
Expert Systems With Applications 202 (2022) 117185

A
0
n

Contents lists available at ScienceDirect

Expert Systems With Applications

journal homepage: www.elsevier.com/locate/eswa

Coverage area maximization with parallel simulated annealing✩

Narcís Coll ∗, Marta Fort, Moisès Saus
Graphics and Imaging Laboratory, Universitat de Girona, Campus Montilivi, Girona, 17003, Spain

A R T I C L E I N F O

Keywords:
Facilities placement
Service coverage
Multiple services
Covered area
Simulated annealing
Parallel GPU processing

A B S T R A C T

This study provides a system that determines where to locate 𝑘 disks-like services of radius 𝑟 so that they
globally cover as much as possible a region of demand. It is an NP-hard problem with notorious applications
in the facility location field when locating multiple warning sirens, cellular towers, radio stations, or pollution
sensors covering as much area as possible of a city or geographical region. The region of demand is assumed to
be delimited by a general polygonal domain, and the resolution strategy relies on a parallel simulated annealing
optimization technique based on a suitable perturbation strategy and a probabilistic estimation of the area
of the polygonal region covered by the 𝑘 disks in 𝑂(𝑘2) time. The system provides a good enough location
for the disks starting from an arbitrary initial solution with very reasonable running times. The proposal is
experimentally tested by visualizing the solutions, analyzing and contrasting their quality, and studying the
computational efficiency of the entire strategy.
1. Introduction

One of the main objectives of private companies and public entities
is to offer their services to as many citizens as possible with the
minimum investment. That is why it is essential to know where to place
their headquarters or service centers so that their locations optimize the
coverage they offer.

People seek to be covered in the broadest sense of the expression.
Indeed, this coverage may refer to mobile phones, electric charging
points, warning sirens, radio stations, pollution sensors, delivery sys-
tems, weather forecasts or medical coverage. Moreover, citizens expect
this coverage at home and wherever we do our daily or sporadic life.
It results in the necessity of covering large geographical areas. And, as
mentioned, both public and private entities have limited resources and
locating them strategically so that few services cover as much area as
possible is a clue element.

The study of facility location issues is also called location analysis.
It is a field of both operations research and computational geometry
that aims to locate several facilities in a given region in a way that
maximizes or minimizes some objective function related to the type of
facilities considered. Most of these problems consider that a demand
point is covered by a facility if the distance or travel time between them
is less than a given predetermined value, generally called the coverage
radius. As we previously mentioned, the coverage concept frequently
appears when planning the facilities’ location for both the public and
private sectors. Optimally, it would be desirable that all demand points

✩ Research supported by PID2019-106426RB-C31 of the Spanish Government.
∗ Corresponding author.
E-mail addresses: coll@imae.udg.edu (N. Coll), mfort@imae.udg.edu (M. Fort), moises_saus@hotmail.com (M. Saus).

become covered by at least one facility. But often, full coverage of
all demand in a region is not possible due to budgetary limitations in
the number of facilities to locate. Therefore, they aim at covering the
greatest possible extent of the demand region by efficiently managing
a limited set of resources.

Next, we present the background on the maximal coverage problem
together with the existing challenges in Section 1.1, specify the problem
solved in this paper in Section 1.2, explain the novelty of our contribu-
tion in Section 1.3, and finally describe the organization of the paper
in Section 1.4.

1.1. Background

The problem of locating a specific number of facilities to maximize
the amount of covered demand-region within an acceptable service
distance was formalized and introduced by Church and ReVelle (1974).
It was called the Maximal Covering Location Problem (MCLP) and
to solve it they consider two sets of discrete locations representing
the demand and the possible facility sites. Consequently, they convert
the MCLP to an integer linear program that allows some variations.
Variations come from: using different ways to determine the coverage
area of a potential facility or assigning weights to the sites according
to several factors and parameters. These problems are typically called
the maximal covering problems.

While the standard form of MCLP considers a finite set of candidate
locations for the facilities and a set of discrete points represent the
vailable online 13 April 2022
957-4174/© 2022 The Author(s). Published by Elsevier Ltd. This is an open access ar
c-nd/4.0/).

https://doi.org/10.1016/j.eswa.2022.117185
Received 12 July 2021; Received in revised form 10 January 2022; Accepted 1 Ap
ticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

ril 2022

http://www.elsevier.com/locate/eswa
http://www.elsevier.com/locate/eswa
mailto:coll@imae.udg.edu
mailto:mfort@imae.udg.edu
mailto:moises_saus@hotmail.com
https://doi.org/10.1016/j.eswa.2022.117185
https://doi.org/10.1016/j.eswa.2022.117185
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2022.117185&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Expert Systems With Applications 202 (2022) 117185N. Coll et al.
demand, its generalization, called the planar MCLP (Church, 1984),
allows both the facilities and the demand to be located anywhere in
the continuous plane. Solving exactly a maximal covering problem
assuming that the demand to cover exists anywhere in a continuous
region and that facilities can also be placed arbitrarily in a domain
is not feasible due to the NP-hard nature of the problem (Hochbaum,
1996; Megiddo et al., 1983). Therefore, several heuristic techniques
trying to obtain acceptable solutions have been proposed. For in-
stance, there exists a greedy algorithm for MCLP that chooses, at
each step, the location containing the highest number of uncovered
elements. Hochbaum (1996) prove that this greedy algorithm achieves
an approximation ratio of 1 − 1∕𝑒 and that it is the best-possible
polynomial-time approximation algorithm.

Other approaches start by partitioning the demand into several
small regions and distinguish between completely covered or uncov-
ered regions (Church, 1984; Murray, O’Kelly et al., 2008; Murray
& Tong, 2007; Tong & Murray, 2009). They assume that a facility
covers a demand region if it covers the whole region. Partially covered
regions are considered uncovered regions. It is typically called binary
coverage in contrast with partial coverage. Considering binary coverage
allows, first, obtaining a finite set of potential facility sites, referred
to as polygon intersection point set (PIPS), that contains an optimal
solution and, second, treating the problem as an integer linear program.
However, although binary coverage makes planar MCLP tractable, this
approach introduces significant errors because all the partially covered
regions, which may have a significant amount of covered area, are not
taken into account and ignored in the final solution (Wei & Murray,
2014).

Considering partial coverage is not trivial. That is why, several
papers consider the one-single facility case under partial coverage. Ma-
tisziw and Murray (2009) develop a technique for addressing the
location problem of siting a circular shape service area in a polyg-
onal region based on computing the medial axis of the region. Coll
et al. (2019) approximate the optimal position of a single circular
shape service area with bounded error in an unconnected domain with
holes bounded by linear or circular segments while considering partial
coverage. They provide an efficient algorithm to exactly compute the
overlap area of a circle and a polygonal domain and introduce the
covering area-map concept, see Section 2.1 for further details. Bansal
and Kianfar (2017) also study partial coverage concretely with rect-
angular service zones. Circular service zones are studied by Murray,
Matisziw et al. (2008). They avoid binary-covering by perturbing an
initial solution strategically relocating the disks one-by-one. They use a
computationally prohibitive geometry-based approach that, according
to Wei and Murray (2014), guarantees optimally only for some limited
cases because they have no control of the area covered by the disks.

The computational geometry field also studies similar problems. For
instance, Mount et al. (1996) provide an algorithm to compute the
maximum overlap between two simple polygons 𝑃 and 𝑄 with 𝑛 and 𝑚
vertices in 𝑂(𝑛2𝑚2) time. The maximum overlap between two polygons
can be approximately found, with high probability, in near quadratic
time with respect max(𝑚, 𝑛) with the algorithm presented by Cheong
et al. (2007) which uses random sampling techniques. Cheng and Lam
(2013) extend this approach to approximate the maximum overlap
between two polygons with multiple holes.

Therefore, the challenge is developing a fast and robust algorithm
to solve the maximum continuous coverage problem of the disk-shaped
facilities. It should not be based on a demand partition, nor on using a
discrete set of possible locations, nor on a local optimization heuristic
that does not lead to a global optimum. That is optimally locating 𝑘-
disks in a continuous domain that globally maximizes the area they
cover, which implies finding a way to measure the area covered by a
2

set of 𝑘-disks within a region.
Fig. 1. (a) Polygonal domain to be covered; (b) Domain partially covered by eight
facilities.

1.2. Problem definition

In this paper, we focus on a multiple-facility location problem. We
assume that demand is uniformly distributed on a polygonal domain,
 , which may be defined by several connected components that may
have holes. Holes may represent already covered areas or inaccessible
regions. We consider 𝑘 facilities with coverage radius 𝑟 represented by
𝑘 disk-like service areas of the same radius 𝑟. Facilities can be located
anywhere in the plane whenever they intersect  . Domain  may not
fully contain their service areas, and their union may not entirely cover
 . See Fig. 1 for an example.

We are interested in locating the 𝑘 disks so that their location max-
imizes the area of the parts of  covered by the disks or, equivalently,
minimizes the not-covered area of  . Indeed, if we denote by 𝑐1,… , 𝑐𝑘
the 𝑘 centers and by 𝐷(𝑐𝑖, 𝑟) the disk of center 𝑐𝑖 and radius 𝑟, we
aim to determine the 𝑘 centers 𝑐1,… , 𝑐𝑘 that maximize the area of the
overlap between  and the union of the 𝑘 disks. Hence, the value of the
objective function of our covering problem is given by the exact value
of

𝐴𝑟𝑒𝑎( ∩
𝑘
⋃

𝑖=1
𝐷(𝑐𝑖, 𝑟)).

Both, determining the optimal location of the 𝑘-centers, and obtain-
ing the exact value of the mentioned area are NP-hard problems (see
Sections 2 and 3).

Hence, our aims are:

(i) to provide a practical objective function that estimates the over-
lapped area of 

(ii) to present an heuristic method to obtain an approximate opti-
mal location for the 𝑘-centers that globally optimizes the used
objective function.

1.3. Our contribution

In this section, we provide the contributions of this paper while
highlighting the novelties of the solution.

We develop a fast and robust algorithm to solve the planar maximal
continuous coverage problem of 𝑘-disk-shaped facilities. It globally
maximizes the area they cover using parallelism and Simulated an-
nealing (SA). SA is a powerful technique widely used to find the
global maximum/minimum of a function. Since finding the optimal is a
computationally demanding task requiring a large volume of tests and
operations, it is a good option using parallelism. Programmable graphic
processing units (GPU) have high computational rates and notorious
parallel processing capability, making them powerful platforms for
accelerating these processes.

Concretely, the contributions of the paper are:

• An 𝑂(𝑘2)-time probabilistic estimation of the area of the polyg-
onal region of demand  covered by 𝑘 disks. This estimation
does not rely on a discretization of  , i.e., it does not use
binary-covering.



Expert Systems With Applications 202 (2022) 117185N. Coll et al.

1

o
a
i
S
p
c
e
f

2

p
m
p
S
n
o

2

p
b
a
d
c
m
g
o

p
a
a
a
h
s
T

d
A
c
e
c
f
c

c
i
m
𝐻

t
g

d
g
i
a

t
n
t
l
2

t
a

d

t

• A parallel heuristic algorithm, based on the SA technique, to
locate 𝑘 disks of radius 𝑟 on a continuous set of possible positions
so that their union covers  as much as possible. That is, the
estimation of the covered area has to reach its global maximum
at the obtained locations of the disks.

• A strategy for generating random perturbations of the 𝑘 disks that
ensures that each new disk intersects  .

• An experimental results collection showing the obtained results
and analyzing their quality.

• An experimental and theoretical time complexity analysis of the
proposed strategy demonstrating its efficiency.

.4. Paper organization

The paper is structured as follows. Section 2 summarizes the previ-
us work used in our strategy. In Section 3, we discuss the overlapped
rea computation and provide a usable formula that estimates its value
n 𝑂(𝑘2) time. We present and theoretically analyze our proposal in
ection 4. In Section 5, a modest interface developed to deal with the
roblem and test our strategy is presented together with a complete
ollection of experimental results showing the quality, scalability and
fficiency of the algorithm. Finally, in Section 6 some conclusions and
urther comments are provided.

. Related work

In this section we summarize the previous works with special im-
ortance to understand the proposed method. Section 2.1 contains the
ain ideas of the overlap-area map computation for one single disk
resented by Coll et al. (2019), that is the basis of part of our strategy.
ection 2.2 provides the main issues of the simulated annealing tech-
ique used in our proposal to obtain an approximation of the global
ptimum of our overlap area function.

.1. Overlap-area map computation

As mentioned before, Coll et al. (2019) approximate the optimal
osition of a single circular shape service area with a 𝜀 bounded error
y using 𝜀-overlap-area maps. They introduce the concept of uniform
nd nonuniform overlap-area maps. A (uniform) overlap-area map is a
iscrete graph that maps each center 𝑐 of a uniform grid of square cells
overing  to the overlap area 𝐷(𝑐, 𝑟) ∩  . Nonuniform overlap-area
aps use grids obtained with a global grid refinement method. The 𝜀

uarantees that the obtained solutions were 𝜀 approximations of the
ptimal solution.

Computing the overlapped area between a disk 𝐷(𝑐, 𝑟) and the
olygonal domain  is not trivial when partial coverage is taken into
ccount and was a clue element of their algorithm. They developed
n exact algorithm that computes the intersection area between a disk
nd a piecewise circular domain. Piecewise circular domains may have
oles and unconnected regions delimited by line segments or circular
ectors defining the edges connecting one vertex with the next one.
he algorithm to compute the overlap area traverses the edges of

per order, considering one component of  after the other. They
etect whether the analyzed edge intersects the boundary of 𝐷(𝑐, 𝑟).
t these intersecting edges (or the ending edge of a component), they
ompute the area of 𝐷(𝑐, 𝑟) ∩  covered by the sequence of analyzed
dges since the previously intersecting edge (or the starting edge of the
omponent). The exact overlapped area is obtained in 𝑂(𝑛) time with
ew calculations done at each of the 𝑛 edges defining  whenever we
an traverse  via adjacent edges.

Moreover, they describe a GPU implementation of the overlap area
omputation. Indeed, they compute the overlap-area maps in parallel
n the GPU and experimentally and theoretically prove that it is much
ore efficient than the correspondent sequential version. To obtain a
×𝑊 uniform overlap-area map, they use a kernel that has as input: (i)
3

c

he coordinates of the bottom-left corner of the region covered by the
rid defining the map; (ii) the size of the grid cells; and (iii) the domain
stored in two arrays, one with the vertices coordinates and the other

escribing its components and holes. This kernel is executed by a 𝐻×𝑊
rid of threads and each thread is identified by a two dimensional
nteger index (𝑖𝑑𝑥, 𝑖𝑑𝑦) ∈ [0,𝐻) × [0,𝑊 ) that directly associates it to

cell of the considered grid. Each thread computes the center 𝑐 of
the cell it represents and then computes the area of  covered by the
disk centered in 𝑐. The area is computed with the before-mentioned
algorithm and then stored in a 𝐻 ⋅ 𝑊 array associated with the grid
(linearized in a row first fashion). The array of areas is the kernel
output. Note that the grid cell centers are computed on the fly and not
stored for not being further needed.

2.2. Simulated annealing

Simulated annealing (SA) is a metaheuristic stochastic optimization
technique for approximating the global optimum of an objective func-
tion (𝑥). Usually approximates the minimal of an objective function
hat is called energy. Kirkpatrick et al. (1983) argue that this tech-
ique tries to imitate the annealing process used in metallurgy. Since
hen, it has been used to solve many different facility location prob-
ems (Allahyari & Azab, 2018; Davari et al., 2011; Nasab & Mobasheri,
013).

At each step, the SA technique considers some new state 𝑥′, close
o the current state 𝑥, and probabilistically decides between staying
t 𝑥 or moving to 𝑥′. The process performs, at most, a predefined

maximum number of steps but can terminate earlier if the energy of
the current state is low enough. The probability of transition from 𝑥
to 𝑥′ depends on their energy, (𝑥), (𝑥′) and a global parameter 𝑇
called temperature that decreases while the number of steps increases.
Therefore, the sequence of changes between states can be viewed as a
Markov chain because the probability of transition between states only
depends on the current state and not on the previous ones. Certainly,
the relevant aspects of a SA process are the three following ones:

1. The election of the initial temperature 𝑇0 and its decreasing
model
There is no general way to determine the best option for the
starting temperature 𝑇0. The general recommendation is that it
has to be large enough. Often, an approximation of the difference
between the maximum and minimum values of the objective
function is used. Regarding how it should decrease, some papers
use a multiplicative scheme in which the temperature follows a
geometric progression and some others a logarithmic scheme.
For the multiplicative one, the formula to obtain 𝑇𝑗 , the temper-
ature of step 𝑗, is 𝑇𝑗 = 𝛼𝑇𝑗−1, with 𝛼 ∈ [0.9, 1). However, for the
logarithmic schedule 𝑇𝑗 = 𝑇0

log(𝑗+1) . According to Hajek (1988),
the logarithmic scheme converges to the global minimum if 𝑇0 is
greater than or equal to the suitably defined depth of the deepest
local, but not global, minimum state.

2. The random generation of the new state 𝑥′ No general indi-
cations are given. In some papers adaptive neighborhoods are
considered (Tavares et al., 2011).

3. The acceptance criterion of the new state 𝑥′ If 𝑥′ improves 𝑥,
its energy (𝑥′) is lower than (𝑥), 𝑥′ is accepted. Otherwise, if
𝑥′ deteriorates 𝑥 and (𝑥) < (𝑥′), 𝑥′ is accepted with probability
equal to exp

(

−(𝑥′)−(𝑥)
𝑇𝑗

)

.

Indeed, this process can also be used to find a global maximum of
an objective function. In this case, the probability to accept 𝑥′ when it
eteriorates 𝑥 should be exp

(

(𝑥′)−(𝑥)
𝑇𝑗

)

.
The SA process leads to a global optimal, but it is a computa-

ionally demanding technique. Usually, the generation of 𝑥′, and the

omputation of its energy, are time-consuming processes. Moreover, the



Expert Systems With Applications 202 (2022) 117185N. Coll et al.

r
t
b

w

i
𝑥

t
r

f
𝐴

(

a
e

number of steps performed to obtain good enough solutions tends to
be considerable. Therefore, the literature contains several approaches
to parallelize the SA. We categorize them into the four following types:

1. Domain decomposition (Zhang et al., 2019): they subdivide the
domain and associate each subdomain to a different processor.
Then, each processor searches for an optimal in its subdomain to
finally obtain the global minimum from the minimums obtained
by all processors.

2. Energy evaluation (Kravitz & Rutenbar, 1987): they distribute
the computation of the objective function among the set of
processors.

3. Asynchronous Markov chains (Ferreiro et al., 2013; Lee & Lee,
1996; Onbaoğlu & Ozdamar, 2001): each processor launches a
Markov chain and obtains the global minimum from the mini-
mums obtained by all processors.

4. Synchronous Markov chains (Chu et al., 1999; Czech et al.,
2010; Ferreiro et al., 2013; Lee & Lee, 1996; Onbaoğlu & Oz-
damar, 2001; Ram et al., 1996): each processor launches its own
Markov chain, processors exchange information every certain
number of steps, and finally obtain the global minimum from
the minimums of all processors.

Several of these works take advantage of the capabilities of the
Graphic Processing Units (GPUs) to use them for general-purpose pro-
gramming. Concretely (Fabris & Krohling, 2012; Ferreiro et al., 2013;
Sonuç et al., 2017, 2018; Wei et al., 2015) have been devoted to the
parallelization of the SA for Nvidia GPUs in CUDA and to solve several
optimization problems.

3. Overlapped area

In this section, we determine a way to compute the overlapped
area that allows us to define the objective function of our problem.
We start setting some notation and discussing the overlapped area
computation. Section 3.1 contains a probabilistic approach to estimate
the overlapped area that defines the formula of our objective function.
Finally, Section 3.1.1 explains how to evaluate this objective function
in 𝑂(𝑘2) time.

We denote by 𝑘 the number of disk-like services to locate, 𝑟 the disk
adius, 𝐷(𝑐, 𝑟) the disk of center 𝑐 and radius 𝑟,  the polygonal domain
o be covered, 𝐼(𝑐, 𝑟) the part of  contained in 𝐷(𝑐, 𝑟),  the bounding
ox of  ,  the polygonal domain  amplified with an offset of size 𝑟,

and  the bounding box of  . According to this notation disks 𝐷(𝑐, 𝑟)
ith 𝑐 ∉  ⊂  will not intersect  , i.e. for all 𝑐 ∉  𝐴𝑟𝑒𝑎(𝐼(𝑐, 𝑟)) = 0.

In our proposal, we consider configurations, 𝑥, of 𝑘 centers in ,
.e. 𝑥 = (𝑥1,… , 𝑥𝑘) ∈ 

𝑘
. To simplify the notation, given a configuration

, for every 1 ≤ 𝑖 ≤ 𝑘, we denote by 𝐷𝑖 the disk 𝐷(𝑥𝑖, 𝑟) and by 𝐼𝑖 the
overlap region 𝐼(𝑥𝑖, 𝑟).

The problem of finding the optimal location of 𝑘 disks can be
stated as the problem of finding the configuration 𝑥 = (𝑥1,… , 𝑥𝑘) that
maximizes the function area of overlap between  and the union of the
disks:

(𝑥) = 𝐴𝑟𝑒𝑎( ∩
𝑘
⋃

𝑖=1
𝐷𝑖)

By applying the inclusion–exclusion principle, the area of overlap
can be computed as:

(𝑥) =
∑

1≤𝑖1≤𝑘
𝐴𝑟𝑒𝑎(𝐼𝑖1 ) −

∑

1≤𝑖1<𝑖2≤𝑘
𝐴𝑟𝑒𝑎(𝐼𝑖1 ∩ 𝐼𝑖2 )

+
∑

1≤𝑖1<𝑖2<𝑖3≤𝑘
𝐴𝑟𝑒𝑎(𝐼𝑖1 ∩ 𝐼𝑖2 ∩ 𝐼𝑖3 ) −⋯ (−1)𝑘𝐴𝑟𝑒𝑎(𝐼1 ∩⋯ ∩ 𝐼𝑘)

The evaluation of this objective function is an NP-hard problem. It
requires the computation of 𝑂(2𝑘) intersections between disks and the
4

polygonal domain  . Thus, we present an alternative objective function
that estimates, in polynomial time, the overlap area between  and the
union of the disks. The maximization of this function with the heuristic
method presented in Section 4 will provide an approximation of the
optimal location.

3.1. Estimated overlapped area

Aiming at estimating the overlapped area in polynomial time, in this
section, we propose to use an objective function that approximates the
overlapped area of  considering the area covered by every single disk
and by each pair of disks.

The objective function we propose is formulated as follows:

(𝑥) =
∑

1≤𝑖1≤𝑘
𝐴𝑟𝑒𝑎(𝐼𝑖1 ) −

∑

1≤𝑖1<𝑖2≤𝑘
𝐴𝑟𝑒𝑎(𝐼𝑖1 ∩ 𝐼𝑖2 ),

where 𝐴𝑟𝑒𝑎(𝐼𝑖1 ∩ 𝐼𝑖2 ) is a probabilistic estimation of the area of the
triple overlap  ∩𝐷𝑖1 ∩𝐷𝑖2 . The estimation is obtained from the disk–
disk overlap area 𝐴𝑜 = 𝐴𝑟𝑒𝑎(𝐷𝑖1 ∩ 𝐷𝑖2 ), as the sum of the part of 𝐴𝑜
hat is know to be contained in  plus a probabilistic estimation of the
emaining part of 𝐴𝑜.

The contribution of each of these parts can be deduced with the
ollowing reasoning, in which we denote by 𝐴𝑀 = max(𝐴𝑟𝑒𝑎(𝐼𝑖1 ),
𝑟𝑒𝑎(𝐼𝑖2 )) and 𝐴𝑚 = min(𝐴𝑟𝑒𝑎(𝐼𝑖1 ), 𝐴𝑟𝑒𝑎(𝐼𝑖2 )).

1. If the overlap area of a disk with  , 𝐴𝑀 , is bigger than the part
of the disk not overlapped with the other disk, whose area is
𝜋𝑟2 −𝐴𝑜, the disks intersection surely overlaps  . That is, when
𝐴𝑀 > 𝜋𝑟2−𝐴𝑜, the difference 𝐴𝑀−(𝜋𝑟2−𝐴𝑜) is necessarily in the
triple-overlap 𝐷𝑖1 ∩𝐷𝑖2 ∩  . The portion of the remaining disks-
intersection area, 𝐴𝑜 − (𝐴𝑀 − (𝜋𝑟2 − 𝐴𝑜)) = 𝜋𝑟2 − 𝐴𝑀 , that may
potentially be contained in  will probabilistically estimated.

2. When the inequality 𝐴𝑀 > 𝜋𝑟2 − 𝐴𝑜 does not hold, we know
nothing about the portion of 𝐴𝑜 contained in  . Hence, the
probabilistic estimation affects the whole area 𝐴𝑜.

3. Let 𝐴 be the area of overlap of a disk with  , then, the prob-
ability that a portion of the disk overlaps  is 𝐴

𝜋𝑟2
. Hence, the

probability that a portion of the disks is in the triple overlap is
𝐴𝑀
𝜋𝑟2

𝐴𝑚
𝜋𝑟2

.

Taking into account these observations, the triple overlap area,
𝐴𝑟𝑒𝑎(𝐼𝑖1 ∩ 𝐼𝑖2 ), is estimated with the following formula:

𝐴𝑟𝑒𝑎(𝐼𝑖1 ∩𝐼𝑖2 ) =

{

𝐴𝑀 − (𝜋𝑟2 − 𝐴𝑜) +
𝐴𝑀
𝜋𝑟2

𝐴𝑚
𝜋𝑟2

(𝜋𝑟2 − 𝐴𝑀 ), 𝐴𝑀 > 𝜋𝑟2 − 𝐴𝑜
𝐴𝑀
𝜋𝑟2

𝐴𝑚
𝜋𝑟2

𝐴𝑜, otherwise.

Our aim is, therefore, to heuristically determine the location 𝑥𝑜𝑝𝑡 ∈

𝑘

that maximizes the objective function . This process considers
several configurations 𝑥 and the objective function is evaluated for each
of them. Hence, it is important to determine (𝑥) as fast as possible.

3.1.1. Objective function evaluation
The time needed to evaluate the objective function is one of the clue

elements of the SA heuristic algorithms. Hence, it is worth analyzing its
computational cost and trying to find a way to reduce it. This section
analyzes this matter.

Given configuration a 𝑥, evaluating the objective function requires
computing 𝐴𝑟𝑒𝑎(𝐼𝑖1 ) for each of the 𝑘 disks and 𝐴𝑟𝑒𝑎(𝐷𝑖1 ∩ 𝐷𝑖2 ) for
each of the 𝑂(𝑘2) pairs of disks. Each of the 𝑂(𝑘2) latter values can
be obtained in constant time, hence obtaining all of them takes 𝑂(𝑘2)
time. However, the computation of each of the 𝑘 former ones requires
𝑂(𝑛) time, being 𝑛 the number of edges of  , according to Coll et al.
2019). Therefore, evaluating (𝑥) requires 𝑂(𝑘(𝑛 + 𝑘)) time.

To reduce its computation time and since the objective function is
n estimation of the desired value, we reject obtaining the 𝐴𝑟𝑒𝑎(𝐼𝑥𝑖 )
xactly, and use, instead, an approximated value obtained in 𝑂(1) time.

With this aim, we compute a uniform overlap area map covering 
in a preprocessing stage. The map defines a 𝐻 ×𝑊 uniform grid and,



Expert Systems With Applications 202 (2022) 117185N. Coll et al.

o
d
v
t

d
G

4

t
o
a
t
(
t
p

a
p
n
l

𝑥

i

𝑥

e
c
t
a
i
w
s
s
u
S

M
o
l
v
t

for every cell, it stores the 𝐴𝑟𝑒𝑎(𝐼(𝑐, 𝑟)) where 𝑐 denotes the cell center.
See Section 2.1 for further details. Now, given a configuration 𝑥, each
f the 𝑘 areas 𝐴𝑟𝑒𝑎(𝐼𝑖1 ) can be approximated in 𝑂(1) time. First, the
isk center 𝑥𝑖1 is located in the uniform grid in 𝑂(1) time. Then, the
alue 𝐴𝑟𝑒𝑎(𝐼𝑖1 ) is obtained in 𝑂(1) time by bilinear interpolation using
he area values stored in the cell containing 𝑥𝑖 and in its neighboring

cells.
Overall, the overlap area map and the probabilistic estimation of

the triple-overlapped region area, provided in Section 3.1, allows us to
evaluate (𝑥) in 𝑂(𝑘2) time. Latter, in Section 4.1.3 we provide further
etails on how the objective function is evaluated in parallel in the
PU.

. Proposal description

This section contains the description of our approach based on
he parallel simulated annealing to determine the global maximum
f the objective function. First, we provide a global overview of the
pproach, Section 4.1 details the SA algorithm with the generation of
he Markov chains (Section 4.1.1), the new configuration generation
Section 4.1.2), the objective function evaluation (Section 4.1.3) and
he parameter values determination (Section 4.1.4). Finally, Section 4.2
rovides the complexity analysis of the proposed strategy.

The heuristic method we propose to maximize the objective function
nd obtain an approximation of the optimal location uses the GPU
arallelism and the simulated annealing probabilistic technique. It does
ot require manual parameters tuning nor initial manual facilities
ocation and consists of the following stages.

I. Preprocessing stage: The overlap-area map, , defined on a
𝐻 × 𝑊 grid covering  is parallelly computed in the GPU by
using the algorithm of Coll et al. described in Section 2.1.

II. Starting location: An optimal cell center, 𝑐, of , with maxi-
mal area value, is determined. The 𝑘 facilities are, all, initially
centered at this cell center 𝑐. The starting configuration is set to
be 𝑥𝑖𝑛𝑖 = (𝑐,… , 𝑐).

III. Dispersive stage: A parallel simulated annealing algorithm to
maximize  run in the GPU. The parameter values guarantee
that it disperses the 𝑘 facilities throughout the polygonal domain
amplified with an 𝑟-offset,  . It automatically determines an
appropriate initial configuration 𝑥0 starting from 𝑥𝑖𝑛𝑖.

IV. Refining stage: The simulated annealing algorithm runs again
in the GPU starting with configuration 𝑥0 and with more conser-
vative parameter values. We assume that the solution obtained
when the algorithm converges accurately approximates 𝑥𝑜𝑝𝑡.

Stages I, III, and IV rely on two algorithms, the algorithm to compute
the overlap area map (Stage I) and the simulated annealing algorithm
(Stages III and IV), that run mainly in the GPU. Indeed, the overlap
area map of the preprocessing Stage I computed in the GPU is then
transferred to the CPU to determine 𝑥𝑖𝑛𝑖 in Stage II. Stage III starts
by determining several initial parameter values for the SA algorithm
in the CPU and with the initial configuration 𝑥𝑖𝑛𝑖 in the CPU. Then,
this information is transferred to the GPU. In there, 𝑥𝑖𝑛𝑖 is perturbed
with a dispersive SA algorithm until a stopping criterion holds and 𝑥0
is determined. Stage III ends by transferring 𝑥0 to the CPU. Stage IV
starts computing the parameter values for the more conservative SA al-
gorithm in the CPU from the already obtained 𝑥0. Again, the parameter
values are transferred to the GPU, where the SA algorithm runs again
until 𝑥𝑜𝑝𝑡 is obtained and then transferred back to the CPU.

Section 4.1 provides the details of the SA algorithm applied in
5

Stages III and IV.
4.1. Simulated annealing algorithm

The dispersive and refining stages (Stages III and IV) are the clue
elements of our algorithm because is where the SA algorithm takes
place. This section describes them in detail.

Our SA algorithm has as input parameters: the number of disk-like
services 𝑘, their radius 𝑟, the overlap area map , a maximal number of
steps 𝑆 to be done, and an initial configuration 𝑥 (𝑥 = 𝑥𝑖𝑛𝑖 in Stage III,
̃ = 𝑥0 in Stage IV) determining 𝑘 disks with nonempty intersection
with  , i.e. 𝑥 ∈ 

𝑘
. The configuration 𝑥𝑖𝑛𝑖 obtained in Stage II fulfills

this condition, and, as we will see, the algorithm guarantees it for 𝑥0.
Starting from 𝑥, a CUDA kernel executed by 𝑁 threads computes

n parallel 𝑁 Markov independent chains of the SA of length 𝐿. Then,
after the 𝐿 iterations, the threads are synchronized to extract the best
already obtained configuration among the 𝑁 threads used to update
̃. The kernel repeats this procedure at most 𝑆 time-steps and stops
as soon as a stopping criterion holds after 𝑠 ≤ 𝑆 synchronization steps.
The obtained configuration 𝑥 is postulated as the desired configuration,
i.e. 𝑥0 in Stage III or 𝑥𝑜𝑝𝑡 in Stage IV. To be able to generate the Markov
chains, the kernel receives several data from the CPU such as the initial
temperature 𝑇0, an initial perturbation radius 𝑅0, the radius-decreasing
scheme, the temperature-decreasing scheme, the maximal number of
steps 𝑆, the length 𝐿 of the Markov chains and the minimal desired
factor  of area covered. Moreover, it also receives the overlap area
map directly from the GPU.

The rest of the section is organized as follows. We explain how are
the Markov chains generated in CUDA in Section 4.1.1, how config-
urations are perturbed in Section 4.1.2, how the objective function is
evaluated in the GPU in Section 4.1.3, and, finally, how is the initial
temperature 𝑇0 and perturbation radius 𝑅0 are elected in Section 4.1.4.

4.1.1. Markov chains generation
Markov chains are generated in a per-thread level as it is explained

in this section. Each thread generates several Markov chains of 𝐿 > 0
iterations, each of them starting with a global optimal configuration 𝑥
stored in shared memory. To generate the Markov chains, each thread
identified by an integer 𝑖𝑑 locally stores its current best solution 𝑥𝑖𝑑 , a
current candidate 𝑥𝑖𝑑 and their objective function values 𝑜𝑖𝑑 = (𝑥𝑖𝑑 )
and 𝑜𝑖𝑑 = (𝑥𝑖𝑑 ). Each Markov chain starts with 𝑥𝑖𝑑 = 𝑥 and 𝑥𝑖𝑑 = 𝑥. At
ach iteration, the current configuration 𝑥𝑖𝑑 is perturbed defining a new
onfiguration 𝑥′𝑖𝑑 , for which 𝑜′𝑖𝑑 = (𝑥′𝑖𝑑 ) is computed. If 𝑥′𝑖𝑑 is better
han the current best solution 𝑥𝑖𝑑 , i.e. 𝑜′𝑖𝑑 > 𝑜𝑖𝑑 , 𝑥𝑖𝑑 and 𝑜𝑖𝑑 are updated
nd set to 𝑥′𝑖𝑑 and 𝑜′𝑖𝑑 , respectively. Moreover, 𝑥𝑖𝑑 is also set to 𝑥′𝑖𝑑 if
t is probabilistically accepted even though it does not improve 𝑥𝑖𝑑 . A
orst solution 𝑥′𝑖𝑑 is accepted if a generated random value 𝑝 ∈ (0, 1) is

maller than exp((𝑜′𝑖𝑑−𝑜𝑖𝑑 )∕𝑇 ). Parameter 𝑇 is the SA temperature which
tarts being 𝑇0 (see Section 4.1.4) and diminished at each iteration by
sing a multiplicative scheme in Stage III and a logarithmic scheme in
tage IV:

Stage III: 𝑇 = 𝛼𝑇 𝑇 = 𝛼𝑛𝑖𝑡𝑇 𝑇0 Stage IV: 𝑇 =
𝑇0

log(𝑛𝑖𝑡 + 1)
,

where 𝑛𝑖𝑡 represents the total number of iterations already done, i.e. at
the iteration 𝑙 ≤ 𝐿 of the synchronization step 𝑠 it is calculated as
𝑛𝑖𝑡 = (𝑠 − 1)𝐿 + 𝑙. Therefore, the more iterations are done the lower
is the probability to accept a worse solution.

Every 𝐿 iterations, the threads are synchronized to compute new
arkov chains starting from the best solution obtained among all

f them. The information generated in each Markov chain is stored
ocally in each thread and is not accessible for the others threads. Only
ariables stored in global and shared memory are accessible for all the
hreads. Hence, we use a real variable 𝑜 stored in shared memory to

maintain the maximum among all the 𝑜𝑖𝑑 values locally stored in the
threads. CUDA has a read–write atomic maximum operation that allows
obtaining a global maximum. Read–write atomic operations guarantee

that once one thread reads the value stored in the variable, no other



Expert Systems With Applications 202 (2022) 117185N. Coll et al.

l
w
v
t

i
s
a

b
s
r
𝑘
t

𝑠

w
A

s
o

i
h
c
u

𝑥

i

i

4

w
o
f
i

thread reads it until the first one has finished writing in that variable.
Therefore, once a thread has finished its 𝐿 iterations of the current step,
it performs an atomic maximum operation in 𝑜. Then, it waits until all
the threads have finished doing this action by using a synchronization
point. Once all the threads have finished, 𝑜 stores the best 𝑜𝑖𝑑 among
all the threads. Now, we have to determine which configuration 𝑥𝑖𝑑
eads to 𝑜 and update 𝑥 accordingly. With this aim, each thread checks
hether its 𝑜𝑖𝑑 coincides with 𝑜. If it is so, it stores its 𝑖𝑑, in another
ariable 𝑖𝑑 also stored in shared memory, and waits until the rest of
he threads have finished doing it. When all the threads have done, 𝑖𝑑

stores a thread 𝑖𝑑 whose 𝑜𝑖𝑑 equals 𝑜. Then, this thread 𝑖𝑑 stores its 𝑥𝑖𝑑
n 𝑥 and the rest await it. At this point, it is checked, according to a
topping criterion, whether a new step is needed. When no further steps
re required, the desired solution is assumed to be 𝑥.

The process ends when 𝑆 steps, with 𝐿 iterations each, have already
een done. Or when the SA algorithm has obtained a good enough
olution. That is when the area covered by the current configuration
eaches a certain level concerning the maximal potential area to cover
𝜋𝑟2 specified by the minimal desired factor of area covered  . Indeed,
he stopping criterion can be mathematically formulated as follows:

= 𝑆 or 𝑜𝑠 ≥  ⋅ 𝑘𝜋𝑟2,

here 𝑠 ≥ 1 and 𝑜𝑠 denotes the value of 𝑜 once the 𝑠th step has finished.
ccordingly, 𝑜0 is (𝑥𝑖𝑛𝑖) in Stage III and (𝑥0) in Stage IV.

The initial configuration and its objective function value, initially
stored in 𝑥 and 𝑜, are input parameters of the kernel. And indeed,
the final values of 𝑥 and 𝑜 are the outputs of the kernel. Hence the
initial and final values stored in 𝑥 and 𝑜 have to reachable from the
CPU. With this aim, they are stored in global variables, concretely, in
a global memory real array 𝑥𝑔 of size 2𝑘 and a real global variable 𝑜𝑔 .
The initial values of 𝑥𝑔 and 𝑜𝑔 are set from the CPU and transferred
to shared memory in 𝑥 and 𝑜 by using the standard strategy used to
transfer information from global to shared memory. Finally, the final
values of 𝑥 and 𝑜 are similarly transferred to global memory into 𝑥𝑔
and 𝑜𝑔 and finally read from the CPU.

Finally we should mention that the strategy used to obtain 𝑜 forces
calling the kernel by using a single CUDA block. The threads of a CUDA
kernel are grouped in blocks according to the programmer’s indications.
The threads in the same block run in the same core and can be synchro-
nized in a kernel execution. However, there is no way to synchronize
threads of different blocks within a kernel. The programmer cannot
control how blocks are distributed among the cores or the sequence
they are processed. Therefore, to be properly obtained 𝑥, all the threads
must belong to the same CUDA block.

4.1.2. New configuration generation
Generating a new configuration is a clue aspect of the SA algo-

rithms. An ad hoc process is required to obtain a fast and robust SA
algorithm. In this section, we explain how to create new configurations.

The new configurations are generated trying to avoid overlapping
pairs of disks because they are undesirable according to our purpose
and the defined objective function. It is reasonable because we aim
at maximizing the area of  covered by 𝑘 disk-like services by using
an objective function that sums the area of  covered by each disk
and subtracts a pretty accurate estimation of the area of  covered by
each pair of disks. Therefore, given a configuration 𝑥, the perturbation
cheme attempts to separate the overlapping disks of 𝑥 while accepts
nly disks intersecting  , that is, centered at a point of  .

To compute a perturbation of 𝑥, a random point 𝑥′𝑖 ∈ 𝐷(𝑥𝑖, 𝑅𝑖) ∩ 
s generated for each center 𝑥𝑖 of 𝑥. Devroye (1986) (page 234) explain
ow to obtain a uniformly distributed random point in 𝐷(𝑥𝑖, 𝑅𝑖). Ac-
ordingly, two real random values 𝜈 and 𝜈′ in (0, 1) are generated by
sing cuRAND1 CUDA-library and the perturbed center 𝑥′𝑖 becomes:

′
𝑖 = 𝑥𝑖 + (𝜌 cos 𝛼, 𝜌 sin 𝛼) where 𝛼 = 2𝜋𝜈 and 𝜌 = 𝑅𝑖

√

𝜈′.

1 https://developer.nvidia.com/curand.
6

Once 𝑥′𝑖 ∈ 𝐷(𝑥𝑖, 𝑅𝑖) has been obtained, it is checked whether 𝐷(𝑥′𝑖 , 𝑟)
intersects  , i.e. 𝑥′𝑖 ∈  . It is done by using the overlap area map
according to the details given in Section 4.1.3. If the area obtained is
not 0, 𝑥′𝑖 is accepted. But, if it is 0, it is assumed that 𝐷(𝑥′𝑖 , 𝑟) does not
ntersect  , the perturbation is rejected and 𝑥𝑖 is not updated.

Value 𝑅𝑖 depends on 𝑥𝑖 and is obtained as the product 𝛽𝑖𝑅, where 𝑅
s the SA perturbation radius, and 𝛽𝑖 is a refactoring value that is obtained

from an approximation of the area of 𝑃 contained in the disk 𝐷𝑖 and
not contained in any other disk 𝐷𝑗 . The refactoring value is used to
determine how good is the disk 𝐷𝑖. That is, the better 𝐷𝑖, the less it
has to be perturbed. Next, we explain how 𝑅 and 𝛽𝑖 are computed.

• The perturbation radius 𝑅 is initialized to the CPU-given value 𝑅0
(see Section 4.1.4). Then, it diminishes at each synchronization
step 𝑠 of the SA algorithm by using a multiplicative scheme in
Stage III and a logarithmic scheme in Stage IV:

Stage III: 𝑅 = 𝛼𝑅𝑅 = 𝛼𝑠𝑅𝑅0 Stage IV: 𝑅 =
𝑅0

log(𝑠 + 1)
.

Hence, the perturbation radius diminishes exponentially in
Stage III and rapidly tens to 0. Whereas in Stage IV, it decreases
faster at the very beginning but tends to 0 much slower.

• To determine 𝛽𝑖 we use 𝑜𝑤𝑛𝐴𝑟𝑒𝑎(𝐷𝑖), the area of 𝑃 contained in
the disk 𝐷𝑖 and not contained in any other disk 𝐷𝑖′ . This area can
be roughly approximated by:

𝑜𝑤𝑛𝐴𝑟𝑒𝑎(𝐷𝑖) ≈ 𝐴𝑟𝑒𝑎(𝐼𝑖) −
𝑘
∑

𝑖′=1
𝑖′≠𝑖

𝐴𝑟𝑒𝑎(𝐼𝑖 ∩ 𝐼𝑖′ )

Note that the principle of inclusion–exclusion should be applied
using the intersections of three or more disks to calculate it
accurately. These intersections, for time-consuming reasons, are
obviated in the approximation. Then, the 𝑜𝑤𝑛𝐴𝑟𝑒𝑎(𝐷𝑖) value is
not necessarily positive. In fact, 𝑜𝑤𝑛𝐴𝑟𝑒𝑎(𝐷𝑖) ∈ [−(𝑘− 1)𝜋𝑟2, 𝜋𝑟2].
This value is used to compute the refactoring value 𝛽𝑖 ∈ [0.01, 2]
by using the formula:

𝛽𝑖 = max
(

0.01,min
(

2, 1 −
𝑜𝑤𝑛𝐴𝑟𝑒𝑎(𝐷𝑖)

𝜋𝑟2

))

.

Observe that when the minimum is 0, disk 𝐷𝑖 is fully contained
in  and does not overlap any other disk 𝐷𝑗 hence, it covers the
maximum area and, in principle, does not needs to be perturbed.
But to let the SA continue, a small perturbation is still allowed.

.1.3. Objective function evaluation
Threads evaluate the objective function  for a specific configura-

tion 𝑥 = (𝑥1,… , 𝑥𝑘) by taking into account the aspects mentioned in
this section.

Each thread extracts the 𝑘 values approximating 𝐴𝑖 = 𝐴𝑟𝑒𝑎(𝐼𝑖) from
the overlap area map, and exactly computes the area of overlap of the
𝑘(𝑘 − 1)∕2 pairs of disks. To obtain the 𝑘 values 𝐴𝑖, as fast as possible,

e make use of the texture fetching CUDA-functions after binding the
verlap area map computed in Stage I to a texture. We set the texture
etching function so that when the value of a given center 𝑥𝑖 is fetched,
t returns:

• 0 if 𝑥𝑖 does not fall in the texture boundaries, i.e. 𝑥𝑖 ∉ 
• the bilinear interpolation of the values stored in the neighborhood

of 𝑥𝑖, otherwise.

This texture is fetched during the objective function evaluation and also
when a center is perturbed to check whether the new disks intersect
 or not. During the computation of (𝑥), the fetched values 𝐴𝑖 are
accumulated in a local real variable 𝑎𝑟𝑒𝑎𝑆𝑢𝑚 and also stored in the 𝑖th
position of a local real array of size 𝑘, 𝑎, i.e. 𝑎[𝑖] = 𝐴𝑖.

Thereafter, the area of overlap 𝐴𝑟𝑒𝑎(𝐼𝑖1 ∩ 𝐼𝑖2 ) is computed for each
pair of disks 𝐷𝑖1 , 𝐷𝑖2 satisfying 1 ≤ 𝑖1 < 𝑖2 ≤ 𝑘. These overlapping areas
are subtracted from 𝑎𝑟𝑒𝑎𝑆𝑢𝑚 and from the 𝑖 th and 𝑖 th positions of the
1 2

https://developer.nvidia.com/curand


Expert Systems With Applications 202 (2022) 117185N. Coll et al.

a

r
m

s
w
a
t
m
t

n
t
e
t

𝑂

a

A
m
l
r
t
m
a
l

b
t
o
n
a
t
r

t
m
w
e
r
e
𝑂
m
w
𝑂
f
i
t
t
l
t

𝑂

w
t
𝜏

c
i
H
b
t
m

𝑎 array. Once all the pairs have been processed, 𝑎𝑟𝑒𝑎𝑆𝑢𝑚 = (𝑥) and 𝑎[𝑖]
contains the 𝑜𝑤𝑛𝐴𝑟𝑒𝑎(𝐷𝑖) value needed to generate a new configuration
s explained in Section 4.1.2.

Note that the threads store this area vector for each of the configu-
ations they locally maintains while generate a Markov chain, i.e. they
aintain 𝑎̃𝑖𝑑 , 𝑎𝑖𝑑 and 𝑎′𝑖𝑑 . Moreover, when the threads are synchronized

at after 𝐿 iterations, the 𝑎̃𝑖𝑑 vector of the thread defining the new value
of 𝑥̃ has to be also transferred to a shared memory float vector, 𝑎, to be
used at the next step. When the SA ends, this vector is transferred to a
global memory array and then to the 𝐶𝑃𝑈 . The values obtained at the
end of Stage III are used to initialize the vector at Stage IV. At Stage III
it is initialized to 0.

4.1.4. Parameter values determination
SA algorithms lead to globally optimal solutions, but they need to

use a suitable perturbation strategy and the proper parameter values.
In this section, we explain how to set the parameter values.

The initial values 𝑇0 and 𝑅0 for the temperature and perturbation
radius respectively of the SA are set automatically in the CPU as
follows:

Commonly, the initial temperature 𝑇0 of a SA algorithm is an ap-
proximation of the difference between the maximum and the minimum
values of the objective function, see Section 2.2. In our case, this
difference corresponds to the minimum between 𝑘𝜋𝑟2 and the area of
 . But, taking into account that, in standard cases, the value 𝑘𝜋𝑟2 is
not much greater than the area of  , we initialize 𝑇0 to 𝑘𝜋𝑟2 in both
stages.

The radius 𝑅 plays a crucial role in SA algorithms, but there is no
general indication to determine it. What is known is that to have a
dispersive SA, 𝑅 must be much bigger than when a more conservative
SA is desired. In general, the worst a configuration 𝑥 is, the bigger
𝑅 should be. The dispersive stage, Stage III, starts from 𝑥𝑖𝑛𝑖, which
has all the disks centered at the same point, and it is expected to
scatter the disks all over the domain. Hence, we make the initial radius
proportional to the longest edge of the bounding-box  . However, it
cannot be too big because disks have to move in a somehow controlled
manner. Therefore, in the dispersive stage, 𝑅0 is set by 0.1, being 
the length of the longest edge of the bounding-box of  . Meanwhile,
the refining stage, Stage IV, starts from the configuration obtained
at the dispersive stage 𝑥0 and only refines it. In this case, 𝑅0 is still
et proportional to , but also to the improvement possibilities of 𝑥0,
hich are execution-dependent. The improvement possibilities of 𝑥0
re complementary to the quality of 𝑥0 which can be quantified as
he ratio of the configuration objective-function value divided by the
aximum of the objective function. Accordingly, in the refining stage,

he perturbation radius 𝑅0 is initialized by 0.1(1 − (𝑥0)∕(𝑘𝜋𝑟2)). In
Summary, we initialize 𝑅0 as follows:

Stage III: 𝑅0 = 0.1 Stage IV: 𝑅0 = 0.1

(

1 −
(𝑥0)
𝑘𝜋𝑟2

)

.

4.2. Complexity analysis

One of our aims was to obtain a fast algorithm, in this section,
we provide the theoretical complexity analysis of the algorithm to
demonstrate, theoretically, that we succeed.

To provide the complexity analysis of our approach, we have to
analyze its four stages. Coll et al. (2019) study the complexity of Stage I.
Stage II only stores and traverses the overlap area map generated in
Stage I, and, hence, requires 𝑂(𝐻𝑊 ) space and time. In stages III
and IV, the CPU only transfers the configuration information to and
from the GPU and calls the kernel. Its CPU time and space complexity
is 𝑂(𝑘). Then, the kernel performs its work in the GPU. Therefore, along
this section, we provide the space and time complexity analysis of the
kernel called in Stages III and IV.

Let us start with the space complexity. During the kernel execution,
the GPU stores: the 𝐻×𝑊 real overlap area map in texture memory, 𝑇 ,
7

0 o
𝑅0, 𝑘, 𝑟, the 2𝑘 real values defining the global optimal solution 𝑥𝑔 , its
objective function 𝑜𝑔 and also its own area vector 𝑎𝑔 which is defined
by 𝑘 real values. The 3𝑘 + 1 values associated to the configuration are
stored in global memory, meanwhile the constant values are stored in
constant memory. Indeed, the kernel also needs 3𝑘 + 1 float values
in shared memory to store 𝑥, 𝑜 and 𝑎. Finally, each of the 𝑁 thread
stores its current best solution 𝑥𝑖𝑑 , its current candidate 𝑥𝑖𝑑 , the new
perturbation configuration 𝑥′𝑖𝑑 and their own area vectors and objective
function values, i.e. 𝑎𝑖𝑑 , 𝑎𝑖𝑑 , 𝑎′𝑖𝑑 , 𝑜𝑖𝑑 , 𝑜𝑖𝑑 and 𝑜′𝑖𝑑 . They use 9𝑘 + 3 float
values, 3𝑘+1 values for each configuration. Moreover, each thread also
eeds some other auxiliary variables such as those needed to compute
he two-disks overlap area, the threshold evaluation, the random values
xtraction or the 𝑅 and 𝑇 values, which represent 𝑂(1) values. Hence,
he GPU memory requirements of this algorithm are

(𝐻𝑊𝑡 + 𝑘𝑔 + 𝑘𝑠 + 𝑘𝑙 + 1𝑐 ),

where subindices 𝑡, 𝑔, 𝑠, 𝑙 and 𝑐 indicate texture, global, shared, local
nd constant memory, respectively.

Concerning the time complexity, there are several factors to analyze.
n important aspect to consider is the number of accesses to the global
emory to be done. In our case, most of the information is in shared,

ocal, texture, or constant memory and have fast accesses. Threads only
ead and write to global memory at the very beginning and the end of
he kernel call when 𝑥𝑔 , 𝑎𝑔 and 𝑜𝑔 are transferred from global to shared
emory first, and from shared memory to global memory when the SA

lgorithm ends. Afterwards, threads read information from shared or
ocal memory.

The most time-expensive issue of our algorithm is obtaining the
est solution found up at each step, every 𝐿 iterations. At this point,
he kernel performs 𝑘 atomic operations at 𝑜. In principle, atomic
perations can make the algorithm behave sequentially. However, this
ot always happens because threads may reach the atomic operation
t different times. As we show in the experimental results, Section 5,
his is our case. The synchronization is worth it and does not affect the
unning time.

On the other hand, our algorithm performs 𝑂(𝑘) reads and writes
o global memory to transfer the information from and to the shared
emory. Shared memory is read 𝑆 times by each of the 𝑁 threads
hen 𝑥, 𝑎 and 𝑜 are read at the beginning of each step. Meanwhile, at
ach step, only one thread overwrites its 3𝑘+1 values. It gives 𝑂(𝑘𝑆𝑁)
eads and 𝑂(𝑘𝑆) writes to shared memory. Whereas, at each iteration,
ach thread does one atomic operation to shared memory, which gives
(𝑆𝑁) atomic operations to shared memory. Finally, concerning local
emory, at each iteration each thread generates a new configuration
ith its associated information 𝑥′𝑖𝑑 , 𝑜′𝑖𝑑 and 𝑎′𝑖𝑑 . Determining it takes
(𝑘2) time and requires 𝑂(𝑘2) reads and writes to local memory apart

rom 𝑂(𝑘) fetches to texture and 𝑂(𝑘) reads to constant memory. Since,
n the worst-case, 𝐿𝑆 iterations are done, this per-thread analysis leads
o 𝑂(𝑘2𝐿𝑆) accesses to local and constant memory and 𝑂(𝑘𝐿𝑆) to tex-
ure memory. Moreover, the 𝑁 threads perform 𝑂(𝑘2𝐿𝑆𝑁) accesses to
ocal memory and 𝑂(𝑘𝐿𝑆𝑁) to constant or texture memory. Therefore,
he time complexity of the kernel used in Stages III and IV is

(𝑘𝜏𝑔 + 𝑘𝑆𝑁𝜏𝑠 + 𝑆𝑁𝜏𝑎𝑠 + 𝑘2𝐿𝑆𝑁𝜏𝑙 + 𝑘2𝐿𝑆𝑁𝜏𝑐 + 𝑘𝐿𝑆𝑁𝜏𝑡)

here: 𝜏𝑔 , 𝜏𝑠, 𝜏𝑙, 𝜏𝑐 and 𝜏𝑡 represent the time needed to read or write
o global, shared, local, constant or texture memory, respectively, and
𝑎
𝑠 to perform an atomic operation into shared memory.

Note that the local memory requirements of our algorithm are
onsiderably large. When local memory is not sufficient, global memory
s automatically used, notoriously slowing the algorithm performance.
ence, using too many threads may slow the algorithm running time
ecause the local memory requirements depend on the number of
hreads, 𝑁 . If 𝑁 is too big, part of the variables that should use local
emory will use global memory. Consequently, the correspondent part

f the 𝑂(𝑘2𝐿𝑆𝑁) accesses to local memory will directly be transformed



Expert Systems With Applications 202 (2022) 117185N. Coll et al.
Fig. 2. Polygonal domain.
to global memory accesses, and the running time of our algorithm will
notably increase.

In conclusion, the number of operations done by the algorithm
depends linearly on the number of threads 𝑁 , the length of the Markov
chains 𝐿 and the number of steps done 𝑆, and it is quadratic on the
number of disks 𝑘.

5. Experimental results

In this section, we analyze the performance of our proposal, not
only in terms of running times but also the quality of the solutions.
We provide the experimental settings in Section 5.1. Next, we present
the interface developed to deal with the problem, test the method and
visually inspect the obtained solutions in Section 5.2. In Section 5.3,
we discuss the influence of the SA algorithm parameters on the running
times and the obtained solution. In Section 5.4, we analyze the influ-
ence of the original problem parameters such as the polygonal domain
or the number or radius of the disk-like facilities considered. Finally,
in Section 5.5 we evaluate the goodness of solutions obtained.

5.1. Experimental settings

The implementation language used to program the algorithm pre-
sented has been C++ with Cuda C for the parallel parts, and OpenGL
for the visualization process. The algorithm has run in an Intel Core
i7-7700 CPU @3.6 GHz with 32 GB of RAM and a GPU Nvidia GTX
1080 6 GB.

During this experimental analysis, we considered three real-
polygonal chains2 representing the cities of Los Angeles, the second-
largest city in the United States, Dublin from Ohio, and Barcelona
from Catalunya-Spain, see Fig. 2 (a). Los Angeles (LA) has a long-
thin corridor connecting a big upper part to a south smaller one.
The polygon boundary contains 7943 edges determining one single
component with 8 holes. Dublin (Dublin) has 946 edges delimiting a
single component with 15 holes. Barcelona (Bcn) has no holes but 6
unconnected regions delimited by 1801 edges, 1506 of them define the
biggest one. All the polygonal domains are scaled and translated to the
[−1, 1] × [−1, 1] square.

In this section, we consider disk-like services of scaled radius equal
to 0.05, 0.1, 0.15, 0.2, 0.25 and 0.3. The difficulty of obtaining an optimal
location for 𝑘 disks depends on many different factors, but one of
the most relevant ones is the portion of  that the disks can cover.
Generally speaking, if the area covered by the 𝑘 disks is much smaller
than the area of the domain  , there usually exist many different
optimal locations for the 𝑘 disks. Contrarily, it is extremely complicated
to obtain an optimal configuration for the 𝑘 disks when their area
is close to, or larger than, the area of  . Hence, in most of our
experiments, we have not directly prefixed the number of circles 𝑘.

2 Obtained from OpenStreetMap! https://www.openstreetmap.org.
8

We computed 𝑘 so that the area of the 𝑘 disks represents a prefixed
percentage, %𝑝, of the area of the domain  . That is, 𝑘 is computed as

𝑘 =
⌈

%𝑝𝐴𝑟𝑒𝑎()
𝜋𝑟2

⌉

.

We considered the following percentages %𝑝, that cover a wide range
of scenarios: 15%, 45%, 60%, 75%, 90%, 100% and 115%. Taking into ac-
count the mentioned radius and percentages, the number of disks
covering LA varies from 1 to 186, Dublin from 1 to 316 and Bcn from 1
to 205. Nowadays, Bcn contains 346 petrol stations, 106 pharmacies, 21
hospitals, and 888 cell towers of 4 different companies (the company
with more cell towers owns 374 towers). Therefore, the number of
considered disks cover a wide range of real problems. Moreover, we
also provide some time and experimental results for settings with up to
2000 disks of radius 0.01.

Regarding the parallelization issues, we have run our algorithm with
the number of threads 𝑁 equal to 512, 256 and 128. As synchronization
frequency, 𝐿, we considered 25, 50, 100 and 150. The maximum number
of steps, 𝑆, allowed in Stage III (denoted by 𝑆𝐼𝐼𝐼 in this section) varies
among 15, 30, 45, 60, 75 and 90, and in Stage IV, 𝑆𝐼𝑉 , among 50, 150, 250,
350, 450, 550 and 650. The maximum expected area for the termination
criterion of Stages III and IV is the 99% of the area of the 𝑘 disks.
In all the execution the multiplicative factor used in the decreasing-
scheme for the temperature and the perturbation radius in Stage III are
𝛼𝑇 = 0.99 and 𝛼𝑅 = 0.975. Finally, the regular grid of the overlap area
covering  has the cell edges of size equal to 0.0025.

To further validate the goodness of the algorithm, in Section 5.5,
we run it with the unit square domain and considering 40, 50, 70
and 100 disks of radius 0.105466, 0.093089, 0.078427, 0.064813,
respectively. Stoyan and Patsuk (2010) prove that these radii are the
minimal radius needed to cover the unit disk with the amounts of disks
considered.

5.2. Interface

To visually inspect the obtained solution and test the presented
method, we have developed the interface shown in Fig. 3. It allows
reading the polygonal domain from a file, specifying some basic pa-
rameters related to the problem settings and tuning, if desired, some
advanced parameters related to the SA algorithm.

As basic parameters, the user can specify the number of disk-like
services, their radius and the minimum percentage of the area of the
𝑘 disks to achieve before stopping the SA algorithm. Concerning the
more advanced parameters related to the SA, the user can specify: the
number of steps done in the dispersive Stage III, the ones done in the
refining Stage IV, the synchronization frequency, the number of threads
used, and, if desired, the initial perturbation radius 𝑅0 of each stage.

After selecting the polygonal domain and setting the basic param-
eters, the user presses the Start button, and the algorithm runs. When
the SA algorithm ends, the right-bottom corner shows some relevant
information, such as the execution time, the total area covered, the
polygonal domain area, the objective function value and the centers

https://www.openstreetmap.org


Expert Systems With Applications 202 (2022) 117185N. Coll et al.
Fig. 3. Interface used to visually inspect the solutions and test the methods.
Fig. 4. LA domain covered by disks of radius 0.1.
defining the optimal configuration. Meanwhile, the main widget shows
the obtained solution by painting a red polygonal chain representing
the boundary of the polygonal domain, green circumferences delimiting
the disk-like services, and red squares representing their centers. The
image background contains the overlap area map obtained by painting
its cell centers on a grayscale. The darker a point, the bigger the
overlapped area between the disk centered at the point and  is. Hence,
white points are centers of disks that do no overlap  .

The interface also allows moving around the domain and zooming
in and out to inspect the obtained solution or export the disk centers
to a file by using the Solution bar menu (top-left corner).

5.3. Parallel SA issues

In this section, we comment on the influence of the number of
threads 𝑁 , the synchronization frequency 𝐿, and the maximum number
9

of steps 𝑆 done in the kernels run in Stages III and IV. We have
run the tests with all the maps and radii, but here we present the
results obtained with LA Domain considering disk-like services of radius
0.1 whose total area represents from the 15% to the 115% of LA.
The results obtained with the other domains and radii do not differ
significantly from the ones discussed in this section and represented
from Figs. 4 to 6.

Fig. 4 exemplifies the considered settings showing LA covered by
disk-like services of radius 0.1. Concretely it is first covered with
six circles which cover the 15% of LA area and then by 24 and 40
disks whose global area corresponds to the 60% and 100% of LA,
respectively. In the right-most figure, the area of the disks coincides
with that of LA, but the disks overlap and parts of LA remain uncovered.

Fig. 5 presents the results obtained varying the maximal number of
steps 𝑆𝐼𝐼𝐼 and 𝑆𝐼𝑉 permitted in Stages III and IV, respectively, and
fixing 𝐿 to 25 and 𝑁 to 256. To analyze the influence of 𝑆 , it varies
𝐼𝐼𝐼



Expert Systems With Applications 202 (2022) 117185N. Coll et al.
Fig. 5. Influence of the maximum number of steps in Stage III and Stage IV in LA with 𝑆𝐼𝐼𝐼 from 15 to 90, 𝑆𝐼𝑉 from 50 to 650 and 𝑟 = 0.01.
Fig. 6. Influence of the number of threads 𝑁 and the synchronization frequency 𝐿 on the running times and the objective function value, considering 𝑁 = 128, 256 and 512,
𝐿 = 25, 50, 100 and 150, LA domain, 𝑟 = 0.01, 𝐿𝑆𝐼𝐼𝐼 = 4525 and 𝐿𝑆𝐼𝑉 = 27 025.
from 15 to 90 while maintaining 𝑆𝐼𝑉 = 450. Considering more than
90 steps in Stage III with a multiplicative scheme for temperature and
perturbation radius makes no sense because the acceptance probability
is almost zero. On the other hand, to analyze the influence of the
number of steps in Stage IV, 𝑆 varies from 50 to 650 while fixing
10

𝐼𝑉
𝑆𝐼𝐼𝐼 to 45. Stage IV uses logarithmic schemes permitting much more
iterations.

The figure exemplifies the two very different scenarios with a transi-
tion zone in between. When there exist many solutions to the problem,
15% or 45%, 𝑆 and 𝑆 have no effect in the objective function
𝐼𝐼𝐼 𝐼𝑉



Expert Systems With Applications 202 (2022) 117185N. Coll et al.
Fig. 7. Running times and number of disks used in LA, Bcn and Dublin for 𝑟 = 0.05, 0.1, 0.15, 0.2, 0.25 and 0.3.
value nor the running times. The termination criterion rapidly stops
the SA algorithm, and the problem is optimally solved. Things change
when more disks exist. In the 60%, the running times are irregular
because not all the solutions work. In this case, one circle has to be in
the small southern part of the domain, see Fig. 4, and it depends on the
execution that a disk is early thrown there or not. Adding more disks
complicates obtaining a good enough solution, i.e. with an objective
function value that reaches the 99% of the total area of the disks.
Hence, the termination criterion of the SA actuates later or does never
actuate. In these cases, the more steps the stage does, the bigger the
time used. According to the obtained results, we consider 45 iterations a
good starting point for Stage III and 450 for Stage IV. As we mentioned,
the interface allows varying the number of iterations of each stage.

Fig. 6 presents, in different graphics, the running times and the
objective function values obtained with 𝑁 = 128, 256 and 512. In each
graph, the number of circles and the synchronization frequency varies.
Parameter 𝐿, varies among 25, 50, 100 and 150 for each number of
circles. To fair compare the results obtained with the different 𝐿 values,
we fixed the total amount of steps, 𝐿𝑆𝐼𝐼𝐼 to 4525 in Stage III and
𝐿𝑆𝐼𝑉 to 27 025 in Stage IV. The values of 𝑆𝐼𝐼𝐼 and 𝑆𝐼𝑉 are adjusted
to achieve these values.

This figure reflects, again, the two different scenarios mentioned
before with the transition zone in between. In this case, the running
times reveal the scenarios. For the 15% and 45%, the running times do
not exceed the 0.2 (s) for 128 or 256 threads, or 0.4 (s) for 512 threads.
However, for the 60% with a fixed number of threads, the running time
11
notoriously varies on the execution. It varies from 1 to 20 (s) for 128
or 256 threads or from 1 to 45 (s) for 512 threads. The reasons are
the randomness of the algorithm and the specific characteristics of the
optimal solution. For the 75%, the execution times are always bigger
than 32, 36 or 65 (s) for 128, 256 or 512 threads, respectively. The
more threads used, the greater the running time is. Concretely, using
512 threads has incremented the running time up to 76 (s), becoming
the 109% of the time needed for the 128 threads. Meanwhile, using
256 threads has increased the running times at most 11 (s), the 18%
of the running times obtained with 128 threads. These 76 or 11 (s)
correspond to the 115% setting. Finally, concerning 𝐿, since 𝑆𝐿 is fix,
the increment of time provides from the atomic operations and is not
relevant. It represents at most 0.2 (s) for 128 threads, 1.7 (s) for 256
threads and up to 6 (s) for 512 threads. Concerning the value of the
objective function, the variations do not exceed the 2% of its value,
and the most important differences appear with 128 threads.

Hence, we can conclude that using 512 threads is not a good option,
at least with our graphics card, probably because the shared memory
needed exceeds the existent one and global memory supplies the ex-
cess. Considering 128 threads could be an option, but sometimes the
objective function value is improvable. The regularity of the objective
function and the small increment in the running times obtained for the
256 threads make considering 𝑁 = 256 the best option. Concerning 𝐿,
it is expectable and corroborated that the more often the threads are
synchronized, the better the solutions become. Restarting the Markov
chains from a better approximation more often leads faster to the
optimal solution.



Expert Systems With Applications 202 (2022) 117185N. Coll et al.
Fig. 8. Solution for LA, Dublin and Bcn considering disks whose area represents the 75% of the area of  for 𝑟 = 0.05, 0.15 and 0.3.
5.4. Original problem parameters

In this section, we analyze the influence on the running times of the
domain, the amount of the disk-like services, and their avast, i.e  , 𝑟
and 𝑘. First, we fix 𝑟 and make that the area of the 𝑘 disks equals a % of
the area of  , as in the previous section. These results are presented in
Figs. 7 and 8. Then, we fix the number of disks 𝑘 and the scaled-radius
𝑟 and solve the same problem in each map, see Fig. 9 for the obtained
results.

Fig. 7 presents, in a graphic per map, the running times (blue) and
the number of disks (orange) used in each of the considered settings.
The algorithm ran with 𝑆𝐼𝐼𝐼 = 45, 𝑆𝐼𝑉 = 450, 256 threads and 25
iterations at each synchronization step.

Analyzing the figure, we can see how the number of disks needed
to cover Bcn and LA is quite similar and the running times too. Neither
Bcn nor LA is an easy domain to cover because they have long narrow
parts that are difficult to handle. Meanwhile, the number of circles
involved in Dublin are bigger and hence, even though the shape of
Dublin makes things easier, the running times increase notoriously
because the number of used disks is much bigger. The running times
of Dublin become 860 (s) when 316 circles have to be located, in the
case of Bcn with 205 circles the algorithm uses 346 (s), and LA with
186 disks requires 287 (s).

Fig. 8 shows solutions for LA, Dublin and Bcn corresponding to 75%
for 𝑟 = 0.05, 0.15 and 0.3.

Fig. 9 presents several solutions for LA, Dublin and Bcn with 10, 175,
275 and 2000 disks of radius 0.02, 0.05, 0.03 and 0.01, respectively.

The running times needed to obtain these solutions are presented
in Fig. 10. Indeed, it presents the running times needed to cover LA,
Dublin and Bcn with from 10 to 275 disks of radius varying from 0.3 to
12
0.03, respectively. The time needed for 𝑘 = 2000 and 𝑟 = 0.01 is of 214
(s) in Dublin, 207 (s) in LA and 24364 (s) in Bcn.

Looking at Fig. 10 we can see how the running times for the six
first cases, i.e. for 𝑘 ≤ 175, are very similar. While, for the last two
cases and 𝑘 = 2000, the running times differ a lot. These differences
on the running times is due to the fact that 200 disks with 𝑟 = 0.04
have almost the 80% of the area of LA, the 70% of the area of Bcn,
but only the 46% of the area of Dublin. The 275 disks with 𝑟 = 0.03
have overall an area equal to the 60%, 55% and 36% of LA, Bcn and
Dublin, respectively. The same happens with 2000 disks, some of the
components of Bcn are completely covered, however, the disks do not
intersect. Obtaining an optimal solution when the area of the disks
covers an important part of the area of the domain is time costly. Hence,
the obtained running times corroborate what we already mentioned:
when the 𝑘 disks left a lot of uncovered domain and there exist many
different solutions. The running time can notoriously diminish because
the termination criterion actuates soon. In all these cases, the algorithm
run with 𝑆𝐼𝐼𝐼 = 45, 𝑆𝐼𝑉 = 450, 𝐿 = 25 and 256 threads except for the
case of 2000 circles in which it uses 128 threads.

From these results, we can conclude that the algorithm is fast,
scalable and that the running time mainly depends on the number of
circles and on the part of the domain they can cover, but not on the
domain.

5.5. Solutions goodness

This section proves the goodness of the obtained solutions. To
evaluate the goodness of our objective function, we computed the area
covered by the solution by using Monte Carlo’s method. We generate
random points and count how many are both in  and the union of the
disks. Then we compared this area value obtained with the value of



Expert Systems With Applications 202 (2022) 117185

13

N. Coll et al.

Fig. 9. LA, Dublin and Bcn covered by 10, 175, 275 and 2000 disks of 𝑟 = 0.2, 0.05, 0,03 and 0.01, respectively.

Fig. 10. Running times for LA, Dublin and Bcn with 𝑘 and 𝑟 fixed.



Expert Systems With Applications 202 (2022) 117185N. Coll et al.
Fig. 11. Solutions obtained for the unit square, the running times and objective function value with 𝑆𝐼𝑉 from 450 to 750.
the objective function. The difference between the objective function
and the area is 0.01 on average and the standard deviation 0.018. It
corresponds to a 1.2% of the objective function value, on average, and
the standard deviation is 2.6%.

Finally, to test the quality of our algorithm, we run the algorithm
on a square unit domain with 30, 40, 70 and 100 circles. The radius
considered in each case is the minimal radius needed so that the circles
cover the unit square. The minimal radii are in Stoyan and Patsuk
14
(2010) and the obtained results in Fig. 11. In this case, we disabled
the termination criterion by asking to stop when the objective function
achieves the 120% of the area of the 𝑘 disks. It does never happen
and, hence, all the steps are done. We ran the algorithm with 𝑆𝐼𝐼𝐼 =
45 and 𝑆𝐼𝑉 varies from 450 to 750. From Fig. 11 we can see that
the obtained solutions are very similar to the optimal ones provided
in Stoyan and Patsuk (2010), the running times are good, and the value
of the objective function varies between 0.99 to 1.03, on average is



Expert Systems With Applications 202 (2022) 117185N. Coll et al.

c
b
M
b
b
h

o
p
u

r
a
p

r
d
i

t
s
o

d
a

C

n
F
M

D

c
i

R

A

C

C

C

F

R

S

S

S

T

T

W

W

Z

1.01. The average of the obtained area is 0.98 and varies from 0.96 to
0.99.

6. Conclusions and further comments

We have designed an approximate fast and scalable algorithm to
solve the problem of locating 𝑘 disks of radius 𝑟 so that their union
overs as much area of a non connected polygonal domain  as possi-
le. The algorithm parallelizes the SA technique by using synchronous
arkov chains. The used objective function propitiates the overlap

etween the disks and the polygon and penalizes having areas covered
y several disks. Moreover, the SA perturbation process also prevents
aving areas covered by several disks.

The objective function proposed approximates the area of the polyg-
nal domain covered by a collection of 𝑘 disks in 𝑂(𝑘) time. Indeed, it
rovides an approximation of the overlapped area of  with a disk by
sing an overlap area map and probabilistically estimating the area of
overlapped by any pair of disks. As demonstrated in the experimental

esults section, the objective function and the algorithm work well with
wide range of radii and numbers of circles. The algorithm is fast and
rovides good solutions.

As we mentioned in the introduction and show in the experimental
esults section, the strategy works with unconnected polygonal domains
efined by several components. The dispersive Stage III scatters the
nitial disks through  , already scaled and translated to [−1, 1]×[−1, 1],

separating the perturbed center from the original one at most half of
, the longest edge of the bounding box containing 𝑃 , and locating
the perturbed disk so that it intersects  . Hence if the disconnected
components are close enough so that a perturbed disk can reach them,
there is no problem, and Stage III may distribute the sites correctly
through  . On the contrary, if there is one component farther from
0.1 and 2𝑟 from the rest of  , the Stage III dispersive SA will not
be able to throw disks there. Hence, the disks will never cover this
part of the domain. To avoid this, we can increase the 0.1 maximal
distance by using the interface or compact  approaching the isolated
components to the rest of the domain in a preprocessing stage. The
approached components must be kept at a distance bigger than 2𝑟 from
he rest to avoid obtaining false overlapped areas. Hence, the obtained
olutions are good approximations of the optimal solution and solve
ur challenge.

As future work, we plan to adapt the algorithm to locate 𝑘 disks of
ifferent radii (prefixing the radii and number of disks of each radius)
nd use dynamic parallelism to evaluate the objective function.

RediT authorship contribution statement

Narcís Coll: Conceptualization, Formal analysis, Writing – origi-
al draft, Writing – review & editing. Marta Fort: Conceptualization,
ormal analysis, Writing – original draft, Writing – review & editing.
oisès Saus: Software.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared to
nfluence the work reported in this paper.

eferences

llahyari, M. Z., & Azab, A. (2018). Mathematical modeling and multi-start search
simulated annealing for unequal-area facility layout problem. Expert Systems with
Applications, 91, 46–62.

Bansal, M., & Kianfar, K. (2017). Planar maximum coverage location problem with
partial coverage and rectangular demand and service zones. INFORMS Journal on
Computing, 29(1), 152–169.

Cheng, S. W., & Lam, C. K. (2013). Shape matching under rigid motion. Computational
Geometry: Theory and Applications, 46(6), 591–603.
15
heong, O., Efrat, A., & Har-Peled, S. (2007). Finding a guard that sees most and a
shop that sells most. Discrete & Computational Geometry, 37(4), 545—563.

hu, K.-W., Deng, Y., & Reinitz, J. (1999). Parallel simulated annealing by mixing of
states. Journal of Computational Physics, 148(2), 646–662.

hurch, R. L. (1984). The planar maximal covering location problem. Journal of Regional
Science, 24(2), 185–201.

Church, R. L., & ReVelle, C. (1974). The maximal covering location problem. Papers of
the Regional Science Association, 32, 101–118.

Coll, N., Fort, M., & Sellarès, J. A. (2019). On the overlap area of a disk and a piecewise
circular domain. Computational and Operational Research, 104, 59–73.

Czech, Z. J., Mikanik, W., & Skinderowicz, R. (2010). Implementing a parallel
simulated annealing algorithm. In R. Wyrzykowski, J. Dongarra, K. Karczewski,
& J. Wasniewski (Eds.), Parallel processing and applied mathematics (pp. 146–155).
Berlin, Heidelberg: Springer Berlin Heidelberg.

Davari, S., Fazel Zarandi, M. H., & Hemmati, A. (2011). Maximal covering location
problem (MCLP) with fuzzy travel times. Expert Systems with Applications, 38(12),
14535–14541.

Devroye, L. (1986). Non-uniform random variate generation. New York: Springer-Verlag.
abris, F., & Krohling, R. A. (2012). A co-evolutionary differential evolution algorithm

for solving min–max optimization problems implemented on GPU using C-CUDA.
Expert Systems with Applications, 39(12), 10324–10333.

Ferreiro, A., García, J., López-Salas, J., & Vázquez, C. (2013). An efficient imple-
mentation of parallel simulated annealing algorithm in GPUs. Journal of Global
Optimization, 57(3), 863–890.

Hajek, B. (1988). Cooling schedules for optimal annealing. Mathematics of Operations
Research, 13(2), 311–329.

Hochbaum, D. S. (Ed.), (1996). Approximation algorithms for NP-hard problems.
In chapter Approximating Covering and Packing Problems: Set Cover, Vertex Cover,
Independent Set, and Related Problems (pp. 94–143). 20 Park Plaza Boston, MAUnited
States: PWS Publishing Co..

Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by simulated
annealing. Science, 220(4598), 671–680.

Kravitz, S., & Rutenbar, R. (1987). Placement by simulated annealing on a multiproces-
sor. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
6(4), 534–549.

Lee, S. Y., & Lee, K.-G. (1996). Synchronous and asynchronous parallel simulated
annealing with multiple Markov chains. IEEE Transactions on Parallel and Distributed
Systems, 7(10), 993–1008.

Matisziw, T. C., & Murray, A. T. (2009). Siting a facility in continuous space to
maximize coverage of a region. Socio-Economic Planning Sciences, 43(2), 131—139.

Megiddo, N., Zemel, E., & Hakimi, S. (1983). The maximum coverage location problem.
SIAM Journal of Algebraic and Discrete Methods, 4(2), 253–261.

Mount, D. M., Silverman, R., & Wu, A. Y. (1996). On the area of overlap of translated
polygons. Computer Vision and Image Understanding, 64(1), 53–61.

Murray, A., Matisziw, T., Wei, H., & Tong, D. (2008). A geocomputational heuristic for
coverage maximization in service facility siting. Transactions in GIS, 12(6), 757–773.

Murray, A. T., O’Kelly, M. E., & Church, R. L. (2008). Regional service coverage
modeling. Computers and Operations Research, 35(2), 339–355.

Murray, A. T., & Tong, D. (2007). Coverage optimization in continuous space facility
siting. International Journal of Geographical Information Science, 21(7), 757–776.

Nasab, H. H., & Mobasheri, F. (2013). A simulated annealing heuristic for the facility
location problem. International Journal of Mathematical Modelling and Numerical
Optimisation, 4(3), 210–224.

Onbaoğlu, E., & Ozdamar, L. (2001). Parallel simulated annealing algorithms in global
optimization. Journal of Global Optimization, 19(1), 27–50.

am, D. K., Sreenivas, T. H., & Subramaniam, K. G. (1996). Parallel simulated annealing
algorithms. Journal of Parallel and Distributed Computing, 37(2), 207–212.

onuç, E., Sen, B., & Bayir, S. (2017). A parallel simulated annealing algorithm
for weapon-target assignment problem. International Journal of Advanced Computer
Science and Applications, 8(4), 87–92.

onuç, E., Sen, B., & Bayir, S. (2018). A cooperative GPU-based parallel multistart sim-
ulated annealing algorithm for quadratic assignment problem. Engineering Science
and Technology, An International Journal, 21(5), 843–849.

toyan, Y. G., & Patsuk, V. M. (2010). Covering a compact polygonal set by identical
circles. Computational Optimization and Applications, 46, 75–92.

avares, R. S., Martins, T. C., & Tsuzuki, M. S. G. (2011). Simulated annealing with
adaptive neighborhood: A case study in off-line robot path planning. Expert Systems
with Applications, 38(4), 2951–2965.

ong, D., & Murray, A. T. (2009). Maximising coverage of spatial demand for service.
Papers in Regional Science, 88(1), 85–97.

ei, R., & Murray, A. T. (2014). Continuous space maximal coverage: Insights, advances
and challenges. Computers & Operations Research, 62, 325–336.

ei, K.-C., Wu, C.-C., & Yu, H.-L. (2015). Mapping the simulated annealing algorithm
onto CUDA GPUs. In 2015 10th International conference on intelligent systems and
knowledge engineering (ISKE) (pp. 358–365).

hang, L., Ye, Z., Xiao, K., & Jin, B. (2019). A parallel simulated annealing enhancement
of the optimal-matching heuristic for ridesharing. In 2019 IEEE international
conference on data mining (ICDM) (pp. 906–915).

http://refhub.elsevier.com/S0957-4174(22)00572-3/sb1
http://refhub.elsevier.com/S0957-4174(22)00572-3/sb1
http://refhub.elsevier.com/S0957-4174(22)00572-3/sb1
http://refhub.elsevier.com/S0957-4174(22)00572-3/sb1
http://refhub.elsevier.com/S0957-4174(22)00572-3/sb1
http://refhub.elsevier.com/S0957-4174(22)00572-3/sb2
http://refhub.elsevier.com/S0957-4174(22)00572-3/sb2
http://refhub.elsevier.com/S0957-4174(22)00572-3/sb2
http://refhub.elsevier.com/S0957-4174(22)00572-3/sb2
http://refhub.elsevier.com/S0957-4174(22)00572-3/sb2
http://refhub.elsevier.com/S0957-4174(22)00572-3/sb3
http://refhub.elsevier.com/S0957-4174(22)00572-3/sb3
http://refhub.elsevier.com/S0957-4174(22)00572-3/sb3
http://refhub.elsevier.com/S0957-4174(22)00572-3/sb4
http://refhub.elsevier.com/S0957-4174(22)00572-3/sb4
http://refhub.elsevier.com/S0957-4174(22)00572-3/sb4
http://refhub.elsevier.com/S0957-4174(22)00572-3/sb5
http://refhub.elsevier.com/S0957-4174(22)00572-3/sb5
http://refhub.elsevier.com/S0957-4174(22)00572-3/sb5
http://refhub.elsevier.com/S0957-4174(22)00572-3/sb6
http://refhub.elsevier.com/S0957-4174(22)00572-3/sb6
http://refhub.elsevier.com/S0957-4174(22)00572-3/sb6
http://refhub.elsevier.com/S0957-4174(22)00572-3/sb7
http://refhub.elsevier.com/S0957-4174(22)00572-3/sb7
http://refhub.elsevier.com/S0957-4174(22)00572-3/sb7
http://refhub.elsevier.com/S0957-4174(22)00572-3/sb8
http://refhub.elsevier.com/S0957-4174(22)00572-3/sb8
http://refhub.elsevier.com/S0957-4174(22)00572-3/sb8
http://refhub.elsevier.com/S0957-4174(22)00572-3/sb9
http://refhub.elsevier.com/S0957-4174(22)00572-3/sb9
http://refhub.elsevier.com/S0957-4174(22)00572-3/sb9
http://refhub.elsevier.com/S0957-4174(22)00572-3/sb9
http://refhub.elsevier.com/S0957-4174(22)00572-3/sb9
http://refhub.elsevier.com/S0957-4174(22)00572-3/sb9
http://refhub.elsevier.com/S0957-4174(22)00572-3/sb9
http://refhub.elsevier.com/S0957-4174(22)00572-3/sb10
http://refhub.elsevier.com/S0957-4174(22)00572-3/sb10
http://refhub.elsevier.com/S0957-4174(22)00572-3/sb10
http://refhub.elsevier.com/S0957-4174(22)00572-3/sb10
http://refhub.elsevier.com/S0957-4174(22)00572-3/sb10
http://refhub.elsevier.com/S0957-4174(22)00572-3/sb11
http://refhub.elsevier.com/S0957-4174(22)00572-3/sb12
http://refhub.elsevier.com/S0957-4174(22)00572-3/sb12
http://refhub.elsevier.com/S0957-4174(22)00572-3/sb12
http://refhub.elsevier.com/S0957-4174(22)00572-3/sb12
http://refhub.elsevier.com/S0957-4174(22)00572-3/sb12
http://refhub.elsevier.com/S0957-4174(22)00572-3/sb13
http://refhub.elsevier.com/S0957-4174(22)00572-3/sb13
http://refhub.elsevier.com/S0957-4174(22)00572-3/sb13
http://refhub.elsevier.com/S0957-4174(22)00572-3/sb13
http://refhub.elsevier.com/S0957-4174(22)00572-3/sb13
http://refhub.elsevier.com/S0957-4174(22)00572-3/sb14
http://refhub.elsevier.com/S0957-4174(22)00572-3/sb14
http://refhub.elsevier.com/S0957-4174(22)00572-3/sb14
http://refhub.elsevier.com/S0957-4174(22)00572-3/sb15
http://refhub.elsevier.com/S0957-4174(22)00572-3/sb15
http://refhub.elsevier.com/S0957-4174(22)00572-3/sb15
http://refhub.elsevier.com/S0957-4174(22)00572-3/sb15
http://refhub.elsevier.com/S0957-4174(22)00572-3/sb15
http://refhub.elsevier.com/S0957-4174(22)00572-3/sb15
http://refhub.elsevier.com/S0957-4174(22)00572-3/sb15
http://refhub.elsevier.com/S0957-4174(22)00572-3/sb16
http://refhub.elsevier.com/S0957-4174(22)00572-3/sb16
http://refhub.elsevier.com/S0957-4174(22)00572-3/sb16
http://refhub.elsevier.com/S0957-4174(22)00572-3/sb17
http://refhub.elsevier.com/S0957-4174(22)00572-3/sb17
http://refhub.elsevier.com/S0957-4174(22)00572-3/sb17
http://refhub.elsevier.com/S0957-4174(22)00572-3/sb17
http://refhub.elsevier.com/S0957-4174(22)00572-3/sb17
http://refhub.elsevier.com/S0957-4174(22)00572-3/sb18
http://refhub.elsevier.com/S0957-4174(22)00572-3/sb18
http://refhub.elsevier.com/S0957-4174(22)00572-3/sb18
http://refhub.elsevier.com/S0957-4174(22)00572-3/sb18
http://refhub.elsevier.com/S0957-4174(22)00572-3/sb18
http://refhub.elsevier.com/S0957-4174(22)00572-3/sb19
http://refhub.elsevier.com/S0957-4174(22)00572-3/sb19
http://refhub.elsevier.com/S0957-4174(22)00572-3/sb19
http://refhub.elsevier.com/S0957-4174(22)00572-3/sb20
http://refhub.elsevier.com/S0957-4174(22)00572-3/sb20
http://refhub.elsevier.com/S0957-4174(22)00572-3/sb20
http://refhub.elsevier.com/S0957-4174(22)00572-3/sb21
http://refhub.elsevier.com/S0957-4174(22)00572-3/sb21
http://refhub.elsevier.com/S0957-4174(22)00572-3/sb21
http://refhub.elsevier.com/S0957-4174(22)00572-3/sb22
http://refhub.elsevier.com/S0957-4174(22)00572-3/sb22
http://refhub.elsevier.com/S0957-4174(22)00572-3/sb22
http://refhub.elsevier.com/S0957-4174(22)00572-3/sb23
http://refhub.elsevier.com/S0957-4174(22)00572-3/sb23
http://refhub.elsevier.com/S0957-4174(22)00572-3/sb23
http://refhub.elsevier.com/S0957-4174(22)00572-3/sb24
http://refhub.elsevier.com/S0957-4174(22)00572-3/sb24
http://refhub.elsevier.com/S0957-4174(22)00572-3/sb24
http://refhub.elsevier.com/S0957-4174(22)00572-3/sb25
http://refhub.elsevier.com/S0957-4174(22)00572-3/sb25
http://refhub.elsevier.com/S0957-4174(22)00572-3/sb25
http://refhub.elsevier.com/S0957-4174(22)00572-3/sb25
http://refhub.elsevier.com/S0957-4174(22)00572-3/sb25
http://refhub.elsevier.com/S0957-4174(22)00572-3/sb26
http://refhub.elsevier.com/S0957-4174(22)00572-3/sb26
http://refhub.elsevier.com/S0957-4174(22)00572-3/sb26
http://refhub.elsevier.com/S0957-4174(22)00572-3/sb27
http://refhub.elsevier.com/S0957-4174(22)00572-3/sb27
http://refhub.elsevier.com/S0957-4174(22)00572-3/sb27
http://refhub.elsevier.com/S0957-4174(22)00572-3/sb28
http://refhub.elsevier.com/S0957-4174(22)00572-3/sb28
http://refhub.elsevier.com/S0957-4174(22)00572-3/sb28
http://refhub.elsevier.com/S0957-4174(22)00572-3/sb28
http://refhub.elsevier.com/S0957-4174(22)00572-3/sb28
http://refhub.elsevier.com/S0957-4174(22)00572-3/sb29
http://refhub.elsevier.com/S0957-4174(22)00572-3/sb29
http://refhub.elsevier.com/S0957-4174(22)00572-3/sb29
http://refhub.elsevier.com/S0957-4174(22)00572-3/sb29
http://refhub.elsevier.com/S0957-4174(22)00572-3/sb29
http://refhub.elsevier.com/S0957-4174(22)00572-3/sb30
http://refhub.elsevier.com/S0957-4174(22)00572-3/sb30
http://refhub.elsevier.com/S0957-4174(22)00572-3/sb30
http://refhub.elsevier.com/S0957-4174(22)00572-3/sb31
http://refhub.elsevier.com/S0957-4174(22)00572-3/sb31
http://refhub.elsevier.com/S0957-4174(22)00572-3/sb31
http://refhub.elsevier.com/S0957-4174(22)00572-3/sb31
http://refhub.elsevier.com/S0957-4174(22)00572-3/sb31
http://refhub.elsevier.com/S0957-4174(22)00572-3/sb32
http://refhub.elsevier.com/S0957-4174(22)00572-3/sb32
http://refhub.elsevier.com/S0957-4174(22)00572-3/sb32
http://refhub.elsevier.com/S0957-4174(22)00572-3/sb33
http://refhub.elsevier.com/S0957-4174(22)00572-3/sb33
http://refhub.elsevier.com/S0957-4174(22)00572-3/sb33
http://refhub.elsevier.com/S0957-4174(22)00572-3/sb34
http://refhub.elsevier.com/S0957-4174(22)00572-3/sb34
http://refhub.elsevier.com/S0957-4174(22)00572-3/sb34
http://refhub.elsevier.com/S0957-4174(22)00572-3/sb34
http://refhub.elsevier.com/S0957-4174(22)00572-3/sb34
http://refhub.elsevier.com/S0957-4174(22)00572-3/sb35
http://refhub.elsevier.com/S0957-4174(22)00572-3/sb35
http://refhub.elsevier.com/S0957-4174(22)00572-3/sb35
http://refhub.elsevier.com/S0957-4174(22)00572-3/sb35
http://refhub.elsevier.com/S0957-4174(22)00572-3/sb35

	Coverage area maximization with parallel simulated annealing
	Introduction
	Background
	Problem definition
	Our contribution
	Paper organization

	Related work
	Overlap-area map computation
	Simulated annealing

	Overlapped area
	Estimated overlapped area
	Objective function evaluation


	Proposal description
	Simulated annealing algorithm 
	Markov chains generation
	New configuration generation
	Objective function evaluation
	Parameter values determination

	Complexity analysis

	Experimental results
	Experimental settings
	Interface
	Parallel SA issues
	Original problem parameters 
	Solutions goodness

	Conclusions and further comments
	CRediT authorship contribution statement
	Declaration of competing interest
	References


