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Abstract - This paper proposes a behavior-based scheme for
high-level control of Autonomous Underwater Vehicles (AUVs).
Two main characteristics can be highlighted in the control
scheme. Behavior coordination is dome through a hybrid
methodology, which takes in advantages of the robustness and
modularity in competitive approaches, as well as optimized
trajectories in cooperative ones. As a second feature, behavior
state/action mapping is learnt by means of Reinforcement
Learning (RL). A continuous Q-learning algorithm,
implemented with a feed-forward neural network, is used. The
behavior-based scheme attempts to fulfill simple missions in
which several behaviors/tasks compete for the vehicle’s control.
This paper shows its feasibility with a target following mission
designed to be carried out in a pool with the AUV ODIN. In this
paper, simulation results are shown demonstrating the good
performance of the hybrid method on behavior coordination as
well as the convergence of the RL-based behaviors.

I. INTRODUCTION

The control of an autonomous vehicle to fulfill a mission
in an unstructured and unknown environment is still a
challenge. In the middle of 1980s the appearance of
Behavior-based Robotics [1] philosophy revolutionized the
development of robots. Its principles of parallelism,
modularity, situatedness/embeddedness and  behavior
emergence provided a more feasible approach than traditional
top-down deliberative architectures. Behavior-based control
architectures propose a bottom-up methodology in which
several behaviors or tasks act independently generating the
set-points to be followed by the robot. Behaviors are
implemented as a control law using inputs and outputs. A
coordination module is in charge of choosing the final set-
point to be followed. Two main coordination methodologies
can be found. In competitive coordinators a single behavior is
selected whereas in cooperative coordinators several
behavior responses are superposed.

According to the coordination system, some advantages
and disadvantages appear in the control performance of an
autonomous vehicle. After testing 4 well-known behavior-
based architectures (Subsumption [2], Action Selection
Dynamics [3], Schema-based approach [4] and Process
Description Language [5]) in a simulated 3D-navigation
mission with an AUV some conclusions were extracted [6,7].
Competitive methods (subsumption and action selection
dynamics) show good robustness in the behavior selection
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and modularity when adding new behaviors. However, a non-
optimized trajectory is found when there is a continuous
change of the dominant behaviors. As far as cooperative
methods are concerned, they have an optimal trajectory when
parameters are properly tuned. However, they lack of
robustness. A small change on the parameters can lead to
control failures. In some circumstances, a set of behaviors
can cancel the action of behaviors with a higher priority (i.e.
obstacle avoidance behaviors).

In the implementation of a behavior-based system, the
design and tune-up of the behaviors is a hard task and
requires a lot of experimentation. In these systems, there is
also the need of performing in unknown and time-varying
environments, which means that some kind of adaptation is
needed. To solve these difficulties, many robotic systems
include learning techniques. There is not yet an established
methodology to develop adaptive behavior-based systems.
However, a commonly used approach is Reinforcement
Learning (RL) [8], a class of learning algorithm in which an
agent tries to maximize a scalar evaluation (reward or
punishment) of its interaction with the environment. A RL
system tries to map the states of the environment to actions
(policy) in order to obtain the maximum reward. Most RL
techniques are based on Finite Markov Decision Processes
(FMDP) causing that state and action spaces are finite. The
main advantage of RL is that it does not use any knowledge
database, as in most forms of machine learning, making this
class of learning suitable for online learning. The main
disadvantages are the large convergence time and the lack of
generalization among continuous variables, which represent
one of the current research topics in RL.

RL has been applied to various behavior-based systems,
most of them using Q learning [9]. In some cases, the RL
algorithm was used to adapt the coordination system [10, 11].
On the other hand, some researchers have used RL to learn
the internal structure of the behaviors, mapping the perceived
states to robot actions {12, 13, 14]. The work presented by
Mahadevan [12] demonstrated that the decomposition of the
whole agent learning policy in a set of behaviors, as
Behavior-based robotics proposes, simplified and increased
the learning speed.

This paper presents a new behavior-based high-level
control approach for AUVs. The new approach proposes a
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hybrid coordination method - between competitive and
cooperative ones. The coordination depends on a hierarchy of
behaviors. Depending on an activation level associated to
each behavior response, the coordinator superposes the
responses in a different grade. The final behavior of the
vehicle has the robustness of competitive methods, when a
priority behavior becomes completely active, and the
optimized trajectories of cooperative methods, in the other
situations. As a second important feature, the behavior-based
scheme uses RL algorithms to learn the internal mapping
between states and actions of each behavior. In the work
presented in this paper, a continuous implementation of the
Q_learning algorithm was used. Generalization between
states and actions was achieved by a feed-forward neural
network which approximates the Q_function. Direct
Q_learning [15] (backpropagation) was used to train the
network.

To test the feasibility of the hybrid coordination method
and RL-based behaviors, a target following mission in a pool
environment was designed for the AUV ODIN [16]. Two
behaviors are in charge of carrying out the mission. The
“obstacle avoidance” behavior uses the eight sonar sensors of
the vehicle to stay away from objects, walls, etc. The “target
following” behavior uses a video camera to detect the relative
target position. The target is detected by color segmentation.
The paper shows simulation results of the mission
achievement. Convergence of the RL-based behaviors is
shown as well as efficiency and robustness of the hybrid
coordinator. The hydrodynamics model of ODIN [17], its
control system [18] and a virtual pool were used in the
simulations.

The structure of this paper is as follows. Section 2
describes the proposed hybrid coordination system. Section 3
introduces the continuous Q_leaming algorithm used for
behavior learning. In section 4, the target following
application to test the hybrid coordination method is detailed.
In section 5, simulation results are given. And finally,
conclusions and future work are presented in section 6.

II. HYBRID COORDINATOR

Minimizing disadvantages and maximizing advantages of
competitive and cooperative methodologies, a hybrid
coordination method is proposed. In the proposed method,
the coordination of the responses is done through a hybrid
approach that keeps the robustness and modularity of
competitive approaches as well as the optimized paths of
cooperative ones.

The coordinator is based on normalized behavior outputs.
The outputs contain a three-dimensional vector “v;” which
represents the velocity proposed by the behavior. Associated
with this vector is an activation level “a;” which indicates
how important it is for the behavior to take control of the
robot. This value is between 0 and 1, see Fig. 1. This

codification sharply defines the control action from the
activation of the behavior.

The proposed coordination system is composed of a set of
hierarchical hybrid nodes, see Fig. 2. The nodes have two
inputs and generate a merged normalized control response.
The nodes compose a hierarchical and cooperative
coordination system. The idea is to use the optimized paths of
cooperation when the predominant behavior is not
completely active. The nodes have a dominant behavior
which suppresses the responses of the non-dominant behavior
when the first one is completely activated (a=1). However,
when the dominant behavior is partially activated (0<a;<l),
the final response will be a combination of both inputs. Non-
dominant behaviors can slightly modify the responses of
dominant behaviors when they aren’t completely activated.
For example, if the dominant behavior is “obstacle
avoidance” and the non-dominant is “go to point”, when
“obstacle avoidance” is only slightly activated (the obstacles
are still far), a mixed response will be obtained. When non-
decisive situations occur, cooperation between behaviors is
allowed. Nevertheless, robustness is present when dealing
with critical situations.
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Fig. 1. Normalized output of a behavior.
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Fig. 3. Behavior-based architecture with the hybrid
coordination system.
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The node “n;” has the ability to generate a normalized
response like the one generated by behaviors. The effect of
the non-dominant behavior depends on the squared activation
of the dominant to assure that in a critical situation between
both, the dominant will always take control. Depending on
the situation, the control response could be produced by all
the behaviors or by only one. The hybrid nodes do not need a
tuning phase. The coordination of a set of behaviors is
defined hierarchically classifying each behavior depending
on its priority. A disposition of the whole coordination
system using hierarchical hybrid nodes can be seen in Fig. 3.

The coordination method can be classified as a Aybrid
approach because the response is the one generated by the
dominant behavior affected by non-dominant behaviors
according to the level of activation of the first. Although to
the authors best knowledge there is no hybrid coordination
system presented in the literature, this method offers good
properties and can be successfully implemented in an
autonomous robot. The proposed method has been
implemented in simulation [7] showing its optimized paths,
robustness and modularity controlling an AUV in a 3D-
navigation mission.

III. RL-BASED BEHAVIORS

Reinforcement Learning (RL) [8] is a class of learning
suitable for robots when online learning without information
about the environment is required. In RL an agent tries to
maximize a scalar evaluation (reward or punishment) of its
interaction with the environment. The evaluation is generated
by the critic using an utility function. A RL system tries to
map the states of the environment to actions (policy) in order
to obtain the maximum reward. In our case, the state is the
sensor information perceived by the robot and the action is
the behavior output (the velocity set-points). RL does not use
any knowledge database as in most forms of machine
learning. Most theories are based on Finite Markov Decision
Processes (FMDPs).

The approach taken in this paper was a continuous
implementation of the Q_learning algorithm [9]. Q_learning
is a temporal difference [8] algorithm, which means that the
transition probabilities between the states of the FMDPs are
not required, and therefore, the dynamics of the environment
does not have to be known. Temporal difference methods are
also suitable to learn in an incremental way, required in
online robot learning. An important characteristic of
Q _leamning is that is an off-policy algorithm. The optimal
action values are leant independently of the policy being
followed. This is very important in our behavior-based
architecture because all the behaviors can be learnt even if
they are not controlling the vehicle.

The original Q_learning algorithm is based on FMDPs. It
uses the states perceived (s), the actions taken (a) and the
reinforcements received (r) to update the values of a table,
denoted as Q(s,a). If state/action pairs are continually visited,
the Q values converge to a greedy policy, in which the

maximum Q value for a given state points to the optimal
action. Fig. 4 shows the Q_learning algorithm.

There are several parameters which define the learning

evolution:

e . discount rate [0 1]. Concerning the maximization of
future rewards. If y=0, the agent is “myopic” in being
concerned only with maximizing immediate rewards.

e o leaming rate [0 1].

e ¢: random action probability [0 1]. The agent needs to
explore new actions in order to find the optimal ones, but
also needs to exploit the best actions to accumulate the
maximum reward, (Exploitation / Exploration dilemma).
The final action is called e-greedy action.

1. Initialize Q(s,a) arbitrarily
2. Repeat:
(a)s, <« the current state
(b) choose an action ¢, that maximizes Q(S, ,a) overall a
(c) e-greedy action, carry out action a, in the world with probability
(1-€), otherwise apply a random action (exploration)
(d) Let the short term reward be 7, and the new state bes ,

©06,.a,) =06,.a,) +olr,+ Yy max, 06,,.a,,)-06,.a,))
Fig. 4. Q_leamning algorithm.

Due to its use of finite spaces, Q-learning has a
considerably large learning time and memory requirement.
More sophisticated methods [19,20] implement a
parameterized Q-function which enables generalization
between states and actions. In this paper a continuous
implementation of the algorithm was used. A neural network
approximates the Q_function and its weights are updated
according to the backpropagation algorithm [21], also known
as direct Q_learning [15]. There is no convergence proof of
this continuous implementation. However, with suitable
network configuration and parameter selection, the algorithm
demonstrated to converge. The neural Q learning algorithm
structure is showed in Fig. 5. The neural network
approximates the Q_function:

Q(sl 4 al ) = '; + 7 maxam Q(sul ’ a/u )

therefore, its inputs are the continuous states and actions, and
the output is the Q value. According to the output value, the
error is found and the weights are updated using the standard
backpropagation algorithm. Sigmoidal and lineal activation
functions are used. Initially the weights are generated
randomly inside a range that produces an activation level
between the lineal and non-lineal zone of the sigmoidal
functions. To find the action that maximizes the Q_value, the
network evaluates all the possible actions that could be
applied. Although actions are continuous, a finite set, which
guarantee enough resolution, is used.

In order that each behavior learns to act as it is expected,
a reinforcement function must be defined, see Fig. 5. This
function associates each state with a reward “r” (-1, 0 and 1).
By associating the desired states with “r=I/” and the
undesired with “r=-1”, the algorithm learns how to act.
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Fig. 5. Neural Q_learning algorithm structure.

IV.TARGET FOLLOWING MISSION

To test the feasibility of the hybrid coordinator and RL-
based behaviors, a target following application was designed.
The proposed mission consists of following a target by means
of a camera and avoiding obstacles using a set of sonar
sensors. The AUV must act as an autonomous camera
recording all the movements of the target without colliding or
losing the target. This application was designed to be carried
out in a swimming pool where light absorption does not

apply.

The vehicle for which the mission was conceived is
ODIN [16] (Underwater Robotic Intelligent System), the
testbed AUV developed at the Autonomous Systems
Laboratory of the University of Hawaii. ODIN is a sphere
shaped vehicle with eight thrusters (4 horizontal and 4
vertical). It is capable of maneuvering with six degrees-of-
freedom (DOF). ODIN has various navigation sensors such
as 8 sonar transducers, a pressure sensor, and an inertial
navigation system; and an on-board CPU with VxWorks OS
in VMEbus. In this paper, the mission is fulfilled using
simulations with the ODIN’s dynamics model [17], the
adaptive learning controller [18] and a virtual pool as
environment. Further work will be based on real experiments.

To accomplish this mission a Behavior-based architecture
with two behaviors was designed. Each behavior receives
information about the current state, usually from sensors, and
it also receives the last action taken. This action is used by
the neural_q_leaming algorithm to update the neural network
weights. Each behavior generates a 3D-speed vector and an
activation level, which determines, according to the hierarchy
of behaviors, the final output. Once the coordination phase is
done, the output is sent to the adaptive learning controller.
Fig. 6 shows the schema of the architecture. The two
behaviors are:
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e Obstacle avoidance. The goal is to avoid any obstacles
perceived by means of 8 sonar sensors, see Fig. 7. It has
more priority than the targer following behavior. The
behavior is learnt using the neural Q_learning algorithm
for each DOF. The gravity center of the 8 sonar values is
found and each relative coordinate (x,y,z) is used as input.
A reinforcement function gives different rewards (-1, 0 or
1) depending on the distance at which obstacles are
detected. The activation level is proportional to the
proximity of obstacles. When obstacles are very close, the
activation level is 1 and the behavior has the whole
control on the vehicle.

Target following. The goal of this behavior is to follow
a target using a video camera pointed towards X-axis, see
Fig. 7. As the mission was designed to be carried out in a
swimming pool, a simple segmentation algorithm is used
to detect the position of a tinted target. The behavior is
also learnt using the neural Q_learning algorithm for each
DOF (x,y,z). The inputs of each DOF are the relative
position of the target and an estimation of the target
speed. The latter one is needed to be able to follow
moving targets. A reinforcement function gives positive
rewards (r=1) if the target is around the vehicle’s relative
position x=5, y=0 and z=0. Otherwise, values like »=0 or
r=-1 are given. The activation level is 1 when the target is
detected, alternatively, it is 0.
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Fig. 6. Target following mission architecture.
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Fig. 7. Sonar transducer and video camera layout.
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V. SIMULATION RESULTS

The architecture proposed above was implemented in
simulation with a virtual underwater environment, see Fig. 8.
The ODIN dynamics model [17] and the adaptive learning
controller [18] were used. A moving target was introduced
carrying out a 3D closed path repeatedly. The velocity of the
target changed between 0 and 0.2 m/s (60% of the maximum
velocity of ODIN).

“Target following” and “Obstacle avoidance” behaviors
were implemented using the neural Q_learning algorithm.
Many simulation episodes were done in order to find the
optimal neural network configuration. Finally a 3 layer neural
network was used. The parameters and specifications of the
“obstacle avoidance” and “target following” behaviors can
be seen in tables I and II respectively.

Each degree of freedom was implemented independently
with its inputs/outputs and rewards. At the beginning, each
behavior was learnt alone, without the influence of the other.
The number of iterations required to learn each DOF was
approximately 2000 (sample time=15s).

Fig. 9 shows the evolution of the “x” DOF of the “target
following” behavior during its training. It can be seen how
the algorithm explores the action space and learns how to
track the target. Fig. 10 shows the state/action mapping of the
same behavior after the training. And Fig. 11 shows the
accumulated rewards obtained in 13 different learning trials
of the same behavior, during 10 episodes of 1000 iterations.
The rewards are accumulated over one episode, which means
that the maximum value (if the vehicle follows the target
perfectly) is 1000. It can be seen that during the first trials the
accumulated rewards fluctuated. However, in most of the
trials, after the fifth episode, the accumulated reward was
bigger than 900, and in some of them was 1000. This
convergence proof can also be seen in the average line, which
continually increased.

Once the 3 DOFs of both behaviors were completely
learnt, the mission was tested. Fig. 12 shows the tracking
error evolution during the mission. When the vehicle was
close to an obstacle, the obstacle avoidance behavior took
partial control of the vehicle, and therefore, the tracking error
increased. However, the hybrid coordination system
generated a cooperative response between both behaviors,
and the target was not lost.

In Fig. 13, the three-dimensional path of the target and the
ODIN vehicle can be seen. The vehicle, pointing to the pool
y-axis, follows the target at 5 meters distance. The figure
demonstrates the good performance of the behavior-based
architecture in accomplishing the mission. In Fig. 14 and 15 a
top and lateral views of the same path are shown. In these
views it can be appreciated that the vehicle stops in following
the target on the right (Fig. 14) and on the bottom (Fig.15),
due to the presence of the wall and the bed of the pool
respectively.

TABLE 1
OBSTACLE AVOIDANCE BEHAVIOR SPECIFICATIONS.

OBSTACLE AVOIDANCE BEHAVIOR

Input variables 8 sonar transducers values

Codification XoYoZo (gravity center of the perceived

obstacles, [-4 4] m)

Output variables a,,ay,a, (desired vehicle speed in x,y,z [0 1])

If dist>32m:r=1
elseifdist>1.6m:r=0
else .= -1 (dist = abs(x,) or abs(y,) or abs(z,))

Critic function

Behavior activation  act=dist/3 (if act>1, act =1)

Q_learning param. a=0.1,y=09;€ =0.2

Neural Network inputs : 2 (i.e.: x, a;) outputs : 1 (Q_val)
layers: 1- 5 neurons; sigmoidal act. function
2- 3 neurons; sigmoidal act. function

3- 1 neuron; lineal act. function

TABLE II
TARGET FOLLOWING BEHAVIOR SPECIFICATIONS

TARGET FOLLOWING BEHAVIOR

Input variables - X,¥1,Z (errors between the target position and
the target desired location, [-3 3]Jm)
- Vy, Vi1,V (target velocity estim. [-0.3 0.3] m/s)

Output variables - ay,dy,3, (desired vehicle speed in x,y,z [0 1])

If dist>2m:r=-1
elseifdist>0.5m:r=0
¢lse =1 (dist = abs(x,) or abs(y,) or abs(z))

Critic function

Behavior activation  act=1 if the target is visible, alternatively 0.

Q_learning param.  a=0.1;y=0.9;€ =0.2

Neural Network inputs : 3 (i.e.: x, vy a;) outputs : 1 (Q val)
layers: 1- 4 neurons; sigmoidal act. function

2- 2 neurons; sigmoidal act. function

3- 1 neurons; lineal act. function

VI.CONCLUSIONS

This paper has proposed a behavior-based scheme for
high-level control of Autonomous Underwater Vehicles
(AUVs). The scheme was compound by a hybrid
coordination system and several Reinforcement Learning-
based behaviors. The method has been tested in a simulated
target following experiment with the AUV ODIN. The
behaviors have been implemented using a continuous
implementation of the Q-learning algorithm. The simulation
results showed the feasibility of the hybrid approach as well
as the convergence of the learning algorithms. The proposed
hybrid coordination demonstrated as behaving with the
robustness of competitive coordinators and with the
optimized paths of cooperative ones. The neural network
implementation of the Q_learning algorithm also
demonstrated to converge to the optimal policy, obtaining the
maximum accumulated rewards.

Future work will concentrate on the realization of real
experiments and on the improvement of the RL-based
behaviors in order to learn simultaneously all the behaviors
and to use only one RL function for each behavior.
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