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Abstract

The computation of the intersection family of two large families of unsorted sets is an interesting problem from the
mathematical point of view which also appears as a subproblem in decision making applications related to market
research or temporal evolution analysis problems. The problem of intersecting two families of sets F and F ′ is to
find the family I of all the sets which are the intersection of some set of F and some other set of F ′. In this paper, we
present an efficient parallel GPU-based approach, designed under CUDA architecture, to solve the problem. We also
provide an efficient parallel GPU strategy to summarize the output by removing the empty and duplicated sets of the
obtained intersection family, maintaining, if necessary, the sets frequency. The complexity analysis of the presented
algorithms together with experimental results obtained with their implementation are also presented.
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1. Introduction

The problem of intersecting two families of sets,
which is the problem we tackle in this paper, is not only
interesting from a mathematical point of view, it also
appears as a subproblem in decision making, market re-
search and temporal evolution analysis applications, as
shown in the following examples.

Let us assume that a pharmaceutical company is in-
terested in producing a new drug combining different
already existent medicines. If the medicines taken by
the patients of the regions where the company is offer-
ing its products are known, an interesting and useful
combination of medicines can be obtained by solving
an intersection problem. In fact, in order to obtain sev-
eral interesting combinations of drugs, we could con-
sider all the possible pairs of sets of medicines and find
their intersection, assuming that a set contains the drugs
taken by an individual. Thus, we would know which
drugs are simultaneously taken by several patients. Ac-
cordingly, we are interested in intersecting one family
of sets F with itself, to obtain the intersection fam-
ily I. The obtained sets contain the combinations of
medicines that are taken by at least two patients. If we
eliminate the repeated sets of I while maintaining their
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frequency, we will be able to determine a useful com-
bination of drugs that would be used by several patients
according to the medication they are using now. This is
an example where we are aiming to a useful combined
medicament with applications in the pharmaceutical in-
dustry. It can be extrapolated to other industries trying
to combine food additives, feedstock, textile material,
etc. But we could also consider the intersection family
to solve more general problems, for instance, to ana-
lyze the skills, weaknesses, plants or animals that co-
exist in different regions by extracting information from
real data sets.

Note that, all the mentioned problems involve only
one familyF and we are interested in obtaining its inter-
section family I = F ∩F . But there also exists another
more general collection of problems where two differ-
ent families, F and F ′, should be intersected. Most,
but not all of the problems where F , F ′ involve evo-
lution along time. Related to this other collection of
problems, we can be interested in the evolution of the
ecosystem of several regions. For instance, we could
determine which plants and animals appear together at
time t0, but also after a certain amount of time, at time t1.
Other examples involving the intersection of two differ-
ent families of sets could be found when trying to deter-
mine perdurable skills or weaknesses. But also, when
determining the symptomatology evolution, of several
patients, in two different stages of an illness or under
two different treatments.
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In some cases we could be interested in the intersec-
tion of more than two families. This is what happens
in the flock pattern problem [25, 15]. The flock pat-
tern analyzes spatio-temporal trajectories of hundreds of
moving elements with hundred-thousands of time steps
looking for sets of elements that move together during
at least a given number of time steps. The problem is
solved by finding a family of sets for each time step.
Each set contains the entities whose locations, at the
given time step, are simultaneously contained in a disk
of predefined radius. To solve the problem, these fami-
lies have to be intersected in order to obtain the sets of
entities that move close enough during the desired num-
ber of time steps.

Moreover, this problem in an interesting problem to
be solved in parallel for the following three reasons.
Firstly, because the nature of the mentioned problems
make that the amount of data that has to be handled
is big enough; secondly, because it exhibits an inher-
ent high computational complexity, and finally, because
finding the intersection family of two families of sets in
parallel is important from the mathematic point of view
in its own right.

The increasing programmability and high computa-
tional rates of GPUs, together with Compute Unified
Device Architecture (CUDA) and some programming
languages which use this architecture such as ’C for
CUDA’ or OpenCL, make them attractive to solve prob-
lems which can be treated in parallel as an alternative to
CPUs. The basis of the CUDA programming model can
be found, among many others, in [20, 19, 14]. GPUs
are used in different computational tasks where a big
amount of data or operations have to be done, when-
ever they can be processed in parallel. Some recent
works, in different fields ranging from numeric com-
puting operations and physical simulations to bioin-
formatics and data mining, provide demanding algo-
rithms that take advantage of the GPU parallel process-
ing [22, 9, 13, 14, 16].

In this paper, we present an efficient GPU-based par-
allel approach, designed under CUDA architecture, for
computing the intersection family of two large families
of unsorted sets (further details are given in next Sec-
tions). Even though there are a lot of previous work re-
lated on sets intersection, see Section 2, this is the first
time that the problem of finding the intersection family
of two families of sets is specifically addressed in a pa-
per, either using the GPU or the CPU. We also provide
an efficient parallel GPU strategy to remove the repeated
sets of a family of sets maintaining, if needed, their fre-
quency. The complexity analysis of the presented algo-
rithm together with experimental results obtained with

its implementation, showing the efficiency and scalabil-
ity of the approach, are also provided.

The paper is structured as follows. We start with the
formal definitions of the intersection family of two fam-
ilies of sets and the related work, in Section 2. In Sec-
tion 3, a brief global overview of our GPU algorithm
is provided. In Section 4, we explained the approach
to obtain the intersection family of two families of sets,
including the strategy for removing the empty and re-
peated sets while maintaining their frequency. The com-
plexity analysis and the experimental results, obtained
with the implementation of our algorithms are given and
discussed in Sections 5 and 6, respectively. Finally, in
Section 7 conclusions are given.

2. Formal definition and previous work

Let F = {S 0, · · · , S k−1} and F ′ = {S ′0, · · · , S ′k′−1} be
two families of non-empty finite unsorted sets over a
domain D. Finding the complete intersection family of
two families of sets F and F ′ is to find the family Ic =

{S 0
0, · · · , S k′−1

0 , · · · , S 0
k−1, · · · , S k′−1

k−1 }with k·k′ sets, where
S j

i are the intersection S i ∩ S ′j of set S i of F and set S ′j
of F ′. Notice that, Ic may contain empty and repeated
sets, and each set is identified so that we could know to
which sets S i ∈ F and S ′j ∈ F it corresponds to.

We also define the problem of finding the intersection
family I of the families F and F ′, which is to find the
family I of all the non-empty sets, which are the inter-
section S i∩S ′j of a set S i of F and a set S ′j of F ′. In this
case, although the intersection of two different pairs of
sets, each pair formed by a set of F and another of F ′,
can provide the same intersection set, we only include it
once in the family I.

Figure 1 shows a table representing the complete in-
tersection family Ic with the intersection of the sets of
the families F and F ′ over the domain D and the result-
ing intersection family I after eliminating empty and
repeated sets.

Figure 1: Intersection of two families.
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In the reminder of the paper, we consider that the in-
put families are different and that do not contain empty
sets. However, our approach can be easily adapted to
the case of two arbitrary input families. Note that, if one
single family is considered, thus, F = F ′, we have that
S i ∩ S j = S j ∩ S i and the complete intersection fam-
ily will be Ic = {S 0

0, · · · , S k−1
0 , S

1
1, · · · , S k−1

1 , · · · , S k−1
k−1}.

Consequently, instead of k2 sets, thanks to the commu-
tative property of the intersection of sets, it only has
k · (k + 1)/2 sets. In Figure 1, the part of the table below
the main diagonal would not be considered.

The parallel strategy presented here is specially de-
signed to intersect two large families of unsorted sets.
For instance, each family would have hundred thou-
sands of sets of, at most, hundreds of elements each.
The presented strategy is not developed to simultane-
ously intersect a small number of very large sets, which
is what has been widely studied in the existent papers.
In fact, there are plenty of papers studying problems in-
volving the intersection of sets, but, they are placed in
very different contexts from the one considered in this
paper. An important number of papers, obtain the in-
tersection of two, and some times several, sorted se-
quences of sets. This problem has important applica-
tions in Web search engines, and has been widely stud-
ied theoretically [10, 5, 6, 3, 12], and experimentally
[11, 4, 7, 12, 8]. There also exist several papers finding
the intersection set in parallel [26, 27, 1, 2] by using the
GPU. Moreover, in 2010, Hoffman presented and stud-
ied the maximal intersection query. Given a query set
and a family of sets, they provide the member of the
family having maximal intersection with the query set.
Note that, the result of all these algorithms is a single
set and never a family of sets which is what we are in-
terested in. The intersection family of two families of
sets is needed in [15] where the flock pattern is solved
in parallel, the algorithm used there to obtain the inter-
section family, which is not described in detail in that
paper, is the one we present in detail in this paper.

In the current paper, apart from dealing with finding
the intersection family of two families of sets, we also
eliminate the repeated sets of the obtained complete in-
tersection family. The problem of eliminating the re-
peated sets of a family of sets has been previously stud-
ied in [23, 18].

3. GPU algorithm overview

In this section, we give the general idea of the al-
gorithm which is explained in detail in Section 4. We
are interested in a work efficient parallel strategy which

directly computes the not empty intersection sets. It
avoids testing each pair of sets, S i ∈ F and S j ∈ F ′, to
determine whether S j

i does or does not have elements.
On the contrary, the used strategy allows to add an el-
ement e in S j

i if and only if e ∈ S i and e ∈ S j, and
consequently e ∈ S j

i . Thus, instead of looking for the
intersection of each set S i ∈ F with each set S ′j ∈ F ′,
we start by storing for each element of the domain, the
indices of the sets containing that element. These lists
of indices of sets where each element appears are stored
in the so called apparitions vectors. We compute the two
apparitions vectors A and A′ associated to the families of
setsF andF ′, respectively. From these apparitions vec-
tors we can determine the total number of elements that
will define the complete intersection family Ic. In fact,
each element e of the domain will appear exactly in ce·c′e
sets, where ce and c′e are the number of indices of sets
associated to the element e in the apparitions vectors A
and A′, respectively. Finally, we consider one thread per
element of the complete intersection family which de-
termines its corresponding element e of the domain and
its intersection set S j

i , then it stores e in the first empty
position of S j

i . After obtaining the complete intersec-
tion family, which in general contains many empty sets,
we proceed to eliminate the empty sets. We also provide
a strategy to eliminate duplicated sets while maintaining
their frequency, if desired. Thus, at the end of the pro-
cess we have the intersection family I with non empty
nor repeated sets.

This is the idea of our algorithm, however, it starts
with a preprocess to reduce the initial domain. Since
there may be many elements of D that are not contained
neither in F nor in F ′, it makes no sense to consider
them when computing the apparition vectors of F and
F ′. Thus, we start by eliminating the elements of D
that do not appear at least once in F and once in F ′ and
then, we find the intersection family.

4. Reporting the intersection family

In this section, we describe the several steps required
to compute the intersection family I of two input fam-
ilies F and F ′ whose sets do not need to be sorted in
any specific order. The section is organized as follows.
First, we explain the reduction of F and F ′ by discard-
ing the domain elements that do not appear in both fami-
lies (Section 4.2). Then, we provide the method to com-
pute the complete intersection family Ic, finding the in-
tersections between the two reduced families (Section
4.4), which is done by using two main structures: the
GPU family structure (Section 4.1) and the apparitions
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vector structure (Section 4.3). Next, we present the al-
gorithm to eliminate the empty sets (Section 4.5.1) and
posteriorly the one to eliminate the duplicated sets (Sec-
tion 4.5.2). Finally, we explain how the intersection
family I is reported (Section 4.7). Since it may hap-
pen that we had not enough GPU memory to compute
the whole intersection family at once, we also provide a
way to obtain the intersection family by parts (Section
4.6). All the 1D-arrays we use during the whole pro-
cess are stored in GPU global memory, except when it
is specifically mentioned.

4.1. Storing the input families in the GPU
Without loss of generality, we can assume that the

elements of the domain are indexed by n non-negative
integers and consider D =

∪
S i = {0, . . . , n − 1}.

To represent a family F in the GPU, we use a data
structure that consists of three 1D-arrays, the family,
counting and positioning arrays denoted f , c and p, re-
spectively. Array f stores the m elements contained in
the k sets of the family, starting with the elements of
S 0 and ending with the elements of S k−1. The count-
ing and positioning arrays have size k and store the sets
cardinality and the position of f where each set starts,
respectively. With this structure we can easily access to
any set or element using the fact that the set S i starts at
position p[i] of f and is stored in c[i] consecutive posi-
tions of f . An example is shown in Figure 2 where the
elements of S 2 start at f [6] and are stored in 3 consecu-
tive positions.

As we will see in the following sections, to solve the
intersection problem we need, several times, the index
i of the set S i ∈ F to which an element of f , f [x],
corresponds to. With the presented family structure,
this index i can be obtained with a dichotomic search
on p. However, we could avoid using this dichotomic
search if we add an extra array s of size m so that s[x]
is the index of the set to which f [x] corresponds to, i.e
f [x] ∈ S s[x]. By using s, we would know in constant
time the index of the set corresponding to an element
of f , but we would use m extra integer values and we
would have to take care to maintain the array s updated.
As we will see next, the sets in F and the array f are
reorganized several times and s would have to maintain
the correspondence between the elements of f and the
set index. In the rest of the paper, since the amount of
memory needed to solve the problem without using s is
big enough, we do not use s and we determine the in-
dex of the thread using a dichotomic search. However,
if desired this option could also be considered.

We create one structure for the input family F and
another for the input family F ′. We generate the arrays

c, p and f representing F and c′, p′ and f ′ representing
F ′ in the CPU while the input families are read, and
then we transfer them to GPU memory.

424

p

c

0 4 11

3 2 1

96 15

f

S2 S5

1

S0

23 10

S1

15 2 30

S3

3 4

S4

51 3 2

Figure 2: GPU data structure containing a family of six sets

4.2. Reducing the input families

To speed-up the computation of the intersection of F
with F ′, we start with the following reduction process.
First, we determine the domain D = (

∪
S i) ∩ (

∪
S ′j).

Next, we find the new sets S i = S i∩D and S
′
j = S ′j∩D,

for each set S i of F and S ′j of F ′. The families de-

termined by the sets S i and S
′
j are denoted F and F ′,

respectively. Since S i ∩ S
′
j = S i ∩ S ′j, instead of in-

tersecting the family F with F ′ we intersect F with
F ′. However, before starting the intersection computa-
tion, the empty and duplicated sets within each family
are removed by using the algorithms presented in Sec-
tion 4.5.1 and Section 4.5.2. In the case that we are
interested in the frequency of the sets in the input fam-
ilies, we will also store an auxiliary array associated to
each family, t and t′, storing the frequency of each set in
the corresponding family.

To determine D we create a 1D array d of size n ini-
tialized to zero. A parallel kernel is launched with one
thread per element in F . Each thread idx sets to one the
position f [idx] of d. Then, we do the same with F ′ but
setting to two those positions which already have a one.
When we are done, d[e] contains a two value, whenever
the element e is present at least once in each family. Fi-
nally, d is rewritten by setting those positions with a two
to one, and the rest to zero. Additionally, an array do f f

is created as the prefix sum of d. It is used to maintain
the correspondence between D and D.

In the next step, we remove from F and F ′ all the
elements e with d[e] = 0. To do this, we launch a
kernel with one thread per element in F . Each thread
idx checks whether d[ f [idx]] is zero. In such a case,
the thread determines the index i of the set the element
idx belongs to, by locating idx in p using a dichotomic
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search. Next, by using atomic operations, c[i] is decre-
mented in 1 indicating that the set S i has one less ele-
ment and f [idx] is set to −1. Additionally, we have a
counter to determine the number of completely elimi-
nated sets which is incremented when c[i] has been set
to zero.

Then, we can allocate c, p according to the new sizes.
The array c is filled, in parallel, with the non-zero ele-
ments of c, by using k threads. Because it is done in
parallel the order of the resulting values in c does not
correspond to the order in c. Thus, we maintain an aux-
iliary array, cc, storing the correspondence between the
positions of c and c. Then, p is computed as the prefix
sum of c, the new size of the family m is determined
and f allocated. Finally, f is filled, in parallel, with m
threads. Using p, c, p, cc and f we discard the elements
of f that have been set to −1 while we copy the others
to f . The thread idx considers the element e = f [idx].
If f [idx] = −1 nothing is done, otherwise, it determines
the index j of the set S j ∈ F where f [idx] belongs.
Then, the thread considers jn = cc[ j], the index of the
old-set S j ∈ F in F , and e is stored in f [p[ jn] + c[ jn]]
after decrementing c[ jn] by one, with an atomic oper-
ation. Moreover, instead of storing e in f , the element
e is shifted by setting it to do f f [e], in order to keep on
having as new domain D = {0, . . . , n − 1}. Finally, f
stores the elements of F .

This process is performed on the input familiesF and
F ′. When we are done, we can guarantee that all the
elements of D are present at least once in both families.
Finally, we remove the empty and duplicated sets of F
and F ′ by adapting the algorithm explained in Sections
4.5.1 and 4.5.2, respectively.

Abusing notation, from now on, the new sets, the cor-
responding families and the reduced domain are still de-
noted S i, S ′j, F , F ′ and D, respectively. We also still
denote k and k′ the number of sets in F and F ′, m and
m′ the total number of elements contained in F and F ′
which correspond to the sum of their sets cardinalities
and n the number of elements in D.

4.3. Computing the apparitions vector

Given a family F with k sets, the apparitions vector is
a structure containing n lists of set indices determining
the sets where each element e ∈ D appears. The list A[e]
contains the indices of those sets containing the element
e ∈ D, thus, a set index i with 0 ≤ i ≤ k − 1 is stored
in A[e], whenever e ∈ S i. Notice that, the total number
of elements stored in A is exactly m. An example of
such vector is showed in Figure 3, where the element 1

appears in the sets S 0, S 1, S 4 and S 5, so the indices 0,
1, 4 and 5 are stored in A[1].

The apparitions vector A is stored in the GPU using
the data structure previously used to store a family of
sets. In this case, the structure, referred as the appari-
tions vector, consist of three 1D-arrays denoted a, cA

and pA. The array a, of size m, stores the elements of
the lists conforming A, the counting array cA, of size
n, stores the number of sets containing each element or
equivalently the number of elements contained in each
list A[e]. Finally, the positioning array pA stores in pA[e]
the position of the array a where the list A[e] starts. As it
happens in the family structure, in the apparitions struc-
ture we could also add an extra array sA of size m storing
for each element of a the domain element to which it is
associated, i.e. if a[x] ∈ A[e] then s[x] = e.

To compute the apparitions vector structure, we first
compute the array cA, initializing its elements to zero
and launching a parallel kernel with n threads. The
counting array is next obtained by using m threads, one
per element in f . The thread with index idx reads its
corresponding element e = f [idx] and increments cA[e]
by one. In Figure 3, cA[2] is incremented three times
by three different threads. Note that, since many threads
may modify the same memory position at the same time,
the thread race condition can lead to incorrect results.
To avoid this, we use the atomic operations where mem-
ory accesses are done with no thread interferences. The
positioning array of A, pA, is the prefix sum of cA and is
computed using the GPU scan algorithm.

To store the apparitions vector in the GPU array a,
we run a CUDA kernel with one thread per element in
f . The thread with index idx reads its corresponding
element in f , e = f [idx], determines, by using p and
the index idx, the set S j where e belongs to, and stores
j in a. The set index j is determined by locating the
thread index idx in p with a dichotomic search. To store
j in a we re-initialize cA to zero, during the process it is
used to maintain the number of indices that have been
already stored in each list of A. Thus, j is stored as
the cA[e] element of the list A[e] which corresponds to
the position pA[e] + cA[e] of a, and consequently when
storing j the value of cA[e] has to be incremented by
one. Since several threads can be storing set indices in
the same list A[e] at the same time, the value of cA[e]
is obtained and incremented by one by using an atomic
operation.

4.4. Determining the complete intersection family
To compute the intersections between the families F

and F ′ we use their apparitions vector structures A and
A′. The main idea is to count and report the elements
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0

2

4 3

A

00

4

3

1

4

4

f

142cA 3 4 2

Atomic Increment

pA

p

0 2 1396 14

S2 S5

idx = 7

3 (Thread set index)

0 1 853 12

2

1 2

0 1 2 3 4 5

F = {{3, 0, 1, 2}, {5, 1}, {2, 0, 3}, {3, 4}, {1, 3, 2, 5}, {1}}

1

S1

15 2 30

S3

3 4

S0

23 10

a

2 50

00 52

1

14 44 0

3

30

4

2 4 2 3 1

Figure 3: Apparitions vector a construction

in common between each pair of sets. This is done by
using the fact that an element e is contained in the sets
stored in A[e] and A′[e], and thus, e is contained in, and
only in, the cA[e] · c′A[e] intersection sets obtained by in-
tersecting two sets whose indices are, one in A[e], and
the other in A′[e]. The process is parallelized not only
by storing the element e in each of the resulting intersec-
tion sets in parallel, but also considering the n elements
of the domain in parallel.

In the first step, we construct the apparitions vectors
A and A′ following the algorithm presented in Section
4.3. Then, we count the number of intersection ele-
ments, corresponding to the sum of the cardinalities of
the intersection sets. With this aim we create the ar-
ray ct, of size n, with ct[e] = cA[e].c′A[e]. That is, ct[e]
is the total number of intersection sets where the ele-
ment e appears. Then, pt is created as the prefix sum
of ct. From them we know the number of intersection
elements, which is denoted mint.

Next, we compute the intersection sets. The idea is
to run a CUDA kernel with as many threads as intersec-
tion elements so that each thread stores the element it
represents in the intersection set it corresponds to. The
process takes place in two steps. First, we count the
cardinality of each intersection set, and then, the inter-

section sets are obtained.
To determine the intersection sets cardinality, we cre-

ate the counting intersection matrix cint of size k · k′

where cint[i][ j] stores the number of elements in com-
mon between sets S i and S ′j. In the GPU, cint is lin-
earized and stored in a 1D array. After initializing cint

to zero, we launch a kernel with mint threads. We con-
sider cA[e] · c′A[e] threads with consecutive indices for
each element e ∈ D, thus, each thread is responsible
for a specific intersection element e ∈ S j

i . The thread
starts determining the element e it corresponds to by lo-
cating the thread index idx in pt[e] with a dichotomic
search. Then, once e is known, pt[e] is used to deter-
mine the positions of A[e] and A′[e] where the set in-
dices i and j are stored, in fact i = (idx − pt[e])/cA′ [e]
and j = (idx−pt[e])−i ·cA′ [e]. Finally, cint[i][ j] is incre-
mented by one using an atomic operation. An example
of this process is shown in Figure 4.

0 5

0

2

4 3A

00

4

3

1

4

4

2

1 2

0 1 2 3 4 5

A′

0 1 2 3 4 5

1

0

3 1

3

3

0

1

2 2

cA cA′2 4 3 4 1 2 1 2 1 2 4 2

2 8 3 8 4 4

2

0 2 10 13 21 25
Thread idx=18

ct

pt

S0

S1

S2

S3

S4

S5

S′

0
S′

1
S′

2
S′

3

1 1 3 1

0 0 3 1

1 1 2 2

1 2 2 2

1 1 0 0

1 2 0 1

+1
cint

2

mod

-

/

·

F = {{3, 0, 1, 2}, {5, 1}, {2, 0, 3}, {3, 4}, {1, 3, 2, 5}, {1}}

F ′ = {{1, 4}, {1, 5, 4}, {4, 0, 2, 3}, {5, 3, 4}}

Figure 4: Counting intersections matrix obtention

In the second step, we create pint as the prefix sum
of the 1D array cint. Finally, we allocate fint, an array
of size mint to store the intersection sets. This is filled
with the process used to compute cint, but now instead
of incrementing cint[i][ j] in one, the element e is stored
in the corresponding position of fint. This is done by us-
ing pint[i][ j] and cint re-initialized to zero to know how
many elements have already been stored in the set S j

i
obtained. When the process ends, arrays cint, pint, fint

represent the complete intersection family Ic.
Note that, since at the beginning of the process we
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have started eliminating duplicates after reducing the
families, the frequency of each of the S j

i sets of Ic is
not necessarily one. In fact it is given by t[i] · t′[ j],
where t[i] and t′[ j] store the frequencies of the sets S i

and S ′j, respectively. Thus, we can compute the fre-
quency of each set of Ic and store them in a frequency
array, tint, associated to the complete intersection family
Ic. The frequency values can be stored in tint when the
first element of S j

i is handled. Consequently, tint has to
be initialized to 0 and the frequency of a set S j

i is set to
t[i] · t′[ j] the first time that the corresponding position
of cint is incremented.

We want to mention, that the presented strategy to
find the complete intersection family Ic is a robust strat-
egy whose computational cost does not directly depend
on the input families F and F ′. However, Ic can also
be obtained with an alternative strategy whose compu-
tational cost directly depends on frequency of the ele-
ments of D in F and F ′. This other strategy would
perform well, in terms of computational cost, when the
products cA[e] · c′A[e] for all e ∈ D do not differ much
among them. The idea is that we consider one thread
per element in D which is responsible to store e in all
the intersection sets S j

i where it is contained. Thus, it
has to consider all the pairs obtained with i ∈ cA[e] and
j ∈ c′A[e]. This strategy may also have some variants,
we can consider m threads and each thread considers
one element e of one set S i ∈ F and stores e in the c′A[e]
intersection sets S j

i , j ∈ c′A[e], where it is contained. We
discard these options because the work done for each
thread depends on the number of sets where the element
e appears. By analyzing the provided motivational ex-
amples, we can easily see that there are some elements
of D which may appear much more frequently than the
others. Thus, we consider that a strategy whose compu-
tational cost depends on the frequency of the elements
in the families is not appropriate to solve the general
problem tackled in this paper.

4.5. Obtaining the intersection family

The complete intersection family Ic has exactly the
k · k′ sets obtained by intersecting each set of F with
each one of the sets of F ′. But some of them, usually
many of them, correspond to empty or repeated sets.
Depending on the problem we are solving, this enlarges
cint, and pint unnecessarily.

In fact, by using a GPU parallel strategy we can not
avoid finding the complete intersection family Ic to ob-
tain the intersection family I without empty nor re-
peated sets. Since there does not exist efficient dynamic
memory in the GPU, we have to allocate enough mem-

ory space to handle the worst case, which would contain
k · k′ different intersection sets.

4.5.1. Removing empty sets
To remove the empty sets from cint and pint, we use

an auxiliary array ce of size k · k′ initialized to zero.
While we compute the array cint, we set to 1 the value
of a position of ce when a thread increments for the first
time the value of the corresponding position of cint, it is,
when the stored value of this position of cint is a 0. Thus,
at the end ce[i][ j] = 1 if S j

i , ∅. Then, we compute pe

as the prefix sum of ce. The number of non empty sets
is obtained from ce and pe, by summing up the value of
the last position of ce with the one of the last position of
pe.

Then, a new counting and positioning arrays c′int, p′int
are allocated according to the number of non empty sets.
By using a parallel kernel with k · k′ threads we obtain
c′int storing the non zero elements of the 1D array cint

in c′int. Now, using pe, we can compute c′int in parallel
maintaining the order of the intersection sets. Finally,
p′int is computed as the prefix sum of c′int. Notice that,
fint needs no modifications because empty sets are not
present here.

We denote the complete family once the empty sets
have been removed by Ir. Abusing notation, in next
Section, cint, pint, fint and kint will refer to Ir and not to
the complete intersection family Ic.

4.5.2. Removing duplicated sets
Our parallel approach to remove the duplicated sets is

based on the two following observations: 1) two equal
sets have the same cardinality; 2) equal sorted sets are
stored in consecutive positions in a lexicographically
sorted family, according to any total order of the domain
elements.

By using these observations, we remove the dupli-
cated sets in three steps. First, we split the intersection
family Ir into groups of sets of equal cardinality. Then,
we sort the sets elements and the sets of each group
in lexicographical order. Finally, we remove the dupli-
cated sets of each group checking whether two consec-
utive sets are equal. Even though the process may seem
not very efficient, it does the minimum work required
to check the element uniqueness according to the lower
bound proved in [3].

Step 1: Splitting sets by cardinality

We sort cint using a GPU parallel algorithm [21]
which can reorganize an extra array, in this case pint,
maintaining the correspondence between the auxiliary
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and the sorted array. Thus, we have cint sorted by in-
creasing cardinality and pint reorganized accordingly. In
this way, we can access to the different sets of fint in in-
creasing cardinality order without problems. Then, we
reorganize fint so that the sets of equal cardinality be-
come grouped together. It is done by obtaining p̃int as
the prefix sum of cint, re-initializing cint to 0 and using
the array f̃int of size mint which will store the intersection
family sets in increasing cardinality order. We consider
mint threads and the thread idx determines the value to
be stored in f̃int[idx], as follows. It starts determining
the index j of the set to which f̃int[idx] corresponds,
by finding the first position of p̃int[ j] ≥ idx with a di-
chotomic search. Then f̃int[idx] = fint[pint[ j]+cint[ j]old],
where cint[ j]old is the old value of cint[ j] obtained when
the value stored in this position is incremented by one
using an atomic operation. Thus, we can consider that
Ir has been split into groups of sets of the same cardi-
nality, and we denote Ig the family containing only the
sets of Ir of cardinality g.

Steps 2 and 3 are performed on each group Ig. We
use cg, pg and fg to denote the corresponding counting,
positioning and family arrays, meanwhile kg and mg rep-
resent the number of sets and elements of Ig.

Step 2: Lexicographically sorting the sets of equal
cardinality

To have equal sets in consecutive positions after sort-
ing Ig in lexicographical order, we need to have the el-
ements within each set also sorted. However, we do not
need to sort the elements according to a particular order
of the domain, any common ad-hoc order on the ele-
ments works. Thus, we use a simple and efficient tech-
nique, called weak sorting, which sorts the elements of
all the sets according to an arbitrary total order com-
puted on the fly [23, 18]. Weak sorting works as fol-
lows: a) associate to each element all the sets where it is
contained; b) traverse the domain elements and place
them to the sets they belong to. In this way, at the
end, all the sets contain their elements stored in lexi-
cographic order, according to the total order computed
during the weak-sorting. We denote Iw

g the family of
sets obtained from Ig after the weak sorting process.

The weak sorted family Iw
g is computed as follows.

We use an already existing and implemented GPU sort-
ing algorithm [21] to sort all the sets. However, this
GPU sorting algorithm is very efficient sorting very
large sets and in this case we have to sort many short
sets. In order to take the maximum benefit of the GPU
sorting algorithm, we compute Ir

g by mapping the ele-

ments in each set to new integers, guaranteing that the
integers stored in S r

i are smaller than all those in S r
j,

whenever i < j. To use not too big integers in Ir
g, we

use two arrays Imin
g and Imax

g with the minimum and
maximum element stored in each set of Ig. They are
obtained by using a kernel mg threads and atomic oper-
ations. There exist the shuffle strategies to extract the
global maximum or minimum of an array [24], but we
are not using them because we are finding kint local min-
imums and maximums. Next, we store in Idi f

g the differ-
ences between Imax

g and Imin
g by using kg threads. These

differences are accumulated by using the exclusive scan
algorithm and the result is again stored in Idi f

g . Finally,
Ir

g is computed by adding to each element of each set S i

the value Idi f
g [i] − Imin

g [i]. The family Ir
g is considered

as a unique set by concatenating the different sets and
Ir

g is sorted with a GPU sorting algorithm. Finally, the
initial elements are recovered by substracting the previ-
ously added value. Thus, finally, we have the family Iw

g
with the elements of the sets sorted by increasing order.
An example of the process is shown in Figure 5.

Next, we lexicographically sort the sets of the family
Iw

g using the radix sort algorithm, see Figure 6 a). We
name i-column, the set determined by the i-th element
of a each set of Iw

g . The radix sort algorithm sorts the
sets of Iw

g column by column. First, we sort the sets
by the 0-column, then, the resulting sets of the first step
are sorted by the 1-column, we continue until the last
column is considered. It is important to remark that the
sorting of each column must be stable in order to guar-
anty that the radix sort works.

We sort each column using a GPU stable sort algo-
rithm [21]. Note that, the sorting of the i-column de-
pends on the result of the sorting of the previous j-
column for all j < i. Thus, in order to obtain the correct
result we should reorganize the whole structure Iw

g after
sorting each column. Since commonly fg ≫ pg, instead
of reorganizing all the elements of fg at each iteration,
we just reorganize pg and the GPU sorting algorithm
sorts according to it. Once the process ends, the sets
are lexicographically sorted according to their elements
which are also sorted.

Step 3: Eliminating duplicates

Once we have the elements within each set sorted and
the sets of the family Iw

g lexicographical sorted, equal
sets are stored in consecutive positions. Thus, we only
need to compare adjacent sets to eliminate duplicates,
see Figure 6 b). To determine if two consecutive sets,
S w

i and S w
i+1, are equal, we compare the element e j

i at

8



S0 = {0, 4, 2, 6}
S1 = {2, 6, 5, 1}
S2 = {1, 3, 0, 4}
S3 = {5, 6, 3, 2}
S4 = {3, 1, 4, 0}
S5 = {4, 2, 0, 6}

Ig

S0 = {0, 2, 4, 6}
S1 = {1, 2, 5, 6}
S2 = {0, 1, 3, 4}
S3 = {2, 3, 5, 6}
S4 = {0, 1, 3, 4}
S5 = {0, 2, 4, 6}

weak Ig

Imax
gImin

g Ir
gIdiff

g

0
1
0
2
0
0

6
6
4
6
4
6

6
5
4
4
4
6

0
6
11
15
19
23

S0 = {0, 4, 2, 6}
S1 = {7, 11, 10, 6}
S2 = {12, 14, 11, 15}
S3 = {18, 19, 16, 15}
S4 = {22, 20, 23, 19}
S5 = {27, 25, 23, 29}

6 7 10 11 11 12 14 15 15 16 18 19 19 20 22 23 23 25 27 290 2 4 6

GPU sorting

Imin
g [15]− Idiff

g [15]

Figure 5: Sorting the sets elements

S0 = {0, 2, 4, 6}

S1 = {1, 2, 5, 6}

S2 = {0, 1, 3, 4}

S3 = {2, 3, 5, 6}

S4 = {0, 1, 3, 4}
S5 = {0, 2, 4, 6}

0-column

S0 = {0, 2, 4, 6}

S1 = {1, 2, 5, 6}

S2 = {0, 1, 3, 4}

S3 = {2, 3, 5, 6}

S4 = {0, 1, 3, 4}

S5 = {0, 2, 4, 6}

1-column

S0 = {0, 2, 4, 6}

S1 = {1, 2, 5, 6}

S2 = {0, 1, 3, 4}

S3 = {2, 3, 5, 6}

S4 = {0, 1, 3, 4}

S5 = {0, 2, 4, 6}

2-column

S0 = {0, 2, 4, 6}

S1 = {1, 2, 5, 6}

S2 = {0, 1, 3, 4}

S3 = {2, 3, 5, 6}

S4 = {0, 1, 3, 4}

S5 = {0, 2, 4, 6}

3-column

a)

S0 = {0, 2, 4, 6}

S1 = {1, 2, 5, 6}

S2 = {0, 1, 3, 4}

S3 = {2, 3, 5, 6}

S4 = {0, 1, 3, 4}

S5 = {0, 2, 4, 6}

0

1

0

1

1

1

ds

0

4

0

4

4

4

c b)

Figure 6: a) Lexicographically sorting Ig b) Removing duplicates
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position j of the set S w
i with the element e j

i+1 at position
j of the set S w

i+1, for each 0 ≤ j < g. If and only if we
find two different elements, the set S w

i is different from
set S w

i+1.
Since all the elements and all the sets can be com-

pared independently, checking whether two sets are
equal is a very parallelizable process. Duplicated sets
are eliminated by first creating an array ds of size kg,
initialized to zero. Then, we launch a kernel with mg−g
threads assigning an element per thread, except for the
elements of the last set which is not compared to any
other set. Each thread compares its corresponding ele-
ment, e j

i with e j
i+1. If they are different ds[i] is set to one

indicating that the set S w
i and S w

i+1 are different. When
the process finishes, those positions in ds containing a
zero correspond to the duplicated sets. We then set to
zero the corresponding positions of the original count-
ing array c indicating that they have to be removed. No-
tice that, if there exist equal sets only the last apparition
of the set is marked with a one in ds. This last set main-
tains its original counting value, meanwhile the other
counting values have been set to zero.

When steps 2 and 3 have been computed for each
group, the original Ir structure is updated according to
the new size. The counting and positioning arrays c and
p are resized and recomputed as it was done when re-
moving empty sets. Array f is also recomputed to re-
move duplicates by using both the original and the re-
sized positioning and counting arrays and the original
array f .

The frequency array t, which stores the frequency that
each set appears in Ir, can be determined from ds[i]
using a prefix sum-like algorithm where at the end, the
vector ds, denoted by dse, contains in each position the
value dse[i] = (1 − ds[i])(1 + dse[i − 1]) for i > 0 and
ds[0] = 1−ds[0]. After computing dse[i], the frequency
array t can be computed while c and p are resized. The
number of apparitions of the set whose last apparition
is stored in the position j > 0 of the counting array is
1+ dse[ j− 1], and the frequency of the set S 0 is 1 if and
only if dse[0] = 0.

Note that, the eliminating duplicates process can be
done with families whose sets have associated a fre-
quency array tint (Section 4.6). In this case, the array
tint has to be reorganized according to the counting and
positioning arrays during the initial steps of the strategy.
In this case, the frequency of each set is obtained by us-
ing tp, the inclusive prefix sum of tint, the frequency of
the set whose first apparition is stored in the position
i + 1 of the counting array is tp[ j] − tp[i], where i and j,
i < j, are again two consecutive positions of the count-
ing array with a non zero value.

When the process ends, the intersection family I
without empty nor repeated sets together with their fre-
quency, if needed, has been obtained.

4.6. Dealing with huge families
Since the initial 1D-arrays cint, tint and pint represent-

ing the complete intersections family Ic have size k · k′,
depending on the input families, the GPU memory may
not be sufficient to store them. When this happens the
intersection family can be obtained by parts in the fol-
lowing way.

The apparitions vector A is created as before, mean-
while, the apparitions vector A′ and the structure repre-
senting the complete intersections family Ic are created
in several iterations. For each iteration, we determine
two set indices α and β with 0 ≤ α < β < k′, so that we
can store in the GPU all the needed 1D-arrays to repre-
sent both, the subfamily F ′[α,β] = {S ′j with α ≤ j ≤ β}
and the intersection family Ic[α,β] obtained as the inter-
section of F with F ′[α,β]. Then Ic[α,β] is computed in
the GPU and once the empty and duplicated sets have
been removed, we transfer the output vectors cint[α, β]
and fint[α, β] associated to I[α,β] to the CPU. All the
GPU arrays, except for those needed to store the fam-
ily F , are deleted to restart the algorithm with the next
subfamily of F ′.

In CPU memory, we store three vectors of arrays, vc,
vn and v f . In vc, we store the arrays cint[α, β] copied
from the GPU, so that vc[i] contains the array cint[α, β].
Similarly, vn[i] and v f [i] contain the arrays tint[α, β]
and fint[α, β], respectively, obtained in the i-th iteration.
When all the sets of F ′ have been considered, v f may
contain duplicated sets appearing in different arrays that
should be eliminated while updating their frequency ar-
ray. This is again done in the GPU, with this aim, we
build the I structure allocating the 1D-arrays cint,tint,
pint and fint in the GPU memory. The arrays of vc are
stored one after the other in cint and those of vn and v f in
tint and fint, respectively. The array pint is computed as
the prefix sum of cint. Finally, duplicates are eliminated
with the previously provided algorithm. Note that there
is no need to store in the GPU the whole intersection
family. We only need to be able to load all the sets of a
given cardinality in the GPU at the same time, because
they are the ones susceptible to be repeated.

4.7. Reporting intersection sets
According to Section 4.2, the input familiesF andF ′

have been preprocessed so the elements of the postpro-
cessed families only contain elements present in both
families. Thus, the elements and the sets have been rein-
dexed according to the domain D = (

∪
S i) ∩ (

∪
S ′j).
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In order to restore the elements to their original val-
ues, we use the already created array do f f to reindex
the elements of the family I. We launch a parallel
kernel with one thread per element in I, each thread
reindexes its corresponding element value according to
do f f . Then, we only have to copy from the GPU to the
CPU memory the structure representing the family I to-
gether with the final frequency array.

In order to determine the intersection set of any two
original sets and locate it in the output of our algorithm
in constant time, we can proceed as follows. During the
preprocess (Section 4.2) we use two integer arrays of
size m and m′, to store a −1 in its i-th position when the
original set S i is deleted from the family, and its corre-
sponding new index in the reduced family when S i is not
deleted. Thus, if in the position of this array correspond-
ing to the original set S i there is a −1, any intersection
set where this S i appears is the empty set. Otherwise,
the intersection set S j

i corresponding to the intersection
of two original sets which have been indexed as sets S a

and S ′b during the preprocess, corresponds to set with
index a · k′ + b of the complete intersection family Ic.
Finally mention that, we can locate this set inI by trans-
ferring some extra information to the CPU or making a
few changes in the GPU algorithm.

5. Complexity analysis

When we analyze the complexity of a GPU algo-
rithm, we should take into account the total work, the
thread work, the number of accesses to memory and
the transferred values between CPU and GPU. The total
work is the total number of instructions realized during
the whole algorithm. The thread work is the number of
operations done by a single thread and gives an idea of
the degree of parallelism obtained. Despite the paral-
lelization does not decrease the total work complexity
of the algorithm, it has an important effect on the run-
ning times. Finally, a GPU algorithm performance also
depends on the number of memory accesses and on the
transferred values from CPU to GPU and vice versa.

Table 1 contains the GPU complexity analysis of each
step of our approach, here we analyze each part of the
algorithm independently.

The total work of the initial step is O(m log(k · n) +
m′ log(k′ · n)+ n+ k). The terms of the total work with a
log factor are done by threads doing the log term work
each, meanwhile the other factors are done by threads
doing O(1) work each.

Concerning the determination of the intersection fam-
ily, the total work is O(n + m log k + m′ log k′ + k · k′ +
mint log n). Again, the terms of the total work with a log

factor are done by threads doing the log term work each,
meanwhile the other factors are done by threads doing
O(1) work each. Notice that in this case, n, m, k and k′

refer to the already reduced families, thus, they are not
the original values but those obtained after the reduction
process.

Removing the empty sets is a completely parallelized
part of the process, it has a total work of O(k · k′) work,
which is done with the same amount of threads do-
ing O(1) work each. Finally, removing duplicates and
counting their frequency requires splitting the sets by
cardinalities which is done with a standard sorting algo-
rithm with O(mint log mint) total work, which is the min-
imum required time according to the element unique-
ness lower bound [3]. Next, the sets are handled per
groups of equal cardinality. Sorting the sets elements,
of the sets of cardinality g, requires a total work of
O(mg log mg). Lexicographically sorting the sets is done
with a sorting algorithm sorting g times kg elements,
representing a total work of O(gkg log kg). Once all
the cardinalities have been considered, the total work
done is O(mint log mint) which is needed to sort the sets.
Once they are already sorted, eliminating duplicates and
obtaining the frequencies requires O(mint log kint) total
work with O(log kint) work per thread. Obtaining the
output family without duplicates takes O(mint log kint)
total work with O(mint) threads doing O(log kint) work
each.

In the CPU, we only create the counting an position-
ing arrays of the input families, thus, it takes O(m +m′)
time.

Summarizing, the provided approach has a CPU time
complexity of O(m + m′), transfers m + m′ + 2(k + k′)
integer values to the GPU and mint + kint to the CPU.
Concerning the GPU total work is of O(m log(k · n) +
m′ log(k′ · n)+ n+ k · k′ +mint log mint) which is, as well,
the number of global memory accesses. Notice that, the
algorithm is quasilinear with respect to the number of
elements in the input and output families. The other
factors of the total work complexity are not directly re-
lated to the input nor the output of the problem, but the
parts of the algorithm where they appear are completely
parallelized, doing O(1) work per thread, which can not
be improved.

The execution time of our parallel algorithm when p
threads are considered is O((m log(k · n) + m′ log(k′ ·
n) + n + k · k′ + mint log mint)/p). In the best case, this
time is O(log k + log k′ + log n +

∑
log kg), this happens

when p = O(mx) and mx is the maximal number of
used threads, which corresponds to the maximum of the
values n, m, m′, k · k′ and mint.

Note that, by using the extra array s in the family and
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Total work Thread work Mem. access

D determination

d initialization to 0 O(n) O(1) O(n)
elements in F O(m log k) O(log k) O(m log k)
elements in F ′ O(m′ log k′) O(log k′) O(m′ log k′)
D obtention O(n) O(1) O(n)
do f f computation n values prefix sum

F computation

m determination O(m log k) O(log k) O(m log k)
new c and cc O(k) O(1) O(k)
new positioning k values prefix sum
new F O(m log n) O(log n) O(m log n)

F ′ computation equivalent to the previous one with k′, m′ and k
′

Apparition vector A

cA initialization O(n) O(1) O(m)
cA obtention O(m) O(1) O(n)
pA computation n values prefix sum
a O(m log k) O(log k) O(m log k)

Apparition vector A′ equivalent to the previous case with k′ and m′

I computation

ct initialization O(n) O(1) O(n)
pt obtention n values prefix sum
cint initialization O(k · k′) O(1) O(k · k′)
cint, ce obtention O(mint log n) O(log n) O(mint log n)
tint obtention O(mint) O(1) O(mint)
pint obtention k · k′ values prefix sum
fint obtention O(mint log n) O(log n) O(mint log n)

Empty sets removal
ce initialization O(k · k′) O(1) O(k · k′)
pe obtention k · k′ values prefix sum
new cint, tint and pint O(k · k′) O(1) O(k · k′)

Cardinalities sorting sorted cint, tint and pint O(kint log kint) sorting kint values

*Sets sorting

Imin
g and Imax

g O(mg log kg) O(log kg) O(mg log kg)
Idi f

g computation O(kg) O(1) O(kg)
Idi f

g accumulation kg values prefix sum
Ir

g computation O(mg log kg) O(log kg) O(mg log kg)
Iw

g obtention O(mg log mg) sorting mg values

*Lexicographical order GPU stable sorting of g columns with kg values each

*Duplicates elimination
ds initialization O(kg) O(1) O(kg)
ds computation O(mg) O(1) O(mg)
cint and tint update O(kg) O(1) O(kg)

Final I computation
final cint O(kint) O(1) O(kint)
final pint kint values prefix sum
final fint O(mint log kint) O(log kint) O(mint log kint)
final tint O(kint) O(1) O(kint)

Reporting I reindexing fint O(mint) O(1) O(mint)

Table 1: Complexity analysis (* refers to the group of sets of cardinality g)
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apparitions structure, with the element to index corre-
spondence, the log k, log k′, log n and log kint factors
would disappear. Consequently, by using this auxiliary
array, the O(log x) work done per thread would become
O(1). On the contrary, if we use the alternative strate-
gies provided to compute Ic, the work done by each
thread in this part of the algorithm would increase. If
one thread per element of D was considered each thread
would have O(k · k′) work, and if on thread per element
in F was considered it would become O(k′).

6. Results

In this section, we analyze the results obtained with
the GPU implementation of our algorithms and com-
pare the response of our GPU implementation with a
CPU implementation that solves the intersection family
problem.

The experimental results are obtained using an i7-
2630QM CPU and 8GB RAM with a Tesla K40 graph-
ics card. The families of sets are stored in binary files
providing a very efficient way to read the families from
file and to load them to the GPU.

We use two very different types of families, we first
use families containing very similar sets and then fam-
ilies with sets with random uniformly distributed ele-
ments on the domain. Thus, we check not only the al-
gorithm goodness, but also its response depending on
the input families by analyzing the algorithm behavior
in two very different settings. For both experiments, we
intersect two families of sets with k = k′, the number
of sets k and k′ vary from 5.000 to 50.000 and each set
contains between 100 and 150 elements of a domain of
105 elements.

Families of similar sets. These families contain sets that
do not differ much between them, such sets may rep-
resent the entities forming flock [15], the medicaments
of patients suffering a specific illness, the animals or
plants habiting in different regions sharing a climate,
etc. The experimental results obtained with these fami-
lies are presented in Figure 7.

In Figure 7 a), we show the running times, in seconds,
of the main steps of the algorithm: the input families
storage and reduction, the computation of the complete
intersection family Ic including the apparitions vectors,
the determination of Ir removing the empty sets and
of I eliminating the duplicated sets. The accumulated
value, corresponding to the columns height, gives the
total running time of the algorithm.

As expected, the total running times increase with the
size of the input families, in this case, they vary between

0.5 and 1.2(s). Note that, the most expensive steps are
the reduction of the input domain and the duplicated sets
removal. The running times to compute the complete
intersection family Ic and to remove the empty sets are
small with respect to the others. The time needed to re-
duce the initial families takes from 0.12 to 0.5(s). How-
ever, trying to reduce the intersection family is worth,
because it may provide an interesting decrease in the
memory requirements as it happen in this case.

Note that, the reduction of the input family speedups
the whole process and allows handling bigger families
without problems because it reduces significantly the
space needs, as it can be seen in Figure 7 b) and c).
These figures show the decrement in the number of el-
ements of the domain, n, and of the whole families, m
and m′, when the reduction step is realized. In this case,
there are many elements of the domain that do not ap-
pear in any set, and the number of elements that are si-
multaneously present in both families is really small.
Thus, the reduction in the domain cardinality is huge,
and the preprocess reduces significantly the amount of
memory needed in the following steps.

Similarly, reducing the complete intersection fam-
ily Ic to the intersection family I, also diminishes the
space needed to store I, as it is corroborated in Fig-
ure 7 d) and e). Figure 7 d) shows the number of
sets used to store the complete family Ic and the ones
needed to store Ir, the intersection family after remov-
ing the empty sets. Eliminating empty sets is worth in
terms of memory and does not provide important effects
on the running times, it takes no more than 0.001(s). Fi-
nally, removing duplicated sets is time-expensive but it
may produce important benefits in memory saving, as
shown in Figure 7 d) where the number of non empty
sets and the total number of elements of Ir are com-
pared with the number of sets and elements defining the
intersection family I.

Families of uniformly distributed random sets. In this
second experiment, we consider two random uniformly
distributed families, and thus, they may completely dif-
fer between them. This is a typical setting when analyz-
ing problems from a mathematical point of view. In this
case, the different steps of the algorithm have a com-
pletely different behavior with respect to the families of
similar sets, as can be seen from the information pro-
vided in Figure 8.

Figure 8 a) presents, as in the previous experiment,
the running times of the main steps of the algorithm.
With this kind of families, the total running times vary
between 8 and 99 seconds. Now, the most expensive
steps are the computation of the intersection sets and
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a)

b) c)

d) e)

Figure 7: Families of similar sets experimental results
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a)

b) c)

d) e)

Figure 8: Families of uniformly distributed random sets experimental results
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the elimination of duplicates. In Figure 8 b) we can
see that, contrarily to what happens in the first case, the
gain obtained with the reduction of the input families
is inappreciable. However, in this case this preprocess
represents from 5 to 6(s).

On the other hand, the output has again many dupli-
cated an empty sets, as it can be seen in Figure 8 c)
and d). Hence, eliminating them provides a big posi-
tive impact in the output size. The number of sets of I
with respect to the number of sets of Ic is reduced in a
98% in average, and the number of stored elements in
a 85%. Thus, the amount of memory needed to store
I is much smaller, more than a 90% smaller, than the
memory needed to store Ic.

Thus, from both experiments we can conclude that
trying to reduce the input families is worth. In fact, it
may produce an important reduction in the domain and
in case that this reduction is irrelevant, the increment
in the running times is not very significant with respect
to the total running time. Concerning the reduction of
Ic to I, it depends on the posterior use we have to do
of the intersection family. But in general in terms of
usability and chances to extract information, I will be
much more interesting than Ic.

CPU-GPU speedup ratios. Finally, in order to compare
our GPU algorithm response with the fastest CPU algo-
rithm. In order to find an appropriate CPU algorithm,
we use standard algorithms to compute sets intersec-
tions. We also implement a CPU version of the pro-
posed GPU strategy, which avoids checking for empty
intersection sets. Among the standard algorithms, we
have considered the C++ Standard, the boost and the
thrust libraries. The boost libraries only allow interval
sets intersections, meanwhile the C++ Standard library
and the thrust ones handle sets intersections. In both
cases, we have tried to store the families as vectors of
vectors, as sets of vectors and as sets of sets, using sets
implies sorting the elements while they are inserted in
the sets.

In Figure 9, we can see the best CPU running times
obtained with the implemented CPU versions, the GPU
running times presented in Figure 7 and Figure 8 asso-
ciated to the right vertical axis, and the correspondent
CPU versus GPU speedup ratio associated to the left
vertical axis. All the running times are obtained by us-
ing a i7-2630QM CPU, 8GB RAM. The best CPU run-
ning times have been obtained by considering sets of
vectors of the C++ Standard library and the intersection
of sets of the thrust libraries. Figure 9 a) corresponds to
the running times and speedups when considering the

families with similar sets, and Figure 9 b) to the uni-
formly distributed random families.

Note that, we present the running times needed to ob-
tain I which are not much different from the running
times needed to obtain Ic or Ir when the CPU is used.
In fact, in some cases, it is even quite faster obtaining
I than Ic or Ir, this is because the amount of memory
needed to store I is much smaller than the needed to
store Ic or Ir, and storing big amounts of data slows
down the algorithm. For instances, finding I takes from
3.6(s) to 6.04(min) when similar sets are considered,
and from 0.51 to 53.70(min) when uniformly distributed
sets are used, and the running times to compute the cor-
responding Ir families become from 3.8(s) to 5.96(min)
and from 0.47 to 43.6(min), respectively.

According to Figure 9, we can conclude that our GPU
implementation is much faster and scalable than the
CPU one. In fact, it could be expected because our
GPU algorithm does not do extra work and most of the
work done is done in parallel. According to the fig-
ure, the GPU algorithm is from 7 to 306 times faster
than the CPU algorithm when considering families with
similar sets, and from 4 to 37 times faster when con-
sidering uniformly distributed random families. If in-
stead of computing I we consider the times needed to
compute Ir the obtained speedup ratios vary between
10 and 709 for families of similar sets and between 5
and 205 for families of uniformly distributed random
sets. The speedups obtained when considering Ir are
bigger than the ones obtained to compute I because the
increment of time when deleting duplicates with respect
to the total running of the GPU strategy is bigger than
the corresponding increment when considering the CPU
algorithm. Thus, the ratio between the CPU and GPU
running times needed to compute Ir is bigger than the
ratio obtained considering the running needed to obtain
I.

We also want to remark that, the presented GPU algo-
rithm provides exact results that always match with the
ones obtained with the CPU. It is expected from the al-
gorithm, because there are no precision errors that could
affect the obtained results, but we have also checked it
by comparing the GPU and the CPU algorithms output.

7. Conclusions

In this paper, we presented an exact parallel GPU-
based approach, designed under CUDA architecture, for
computing the intersection of two families of sets. We
have provided a parallel GPU-based approach for re-
moving duplicated sets in a family of sets, and main-
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a) b)

Figure 9: CPU vs GPU algorithm running times

taining the frequency of each set in the original family
of sets.

The complexity analysis of the algorithms together
with experimental results has been presented. In both
cases, the degree of parallelism of the provided strat-
egy is shown, first theoretically and next experimentally.
We studied the response of the intersection algorithm
depending on different characteristics of the input and
output families. Two very different kinds of synthetic
families have been considered. In the first case, the fam-
ilies contain sets that do not differ much among them. In
the second case, the families contain random uniformly
distributed sets. The experimental results showed the
scalability and efficiency of the approach specially com-
pared with the CPU implementation as the speedup ra-
tios corroborate. We also studied the computational and
memory savings reached with the input domain reduc-
tion and the empty and duplicated sets removal.
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[10] E. D. Demaine, A. López-Ortiz, J. I. Munro, Adaptive set in-
tersections, unions, and differences, in: D. B. Shmoys (Ed.),
SODA, ACM/SIAM, 2000, pp. 743–752.
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