
farther from all the query points of Q. Unlike the nearest spatial skylines points that are clustered within
around the query convex hull, the farthest ones are scattered across the data space. They prove that there
does not exist duality between the nearest and farthest spatial skylines and provide the following problem
definitions:

– pi spatially dominates from far pj ⇐⇒ d(pi, qk) ≥ d(pj , qk) ∀qk ∈ Q and ∃ql ∈ Q d(pi, ql) > d(pj , ql)

– pi is not spatially dominated from far by pj ⇐⇒ ∃qk ∈ Q with d(pi, qk) > d(pj , qk)
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or d(pi, qk) = d(pj , qk)∀qk ∈ Q

– pi is a farthest spatial skyline point ⇐⇒ pi is not spatially dominated from far by any other point of
P

The farthest spatial skyline query is formally defined as the problem of retrieving the set FSSQ(P,Q) of
all the farthest spatial skyline points of the set P with respect to Q, or equivalently of all the points that
are not spatially dominated from far by any point in P :

FSSQ(P,Q) = {pi ∈ P | ∀pj ∈ P − {pi}, pi is not spatially dominated from far by pj} .
They prove how Lemma 8, Lemma 9 and Lemma 13 also hold for the farthest spatial skyline points and

provide the following properties.

Lemma 14 If E(Q) ⊂ r(pi, pj) then pj spatially dominates from far pi.

Observation 6 A point of P inside CH(Q) may not be a farthest skyline point.

Lemma 15 The farthest point pj ∈ P to point qk ∈ Q, assuming uniqueness, is a farthest spatial skyline
point.

Lemma 16 If the Voronoi region of a point of P intersects with CH(Q) then the point does not dominate
from far any other point of P .

A.2.1. Existent algorithms
In [45], two solutions are proposed. One based on the transformation of the problem to a n-dimensional

general skyline problem, in which the Improved Distributed Skyline (IDS) algorithm of [2] is adapted by
using an R-tree. The second proposal, the Branch and Bound farthest spatial skyline (BBFS), significantly
outperforms the initial one by using the geometric properties of the problem. It uses Lemmas 10, Lemma 16
and Lemma 13 indirectly, i.e., the fact that any point whose Voronoi diagram cell intersects CH(Q) does
not dominate from far any other point of P . In the paper, they also provide an approximate algorithm that
reduces the processing cost without significantly affecting the quality of the results. The paper does not
provide the complexity of any of the two algorithms.

A.3. Top-k Nearest and Farthest Spatial Skyline Queries

The top-k spatial skyline query retrieves the subset of the best (lowest/highest scores) k skyline objects
with respect to f for small k. Users specify some ranking function f that reflects the relevance of each point
in the skyline.
A scoring function f is said to be monotone if and only if for any two points p, p′, such that d(p, q) ≤ d(p′, q)

for every q ∈ Q, implies f(p) ≤ f(p′). Typical monotone scoring functions are

δmax(p) = max
q∈Q

dp, q); δmin(p) = min
q∈Q

d(p, q) and δsum(p) =
∑
q∈Q

d(p, q).

The top-k nearest spatial skyline points are the points minimizing the monotone scoring functions and
the furthest ones those maximizing them.
The existent studies on the top-k skyline points deal with the nearest case, mobile environments [32] and

the Manhattan distance [40].
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