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Abstract. In this paper we propose a two-step mutual information-
based algorithm for medical image segmentation. In the first step, the
image is structured into homogeneous regions, by maximizing the mutual
information gain of the channel going from the histogram bins to the
regions of the partitioned image. In the second step, the intensity bins of
the histogram are clustered by minimizing the mutual information loss
of the reversed channel. Thus, the compression of the channel variables is
guided by the preservation of the information on the other. An important
application of this algorithm is to preprocess the images for multimodal
image registration. In particular, for a low number of histogram bins, an
outstanding robustness in the registration process is obtained by using
as input the previously segmented images.

1 Introduction

In image processing, grouping parts of an image into units that are homogeneous
with respect to one or more features results in a segmented image. Thus, we
expect that segmentation subdivides an image into constituent regions or objects,
a significant step towards image understanding. The segmentation problem is
very important in clinical practice, mainly for diagnosis and therapy planning.

In this paper we introduce a new algorithm for medical image segmentation
based on mutual information (MI) optimization of the information channel be-
tween the histogram bins and the regions of the partitioned image. The first
step of the algorithm partitions an image into relatively homogeneous regions
using a binary space partition (BSP). The second step clusters the histogram
bins from the previously partitioned image. This algorithm provides us with a
global segmentation method without any human interaction. Our approach has
similar characteristics to the agglomerative information bottleneck method [6]
applied to document clustering.

An important application of the previous algorithm is to use the segmented
images in the registration process. This allows for an extremely robust and very
fast registration. Multimodal image registration is a fundamental task in medical
image processing since it is a necessary step towards the integration of informa-
tion from different images of the same or different subjects. Results obtained
from different image modalities show good behavior of our segmentation algo-
rithm and resulting segmented images perform well in medical image registration
using mutual information-based measures.



(a) MR (b) CT (c) MIRp

Fig. 1. Test images: (a) MR and (b) CT. The two plots in (c) show the MIRp with
respect to the number of regions for (a) and (b).

2 Information Theoretic Tools

Some of the most basic information theoretic concepts [3] are presented here. The
Shannon entropy H(X) of a discrete random variable X with values in the set
X = {x1, . . . , xn} is defined as H(X) = −

∑n

i=1 pi log pi, where n = |X | and pi =
Pr[X = xi]. Shannon entropy expresses the average information or uncertainty
of a random variable. If the logarithms are taken in base 2, entropy is expressed
in bits. If we consider another random variable Y with probability distribution
q, corresponding to values in the set Y = {y1, . . . , ym}, the conditional entropy is
defined as H(X|Y ) = −

∑m

j=1

∑n

i=1 pij log pi|j and the joint entropy is defined as

H(X,Y ) = −
∑n

i=1

∑m

j=1 pij log pij , where m = |Y|, pij = Pr[X = xi, Y = yj ] is
the joint probability, and pi|j = Pr[X = xi|Y = yj ] is the conditional probability.
Conditional entropy can be thought of in terms of an information channel whose
input is the random variable X and whose output is the random variable Y .
H(X|Y ) corresponds to the uncertainty in the information channel input X

from the point of view of receiver Y , and vice versa for H(Y |X). In general,
H(X|Y ) 6= H(Y |X) and H(X) ≥ H(X|Y ) ≥ 0.

The mutual information between X and Y is defined as

I(X,Y ) =

n∑

i=1

m∑

j=1

pij log
pij

piqj

. (1)

It can also be expressed as I(X,Y ) = H(X)−H(X|Y ) = H(Y )−H(Y |X) and
is a measure of the shared information between X and Y .

A fundamental result of information theory is the data processing inequality

which can be expressed in the following way: if X → Y → Z is a Markov chain,
i.e., p(x, y, z) = p(x)p(y|x)p(z|y), then

I(X,Y ) ≥ I(X,Z). (2)

This result demonstrates that no processing of Y , deterministic or random, can
increase the information that Y contains about X.
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Fig. 2. Partition of the MR image of Fig.1.a with three different MIRp.

3 Two-Step Segmentation Algorithm

In this section, we present a general purpose global two-step segmentation algo-
rithm that can be applied to different medical image modalities.

Given an image with N pixels and an intensity histogram with ni pixels
in bin i, we define a discrete information channel X → Y where X represents
the bins of the histogram, with marginal probability distribution {pi} = {ni

N
},

and Y the pixel-to-pixel image partition, with uniform distribution {qj} = { 1
N
}.

The conditional probability distribution {pj|i} of this channel is given by the
transition probability from bin i of the histogram to pixel j of the image, and
vice versa for {pi|j}. This channel fulfills that I(X,Y ) = H(X) since, given
a pixel, there is no uncertainty about the corresponding bin of the histogram.
From the data processing inequality (2), any clustering or quantization over X or

Y , respectively represented by X̂ and Ŷ , will reduce I(X,Y ). Thus, I(X,Y ) ≥

I(X, Ŷ ) and I(X,Y ) ≥ I(X̂, Y ).

3.1 Image Partitioning

The first step of the algorithm is a greedy top-down procedure which partitions
an image in quasi-homogeneous regions. Our splitting strategy takes the full im-
age as the unique initial partition and progressively subdivides it with vertical
or horizontal lines (BSP) chosen according to the maximum MI gain for each
partitioning step. Note that other strategies, as a quad-tree, could be used, ob-
taining a varied polygonal subdivision. This partitioning process is represented
over the channel X −→ Ŷ . Note that this channel varies at each partition step
because the number of regions is increased and, consequently, the marginal prob-
abilities of Ŷ and the conditional probabilities of Ŷ over X also change. Similar
algorithms were introduced in the context of pattern recognition [5], learning [4],
and DNA segmentation [1].

The partitioning algorithm can be represented by a binary tree [5] where
each node corresponds to an image region. At each partitioning step, the tree
acquires information from the original image such that each internal node i



(a) C=2 (b) C=4 (c) C=6

Fig. 3. MR image segmentations obtained respectively from the partitioned images of
Fig.2, indicating the number of colors C chosen in each case. The efficiency coefficients
α are, respectively, 0.25, 0.22, and 0.22.

contains the mutual information Ii gained with its corresponding splitting. The
total I(X, Ŷ ) captured by the tree can be obtained adding up the MI available
at the internal nodes of the tree weighted by the relative area qi = Ni

N
of the

region i, i.e., the relative number of pixels corresponding to each node. Thus,
the total MI acquired in the process is given by I(X, Ŷ ) =

∑T

i=1
Ni

N
Ii, where

T is the number of internal nodes. It is important to stress that this process of
extracting information enables us to decide locally which is the best partition.
This partitioning algorithm can be stopped using different criteria: the ratio

MIRp = I(X,bY )
I(X,Y ) of mutual information gain, a predefined number of regions R,

or the error probability [3, 5]. The partitioning procedure can also be visualized

from equation H(X) = I(X, Ŷ )+H(X|Ŷ ), where the acquisition of information

increases I(X, Ŷ ) and decreases H(X|Ŷ ), producing a reduction of uncertainty
due to the progressive homogenization of the resulting regions. Observe that the
maximum MI that can be achieved is H(X).

Figure 1 shows the two test images used in our experiments. The two plots in
Fig. 1.c indicate the behavior of MIRp with respect to the number of partitions.
Both plots show the concavity of the MI function. It can be clearly appreciated
that a big gain of MI is obtained with a low number of partitions. Thus, for
instance, 50% of MI is obtained with less than 0.5% of the maximum number of
partitions. Observe that in the CT image less partitions are needed to extract the
same MIRp than in the MR image. Figure 2 presents the results of partitioning
the MR test image. We show the partitioned images corresponding to three
different MIRp. Observe that the first partitioned image (Fig. 2.a) only separates
the brain structure from the background.



(a) C=2 (b) C=4 (c) C=8

Fig. 4. CT image segmentations obtained from a partition of Fig.1.b (with MIRp=0.5),
indicating the number of colors. The coefficients α are, respectively, 0.21, 0.24, and 0.23.

3.2 Histogram Quantization

The second step of the algorithm is a greedy bottom-up segmentation procedure
which takes as input the previously obtained partition and results in a histogram
clustering based on the minimization of the loss of MI.

The basic idea underlying our quantization process is to capture the maxi-
mum information of the image with the minimum number of colors (histogram
bins). The clustering of the histogram is obtained efficiently by merging two
neighbor bins so that the loss of MI is minimum. The stopping criterion is given

by the ratio MIRq = I( bX,bY )

I(X,bY )
, a predefined number of bins C, or the error proba-

bility Pe [3, 5]. Our clustering process is represented over the channel Ŷ −→ X̂.
Note that this channel changes at each clustering step because the number of
bins is reduced. At the end of the quantization process, the following inequality
is fulfilled: I(X,Y ) ≥ I(X, Ŷ ) ≥ I(X̂, Ŷ ).

In our experiments, the quality of the segmentation is measured by the co-

efficient of efficiency α = I( bX,bY )

H( bX,bY )
[2]. In Fig. 3 we show three MR segmented

images obtained from the corresponding partitions of Fig.2 with the indicated
number of colors. Also, Fig. 4 shows three CT segmented images (2, 4, and 8
colors) built from a partition with MIRp=0.5. Graphs plotting α versus the
number of bins are presented in Fig. 5, showing a similar behavior in the two
cases. These graphs correspond to a sequence of partitioned images of the MR
and CT images of Fig. 1. It is important to observe from Fig. 5 that the images
with a high number of partitions (with MIRp from 0.6 to 1) have a decreasing
efficiency, while the images with a low number of partitions (from 0.1 to 0.4)
present a maximum of efficiency for a low number of bins. Observe also that MR
and CT plots in Fig. 5 show a relatively stable α value for a partitioned image
with MIRp=0.5. In all performed experiments, an interesting pattern has been
found. For each image, all MIR curves cross at a common point (see Fig. 5). This
can be interpreted as an intrinsic property of the image. The number of bins at
the crossing point might correspond inversely to the segmentation complexity of
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Fig. 5. Plots of α corresponding to a sequence of partitioned images (with MIRp from
0.1 to 1.0) for the (a) MR (Fig. 1.a) and (b) CT (Fig.1.b) images.

(a) MR (b) PET

Fig. 6. Test images: (a) MR and (b) PET.

the image. For instance, in the plots (a) and (b) of Fig. 5, we have values 6 and
9 respectively, which reflects the higher complexity of the MR image.

4 Application to Image Registration

In this section, segmented images obtained with the MI-based segmentation
algorithm are applied to medical rigid registration. The registration measure
criterion used is the normalized MI (NMI) introduced by Studholme et al.[7]:

NMI(X,Y ) =
H(X) + H(Y )

H(X,Y )
= 1 +

I(X,Y )

H(X,Y )
. (3)

Experiments on MR-CT and MR-PET images are presented, showing a high
robustness of NMI for a low number of histogram bins. The robustness of NMI
has been evaluated in terms of the partial image overlap. This has been done
using the parameter AFA (Area of Function Attraction) introduced by Čapek et
al.[8] This parameter evaluates the range of convergence of a registration measure
to its global maximum, counting the number of pixels, i.e. x-y translations in
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Fig. 7. AFA values obtained from the registration of (a) MR-CT (Fig. 1) and (b)
MR-PET (Fig. 6) images using uniform (dotted line) and MI-based (solid line) quan-
tizations. The x-axis represents the size of the bins.

image space, from which the global maximum is reached by applying a maximum
gradient method. The higher the AFA, the wider the attraction basin of the
measure is.

The robustness of NMI is analyzed with respect to the uniform quantization
of the histogram and the quantization given by the MI-based segmentation algo-
rithm. In Fig. 7, we show the AFA values obtained from the registration of the
MR-CT pair of Fig. 1 and the MR-PET of Fig. 6, where the bin size is given by
the successive powers of 2, going from 1 to 128. In these experiments, we have
quantized only the MR image, partitioned with MIRp=0.5, although similar
results are obtained by quantizing both images. Figure 8 shows the attraction
basins of NMI obtained with only 4 bins (bin size = 64) for the MR-PET images
with a uniform quantization (Fig. 8.a) and a MI-based quantization (Fig. 8.b).
Note the smoothness of the basin obtained with the MI-based segmentation.
From these results, we can observe that the use of the segmented images pro-
vides us with a high robustness. For a high number of bins, the uniform quanti-
zation has a positive effect since it basically reduces the noise of the images. On
the other hand, a negative effect is obtained when a very coarse quantization
is applied without an information preservation criterion. In contrast, while the
MI-based segmentation does not improve the uniform quantization for a high
number of bins, it presents a remarkable improvement for a very coarse quanti-
zation. This is basically due to the fact that the segmentation is guided by an
information optimization criterion.

5 Conclusions

We have presented in this paper a general purpose two-step mutual information-
based algorithm for medical image segmentation, based on the information chan-
nel between the image intensity histogram and the regions of the partitioned
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Fig. 8. Attraction basins of NMI obtained with 4 bins for the MR-PET (Fig. 6) regis-
tration with (a) uniform and (b) MI-based quantizations.

image. We have applied this algorithm to preprocess the images for multimodal
image registration. Our experiments show that, using as input the segmented im-
ages, an outstanding robustness is achieved in the registration process for a low
number of histogram bins. In the future we will compare our segmentation algo-
rithm against other state-of-the-art methods, and analyze two open problems:
the optimal partition and the optimal number of clusters.
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