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ABSTRACT
In this paper we introduce a novel non-linear mapping technique
to effectively decolorize images. Designed in a multi-scale fusion
fashion, we first derive three input images represented by the color
channelsR,G andB. In order to transfer to the decolorized image
only the relevant features of the derived inputs, we define two
weight maps based on information theoretic approaches. The first
weight map extracts visually salient regions based on a information
maximization strategy while the second weight map filters the
amount of local variation of each derived input computing local
entropy per patch. Finally, to reduce the local distortions that might
be introduced by the weight maps discontinuities, our decoloriza-
tion strategy is designed in a multi-scale fusion. We also introduce a
blind measure to accurately evaluate image decolorization methods.
Our comprehensive qualitative and quantitative validation demon-
strates that our method yields very competitive results.

I. INTRODUCTION

Grayscale images contain tones of neutral gray ranging from
white to black. They are still demanded in many applications such
as compression, visualization of medical imaging, aesthetical styl-
ization, monochrome printing and single-channel image processing.
Conventionally, the grayscale (decolorized) images are computed as
the luminance channel of different color spaces (e.g.CIEL∗a∗b∗,
YCbCr, HSL/HSV). Basically, the standard conversion employs
a simple linear transformation that compresses the three color-
channel information into a single channel image version. However,
the linear mapping disregards initial visual cues such as chromatic
information, local contrast or salient regions. In consequence, such
standard grayscale conversions yield non-perceptually accurate
images that suffer from loss of details, structure and content miss-
identification (please observe theL∗ channel shown in figure 1).

Since decolorization is a fundamental operation, various solu-
tions [1], [2], [3], [4], [5], [6], [7] have been introduced in the
literature in the last decades. The existing techniques can be roughly
classified in two main classes: local [8], [3], [9] and global [1],
[2], [4], [6], [10], [11], [12] mappings. Local mapping solutions
are more robust to identifying and preserving the local features,
but they are prone to distort the appearance of color regions
characterized by low variance. On the other hand, global mapping
techniques shown to be more effective to map over the entire
image the same color to the same gray level (crucial step in image
decolorization).

In this paper we introduce a novel decolorization strategy that
filters and preservers the most significant features of the original
color image based on both global and local information. Our
solution builds on a fusion strategy that blends several images
derived from the initial colored input. We first derive three input
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Fig. 1. In contrast to standard decolorization technique (middle
column), our method (last column) is able to preserve the global
appearance of the original color image (first column).

images represented by the color channelsR (red),G (green) and
B (blue). Then, we define two weight maps in order to transfer
only relevant features of the derived inputs to the grayscale output
image. The first weight map identifies prominent regions in each
of the input derived image based on a information maximization
strategy while the second weight map filters the amount of local
variation of each derived input computing local entropy per patch.
Finally, to reduce the local distortions that might be introduced
due to the weight maps discontinuities, our decolorization operator
employs a multi-scale fusion strategy, using a Laplacian pyramid
decomposition of the inputs combined with the Gaussian pyramid
of normalized weights. Multi-scale fusion is a well-studied topic
in image processing and has been used in numerous enhancing
applications [13], [14], [15], [16], [17], [18], [19], [20].

While multi-scale fusion has been recently used for image
decolorization [12], the first contribution of this work is the original
paradigm based on two measures that use information theory con-
cepts. Information theory has been successfully applied in various
image processing applications [21] ranging from enhancement [22],
[23], segmentation [24], [25], saliency [26], [27], [28], shape
matching [29], face recognition [30], HDR imaging [31] to video
coding [32]. However, to the best of our knowledgethis is the
first image decolorization concept that is built on information
theory. Moreover, in contrast to our previous fusion approach [12],
that extended the HDR imaging approach of [13], here we reduce
the complexity of the fusion framework by employing only three
derived inputs and two (different) weight maps. We also demon-
strate that the proposed version overcomes the previous fusion-
based method of [12].

Additionally, as asecond contribution we introduce a new



blind measure to evaluate image decolorization techniques.
Built on the well-known SSIM [33] our measure besides contrast,
luminace and structure similarity measures, penalizes the reversal
of original gray tonal order). Finally, we perform an extensive
qualitative and quantitative validation that demonstrates that our
technique is competitive yielding comparative and even better
results compared to the existing decolorization techniques.

II. THE PROPOSED NON-LINEAR DECOLORIZATION
APPROACH

The standard decolorization approach performs a linear mapping
(L = wRR+wGG+wBB), whereR, G, B are the color channels
andwR, wG, wB are the contribution weights to the final results.
The weights are simple scalar parameters that represent the impact
ratio of each color channel to the final grayscale result. On the
other hand, for non-linear mapping techniques, the weights are
vectors and as a result can be defined more appropriate for this
operation. However, for both linear and non-linear mappings, in
order to maintain the range consistency of the result, the weights
are normalized.

Linear mapping, due to the uniform contribution of all pixels,
shown to be less effective to depict accurately the original color
image appearance in the decolorized output. On the other hand, if
the weights are properly defined, non-linear mapping techniques
shown higher robustness to preserve in the same time the local and
global features. Unfortunately, for non-linear strategies the weights
might introduce additional unpleasing local artifacts due to the
transitions of the weights that in general do not correlate with the
transitions of the input images.

In this paper we introduce an effective non-linear mapping and to
overcome introducing such artifacts, we design our algorithm based
on the multi-scale fusion principle that is detailed in the following
subsections.

II-A. Derived Inputs and Weight Maps

While the color-to-grayscale can be seen as a compression
operation (reducing the image information content from three color
channel to only one luminance channel), we first decompose the
color image in three inputs represented by its color channelsR, G
andB. Next, we derive two measures that aim to preserve the global
and local information of the original image. Finally these measures
(weight maps) are combined effectively in a fusion framework. The
two measures are built on information theory and are depicted in
the following paragraphs.

Global weight map filters the dominant/salient values in each of
the input derived images. The human visual system (HSV) is highly
sensitive to the global contrast that is related with the saliency of
the objects in the scene [34]. In the seminal work of Attneave [35]
it is shown that there is a significant redundancy in human’s visual
stimuli and also the salient regions of a scene are those where
HVS make the greatest errors in guessing. Or, in other words,
how unexpected is the content of a local region compared to its
neighborhood regions. In the context of finding salient region, as
demonstrated in [26], [27], extracting visually-prominent regions
is similar with quantifying self-information of small patches in the
image. Inspired by [26], a set of independent features is extracted
from a set of local patches (31×31) randomly sampled from more
than 3500 natural images. Based on these sets of local patches,
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Fig. 2. The weight maps corresponding to the three derived inputs.

a set of basis coefficients are learned employing the Independent
Component Analysis (ICA) from each local patch (the process of
ICA learning selected randomly 100 patches from each image).
The independent coefficients computed in every local neighborhood
yield a kernel density estimate. A joint likelihood of a particular
region is computed based on the product of all its individual
likelihoods. Finally, to obtain our saliency (global) weight map
(denoted in our fusion framework withW1) the computed joint
likelihood p(x) is converted based on the self-information measure
computing−log(p(x)).

Local weight map (our second weight map denoted withW2)
is computed in our framework based on the local entropy [36]
that aims to filter the amount of local variation of each derived
input. Based on the Shannon’s theorem [37], the entropy represents
the amount of uncertainty about an event associated with a given
probability distribution. If we consider images as a realization
of random variables, the image entropy measures the level of
randomness of the image and can be defined as:

EI =
L
∑

l=1

pllog(1/pl) (1)

where pl is the probability of pixel intensities valuel to appear
in the imageI andL is the total gray intensities of the image. In
our approach the local entropy is defined in a small patchΩ and
is computed as:

EΩ =

L
∑

j=1

pj log(1/pj) (2)

where pj denotes the probability of pixel intensities valuej to
appear in the local patchΩ. To weight the local variation of each
derived input we use a patch size of5 × 5 and the thresholdθ
is computed automatically based on the maximum value of the
entropyθ = αmax(EΩ) (with default parameterα=0.85).

II-B. Multi-scale Fusion

The fusion process blends per-pixel the three derived inputs (the
color channelsR, G, B) guided by the information of the two
weight maps previously defined. Straightforwardly, the process of
fusion can be expressed as:F(x, y) =

∑

k
W̄k(x, y)Ik(x, y),

wherek is the index that counts the number of the derived inputsIk

(k=3 in our framework). This simple fusion operation is per pixel,
and for each pixel location(x, y) the result is obtained by simply
summing the corresponding locations of the inputsIk balanced by
the normalized weight maps̄Wk.



However, as shown in [13], this naive fusion implementation
yields inconsistent results characterized by unpleasing halos arti-
facts close to the edges. To overcome this problem we employ a
multi-scale pyramidal refinement strategy [38]. In our framework,
for each derived input, a Laplacian multi-scale pyramid is computed
by applying the Laplacian operator at different scales. Similarly,
a Gaussian pyramid of the weight maps is built by applying
Gaussian to each normalized weight map̄W at different scales.
The blending process between the Laplacian pyramid of the inputs
and Gaussian pyramid of normalized weights is performed at each
level independently. Mathematically, for the pyramid scale levell
the fused result is expressed as:

F l(x, y) =
∑

k

Gl
{

W̄ k(x, y)
}

Ll
{

Ik(x, y)
}

(3)

whereLl {I} represents the Laplacian of the inputI at scalel.
Similarly, for the normalized weight map of thēW we have defined
the GaussianGl

{

W̄
}

. To obtain our final decolorized image, we
sum up the fussed contribution of all pyramid levelsF l.

III. RESULTS AND DISCUSSIONS

We extensively tested our new decolorization approach for
various natural and synthetically generated color images. In our
experiments we considered several state-of-the-art decolorization
techniques including the techniques of Bala et al. [8], Rache et
al. [2], Gooch et al. [1], Grundland and Dodgson [4], Smith et
al. [3], Kim et al. [5], Lu et al [10] and Ancuti et al. [12].
Figure 4 presents several color images and decolorized ver-
sions generated by the analysed techniques. For the entire set
of 24 images the reader is referred to the supplementary mate-
rial (https://drive.google.com/file/d/1WG6O3zjKBN-KrcStDFSjZ0OUvIPrASg6/view?usp=sharing).Qualita-
tively, it is challenging to classify which operator works better.
On a first glance, the local methods of [8], [2], [10] seem to
darken some of the images. Also, the method of Smith et al. [3]
introduce some artifacts close to edges due to the unsharp filter-
based strategy. Moreover, compared with the recent fusion-based
approach of Ancuti et al. [12] the proposed technique is able to
preserve better the global contrast (see for instance the results
shown in the first three rows of Fig. 4). Overall, we can conclude
that our technique yields accurate results having the advantage to
be less prone to artifacts compared to the local mapping techniques
and yielding competitive results compared with the global mapping
techniques, as well.

III-A. Quantitative Validation

Besides the qualitative evaluation we introduce a quantitative
measure to validate the decolorization techniques. We built on the
recent work of Ma et al. [39] that uses the well-known SSIM [33]
for color-to-grayscale problem. Similar as in [39] we found that
the three SSIM-derived measures are also important in the de-
colorization evaluation. However, a crucial characteristic of image
decolorization has been ignored by the measure of Ma et al. [39]:
the decolorized techniques should not reverse the original gray
tonal order (e.g white has to remain white and black has to remain
black also in the decolorized output). This has been observed also
by the extensive perceptual user-study of Cadik [40] where users
highly penalized all the examples with white background mapped
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Fig. 3. The first row shows the decolorized results of the color
image with a white background shown in the 7th row of Fig. 4.
The second row presents the corresponding measure maps and the
quantitative values of the measure of Ma et al. [39]. The bottom
row presents the corresponding measure maps and the quantitative
values of our measure. Obviously, in contrast to the method of Ma
et al. [39], our blind measure (BWSSIM ) penalizes the reversal
of the original gray-tone (e.g the background should remain white
also in the decolorized image).

to a different shade of gray (e.gbutterfly and written white sheet
examples shown in Fig.4).

As a result, we define an additional measure map (G) that has to
penalize the reversal of original gray tonal order. This map verifies
if the gray-tones (including black and white) are preserved, and
vice-verse (colorful locations cannot be mapped to white or black
values since although this might increase the contrast the output
is not realistic). To implement this measure map we simply verify
per pixel if the decolorized value is higher than the minimum and
lower than the maximum of all the color channels values:

G = max[1− 2 · |D −min(Imax,max(Imin, D))| , 0] (4)

whereD is a decolorized output image,Imin = min(R,G,B) and
Imax = max(R,G,B) with R,G,B are the color channels of the
original color image. The image values are considered normalized
in the [0, 1] range and the measure map returns values in the same
range (as the other three SSIM-derived measures) with lower values
that penalizes the result. If a pixel value of the initial color image
does not contains chromatic information, it means that all it’s color
channels values are identical, and the measure map returns 1. On
the other hand, if a pixel value contains chromatic information, the
equation 4 verifies if the contrast is increased outside the local range
(Imin,Imax) which often implies loss of details and unrealistic
mapping to black or white values (undesired).

Finally, our blind measure, denotedBWSSIM (Black-White
Structure Similarity Index Measure), is computed per pixel location
(x, y) by multiplying four measure maps:

BWSSIM (x, y) = L(x, y) · C(x, y) · S(x, y) · G(x, y) (5)

where the first three maps are derived from SSIM and defined as
in [39] (L is luminance measure,C is the contrast measure andS
is the structure similarity measure) whileG represents our measure
map that penalizes the reversal of gray tones defined by equation 4.

https://drive.google.com/file/d/1WG6O3zjKBN-KrcStDFSjZ0OUvIPrASg6/view?usp=sharing
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Fig. 4. Comparison with the local and global decolorization techniques. We considered several state-of-the-art decolorzation techniques
including the techniques of Bala et al. [8], Rache et al. [2], Gooch et al.[1], Grundland and Dodgson [4], Smith et al. [3], Kim et
al. [5], Liu et al [10] and Ancuti et al. [12]

Methods Rache [2] Bala [8] Gooch [1] Grundland [4] Smith [3] Kim [5] Lu [10] Ancuti [12] Ours

BWSSIM 0.8258 0.8029 0.8508 0.8483 0.8613 0.8325 0.8308 0.8496 0.8642

Table I. Quantitative evaluation of decolorization methods.We processed all 24 images of the Cadik’s [40] dataset. Several images
of the dateset and results of different methods [8], [2], [1], [4], [3], [5], [10], [12] are shown in Fig 4. This table presents the average
values of theBWSSIM measure for the considered decolorization techniques.

The importance of our blind measure is exemplified in Fig. 3. It
can be seen that our measure correctly penalizes in this case (the
butterfly image has a white background, please refer to the original
color image shown on the 7th row of Fig. 4) the results yielded by
the methods of Rache et al. [2] and Lu et al. [10] that are not able
to map correctly the white background. This is clearly observed by
comparing both the corresponding measure maps and the measure
values of the Ma et al. [39] and our blind measure for this example.

Quantitatively, we employ the 24 sets of images used in the
perceptual evaluation of Cadik [40]. Several images and the
decolorized results of the analyzed methods [8], [2], [1], [4], [3],
[5], [10], [12] are shown in Fig.4. Table I presents the quantitative
evaluation based onBWSSIM (the table presents the average
values over the entire set of 24 images). The quantitative evaluation
reveals that indeed our method is competitive and yields results
with less local distortions both compared with local and global
approaches.

IV. CONCLUSIONS

In this paper we introduce a novel decolorization technique
designed in a multi-scale fusion fashion. To transfer only the
relevant features of the derived inputs, we define two weight maps
based on information theoretic approaches (a global and a local
weight map). We also introduce a novel blind measure to accu-
rately evaluate the decolorization techniques. The comprehensive
validation demonstrates that our method yields very competitive
results compared to the existing techniques.
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