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A B S T R A C T   

Selecting sampling points to monitor traces of SARS-CoV-2 in sewage at the intra-urban scale is no trivial task 
given the complexity of the networks and the multiple technical, economic and socio-environmental constraints 
involved. This paper proposes two algorithms for the automatic selection of sampling locations in sewage net-
works. The first algorithm, is for the optimal selection of a predefined number of sampling locations ensuring 
maximum coverage of inhabitants and minimum overlapping amongst selected sites (static approach). The 
second is for establishing a strategy of iterations of sample&analysis to identify patient zero and hot spots of 
COVID-19 infected inhabitants in cities (dynamic approach). The algorithms are based on graph-theory and are 
coupled to a greedy optimization algorithm. The usefulness of the algorithms is illustrated in the case study of 
Girona (NE Iberian Peninsula, 148,504 inhabitants). The results show that the algorithms are able to automat-
ically propose locations for a given number of stations. In the case of Girona, always covering more than 60% of 
the manholes and with less than 3% of them overlapping amongst stations. Deploying 5, 6 or 7 stations results in 
more than 80% coverage in manholes and more than 85% of the inhabitants. For the dynamic sensor placement, 
we demonstrate that assigning infection probabilities to each manhole as a function of the number of inhabitants 
connected reduces the number of iterations required to detect the zero patient and the hot spot areas.   

1. Introduction 

There is increasing evidence that sewage is a good, unbiased indi-
cator of the prevalence of a virus in a population. The ability to detect 
SARS-CoV-2 in sewage has been reported by research groups worldwide. 
Upon confirmation that COVID-19 patients shed SARS-CoV-2 in feces, 
different studies have provided significant correlation between the 
concentration of SARS-CoV-2 in sewage and the prevalence of COVID-19 
in the corresponding population (Lenzen et al., 2020; Mallapaty, 2020; 
Medema et al., 2020; Schmidt, 2020). So far, the approach has been 
successful when monitoring at the wastewater treatment plant (WWTP) 
level (i.e. integrating all inhabitants from a municipality), but there is 
limited experience when bringing the approach to a neighborhood level. 
‘Upstream’ surveillance for SARS-CoV-2 may facilitate finer spatial 
detection of the virus in catchments with differing COVID-19 disease 
burdens, and may help provide information about any mitigation ac-
tions implemented at the community level. An example of monitoring at 

the neighborhood level can be found in Wu et al. (2020) where 11 urban 
neighborhoods within the wastewater treatment facility’s catchment, 
representing populations ranging from ∼4,000 to ∼40,000 individuals, 
were monitored. GIS (geographic information system) data with catch-
ment outlines was used to aggregate the demographic information for 
the catchment. Yet, while the selection of the sampling points in Wu 
et al. (2020) serves the purpose of the study, this might not be optimal 
from the perspective of a municipality. 

Monitoring the traces of SARS-CoV-2 in sewage at the intra-urban 
scale implies establishing a surveillance network inside the sewage 
network. Sewer systems are long complex networks of pipes. As an 
example, the total length of the sewage network across the EU has been 
estimated at around 3 M kilometers (EurEAU, 2017). A city of about 
100,000 inhabitants might have around 300 km of small sewer pipes 
(building sewer pipes and lateral sewers) and 60 km of bigger main pipes 
(community sewers collecting sewage from the lateral sewers and 
transporting it to the WWTPs). It is then not evident where to place 
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autosamplers (or sensors if available in the future) to monitor the con-
centration of the RNA traces of SARS-CoV-2. Selecting sampling/sensor 
placement locations can follow several criterion. Given a predefined 
number of sampling locations to be installed, a municipality might be 
interested in ensuring maximum coverage of manholes (or of in-
habitants) and ensuring a balance in the number of inhabitants covered 
by each of them (static monitoring site selection from now on). Another 
approach would be to establish a monitoring procedure to detect the 
area where the virus is more present (dynamic monitoring site selection 
from now on) or the zero patient if the analytical method for SARS-CoV- 
2 would be sufficiently sensitive to detect one virus shedder in an entire 
community. For either of the two approaches, it is relevant to collect 
demographic and socioeconomic indicators for the community con-
nected to a specific sampling point. Otherwise, it is not possible to 
correlate the virus concentration to the number of diagnosed cases, for 
instance, or to socioeconomic indicators. Furthermore, the cost of 
autosampler/sensor ownership, maintenance efforts in particular, can 
still be cost-prohibitive and a balance between the number of sampling 
locations and costs needs to be guaranteed. 

Larson et al. (2020) is the only paper about sampling points selection 
in sewers related to SARS-CoV-2; the authors propose two strategies to 
detect the zero patient and to identify zones with high levels of infection. 
Larson et al. (2020) assume that near-real time SARS-CoV-2 concen-
trations can be measured, for instance by employing fast tests (Mao 
et al., 2020b) (Mao et al., 2020a) which are under development but not 
yet available. Existing approaches to analyze SARS-CoV-2 concentra-
tions imply lab analyzes and deliver results in 24–72 h. Wang et al. 
(2020) propose adaptive sampling site allocation for the sewage sur-
veillance of the pathogen S. Typhi, by which the locations of sampling 
sites are dynamically updated to increase the probability of detecting a 
positive signal of the pathogen. It uses a model to simulate pathogen 
shedding, pathogen transport and fate in the sewage network, sewage 
sampling, and detection of the pathogen. Wang et al. (2020) propose 
stratified sampling for the initial selection of sampling sites, by which 
the geographic area is divided into a certain number of subareas and one 
sampling unit is randomly selected from each subarea. Within the scope 
of wastewater-based epidemiology (not related to SARS-CoV-2) the 
work from Matus et al. (2019) proposed monitoring sites selection using 
GIS analysis with city-wide demographic and sewage network infor-
mation. The approach was semi-automatic, based on the definition of 
constraints, and did not use optimization. 

Monitoring site selection (or sensor placement) has been widely 
studied for drinking water networks, but only a few studies exist on 
sewage networks. Kang et al. (2013) determined key sensor locations for 
non-point pollutant sources management in sewage networks by means 
of clustering analysis and ANOVA on top of SWMM simulated results. A 
few examples exist on sensor placement for illicit intrusion detection in 
sewage networks based on single and multi-objective optimization 
(Yazdi, 2018) or on Bayesian decision networks (Sambito et al., 2020). 
Vonach et al. (2018) proposed best sampling locations with the objective 
of calibrating a hydrodynamic model. Finally, Villez et al. (2016) and 
Villez et al. (2020) proposed methodologies for sensor placement in 
WWTPs based on graph theory and mass balances for maximizing the 

ability to assess and control data quality while minimizing the cost of 
ownership. Given this background, this paper proposes two algorithms 
for SARS-CoV-2 monitoring site selection in sewage networks. The al-
gorithms are based on graph-theory and are coupled to a greedy opti-
mization algorithm. To the best of our knowledge, this is the first paper 
which proposes an algorithm for static SARS-CoV-2 monitoring site se-
lection. Furthermore, this paper enhances the approach proposed in 
Larson et al. (2020) for dynamic monitoring site selection by i) defining 
infection probabilities as a function of the number of inhabitants con-
nected to each manhole and ii) evaluating the benefit of combining the 
static sensor placement outcomes to the dynamic placement algorithms. 
This paper as well contributes to enhance the selection of the initial 
selection sites from Wang et al. (2020) by proposing a static sensor 
placement algorithm which uses optimization. The usefulness of the two 
types of algorithms is illustrated with a case study in the city of Girona. 

2. Materials and methods 

This section describes the general methodology followed to obtain 
optimal monitoring sites for SARS-CoV-2 surveillance and includes a 
description of the algorithms proposed and the description of the case 
study used to illustrate their usefulness. 

2.1. General methodology 

The overall approach for obtaining optimal monitoring site selection 
for SARS-CoV-2 surveillance involves the following steps: i) goal and 
scope definition, ii) data collection, iii) graph generation, iv) linking 
demographic and socioeconomic indicators to the graph, v) imple-
mentation and execution of the algorithms, and vi) analysis of results. 
Fig. 1 describes the process flow of this general methodology. Details on 
the actual application of the general methodology to the specific case- 
study are provided in Section 2.3. 

Goal and scope definition. This first step consists of defining the 
goal and scope of the study which, in turn, will influence all subsequent 
steps in terms of data intensity, data quality, algorithm selection, etc. 
Some examples of ”goal and scope” are given: i) monitoring the spread 
of the COVID-19 disease in different communities with homogenous 
socio-economic status of a city during a pandemic; ii) identify in a given 
city a hotspot area with much higher disease prevalence than others. 
This step also involves the definition of the monitoring site selection 
needs (e.g. static vs dynamic), criteria and constraints together with the 
client profile (municipality or local health authority). Criteria are 
related to demographic, environmental, health or economic indicators; 
as an example, population density or socio-economic status of in-
habitants are criteria which can be used to make the decision on the 
sampling sites selection. Constraints can be applied to the criteria, but 
also can be related to physical constraints in given manholes which do 
not allow to install equipment for wastewater sampling. 

Data collection. The following data are collected: i) sewage network 
topology; ii) Digital Elevation Model (DEM) of the case under study; iii) 
cadastral data from the city parcels and iv) demographic and socio-
economic indicators associated to each cadastral parcel. 

Fig. 1. General methodology flow.  
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Graph construction. The sewage network topology is transformed 
into a graph, where the edges represent the pipes and the nodes repre-
sent the manholes. The original sewage network topology must include 
the pipes, manholes, elevations and direction of the wastewater flow. In 
most cases, wastewater companies keep this data in GIS databases, 
which means an additional step is required to transform that data into a 
graph. The key elements are the coordinates of the nodes and the rela-
tionship between the nodes and edges. Data verification and reconcili-
ation is essential at this stage to verify that all the pipes that are 
supposed to be connected through a manhole are actually connected, 
and to validate the sewer network slopes. 

Indicators linkage to the graph. The physical attributes of the 
graph (e.g. topological such as node elevation) are assigned. The chal-
lenge here is to connect inhabitants (virus shedders) to the nearest 
manhole. This also provides the possibility to link the manhole with 
some socioeconomic indicators fed by census or other socioeconomic 
databases. Hydraulic models can be a source of data (e.g. biomarkers 
travel time) which might be used as a criteria or constraint by the al-
gorithms. Yet, hydraulic models have not been used in this case-study. 

Implementation and execution of the algorithms. Static and dy-
namic monitoring site selection require computationally expensive al-
gorithms and thus need to be implemented in a relevant computing 
environment to achieve simulation results at reasonable times. This is of 
special interest in the case of dynamic monitoring site selection. 

Results analysis. The results are analyzed, and if the targets set up 
in the goal and scope phase are satisfied, the project can be accom-
plished. Otherwise, a feedback loop to previous phases is needed until 
the goals are reached, as shown in Fig. 1. Iterations are conducted in the 
feedback loop to enhance the performance of the algorithms in terms of 
results and computational time. The final algorithms deployed in this 
study are transferable to other case-studies with no further upgrade; for 
transferability it is only necessary to construct the graph of each new 
case-study and run the algorithms developed in this paper. 

2.2. Static and dynamic algorithms 

The algorithms are based on techniques borrowed from graph theory 
which allow pipe network configurations to be analyzed (Kesavan and 
Chandrashekar, 1972). In the case of sewage networks, the pipes 
correspond to the graph edges and the manholes represent the graph 
nodes. We provide algorithms for both static and dynamic monitoring 
site selection. The static challenge implies selecting the locations for 
permanent monitoring sites which meet the client’s (e.g. a municipality 
or health agency) needs (e.g. maximum coverage at minimal invest-
ment). In the case of SARS-CoV-2 sewage surveillance, permanent 

monitoring sites can be selected where 24 h composite samples are taken 
and brought to the lab for microbiological analysis that will deliver re-
sults in between 24 and 72 h (Ahmed et al., 2020; Rusiñol et al., 2020). 
The concept of interference is applied in the static monitoring site se-
lection. Interferences appear when two or more monitoring sites overlap 
in covered manholes. In some cases, interferences might appear as a 
result of the graph being improperly constructed, and hence a recon-
ciliation exercice is needed before launching the optimization algo-
rithms. The dynamic monitoring site selection challenge implies 
dynamically and adaptively developing a sequence of manholes to 
sample and test until it finds the manhole in which the first infected 
person in a city is connected, or until the group of manholes in a city in 
which the largest group of infected people are connected is found. For 
the dynamic approach we build on what was presented in Larson et al. 
(2020) but also include one enhancement. In Larson et al. (2020), the 
Bayesian probabilities of infection are equally assigned to all manholes, 
whereas in our proposal, the Bayesian probabilities are assigned ac-
cording to the number of inhabitants connected to each manhole; hence 
we assume that there is a greater chance of finding the origin of infection 
there. It is assumed in the dynamic monitoring site selection that a 
portable and fast analytical method (results delivered in few minutes) is 
available to guarantee several sample-and-test iterations to be executed 
in a short period of time. The turnaround time for an iteration of sam-
pling, testing and adjustment should ideally be of 24 h; since the con-
centrations of SARS-CoV-2 can change during the course of a day (and 
the dynamics are even more pronounced at the community level), it is 
recommended to analyze 24-h composite samples (Medema et al., 
2020), and then the analysis of SARS-CoV-2 concentrations and the 
launch of the proposed algorithms should take less than an hour. The 
whole process for detecting the hot spot should ideally be shorter than 
1 week. 

Table 1 specifies the notation used for the static and dynamic algo-
rithms. In brief, let G = (𝒱, ℰ) be the sewage network graph, with a 
V-element set of nodes 𝒱 representing manholes, and an E-element set of 
links ℰ⊂𝒱|2| representing pipes. Additionally, 𝒮 (where 𝒮⫅𝒱) denotes an 
S-element set of nodes with placed monitoring sites. 

2.2.1. Static monitoring site selection algorithm 
A novel algorithm called monitoring site selection (MSS, see Algo-

rithm 1) is proposed. The MSS algorithm presents a greedy approach 
that optimizes the placement of several K SARS-CoV-2 monitoring sites 
within the sewage network nodes, dividing the network into K moni-
toring sites areas or subgraphs. We define the set of nodes that are 
present in the monitoring site k coverage area (i.e., source nodes) as 𝒞(k),
k ∈ 𝒦. 

Table 1 
Notation concerning the static and dynamic algorithms.  

K number of monitoring sites to place; 1⩽K⩽V (fixed parameter)  
𝒦 = {1,2,…,K} set of (indices) of the monitoring sites 

𝒩(v),v ∈ 𝒱 set of neighbor nodes of the node v;𝒩(v)⫅𝒱⧹{v}
𝒞(k),k ∈ 𝒦 set of nodes that are present in the monitoring site k coverage area (i.e., source nodes); 𝒞(k)⫅𝒱

𝒞 set of nodes that are present in at least one monitoring site coverage area; 𝒞 :=
⋃

k∈𝒦𝒞(k); The size (number of nodes) of this set is called coverage C = |𝒞|

ℐ(k),k ∈ 𝒦 set of nodes in the monitoring site k coverage area that are present also in at least another monitoring site j coverage area; ℐ(k)⫅𝒞(k); ℐ(k) := {v ∈ 𝒞(k) ∩ 𝒞(j)
: j ∈ 𝒦, j ∕= k}

ℐ set of nodes that are present in at least two monitoring site coverage areas; ℐ :=
⋃

k∈𝒦ℐ(k); The size (number of nodes) of this set is called interference I = |ℐ|

𝒰(k),k ∈ 𝒦 set of nodes that are present only and exclusively in the monitoring site k coverage areas; 𝒰(k) := {v ∈ 𝒞(k)⧹ℐ(k)}
𝒰 set of nodes that are present in one and only one monitoring site coverage area; 𝒰 :=

⋃
k∈𝒦𝒰(k); The size (number of nodes) of this set is called unique 

coverage U = |𝒰|

Cmax  number of nodes of the largest monitoring site coverage area; Cmax := max(|𝒞(k)|,k ∈ 𝒦)

Cmin  number of nodes of the smallest monitoring site coverage area; Cmin := min(|𝒞(k)|,k ∈ 𝒦)

D number of nodes difference between the largest and the smallest monitoring site coverage areas; D := Cmax − Cmin  

𝒜 set of artificial source nodes in the area covered by a sensor with deg− := 0 and population associated to it.  
℘ set of nodes in the area covered by a sensor after normalising and simplifying 𝒞.  
𝒯 set of nodes of Hot Spot neighborhood/node of Patient Zero in the area covered by a sensor. For PZ, |𝒯 | := 1.   
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The MSS algorithm starts from a random combination of nodes with 
placed monitoring sites 𝒮, and then iterates to find better combinations 
by moving each monitoring site s ∈ 𝒮 through its neighbouring nodes. 
We propose an evaluation function called monitoring site selection 
evaluation (MSE, see Function 1) which allows an optimization metric 
after each execution of the MSS algorithm to be estimated. The MSS 
algorithm halts when it is not possible to find an 𝒮′ ∕= 𝒮 monitoring site 
set by which for all neighboring nodes of each s ∈ 𝒮 the optimization 
metric does not improve as compared to the 𝒮 set. 

Algorithm 1. Monitoring site selection (MSS) algorithm.   
Input: K: number of monitoring sites to place. 

𝒢←{𝒱, ℰ}: wastewater network with node set 𝒱 and link set ℰ.  
𝒞(k),k ∈ 𝒦: set of nodes that are present in each monitoring site area k.  
𝒩(v),v ∈ 𝒱: set of neighbor nodes of each node v.  

Output: 𝒮, ∀s∈𝒮 s ∈ 𝒱,S = K: set of nodes with collocated monitoring sites (S = |𝒮|).  
O: optimization value of the monitoring sites placed on the node set 𝒮.   
1. Obtain a random sample of nodes with collocated monitoring sites 𝒮 with K 

elements of 𝒱.  
2. Compute the optimization value O for the sample 𝒮.  
3. ∀s ∈ 𝒮 picked randomly:  

(a) ∀n ∈ 𝒩(v), n ∕∈ 𝒮 picked randomly:  
i. Obtain a new sample 𝒳 removing s and adding n (𝒳←𝒮

⋃
{n}⧹{s}).  

ii. Compute the optimization value P for sample 𝒳 .  
iii. If P > O, set 𝒮←𝒳 ,O←P, and go to step 3).  

4. 𝒮 contains the resulting set of nodes with collocated monitoring sites, and O 
contains the optimization value of the placed monitoring sites.   

The MSS searches for large, non-interference, equal-sized coverage 
areas. Starting from 𝒮 monitoring sites, the MSE maximizes the unique 
coverage U and minimizes the difference D between the maximum Cmax 
and minimum Cmin sizes of the resulting network coverage areas. These 
measures are normalized taking into account the total number of 
network nodes V. The U measure is proposed in order to take into ac-
count the interference I between the coverage areas of each monitoring 
site that we want to minimize. In that way, the maximization of the 
unique coverage U also minimizes the interference I between coverage 
areas. 

Function 1. Monitoring sites evaluation (MSE) function.   
Input: 𝒢←{𝒱, ℰ}: wastewater network with node set 𝒱 and link set ℰ,V = |𝒱|.  

𝒦: set of (indices) of the monitoring sites to test, K = |𝒦|.  
𝒞(k),k ∈ 𝒦: set of nodes that are present in the monitoring site k coverage 

area; 𝒞(k) ∈ 𝒱.  
Output: O: optimization value of the provided monitoring sites sample 𝒦.   
1. Initialize the set of nodes covered by a unique monitoring site 𝒰. 𝒰←∅  
2. Initialize the set of interference nodes, covered by multiple monitoring sites ℐ . 

ℐ←∅  
3. Obtain the maximum Cmax and minimum Cmin values of nodes covered by each 

single monitoring site k,∀k ∈ 𝒦. Cmax = max(|𝒞(k)|,k ∈ 𝒦),Cmin = min(|𝒞(k)|,k ∈ 𝒦)

4. ∀k ∈ 𝒦:  
(a) ∀v ∈ 𝒞(k):  

i. If the node v ∕∈ ℐ and v ∕∈ 𝒰, then add v to 𝒰. 𝒰←𝒰
⋃

{v}
ii. Otherwise if the node v ∕∈ ℐ and v ∈ 𝒰, then remove v from 𝒰 and add it to 

ℐ . 𝒰←𝒰⧹{v} ℐ←ℐ
⋃

{v}
5. Compute and return the optimization value that is the difference between the 

unique coverage U = |𝒰| and the difference between Cmax and Cmin. This is also 
normalized with V. There are also two weight variables w, y (1 by default) that 

could be modified in order to prioritize one measure over the other. o← 

(w × U − y × (Cmax − Cmin))

V   

The MSS needs to be computed several times (i.e., iterations) to find 
the best K node combination to place the monitoring sites on 𝒮 ac-
cording to the MSE. The optimal number of required iterations may vary 
depending on sewage network size and topology. It is up to the network 
administrator to define the number of iterations as an stop criteria 
upfront, that may be input manually by the user or an automated de-
cision based on the accumulated O value improvement in the MSS al-
gorithm iteration results. 

2.2.2. Dynamic monitoring site selection algorithm 
After running the MSE Algorithm 1 and obtaining a subgraph of the 

sewage network with a monitoring site (sensor) s as output (i.e., 𝒢(s)), 
we then use the dynamic monitoring approach proposed in Larson et al. 
(2020) to home in on either a possible patient zero or the hot spot 
neighborhood in that subgraph when its sensor s detects SARS-CoV-2 
RNA traces ℱ . Larson et al.’s approach consists of assigning Bayesian 
probabilities of infection to all possible source nodes based on profes-
sional beliefs and applying a “binary search” using these probabilities. 
Our implementation assigns the Bayesian probabilities according to in-
habitants connected to each node as we believe that the higher the 
population in the area is, the greater the chances are of finding infected 
people. 

Two algorithms have been implemented: i) the Patient Zero (PZ) 
algorithm and ii) the Hot Spot (HS) algorithm. The PZ algorithm as-
sumes there exists only one case of COVID-19 in a community (Patient 
Zero) and tries to find the minimum sequence of manholes to test in 
order to locate that first source of infection. The HS algorithm, on the 
other hand, assumes that many individuals are already infected and 
seeks to find the cluster in the sewage network with the largest SARS- 
CoV-2 RNA load; in other words, locate the hot spot. 

The HS algorithm works as follows. At each iteration it seeks for the 
manhole whose Bayesian probability of infection is the highest. After 
testing it, if the viral load ℱ′ is high compared to the previously tested 
manhole, we know that the infected area is upstream from this point and 
we can discard all the network nodes downstream. Otherwise, the up-
stream nodes are discarded. Hence, at each iteration the population 
associated to the remaining nodes is approximately the same as those 
associated to the eliminated ones. In order to simplify the simulation, for 
each iteration we assume that the viral load ℱ′ is boolean. The algorithm 
halts when the stopping rule, which is defined by the user, is reached. The 
PZ algorithm is a special instance of the HS algorithm, where the stopping 
rule is reached when there is only one source node left. 

Both PZ and HS algorithms share a prior three-step process which has 
been defined below for the sake of clarity. 

Given 𝒢(s)←{𝒱(s), ℰ(s)}, cv is the population associated to the node 
v ∈ 𝒱(s): 

i Create artificial nodes: All source nodes must have deg− (v) = 0. To 
achieve this, for each inner node in the graph (so-called “original 
node”) with the associated population, we create a new node (so- 
called ”artificial node”) with the same associated population and 
connected to that original node. From any artificial node we can 
easily obtain its original node. Let 𝒜 be the set with all artificial 
nodes from 𝒢(s).  
(a) Create empty set 𝒜
(b) ∀v ∈ 𝒱(s) such that deg− (v) > 0 and cv > 0, add new node v′ and 

edge (v′, v) to 𝒢(s), make the citizens cv′←cv, define 
original(v′)←v, add v′ to 𝒜.  

(c) Return 𝒜
ii Simplify and normalise: Dispense with useless nodes for the 
calculus in order to simplify the graph and assign a Bayesian prob-
ability to the source nodes based on its associated population.  
(a) ∀v ∈ 𝒱(s), if deg− (v) = 0 and cv = 0, remove it.  
(b) ∀v ∈ 𝒱(s) with deg− (v) = 1, deg+(v) = 1 and cv = 0, add edge to 

𝒢(s) going from predecessor of v to the successor of v. Remove 
vertex v  

(c) Let ℘⊂𝒱(s) be the set of all v ∈ 𝒱(s) such that deg− (v) = 0.  

(d) Normalise ℘: ∀p ∈ ℘,probability
(
p
)
← cp∑

p∈℘
cp  

(e) Return ℘
iii Propagate probabilities: Propagate probabilities from source 
nodes to all other nodes, such that each inner node’s probability is the 
sum of probabilities of upstream nodes. Let ℘ be the set obtained 
after simplifying and normalising 𝒢(s). 
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(a) ∀v ∈ (𝒱(s)⧹℘), and 𝒲 is all the predecessors of 

v : probability
(
v
)
←
∑

w∈𝒲
probability(w)

deg+(w)

Algorithm 2. Hot Spot detection algorithm.   
Input: 𝒢(s)←{𝒱(s),ℰ(s)}: Directed graph such that it only has one node s ∈ 𝒮|deg+(s)
= 0 corresponding to sensor node.  

cv | ∀v ∈ 𝒮, cv are the citizens of v.  
ℱ : Viral load detected in sensor node s.  

Output: 𝒯 |𝒯 ⊂𝒱(s): Nodes of Hot Spot neighborhood.   
1. 𝒜← Create artificial nodes  
2. ℘← Simplify and normalise graph  
3. Define stopping rule.  
4. While not stopping rule:  

(a) Propagate probabilities  

(b) Find node t ∈ (𝒱(s)⧹𝒜) such that t← min
v∈(𝒱(s)⧹𝒜)

⃒
⃒
⃒
⃒probability(v

)
− ℱ/2

⃒
⃒
⃒
⃒. In case of a 

tie, choose the node with the larger probability.  
(c) Let 𝒢′ be a subgraph of 𝒢(s) having t and all the ancestors of t.  
(d) Test node t.  

i. ℱ′← detected viral load  
ii. If ℱ′⩾ℱ/2 then 𝒢(s)←𝒢′,F←F′

iii. Else, 𝒢(s)←𝒢(s)⧹𝒢′,ℱ←ℱ − ℱ ′

(e) ℘← Simplify and normalise graph  
5. 𝒯 ←𝒱(s)⧹𝒜
6. Return 𝒯

2.3. Case study 

The usefulness of the algorithms was illustrated with the sewage 
network of Girona (Girona, northern Catalonia, Spain). Girona is a city 
of 101,852 inhabitants, with a metropolitan area shaped by seven mu-
nicipalities that together have a total of 148,504 inhabitants (Source: 
2019 electoral roll). Girona is a typical compacted western Mediterra-
nean city, with mixed uses and clearly divided between the old town and 
the modern peripheral. It extends 39.1 km2 at the confluence of the Ter, 
Onyar, Galligants, and Güell rivers and has a population density of 2,605 
inhab./km2. The Girona sewage network consists of 9,718 manholes 
with a total number of 148,504 inhabitants connected on them, resulting 
in a large network of 13.79 km in diameter and with a total of 338 kms of 
pipes. The basic topological characteristics of the network are: 9,718 
nodes (V); 10,185 edges (E); an average node degree of 2.1 (D); a 
diameter of 9,718 (∅); and an average shortest path length of 9,580 (d). 

The topological data from the community sewer network was pro-
vided by the municipality of Girona through GIS that included feature 
geometry, attributes, etc. First, these files were combined to generate a 
GraphML file format which is compatible with the Network Robustness 
Simulator (NRS) (BCDS, 2021) used for graph analysis. The output 
format is a unique file in GraphML format which contains both nodes 
and edges, including their attributes. GraphML is an XML based format 
(GraphML, 2001). Next, a data verification and reconciliation approach 
was followed. The obtained graph was then checked for inconsistencies 
in disconnected nodes and/or edges. It was also important to check the 
additional data for outliers and discuss possible errors with the water 
company to ensure greater precision. 

The citizens living in a household are estimated to be 2.7 citizens per 
household. This assumption is taken from the ratio of inhabitants in 
2019 in Girona (101,852 citizens) and the surrounding villages con-
nected to the sewer system, including Salt (31,362 citizens), Vilablareix 
(2,897 citizens), Sarrià de Ter (5,170 citizens), Aiguaviva (756 citizens), 
Fornells de la Selva (2,650 citizens) and Sant Gregori (3,817 citizens), 
which gives a final total of 148,504 citizens. These data were obtained 
from the Catalan Statistics Institute (idescat, 2019) and are divided by 
the total number of households (53,466 households in 2019). 

The cadastral parcels from the city were associated to each manhole. 
The cadastral database for Girona was downloaded from the official 

Spanish Spatial Data Infrastructure, which is based on the European 
INSPIRE Directive (2007/2/EC), and transformed into a geojson file that 
contained the geometries as well as the alphanumeric information 
linked to the cadaster parcels. Next, each cadastral parcel was linked to 
the nearest manhole following a negative slope, adhering to the 
assumption that water is transported by gravity. The official DEM from 
the Catalan Cartographic and Geological Institute at a 2×2 resolution 
(ICGC, 2020) was used to estimate the z coordinate of the centroid of 
each cadastral parcel and manhole; hence, each cadastral parcel was 
connected to the nearest sewer origin with an equal or lower elevation. 
However, to overcome EDM and other inaccuracies, when the distance 
between the parcel and the manhole exceeded a defined threshold 
(100 m in this case), the algorithm searched for the closest higher 
manholes in a progressive way (1 m added in each new search) until the 
distance was lower than the threshold or the maximum z tolerance was 
reached (3 m in this case). To run these calculations, the scripts were 
developed on a PyQGIS console on QGIS v. 3.10 (QGIS, 2008). The 
number of inhabitants connected to each manhole was used as an input 
to the dynamic sensor placement algorithm to assign the Bayesian 
probabilities of infection to the source nodes. It was not used as an input 
to the static sensor placement algorithm. 

3. Results and discussion 

Below, we discuss the numerical results that illustrate the consider-
ations of this paper. For that purpose, we used the Girona sewage 
network instance, i.e., girona-wastewater. 

3.1. Static monitoring site selection 

The results obtained for the case study of Girona confirm that the 
MSS algorithm performed well. The solution obtained for each of the 
eight tests (each of them fixing the number of monitoring sites from one 
to eight, K = {1,2,…,8}), result in a coverage (in manholes) larger than 
60%, an interference smaller than 3% and a maximum difference of 25% 
amongst monitoring sites coverage (Table 2). 

The solution obtained when fixing one monitoring site is arbitrary, as 
it corresponds to the selection of the sampling point at the end of the 
sewage network (the entrance of the WWTP) with 100% coverage and 
0% interference. For the remaining tests, an optimal solution was found 
which balances coverage, interference and manholes’ coverage equity 
amongst sites. The results show that when fixing two and three moni-
toring sites, the coverage reduces down to 65%; after fixing four or more 
monitoring sites the total coverage is always larger than 75% (Fig. 2a). 

The algorithm uses the number of manholes as an input (not the 
inhabitants connected to each manhole). As the MSS algorithm mini-
mizes the difference of the number of nodes between the largest and the 
smallest monitoring site coverage areas (D), our results show adequate 
minimum island sizes from one to five monitoring site placements 
(Fig. 2b) (up to a maximum of five monitoring site placements is rec-
ommended in the girona-wastewater network as a larger number of 
placements result on small-sized islands, which should be avoided). The 
minimum island sizes for nodes and inhabitants are compared with the 
theoretical optimal solution, which considers that all of the obtained 
monitoring site coverage areas are equally sized. The solutions provided 
show a good correlation between the number of manholes and in-
habitants covered for each monitoring site coverage area for all tests, 
this is the particular case in the Girona catchment with a population 
density range of 17.7–759.9 inh/km2 amongst neighborhoods. 

The results show that the larger the number of monitoring sites the 
smaller the distance from the furthest node to the respective sampling 
points (ID values in the table). Given the potential attenuation of RNA 
signal along the sewage network transport Hart and Halden (2020) a 
constraint might be added in the selection of monitoring sites related to 
the maximum distance between the points of discharge of SARS-CoV-2 
RNA traces and each monitoring site. 
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Fig. 3 shows the results for the tests that fixed two and five moni-
toring sites. When fixing two monitoring sites, the two covered areas (in 
green) represent 71% of the manholes. The uncovered areas (in blue) are 
the ones located further downstream in the sewage network (closest to 
the WWTP). When fixing five monitoring sites, the coverage increases 
(up to 83%) and smaller residential areas (as compared to the ones 
covered by the fixing two sites test) are included. Again, the manholes in 
the areas close to the WWTP cannot be captured in the final solutions 
because of their small number of manholes and their potential to 
generate interference as they are located downstream. 

This is the first time that a static monitoring site selection algorithm 
has been proposed for SARS-CoV-2 monitoring at fine spatial resolution. 
The static monitoring site selection algorithm can effectively be applied 
to municipalities wishing to monitor SARS-CoV-2 RNA traces at a finer 
scale than an entire municipality. The presence of RNA traces is nor-
mally analyzed in tandem with health (number of infected cases, 
(Medema et al., 2020)), demographic and socioeconomic indicators (Wu 
et al., 2020). The module developed in this study which links each 
household to a manhole is essential to be able to aggregate these in-
dicators (from individuals to inhabitants connected to a specific moni-
toring site). In the particular case of Catalonia, the public COVID-19 
prevalence data is only aggregated at the municipality level and at the 
ABS (primary health area, which are areas defined around primary care 
health centers in the city) level. As an illustration exercise, we fixed the 
placement of sensors at the end of each ABS (the downstream manhole 
of each ABS subcatchment) and estimated the interference. Appendix A 
shows that locating sensors as a function of ABS results in large inter-
ference amongst monitoring sites and hence would not be the preferred 
option. Therefore, municipalities should make a request to the health 
authorities to aggregate prevalence data according to the areas covered 

by the sampling points. The main limitation to bringing the approach 
into practice is the data quality on the topology of the sewage network; 
data reconciliation is the most time-consuming step. Launching the 
optimization for each of the tests took between one and three minutes on 
a modern laptop (CPU Ryzen 5 4800U, 16 GB RAM). Finally, the 
approach is equally valid for the placement of monitoring sites for 
purposes other than tracking the spread of COVID-19, such as estimating 
the consumption of pharmaceuticals (Escolà Casas et al., 2021) and 
illicit drugs (González-Mariño et al., 2020) at fine spatial resolution, or 
detecting illicit discharges of pollutants from industries (Sambito et al., 
2020). 

3.2. Dynamic monitoring site selection 

The dynamic monitoring site selection algorithm is executed over 
both the entire sewage network (cases 1 and 2) and a reduced network, 
which includes 1,099 manholes (equivalent to 44,102 citizens), found as 
an outcome of the static monitoring algorithm (cases 3 and 4). For cases 
1 and 3, the Bayesian probabilities of source nodes are assigned ac-
cording to the connected inhabitants, while for cases 2 and 4 the prob-
abilities are assigned using random numbers from a unit probability 
distribution. Cases 2 and 4 would be comparable to the methodological 
proposal from Larson et al. (2020). 

Patient Zero. When applying the PZ algorithm to the entire network 
and with probabilities as a function of population (case 1), the sampling 
iterations required to identify the first individual discharging SARS-CoV- 
2 RNA traces in the sewage system range from 8 to 15. When the 
probabilities are randomly assigned (case 2) the range is smaller, be-
tween 10 and 14 iterations. Looking at the median of the distributions 
one less iteration would be needed when assigning the probabilities as a 

Fig. 2. Coverage and minimum island sizes (one to eight monitoring sites, girona-wastewater).  

Table 2 
MSS results data for girona-wastewater network, from one to eight monitoring sites.  

K C (%) I 
(%) 

D (%) IN WD (m) ID (m) IH HC 
(%) 

1 100 0 0 9718 0 13785 151248 100 
2 71.51 2.45 6.4 3909, 3287 4561, 4457 6513, 9328 58331, 82561 93.15 
3 64.35 0.01 8.3 2378, 2306, 1571 6247, 4452, 4618 7538, 6618, 4232 61007, 44102, 13845 78.65 
4 76.07 0.01 12.76 2378, 2306, 1571, 1138 6247, 4452, 4618, 4182 7538, 6618, 4232, 3655 61007, 44102, 13845, 9468 84.91 
5 82.97 0.01 17.83 658, 1571, 2306, 2391, 

1138 
812, 4618, 4452, 6021, 4182 3825, 4232, 6618, 7764, 3655 5404, 13845, 44102, 61313, 9468 88.68 

6 82.67 0.1 21.24 1138, 240, 2143, 658, 1571, 
2294 

4182, 6255, 6253, 812, 4618, 
4756 

3655, 1465, 7531, 3825, 4232, 
6319 

9468, 7920, 53589, 5404, 13845, 
44102 

88.81 

7 86.79 0.44 24.31 2306, 658, 408, 2379, 17, 
1571, 1138 

4452, 812, 4447, 6239, 5085, 
4618, 4182 

6618, 3825, 2778, 7546, 214, 
4232, 3655 

44102, 5404, 3401, 61007, 186, 
13845, 9468 

90.85 

8 77.38 0.99 15.15 240, 1712, 1512, 1130, 596, 
658, 1138, 630 

6255, 6371, 6263, 4736, 
5317, 812, 4182, 6301 

1465, 4699, 4607, 4034, 2376, 
3825, 3655, 7484 

7920, 25075, 47133, 11067, 
16254, 5404, 9468, 6456 

85.14 

K – number of placed monitoring sites, C (%) – normalized network nodes coverage (C, in %), I (%) – normalized network nodes interference (I, in %), D (%) – 
normalized difference between Cmax and Cmin (D, in %), IN – islands number of nodes, WD – distance between the WWTP and each node where the monitoring sites are 
placed (in meters), ID – islands diameter (i.e., monitoring sites coverage areas diameter, in meters), IH – island number of inhabitants (inhabitants size), HC – in-
habitants coverage (in %). 
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function of the population. This gain might increase in cities with larger 
variability in population density amongst neighborhoods (in the case of 
Girona, the population density across neighborhoods varies between 
17.66 and 759.94 inh/km2). 

The application of the PZ algorithm to the reduced network results in 
a decrease of two iterations to identify the first individual discharging 
SARS-CoV-2 RNA traces (cases 3 and 4 as compared to 1 and 2). Overall, 
the strategy resulting in a smaller number of iterations is case 3, which 
involves departing from a reduced network resulting from the static 
monitoring site selection algorithm and with the assignment of proba-
bilities as a function of connected inhabitants. The frequency distribu-
tion of the number of required samples for the PZ algorithm is shown in 
Fig. 4a. 

Hot Spot. The HS algorithm allows hot spot areas with a large 
number of potential infected people to be identified (we set 3000 
infected inhabitants as the stopping rule in this exercise). As compared to 
the PZ algorithm, the number of iterations reduces by five no matter the 
case. As shown in Fig. 4b, when assigning the probabilities as a function 
of the connected inhabitants, one less iteration is needed (looking at the 
median of the distributions); yet, the spread of the distribution of the 
resulting number of iterations is much smaller as compared to the 
assignment of uniform probabilities; this is the opposite of what is shown 
in Fig. 4a. The most favourable (and conservative) option would be case 
3 with large certainty that with four or five iterations the hot spot area 
would be identified. As compared to case 1, one or two iterations would 
be saved when departing from a sewage network obtained from the 

Fig. 3. Coverage areas for two and five monitoring sites placement (girona-wastewater).  
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static approach. 
The dynamic algorithms are comparable to the ones discussed in 

Larson et al. (2020), where the Bayesian probabilities are assigned 
randomly in the same way as we did in both cases 2 and 4. The en-
hancements in this paper relate i) to the use of the outcome from the 
static sensor placement algorithm as a starting point which allows the 
overall number of samples needed to be reduced in both PZ and HS al-
gorithms, and ii) to the addition of information about the number of 
inhabitants to each manhole which also allows the number of samples 
on average to be reduced; the latter is relevant in cities like Girona, 
which show high spatial variability in population density (and hence in 
the number of inhabitants connected to a manhole). As stated in Larson 
et al. (2020), the usefulness of the dynamic approach to detect a hot spot 
within a city is constrained by the availability of devices which offer a 
fast response in the detection and quantification of SARS-CoV-2 RNA 
traces. Current methods imply the transport of the samples to a lab 
where the RNA traces are concentrated (e.g. (Forés et al., 2021)) and 
then the qPCR is executed, overall with a result being available in 

between 24 and 48 h. In case 3, iterations are needed to locate the Hot 
Spot, which means that between three and six days would be needed in 
total, which is probably too slow to make a decision on an effective 
mitigation action. 

The applicability of the dynamic monitoring site selection algorithms 
is also constrained by the detection limit of the SARS-CoV-2 analysis in 
sewage. The lowest incidence resulting in quantifiable SARS-CoV-2 
concentration in wastewater differed between community sizes; Rusi-
ñol et al. (2021) found the lowest quantifiable incidence to be 0.11 and 
0.82 cases per 1,000 inhabitants for the large and small sized commu-
nities respectively and Hata et al. (2021) reported 0.05–0.10 detectable 
cases per 1,000 inhabitants. Hart and Halden (2020) reported that under 
a best-case scenario of no in-sewer RNA signal loss, wastewater gener-
ation (50–500 L/person/d) and virus shedding (56.6 million-113.2 
billion viromes/d) are important variables determining the detect-
ability in community wastewater of a single infected person among one 
hundred to two million healthy individuals, assuming homogeneous 
distribution of cases. In the case of SARS-CoV-2 it is really challenging to 

Fig. 4. Distribution of sampling points required.  
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detect the zero patient; the patient zero might be moving around the 
city, but also the limit of detection of the analysis of SARS-CoV-2 in 
wastewater might not allow to detect 1 infected amongst the surveilled 
community. Results of patient zero are provided in this paper to 
compare the performance of the algorithm against Larson et al. (2020). 
Yet, the patient zero algorithm can be used for other purposes than 
SARS-CoV-2 surveillance, such as the detection of an illegal industrial 
discharges in sewer systems. Furthermore, there are substantial un-
certainties in estimating SARS-CoV-2 loads (Li et al., 2021) which 
propagate to the calculation of increase or decrease of virus load be-
tween two collected samples; high-frequency flow-proportional sam-
pling would reduce uncertainties (yet this is challenging at the intra-city 
scale) as well as using surrogate viruses as internal or external standards 
during the analysis, and further improvement on analytical approaches. 

Future work will be conducted to connect the algorithm to a mech-
anistic model that includes SARS-CoV-2 concentration as a variable, 
using a hydraulic model to estimate the dilution capacity in the sewer 
network, a SARS-CoV-2 load generation pattern and implementing the 
in-sewer degradation of SARS-CoV-2. The concentration can then be 
used by the algorithm as a criteria or a constraint to define best sampling 
sites. Some attempts in that sense have been published for SARS-CoV-2 
(Hart and Halden, 2020) and for other pathogens (Ranta et al., 2001; 
Wang et al., 2020). 

4. Conclusions 

This paper demonstrates that it is possible to optimally select sam-
pling points for SARS-CoV-2 sewage surveillance in cities. An algorithm 
is proposed for the placement of a predefined number of monitoring sites 
which result in maximum coverage of manholes and minimum inter-
ference amongst them (static sensor placement). Two other algorithms 
are proposed to dynamically sample and analyze to identify patient zero 
and hot spots in cities (dynamic sensor placement). For the case study of 
Girona, a static sensor placement of five monitoring sites (or more) re-
sults in a coverage greater than 80% of both manholes and inhabitants. 
The best option for detecting a patient zero and a hotspot area implies 
assigning probabilities as a function of the number of inhabitants con-
nected to each manhole. Results have demonstrated that when using 

these probabilities our proposed algorithms enhanced previous pro-
posals in all presented scenarios. As a conclusion for the city of Girona, 
11 iterations would be needed to detect the patient zero, and six itera-
tions for identifying a hotspot of about 3,000 infected inhabitants. In the 
case of combining both algorithms, the number of iterations can be 
reduced to nine and four, respectively. 
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Appendix A. ABS monitoring site selection 

ABS (Área Básica de Salut) or Basic Health Area, is the clustering method used by the Spanish government to divide a city into different areas. The 
main criteria is that all of them include at least one primary Health-care facility. A priori it would be interesting to establish the monitoring points 
considering these areas. However, if we locate the monitoring points considering only the coverage of these areas the ‘interference’ between them can 
report a huge error in the expected results. Fig. 5 shows the girona-wastewater network placing k = 6 monitoring sites, each one monitoring one of the 
six ABS areas on the network. Each ABS monitoring site is placed in the closest node from an ABS area to the sewage treatment plant. The large level of 
interference provided by this approach cannot be considered as a feasible solution (88.79% of interference depicted on the orange area (Fig. 5a)). This 
is produced, as expected, because part of the monitoring points are located closed to the WWTP, covering by themselves the major part of the city. 

Fig. 5. ABS monitoring site selection (k = 6, 88.79% of interference).  
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Consequently, the rest of the monitoring points, located downstream from the WWTP, overlap the covered area. Moreover, in the case of reducing the 
number of ABS monitored areas, the interference between areas would still persist. This is described in Fig. 6 where the six ABS areas (in green) are 
also shown. In this case, the interfence area reports a percentage of 1.22. Consequently, it is shown that using ABSs as a clustering method to monitor 
the city is not possible if the results have to be relevant (without interferences between areas). 
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