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Abstract. A multi-visibility map is the subdivision of the domain of a
terrain into different regions that, according to different criteria, encodes
the visibility concerning a set of view elements. In this paper we present
an approach for computing a discrete approximation of a multi-visibility
map of a triangulated terrain corresponding to a set of view segments,
for weak and strong visibility, by using graphics hardware.

1 Introduction

Visibility information of terrain areas is necessary in many Geographic Informa-
tion Systems applications, such as path planning, mobile phone networks design
and environmental modelling.

The visibility map is a structure that encodes the weak or strong visibility
of a terrain concerning a view element (point, segment, triangle, etc.) belonging
to or above the terrain. Visibility structures for several view elements, that we
generically call multi-visibility maps, can be defined by combining the visibil-
ity map of such elements according to some operators, for example intersection,
union or counting. Taking into account that the representation of a terrain is a
rough approximation of the underlying terrain and that the combinatorial com-
plexity of exact multi-visibility maps is too complex to compute them exactly,
an approximation of a multi-visibility map is often considered sufficient.

Algorithms for computing the visibility map corresponding to a point are
available in [3, 7, 8, 11]. There also exist some recent papers dealing with multi-
segment visibility [5] and inter-region visibility [5, 12]. In [5] a multi-visibility
map is approximated using an algorithm based on an approach that reconstructs
an approximation of an unknown planar subdivision from information gathered
from linear probes of the subdivision [4]. The multi-visibility map is obtained
by repeatedly executing an algorithm that computes segment-segment visibility
in an exact fashion: the visible parts of a segment on the terrain from a view
segment.

The increasing programmability and high computational rates of graphics
processing units (GPUs) make them attractive as an alternative to CPUs for
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general-purpose computing. Recently, different algorithms and applications that
exploit the inherent parallelism and vector processing capabilities of GPUs have
been proposed [16]. In computational geometry there exist several algorithms
that have a fast hardware-based implementation [1, 6, 9, 10, 13, 14].

In this paper we address the problem of computing approximate multi-
visibility maps for a terrain modelled by a TIN concerning a set of view seg-
ments, for weak and strong visibility. Since we consider discrete approximations
of multi-visibility maps, it suffices to compute solutions on a grid covering the
domain of the terrain. For computational purposes, we discretize the domain of
the terrain into pixels. This discretization allows us to exploit graphics hardware
capabilities. Our approach repeatedly uses the skewed projection for represent-
ing segment-segment visibility in a bounded two-dimensional space. Once again,
the discretization into pixels of this two-dimensional space allows us to quickly
compute segment-segment visibility using graphics hardware.

2 Preliminaries

We model a terrain as the graph of a Triangulated Irregular Network (TIN),
(T ,F), formed by a triangulation T = {T1, · · · , Tn} of the domain D (in the
xy-plane), and by a family F = {f1, · · · , fn} of linear functions such that: a)
function fi ∈ F is defined on triangle Ti, i = 1..n; b) for any pair of adjacent
triangles Ti and Tj , fi and fj coincide in Ti ∩Tj . For any triangle Ti ∈ T , fi(Ti)
is a triangle in space called a face of the terrain, and the restriction of fi to an
edge or a vertex of Ti is called an edge or a vertex of the terrain.

A view element v (point, segment, triangle, etc.) is an element belonging to or
above the terrain, i.e. its projection onto the xy-plane is contained in D, and for
any point (x, y, z) of v, z ≥ z′, where (x, y, z′) is a point on the terrain. A point
P on the terrain is: visible from a view point V if the interior points of the line
segment V P with endpoints V and P lie above the terrain; weakly visible from
a view segment or polygon v if P is visible at least from a point of v; strongly
visible from a view segment or polygon v if P is visible from any point of v.

The visibility map related to a view element v consists of a partition of the
domain D into visible and non visible maximal connected regions. If a region
is labelled as visible (non visible) then all points on the terrain whose vertical
projection is in the region are visible (non visible) from v, considering weak or
strong visibility.

Multi-visibility maps related to a set V of r view elements are defined com-
bining the single visibility maps of such elements. A multi-visibility map is a
subdivision of the domain D of the terrain into regions according to different
visibility criteria. Typical multi-visibility maps are union, intersection, counting
and overlay. Union yields domain portions visible from at least one view element;
intersection yields domain portions visible from all the view elements; counting
yields domain portions according to the cardinal of the set of view elements from
which a region is visible; overlay is obtained superimposing the visibility maps
of all view elements and labelling each region in the resulting partition of the
domain with the set of view elements from which that region is visible.



2.1 Graphics Hardware
The rendering pipeline [15] is divided into several stages. Each stage is imple-
mented as a separate piece of hardware on the GPU. The input to the pipeline
is a list of 3D geometric primitives, expressed as vertices, and the output is an
image in the frame buffer ready to be displayed on a screen. A vertex defines a
point, an endpoint of a line, a corner of a polygon, etc. The attributes associ-
ated to a vertex are 3D coordinates, color, texture coordinates, etc. The frame
buffer is a collection of several hardware buffers, each of them corresponds to
an uniform two dimensional grid, composed of cells called pixels. Each pixel in
the frame buffer is a set of some number of bits grouped together into several
buffers. There is a special buffer, the Color buffer, that mainly contains RGB
color information. Arrays in GPU memory are called textures. The coordinates
of a texture are used to access the values stored in textures. Textures are mainly
used to store information that will be used in the per-fragment operations to de-
cide or modify a pixel color. Usually the maximal size of a texture is 2048×2048
or 4096× 4096 and at most 8 textures can be used simultaneously.

In the first stage of the pipeline per-vertex operations take place. Each input
vertex is transformed depending on the point-of-view and the defined transfor-
mations, lighting calculations may also be performed to determine its color. The
next stage is rasterization. The result of this stage is a fragment for each pixel
location covered by a geometric primitive. Each of them corresponds to a pixel
in the frame buffer with a depth value. The third stage, the fragment stage,
computes the color for each pixel according to the fragments corresponding to
it. Each fragment has to pass different tests and per-fragment operations be-
fore being placed into the frame buffer. Such operations can use values from
global memory in the form of textures and include updating, blending, masking
and other logical operations. Finally, the fragments that pass the tests and the
operations of the previous stage are drawn or rendered on the screen with the
appropriate color.

Logical operations are established by calling glLogicOp specifying the desired
logical operation: AND LOGIC, OR LOGIC, etc. They are performed on the
color of the incoming fragment and the previously stored pixel color. Information
of a user defined rectangle of the color buffer can be transferred to the CPU in a
summarized way with getMinmax or getHistogram. The minimum and maximum
pixel colors contained in the rectangle are given by getMinmax and the number
of occurrences of each color by getHistogram.

A fragment shader, also sometimes called pixel shader, is a programable
function executed on a per-fragment basis. A fragment shader allows combination
of fragment values, such as color and position on screen, with texture values to
change the appearance of the pixels. Textures are sent as parameters to the
fragment shader.

3 The Skewed Projection

Let v and s be two non coplanar segments in space parameterized by t and u in
[0, lv] and [0, ls] where lv and ls are the lengths of v and s, respectively. Denote
Tv,s the tetrahedron determined by the endpoints of v and s.



For any point P in Tv,s \ {v, s}, let πP,v and πP,s be the planes determined
by the point P and the segments v and s, respectively. Let wP = πP,v ∩ πP,s be
the unique line passing through P , v and s. Denote tP , uP the parameters of
the points vP and sP where wP intersects segments v and s, respectively.

Consider the continuous function, sk, that maps a point P in the tetrahedron
Tv,s \ {v, s} to the point (tP , uP ) ∈ [0, lv]× [0, ls]. Observe that all points of the
segment whose endpoints are vP and sP are mapped to (tP , uP ). The map sk is
essentially the restriction to the tetrahedron Tv,s \{v, s} of the skewed projection
introduced in [17].

The skewed projection sk(s′) of a segment s′ in Tv,s \ {v, s} is a connected
conic arc contained in [0, lv]× [0, ls]. The conic is a hyperbola or a parabola and,
in degenerate cases, a line or a point. Consequently, the skewed projection sk(T )
of the region bounded by a triangle T in Tv,s \ {v, s} is a region of [0, lv]× [0, ls]
bounded by three connected conic arcs, one per edge of T . It is not difficult
to prove that the region sk(T ) can only by defined by: (a) three conic edges
with three or four vertices, (b) two conic edges with two vertices (an edge is
mapped to a point). In Figure 1a) we can see (in white) the skewed projection
of a triangle that yields a region with three vertices, and in Figure 1b) we can
see the skewed projection of a triangle yielding a region with four vertices.

Fig. 1. : a) Region with 3 boundary vertices. b) Region with 4 boundary vertices.

3.1 Extending the Skewed Projection

Let l be a segment in Tv,s \ {v, s} coplanar with s. Then sk(l) = {(tl, u)|u ∈ I ⊂
[0, ls]} is a vertical segment in [0, lv]×[0, ls], where tl is the parameter of the point
where v intersects with the plane through s and l. Let l be a segment in Tv,s with
an endpoint B in s. We know that sk(l \ B) = {(tl, u)|u ∈ I ⊂ [0, ls]} and we
continuously extend it to the whole segment l taking sk(B) = (tl, uB), where uB

is the parameter of B in s. Let T be a triangle with a vertex B in s, and denote
b the edge of T opposite to B. We can express T as the union of segments
with endpoints in the edge b of T and B respectively. We extend the skewed
projection from sk(T \B) to the whole T by defining sk(T ) =

⋃
C∈b sk(CB), so

that sk(B) = {(t, uB)|t ∈ I ⊂ [0, lv]} is an horitzontal segment in [0, lv]× [0, ls].
In a similar way we can extend the skewed projection to the endpoint of a

segment or to the vertex of a triangle located in v.



4 Segment-Segment Visibility Computation

Given a view segment v and a segment s on a face of the terrain, we want to
compute the visible parts of s from v. We focus on the case in which v and s
are non coplanar, so that they determine the tetrahedron Tv,s. The study of the
simpler case in which v and s are coplanar is omitted due to space limitations.

To simplify computations we apply a preprocess in two stages. First we delete
the subsegment of v not facing the front side of the face containing s. If s is an
edge of the terrain, we delete the subsegment of v that does not face the front
side of any of the two faces containing s. If the entire segment v is deleted, then
s will be not visible at all from v. Otherwise, we take as view segment the part
of v not deleted, that we still denote v. If segment v belongs to the terrain an
equivalent study has to be done. This first step outputs two segments s and v
whose faces do not block each others visibility.

The other parts of the terrain that may hide s must be contained in Tv,s. The
second preprocessing stage allows us to determine these parts. Observe that the
intersection of a face with Tv,s is a convex polygon of constant complexity that
can be easily triangulated. We find the faces intersecting Tv,s by considering the
m triangles of the triangulation T of the domain D that intersect the projection
of Tv,s onto D [2]. In the worst case we have m = O(n). Next we compute the
polygons obtained intersecting these faces with Tv,s. Finally, we triangulate all
these polygons obtaining a set F of triangles. Abusing language, the obtained
triangles are still called faces. Clearly in the worst case is |F | = O(m) and the
total cost of the whole preprocess is O(m).

After the preprocessing step: a) all parts of the view segment v(s) face the
front side of the face/s containing s(v); b) we consider only the set F of triangular
faces contained in Tv,s. Observe that may exist some triangle in F with a vertex
in an endpoint of s or v.

A point of s is visible from a point of v if the segment connecting them does
not go through any face. Segments holding this condition are called non blocked
segments. Thus, by determining the set of non blocked segments we are able to
obtain the visible parts of s from v. We use the skewed projection sk to map the
triangular faces T of F to [0, lv] × [0, ls]. Let U =

⋃
T∈F sk(T ) be the union of

the images of the faces of F under sk. Clearly, points in U = [0, lv]× [0, ls]− U
correspond to non blocked segments. Let Y = {(0, u)|u ∈ [0, ls]} and define the
orthogonal projection of point (t, u) ∈ [0, lv]× [0, ls] onto Y by prY (t, u) = (0, u).
The weakly visible parts of s, points that are visible from at least one point of v,
are represented by prY (U), whereas the strongly visible parts of s, points that
are visible from the whole segment v, are represented by prY (U) = Y − prY (U).

The computation of U can be performed exactly using a sweep line algorithm
in worst-case time O(|F |2). However, U can be also approximately computed
with a simple algorithm by discretizing [0, lv] × [0, ls] into pixels and rendering
each region s(T ) using graphics hardware. We use a parameter µ that defines
the number of pixels per unit length, so that the number of pixels per row
and per column are µ · lv and µ · ls, respectively. All regions sk(T ) are drawn
in white onto an initial black background. Final black points correspond to



non blocked segments. In this way we avoid analytic computations and some
robustness problems common in geometric algorithms.

Fig. 2. Black pixels represent non blocked lines. White pixels represent the union of the
skewed projections. In the left vertical segment, the weakly visibles parts of segment s
are painted black and the non visible ones in grey.

4.1 Rendering the Skewed Projection of a Triangle

We know that the skewed projection sk(T ) of a triangle T in Tv,s \ {v, s} is
a region of [0, lv] × [0, ls] bounded by: (a) three conic edges and three or four
vertices, (b) two conic edges and two vertices. In a preprocessing step we split
regions of type (a) into two or three parts in the following way. A region with
four vertices is split into two regions: one formed by two edges and two vertices
and another by three edges and three vertices. Regions formed by three vertices
bounded by three non straight line edges are split into two regions by a vertical or
horizontal line through one of its vertices. We denote R the set of all the current
regions. After the preprocessing stage each region R ∈ R can be described by a
system IR of quadratic or linear inequalities, with one inequality per edge.

To determine the part of [0, lv] × [0, ls] covered by U =
⋃

R∈RR we use
graphics hardware. We discretize [0, lv] × [0, ls] into pixels and we paint each
region R ∈ R in white on an initially black background. To determine the pixels
that correspond to a region R we consider a collection of geometric primitives
CR whose union contains R, and a fragment shader whose input parameters
are the coefficients of the system IR. The fragment shader assigns white color
to the fragments that fulfill IR and black color to the others. Since the time
required by the fragment shader is proportional to the number of fragments
obtained by the rasterization of CR, we choose this region so that the number of
fragments is reasonably small. We associate to each non straight convex edge e
of R a rectangle Re that has one side with endpoints in the vertices of e and its
opposite parallel side tangent to e. We define CR as the union of the rectangles
associated to the convex edges of R and, in case that R has three vertices, the
straight triangle defined by the vertices of R (See Figure 3).

4.2 Computing the Visible Parts of a Segment

Once the union U =
⋃

T∈F sk(T ) has been rendered in white. We compute
prY (U) or prY (U) in order to determine the weakly or strongly visible parts of
s from v, respectively. Since the OpenGL getMinmax function allows determi-
nation of the minimal and maximal pixel color (white is greater than black in



Fig. 3. In white the region determined by the conics, in green and white the region
that we send to rastarize and that goes through the Fragment Shader.

RGB code) in a row of the screen, it can be used in order to compute prY (U)
or prY (U). We obtain prY (U) by scanning through all the rows of the screen
and considering that the projection of a row is white when the minimal color of
its corresponding row is. Similarly we obtain prY (U) projecting into Y in black
when the maximal color of the row is black. The result of the computation is
stored in the CPU.

4.3 Acceleration

Tacking into account that we only need one bit of the color buffer per pixel to
represent the union of skewed projections corresponding to one pair of segments
(v, s), we can simultaneously represent in the color buffer the unions correspond-
ing to a collection of pairs of segments (v, s1) , ..., (v, sk), with 1 ≤ k ≤ 24. Then
we use the per-fragment logicOp, specifying the OR LOGIC operation, to merge
the color of the already rendered fragments with the incoming one. Using the
OpenGL getHistogram function, instead of the getMinmax function, we can com-
pute the projections onto Y of the k pairs of segments (v, sj).

5 Discrete Multi-visibility Map Computation

In this section we present an algorithm for computing discrete multi-visibility
maps relative to a set of view segments using a color code and according to
the type of visibility chosen (weak or strong). We give a method to visualize
the following types of multi-visibility maps: union, intersection, counting and
overlay.

The domain of the terrain is discretized into a rectangular grid of size H×W .
This size is chosen according to a parameter µ′ representing the number of
grid points per unit length of the terrain domain. The grid is mapped into an
unidimensional array A of integers (8 bits) of length 4 · H · W , in such a way
that each grid element is mapped in 4 consecutive elements of A. Next the array
is transferred from the CPU to a texture in the GPU that stores values of 32
bits (8 bits per 4 channels). Each 4 consecutive elements of A are transferred to
a texture value. Since only 8 textures can be used simultaneously, the maximal
number of view segments is limited to 256 = 8 · 32.

In a first step, for each view segment we compute its discrete visibility map
and we store it in array A. The discrete visibility map for a view segment is



obtained by scanning all the rows of the grid and computing, using the segment-
segment-visibility algorithm, the visibility of the set of segments on the terrain
that correspond to a row of the grid. Each one of these segments is obtained
by first computing the intersection of a horizontal line and a triangle of the
triangulation of the domain and then lifting the intersection into a segment on a
triangle of the terrain. For each grid position we store visibility information in an
index of A. A bit suffices to represent the visibility: this bit is set to 1 when the
grid position is visible and to 0 otherwise. In fact, to increase the computational
efficiency, we simultaneously store the visibility information for up to 32 view
segments in A. In the case when we have more than 32 view segments, we need
a new array for every 32 view segments or fraction.

Once all the visibility information is computed it is transferred to the GPU,
then, by using a proper fragment shader, which has the textures as input param-
eters, we can visualize any multi-visibility map in a H ′×W ′ window of the screen
for any region of the terrain we are interested in. When in a texture we have
k view segments, 1 ≤ k ≤ 32, the fragment shader only uses the corresponding
k bits of the texture values. Next we describe how the union, intersection and
counting fragment shaders work.

The union fragment shader paints white a pixel corresponding to a position
of the texture if it has some bit equal to 1 (visible) and black otherwise (not
visible); the intersection fragment shader paints white a pixel corresponding to
a position of the texture if it has all bits equal to 1 (visible) and black otherwise
(not visible); the counting fragment shader paints each pixel in the appropriate
color according to the number of bits equal to 1 of the corresponding position
of the texture.

Fig. 4. a) Terrain and three view segments, v1 on the left, v2 on the right and v3 on
the front. b)The corresponding multi-visibility map: points visible from v1 are painted
red, from v2 in green, from v3 in blue, from v1 and v2 in yellow, from v1 and v3 in pink,
from v2 and v3 in light blue and from v1, v2 and v3 in white.

It is not difficult to adapt our method to visualize the union, intersection and
counting for a subset of view segments; the overlay of e view segments, assuming
that we are able to distinguish 2e colors; the special case of overlay that we



describe next. Let U = {V1, ..Vg} be a user specified collection of subsets of view
segments such that Vi ∪ Vj ∈ U , i, j = 1..g. The terrain domain is subdivided
into regions R1, · · · , Rg, Rg+1 of different colors, in such a way that the region
Ri, i = 1..g, contains the points of the terrain that are visible from all the view
segments of Vi, and region Rg+1 contains the remaining points.

Moreover, without recomputing the information and only adapting the win-
dow to a specific region of the domain, we can visualize any multi-visibility map
we are interested in.

6 Complexity Analysis

Given a terrain and a set of view segments, to analyze the cost of visualizing a
discrete multi-visibility map on a grid of size H ×W some important consider-
ations have to be taken into account:

– The number of intersections between H lines and the n triangles of the
domain is O(nH) in the worst case. The maximal number of tetrahedra to
be considered is O(rnH), where r is the number of view segments.

– The faces of the terrain that intersect a tetrahedron are determined in O(n)
worst case time. Let c be the time needed to render the skewed projections
of a triangle. Then, the total time expended in processing faces is O(rn2Hc).

– Let G be the time expended by the getHistogram function. Each clus-
ter of 24 tetrahedra uses this function. Then, the total time expended by
getHistogram is O(rnH G

24 ).
– Let M be the time of loading a texture of size H × W to the GPU. Each

cluster of 32 view segments uses a texture. Then, the total time of loading
textures is O(r M

32 ).
– The visualization of a region of a multi-visibility map in a H ′ ×W ′ window

can be done in constant time.

According to these considerations we obtain that the computational cost of
visualizing a multi-visibility map is O

(
rnH

(
nc + G

24

)
+ r M

32

)
.

Since visualizing a multi-visibility map takes constant time, the time needed
to visualize N additional multi-visibility maps is O(N).

7 Conclusions and Future Work

We have presented a method for visualizing multi-visibility maps of a triangu-
lated terrain concerning a set of view segments, for weak and strong visibility,
using graphics hardware. We want to remark that our method can be easily
parallelized. We have implemented the described algorithms and in our imple-
mentation parameters µ and µ′ can be chosen by the user. Presently we are
studying the best combinations of these parameters in order to reduce errors
produced during the different discretizations. We are also working to extend our
method to heterogeneous sets of view elements: segments, polygonal lines and
polygonal regions.
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