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Abstract
Viewpoint selection is an emerging area in computer graphics with applications in fields such as scene under-
standing, volume visualization, image-based modeling, and molecular visualization. In this paper, we present a
unified framework for viewpoint selection and mesh saliency based on the definition of an information channel
between a set of viewpoints and the set of polygons of an object. The mutual information of this channel is a
powerful tool to deal with viewpoint selection and mesh visibility. In addition, the Jensen-Shannon divergence,
closely related to mutual information, gives us a measure of viewpoint similarity and permits us to obtain the
object saliency. Although we deal with the sphere of viewpoints around an object, our framework is also valid for
any set of viewpoints in a closed scene. Several experiments show the robustness of the presented approach and
the good behavior of the proposed measures.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computing Methodologies]: Computer Graph-
ics

1. Introduction

In recent years, several methods that use the notion of view-
point quality have been applied to computer graphics in
fields such as image-based modeling [VFSH03], volume vi-
sualization [BS05, TFTN05], and mesh saliency [LVJ05].
The basic question underlying the viewpoint study and ap-
plication is "what is a ’good’ scene viewpoint?." Obviously,
this question has not a unique answer. Depending on our ob-
jective, the best viewpoint can be, for instance, the most rep-
resentative one or the most unstable one, i.e., the one that
maximally changes when it is moved within its close neigh-
borhood. Moreover, we probably need more than one view
to capture the features of an object. The most representative
views of an object can help us to understand it and the most
unstable ones can enable us to obtain critical viewpoints to
capture its structure. We will attempt here to answer the
above question from the point of view of information the-
ory, extending the work in [VFSH03, SPFG05].

In this paper, a unified and robust framework to deal with
viewpoint selection and mesh saliency is presented. Given a
set of viewpoints around an object, we define an informa-
tion channel between the viewpoints and the polygons of
the object. From this channel, we calculate the viewpoint

mutual information, which will be used to obtain the best
views of an object and to compute the degree of visibility of
each polygon of the object. On the other hand, the Jensen-
Shannon divergence will be used to select the most unstable
viewpoints and to calculate the mesh saliency. The main ad-
vantages of our approach derive from the good properties of
mutual information, such as its convergence to a finite value
when the object mesh is infinitely refined. This framework
is also applicable to any set of viewpoints in a closed scene
and, although only the geometric properties of an object or
scene are considered, other aspects such as lighting could be
introduced.

This paper is organized as follows. In Section 2, we sur-
vey background and related work. In Section 3, we define
an information channel between a set of viewpoints and the
object. Section 4 and Section 5 are respectively devoted to
viewpoint selection and mesh visibility and saliency. Finally,
in Section 6, conclusions and future work are presented.

2. Background and Related Work

In this section we review some information-theoretic con-
cepts [CT91] and related work.
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2.1. Information-Theoretic Measures

LetX be a finite set, let X be a random variable taking values
x inX with distribution p(x) = Pr[X = x]. Likewise, let Y be
a random variable taking values y inY . The Shannon entropy
H(X) of a random variable X is defined by

H(X) =− ∑
x∈X

p(x) log p(x). (1)

The Shannon entropy H(X), also denoted by H(p), mea-
sures the average uncertainty of random variable X . All log-
arithms are base 2 and entropy is expressed in bits. The con-
vention that 0 log0 = 0 is used. The conditional entropy is
defined by

H(Y |X) =− ∑
x∈X

p(x) ∑
y∈Y

p(y|x) log p(y|x), (2)

where p(y|x) = Pr[Y = y|X = x] is the conditional probabil-
ity. The conditional entropy H(Y |X) measures the average
uncertainty associated with Y if we know the outcome of X .
In general, H(Y |X) 6= H(X |Y ), and H(X)≥ H(X |Y )≥ 0.

The mutual information (MI) between X and Y is defined
by

I(X ,Y ) = H(X)−H(X |Y ) = H(Y )−H(Y |X)

= ∑
x∈X

p(x) ∑
y∈Y

p(y|x) log
p(y|x)
p(y)

. (3)

The mutual information I(X ,Y ) is a measure of the shared
information between X and Y . It can be seen that I(X ,Y ) =
I(Y,X) ≥ 0. A fundamental property of MI is the data pro-
cessing inequality which can be expressed in the following
way: if X → Y → Z is a Markov chain, i.e., p(x,y,z) =
p(x)p(y|x)p(z|y), then

I(X ,Y )≥ I(X ,Z). (4)

This result demonstrates that no processing of Y , determin-
istic or random, can increase the information that Y contains
about X [CT91].

The relative entropy or Kullback-Leibler distance be-
tween two probability distributions p and q is defined as

KL(p|q) = ∑
x∈X

p(x) log
p(x)
q(x)

, (5)

where, from continuity, we use the convention that 0 log0 =
0, p(x) log p(x)

0 =∞ if p(x) > 0 and 0log 0
0 = 0. The rela-

tive entropy KL(p|q) is a measure of the inefficiency of as-
suming that the distribution is q when the true distribution is
p [CT91].

A convex function f on the interval [a,b] fulfils
that ∑n

i=1 λi f (xi)− f (∑n
i=1 λixi) ≥ 0 , where 0 ≤ λ ≤ 1,

∑n
i=1 λi = 1, and xi ∈ [a,b]. For a concave function, the in-

equality is reversed. If f is substituted by the Shannon en-
tropy, which is a concave function, we obtain the Jensen-

Shannon inequality [BR82]:

JS(p1, p2, . . . , pN) = H(
N

∑
i=1

πi pi)−
N

∑
i=1

πiH(pi)≥ 0, (6)

where JS(p1, p2, . . . , pN) is the Jensen-Shannon divergence
of probability distributions p1, p2, . . . , pN with prior prob-
abilities or weights π1,π2, . . . ,πN , fulfilling ∑N

i=1 πi = 1.
The JS-divergence measures how ’far’ are the probabili-
ties pi from their likely joint source ∑N

i=1 πi pi and equals
zero if and only if all the pi are equal. It is important
to note that the Jensen-Shannon divergence is identical to
I(X ,Y ) when πi = p(xi) and pi = p(Y |xi) for each xi ∈
X , where p(xi) is the marginal probability and p(Y |xi)
represents the conditional probability distribution [ST00b].
Observe that capital letter Y is used to denote p(Y |xi) =
{p(y1|xi), p(y2|xi), . . . , p(yM |xi)}.

2.2. Related Work

Viewpoint selection has been applied to several domains in
computer graphics, such as scene understanding and vir-
tual exploration [BDP00, Ple03, VFSH01, VS03, AVF04],
molecular visualization [VFSL02], image-based model-
ing [VFSH03], volume visualization [BS05, TFTN05], and
mesh saliency [LVJ05]. Different measures for viewpoint
evaluation have been used in these fields. We review here
the most relevant ones for our work.

In [BDP00,Ple03], the quality of a viewpoint v of a scene
has been computed using the heuristic measure, given by

C(v) =
∑n

i=1d Pi(v)
Pi(v)+1e
n

+ ∑n
i=1 Pi(v)

r
, (7)

where Pi(v) is the number of pixels corresponding to the
polygon i in the image obtained from the viewpoint v, r is
the total number of pixels of the image (resolution of the im-
age), and n is the total number of polygons of the scene. In
this formula, dxe denotes the smallest integer, greater than or
equal to x. The first term in (7) gives the fraction of visible
surfaces with respect to the total number of surfaces, while
the second term is the ratio between the projected area of the
scene (or object) and the screen area (thus, its value is 1 for
a closed scene).

In [VFSH01], the viewpoint entropy has been defined
from the relative area of the projected polygons over the
sphere of directions centered at viewpoint v. Thus, the view-
point entropy was defined by

Hv =−
N f

∑
i=0

ai

at
log

ai

at
, (8)

where N f is the number of polygons of the scene, ai is
the projected area of polygon i over the sphere, a0 repre-
sents the projected area of background in open scenes, and
at = ∑N f

i=0 ai is the total area of the sphere. The maximum
entropy is obtained when a certain viewpoint can see all
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the polygons with the same projected area. The best view-
point is defined as the one that has maximum entropy. The
main drawback of viewpoint entropy is that it depends on
the polygonal discretisation since a highly discretised region
heavily attract the attention of the measure, penalizing big
polygons in front of small ones. Viewpoint entropy has been
recently extended to volume visualization [BS05] by substi-
tuting the area distribution by the voxel visibility distribu-
tion.

In [SPFG05], a new viewpoint quality measure based on
the Kullback-Leibler distance (5) has been defined by

KLv =
N f

∑
i=1

ai

at
log

ai
at
Ai
AT

, (9)

where ai is the projected area of polygon i, at = ∑N f
i=1 ai, Ai

is the actual area of polygon i and AT = ∑N f
i=1 Ai is the to-

tal area of the scene or object. The viewpoint KL distance is
interpreted as the distance between the normalized distribu-
tion of projected areas and the ideal projection, given by the
normalized distribution of the actual areas. In this case, the
background is not taken into account. The minimum value
0 is obtained when the normalized distribution of projected
areas is equal to the normalized distribution of actual areas.
Thus, to select views of high quality means to minimize KLv.
While the viewpoint entropy is very sensitive to both size
and number of polygons, the KL measure only takes into ac-
count the proportion between the normalized projected area
and the normalized actual area, trying to obtain a balanced
vision of the object or scene. On the other hand, the fact that
there exist many non visible or poorly visible polygons in a
model can distort the quality of the measure.

3. Viewpoint Information Channel

In this section, we introduce an information channel between
a set of viewpoints and the set of polygons of an object. We
then define a ’goodness’ measure of a viewpoint and a simi-
larity measure between two views, both based on the mutual
information of this channel.

3.1. Viewpoint Mutual Information

We define an information channel V → O between the ran-
dom variables V and O, which represent, respectively, a set
of viewpoints and the set of polygons of an object. View-
points will be indexed by v and polygons by o. The marginal
probability distribution of V is given by p(v) = 1

Nv
, where

Nv is the number of viewpoints. That is, we assign the same
probability to each viewpoint, although any other distribu-
tion could be used in our framework. The conditional proba-
bilities p(o|v) are given by the relative area of the projected
polygons over the sphere of directions centered at viewpoint
v. Finally, the marginal probability distribution of O is given
by p(o) = ∑x∈V p(v)p(o|v) = 1

Nv
∑x∈V p(o|v).

From this channel, it follows that the conditional entropy
(2) can be written as

H(O|V ) = − ∑
v∈V

p(v) ∑
o∈O

p(o|v) log p(o|v)

=
1

Nv
∑

v∈V
H(v), (10)

where H(v) = −∑o∈O p(o|v) log p(o|v) is the entropy of v.
Observe that this coincides with the viewpoint entropy (8).

In this paper, we focus our attention on mutual informa-
tion, that expresses the degree of dependence or correlation
between a set of viewpoints and the object. The mutual in-
formation (3) is given by

I(V,O) = ∑
v∈V

p(v) ∑
o∈O

p(o|v) log
p(o|v)
p(o)

=
1

Nv
∑

v∈V
I(v,O), (11)

where

I(v,O) = ∑
o∈O

p(o|v) log
p(o|v)
p(o)

(12)

represents the degree of correlation between the viewpoint
v and the set of polygons. We propose to take I(v,O) as
our viewpoint goodness measure, called viewpoint mutual
information (VMI). High values of the measure mean a high
dependence between the viewpoint and a set of polygons,
indicating a very restrictive view. On the other hand, low
values correspond to low dependence, allowing for more
representative views of the object. Observe that I(v,O) =
KL(p(O|v)|p(O)), where majuscules indicate that p(O|v) is
the conditional probability distribution between v and the ob-
ject and p(O) is the marginal probability distribution of O.
Note the difference with (9), where the distance is taken with
respect to the actual areas, while in I(v,O) the distance is
taken with respect to the average projected area. This makes
VMI sensitive to occlusions.

While the main drawback of viewpoint entropy is that it
depends on the polygonal discretisation, VMI converges to a
finite value when the mesh is infinitely refined [FdABS99].
As a consequence, VMI is more robust than viewpoint en-
tropy when the object mesh is changed. This fact will be
shown in the examples presented in the next section.

3.2. Viewpoint Clustering and Similarity

From the data processing inequality (4), we know that any
clustering or quantization over V or O, respectively rep-
resented by V̂ and Ô, will reduce I(V,O) [TPB99]. Thus,
I(V,O)≥ I(V̂ ,O) and I(V,O)≥ I(V, Ô). For instance, merg-
ing neighbour viewpoints or polygons will reduce I(V,O).

It can be demonstrated that the reduction of MI due to the
merging of two viewpoints (or, in general, two view clusters)
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vi and v j [ST00a] is given by

δIvi,v j = (p(vi)+ p(v j))JS(p(O|vi), p(O|v j))≥ 0, (13)

where JS(p(O|vi), p(O|v j)) is the Jensen-Shannon diver-
gence (6), and p(O|vi) and p(O|v j) are the conditional prob-
ability distributions [ST00b]. After merging vi and v j , the
probabilities corresponding to the resulting cluster v̂k are

p(v̂k) = p(vi)+ p(v j) =
2

Nv
(14)

and

p(o|v̂k) =
p(vi)p(o|vi)+ p(v j)p(o|v j)

p(v̂k)
=

p(o|vi)+ p(o|v j)
2

.

(15)
Note that the loss of MI (3) is given by the multiplication
of the ’weight’ of elements we merge by the distance be-
tween them, given by the JS-divergence between the condi-
tional distributions. The loss of MI can be interpreted as the
dissimilarity between two views vi and v j . Thus, two views
are similar when the JS-divergence value is small. The use
of Jensen-Shannon as a measure of view similarity has been
previously proposed in the volume rendering field by Bor-
doloi et al. [BS05].

From these concepts, a possible clustering algorithm ap-
pears naturally: we can successively merge two views into
a new view in a way that locally minimizes the loss of MI.
Using this algorithm, viewpoints (or polygons) can be clus-
tered by preserving the maximum MI of the channel. It is
important to stress that the variation of MI when two views
are clustered does not depend on the level of clustering of
the rest of viewpoints. That is, the convenience of clustering
two views is a local decision.

4. Viewpoint Selection

The selection of representative viewpoints or unstable view-
points can improve in an efficient way our understanding of
the object or scene and can be used as an starting point for
interactive scene exploration. In this section, VMI is used to
find both informative views and a minimal set of represen-
tative views for an object, and JS-divergence is used to find
unstable views.

4.1. Viewpoint Mutual Information Evaluation

We compare the behavior of VMI with respect to the fol-
lowing viewpoint quality measures: heuristic measure (7),
viewpoint entropy (8), and Kullback-Leibler distance (9).
All these measures are sensitive to the size of the view sphere
with respect to the object. In this paper we have not taken
into account this dependence.

In our experiments, all the objects are centered in a sphere
of 642 viewpoints and the camera is looking at the center of
this sphere. In all the figures, the view sphere is represented

by a color map, where red and blue colors correspond re-
spectively to high and low values of the measure utilized.
Note that a high value for the heuristic measure (7) and the
viewpoint entropy (8) indicates a good view, while a high
value for KL (9) and VMI (12) corresponds to a restrictive
view. Viewpoint entropy has been computed without taking
into account the background.

To compute these viewpoint measures, we have estimated
the projection of the visible parts of the scene on the screen.
Before projection, a different color is assigned to each sur-
face. The number of pixels with a given color divided by the
total number of pixels projected by the object or scene gives
us the relative area of the surface represented by this color.

To evaluate the behaviour of all the viewpoint quality
measures, three objects are analyzed: a cow (Figure 1), a cof-
feecup (Figure 2), and a ship (Figure 3). Figure 1 has been
organized as follows. Rows i, ii and iii show, respectively,
the behaviour of the heuristic, entropy and VMI measures.
Columns a and b show, respectively, the views with highest
and lowest goodness, and columns c and d show two differ-
ent viewpoint spheres. Figure 1 shows that the VMI mea-
sure performs better than the other ones, giving us the lateral
views as the best.

Figure 2 shows the behaviour of the heuristic, entropy
and VMI measures when the discretisation of the object
varies outstandingly. Columns (a) and (b) show the view-
point spheres computed on a uniform discretised coffeecup
and columns (c) and (d) are computed on the same coffeecup
with a more refined dish. We can clearly observe that heuris-
tic and entropy measures change notably their behaviour
with respect to the discretisation variation, while the VMI
measure is insensitive to it. This is an important added value
of the VMI measure.

In Figure 3, we show the difference between the KL mea-
sure (a-b) and the VMI measure (c-d). Due to the fact that
the ship model has a lot of non visible polygons, the KL
measure gives us a distorted vision of the object. Let us re-
member that the main difference between MI and KL is that
MI computes the distance between the projected areas of the
polygons and the area fraction seen by the set of polygons,
instead of the actual areas of the object for the KL case.

4.2. Selection of n Best Views

In this section, we present a new viewpoint selection algo-
rithm based on VMI. Its objective is to find the minimal rep-
resentative set of views for a given object or scene in order
to well understand it.

An ideal algorithm would be to select n views that maxi-
mize their JS-divergence, i.e., that maximize the loss of mu-
tual information of the channel. The basic idea underlying
this algorithm is to capture the maximum information of
the object with the minimum number of viewpoints. Due to
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(a.i) (b.i) (c.i) (d.i)

(a.ii) (b.ii) (c.ii) (d.ii)

(a.iii) (b.iii) (c.iii) (d.iii)

Figure 1: The most representative (a) and the most restrictive (b) views and viewpoint spheres (c-d) obtained respectively from
the heuristic (i), entropy (ii) and VMI (iii) measures. Red colors on the sphere represent high measure values (good viewpoints
for the heuristic and entropy cases and restrictive ones for the VMI case), blue colors represent low measure values (restrictive
viewpoints for the heuristic and entropy cases, good ones for the VMI case).

the fact that this optimization algorithm is NP-complete, we
adopt a greedy strategy by selecting successive viewpoints
that maximize the JS-divergence. This algorithm permits us
to find in an automated way the minimal set of views which
represent the object or scene. A maximum value of the JS-
divergence would be achieved when all the viewpoints are
clustered. That is, the MI of the channel would be zero.

Taking into account that the most representative view cor-
responds to the minimum VMI, we propose a greedy algo-
rithm consisting in finding a set of views where the mixed
distribution of the projected areas has a minimum VMI with
respect to the marginal probability distribution of O. The al-
gorithm proceeds as follows. First, we select the view v1
with distribution p(O|v1) corresponding to the minimum
VMI (most informative). Next, we select p(O|v2) such that
the mixed distribution p(O|v1)+p(O|v2)

2 also corresponds to
the minimum VMI, i.e., I(v̂,O) is minimum, where v̂ repre-
sents the clustering of v1 and v2. At each step, a new mixed
distribution p(O|v1)+p(O|v2)+...+p(O|vn)

n is produced until the
decrease of the VMI distance is lower than a given threshold
or a determined number of views is selected. Let us remem-
ber that the same weight has been assigned to all the views.
Another alternative method could be to weight them by their
projected area or other importance criteria.

Figures 4 and 5 present the six best views obtained with
our selection algorithm. The algorithm stops when the VMI
difference between two successive views is lower than a
given threshold. Its behaviour is also shown in Figure 6,
where we observe how the VMI values obtained for the suc-
cessive mixed distributions for Figures 4 and 5 converge
asymptotically to zero.

Another selection algorithm could be based on the clus-
tering algorithm described in Section 3.2, selecting the most
representative view for each cluster. However, due to its
computational cost, we present here a greedy strategy to par-
tition the sphere of viewpoints from the n best views selected
using the previous VMI algorithm. We proceed by assigning
each viewpoint to the ’nearest’ representative view, i.e., the
assignation is determined by the minimum JS-divergence be-
tween the viewpoint to be clustered and the selected views.
In Figure 7, we show the behavior of this clustering algo-
rithm for the coffeecup object (i) and for the cow (ii).

4.3. Unstable Viewpoints

In the volume rendering field, Bordoloi et al. [BS05] use the
JS-divergence as a view similarity measure and define the
view stability as "the maximum change in view that occurs
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(a.i) (b.i) (c.i) (d.i)

(a.ii) (b.ii) (c.ii) (d.ii)

(a.iii) (b.iii) (c.iii) (d.iii)

Figure 2: Viewpoint spheres obtained respectively from the heuristic (i), entropy (ii) and VMI (iii) measures. Viewpoint spheres
(a-b) are computed on a uniform discretised coffeecup and (c-d) on a coffeecup with a more refined dish.

(a) (b) (c) (d)

Figure 3: Viewpoint spheres obtained respectively from the KL (a-b) and VMI (c-d) measures.

(a) (b) (c) (d) (e) (f )

Figure 4: The six most representative views of the coffeecup object selected by the VMI algorithm.

(a) (b) (c) (d) (e) (f )

Figure 5: The six most representative views of the cow selected by the VMI algorithm.
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(a.i) (b.i) (c.i) (d.i)

(a.ii) (b.ii) (c.ii) (d.ii)

Figure 7: Viewpoint clustering spheres obtained by the clustering algorithm for the coffeecup object (i) and for the cow (ii).
Spheres (a-b) have two clusters and spheres (c-d) five.

Figure 6: VMI values obtained for the successive mixed dis-
tributions for Figures 4 and Figure 5.

when the camera position is shifted within a small neighbor-
hood." A small change corresponds to an stable viewpoint
and a large change to an unstable view.

From our framework, the use of Jensen-Shannon to evalu-
ate the stability of a viewpoint appears in a natural way. For
each viewpoint, we propose to evaluate the average varia-
tion of MI when two neighbor views are clustered. Thus, the
viewpoint stability is defined by

E(vi) =
1

Nn

Nn

∑
j=1

JS(p(O|vi), p(O|v j))≥ 0, (16)

where v j is a neighbor viewpoint of vi, Nn is the number of
neighbors of vi, and the conditional probabilities are respec-
tively weighted by p(vi)

p(vi)+p(v j)
= 1

2 and p(v j)
p(vi)+p(v j)

= 1
2 in the

JS-divergence.

Figure 8 shows the good behavior of the viewpoint stabil-
ity measure for the coffeecup and ship models.

5. Mesh Visibility and Saliency

We now want to analyze how the object is seen or per-
ceived from the set of viewpoints. Two aspects are consid-
ered: the degree of visibility of each polygon and its saliency
with respect to its neighbors. We introduce two different
perception-inspired measures of regional importance which
can be utilized in mesh simplification. Moreover, both mea-
sures can be used to drive the viewpoint selection, giving
more importance to the most visible or salient parts. Other
tasks such as rendering, animation, and compression can
benefit from mesh visibility and saliency computation.

5.1. Mesh Visibility

From the Bayes theorem p(v,o) = p(v)p(o|v) = p(o)p(v|o),
the mutual information (11) can be rewritten as

I(V,O) = ∑
o∈O

p(o) ∑
v∈V

p(v|o) log
p(v|o)
p(v)

= ∑
o∈O

p(o)I(V,o), (17)

where I(V,o), called as polygonal mutual information, rep-
resents the degree of correlation between the polygon o and
the set of viewpoints, and can be interpreted as the degree of
visibility of polygon o. The highest the value, the lowest the
polygon visibility, and viceversa.

We show the visibility map of three figures: the coffeecup
(9(i)), the angel (9(ii)), and the hebe (9(iii)). Observe how
the interior of the coffeecup, the sides of the angel neck, and
the hebe mouth and nose turn towards red (less visible parts).
Meanwhile highly visible surfaces like the bottom of the dish
or the back of the angel are blue indicating highly visible
areas.
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(a.i) (b.i) (c.i) (d.i)

(a.ii) (b.ii) (c.ii) (d.ii)

Figure 8: More stable (a) and more unstable (b) views and unstability spheres (c-d) obtained for the coffeecup (i) and ship (ii)
objects. Red colors on the sphere represent high unstable values, blue colors represent low unstable values.

(a.i) (b.i) (c.i) (d.i)

(a.ii) (b.ii) (c.ii) (d.ii)

(a.iii) (b.iii) (c.iii) (d.iii)

Figure 9: Mesh visibility for the coffeecup (i), angel (ii) and hebe (iii) models.
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5.2. Mesh Saliency

We introduce now a measure of mesh saliency based on the
JS-divergence. Unlike [LVJ05], our approach formulates the
mesh saliency in terms of how the polygons are seen by the
set of viewpoints, i.e., according to the visual perception.

Similarly to the stability of a viewpoint (see Section 4.3),
for each polygon we propose to evaluate the average vari-
ation of JS between two polygons. Thus, the saliency of a
polygon is defined by

S(oi) =
1

No

No

∑
j=1

JS(p(V |oi), p(V |o j))≥ 0, (18)

where o j is a neighbor polygon of oi, No is the number of
neighbor polygons of oi, and the conditional probabilities
are respectively weighted by p(oi)

p(oi)+p(o j)
and p(o j)

p(oi)+p(o j)
in

the JS-divergence.

Figure 10 shows how the red parts as nose, mouth and
fingers for the angel and hebe models and the handle of the
coffeecup are showing the most salient surfaces. However,
blue parts of the models as the bottom of the coffeecup dish
and the back of the angel are showing the least salient values.

6. Conclusions and Future Work

In this paper, an information channel between a set of view-
points and an object has been introduced. We have shown
how viewpoint mutual information has led to several effi-
cient algorithms in viewpoint selection and mesh visibility
and saliency. This framework has integrated previous mea-
sures such as viewpoint entropy and Kullback-Leibler dis-
tance and has opened a wide range of applications. Exper-
imental results have shown the robustness of the presented
approach and the good behavior of the proposed measures.
In our future research, the importance provided by mesh vis-
ibility and saliency could be incorporated to viewpoint selec-
tion by weighting adequately the conditional probabilities.
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