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A B S T R A C T   

Our objective in this work was to present a hierarchical Bayesian spatiotemporal model that allowed us to make 
spatial predictions of air pollution levels effectively and with very few computational costs. 

We specified a hierarchical spatiotemporal model using the Stochastic Partial Differential Equations of the 
integrated nested Laplace approximations approximation. This approach allowed us to spatially predict in the 
territory of Catalonia (Spain) the levels of the four pollutants for which there is the most evidence of an adverse 
health effect. 

Our model allowed us to make fairly accurate spatial predictions of both long-term and short-term exposure to 
air pollutants with a relatively low density of monitoring stations and at a much lower computation time. The 
only requirements of our method are the minimum number of stations distributed throughout the territory where 
the predictions are to be made, and that the spatial and temporal dimensions are either independent or separable.   

1. Introduction 

In studies assessing the health effects of exposure to air pollution, 
there is the problem of how to estimate that exposure. Air pollution 
monitoring station locations do not usually coincide with where the 
majority of the subjects exposed to such pollution are found. In fact, the 
air pollution monitoring stations are not often distributed homoge
neously in the territory under study, and it is quite usual that large areas, 
even some densely populated ones, do not have any stations at all. 

Many studies use the measurements observed in the geographical 
region of the study to estimate, by means of point estimators, the 
exposure levels for that entire region. The estimators most widely used 
are the inverse-distance weighted average and the arithmetic mean of 
the values of the air pollutant observed in several monitoring stations, 
although sometimes the values of the pollutants observed in the nearest 
monitoring station are also used as estimators. The problem, as Wan
nemuehler et al. (2009) pointed out, is that when air pollution levels 
exhibit spatial variation across the study region, using these point esti
mators leads to a bias as a consequence of ignoring the spatial structure 
(i.e., spatial dependence) of the data. Furthermore, when that biased 

estimated level is related to a health variable, this leads to an underes
timation of the health effect of interest (Wannemuehler et al., 2009). 

While there are numerous studies that propose models to estimate 
the levels of air pollutants, explicitly incorporating both spatial and 
temporal dependence (Cameletti et al., 2011, 2013; Pirani et al., 2013; 
Shaddick et al., 2013; Liang et al., 2015, 2016; Calculli et al., 2015; 
Cheam et al., 2017; Mukhopadhyay and Sahu, 2018; Chen et al., 2018; 
Clifford et al., 2019; Nicolis et al., 2019; Wan et al., 2021) (to refer to 
only some of those that have appeared in the last ten years), there are, 
however, fewer studies that attempt to predict air pollution levels in 
locations where there is no monitoring station (i.e., spatial prediction) 
and even fewer that evaluate the predictive capacity of the models they 
propose. With no intention of supplying an exhaustive list, among them 
we will cite the studies of Cameletti et al. (2011, 2013); Pirani et al. 
(2013); Shaddick et al. (2013); Mukhopadhyay and Sahu (2018); Nicolis 
et al. (2019), Wan et al. (2021) and Fiovaranti et al. (2021). 

The spatial domain of these studies ranges from cities (Santiago de 
Chile - Nicolis et al., 2019-; Beijing - Wan et al., 2021-) to countries 
(EU-15 countries - Shaddick et al., 2013; - Italy -Fiovaranti et al., 2021-), 
through to metropolitan areas (Greater London - Pirani et al., 2013-) and 
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regions (Po valley, northern Italy - Cameletti et al., 2011, 2013-; England 
and Wales - Mukhopadhyay and Sahu, 2018-). The pollutants that are 
predicted in these studies are coarse particles, PM10, with a diameter of 
10 μm (μm) or less (Cameletti et al., 2011, 2013; Pirani et al., 2013; 
Mukhopadhyay and Sahu, 2018; Fiovaranti et al., 2021), fine particles, 
PM2.5, with a diameter of 2.5 μm or less (Mukhopadhyay and Sahu, 
2018; Nicolis et al., 2019; Wan et al., 2021), nitrogen dioxide, NO2 
(Shaddick et al., 2013; Mukhopadhyay and Sahu, 2018) and ozone, O3 
(Mukhopadhyay and Sahu, 2018). Regarding the frequency at which 
pollutants are observed, daily data (Cameletti et al., 2011, 2013; Pirani 
et al., 2013; Mukhopadhyay and Sahu, 2018; Fiovaranti et al., 2021) 
dominate, although hourly data (Nicolis et al., 2019; Wan et al., 2021) 
and annual data (Shaddick et al., 2013) are also used. 

The models used in most of these articles, in addition to incorpo
rating spatial and temporal dependencies, include explanatory variables 
among which appear, in decreasing order of the number of studies, 
meteorological variables (Cameletti et al., 2011, 2013; Pirani et al., 
2013; Shaddick et al., 2013; Nicolis et al., 2019; Wan et al., 2021;; 
Fiovaranti et al., 2021), other pollutants different from the one predicted 
(Cameletti et al., 2011, 2013), topographical variables (altitude – 
Cameletti et al., 2013; Wan et al., 2021- and distances to sea and roads - 
Shaddick et al., 2013;; Fiovaranti et al., 2021 -, and to mountains - Wan 
et al., 2021-), site types (Pirani et al., 2013; Mukhopadhyay and Sahu, 
2018), and land use variables (Shaddick et al., 2013). 

With one exception (Wan et al., 2021), the studies use a Bayesian 
approach because it is the one that best allows the uncertainty of com
plex space-time data to be incorporated. Most of the studies that use the 
Bayesian approach perform the inference using the Monte Carlo Markov 
Chain (MCMC) (Cameletti et al., 2011; Pirani et al., 2013; Shaddick 
et al., 2013; Mukhopadhyay and Sahu, 2018; Nicolis et al., 2019). Only 
two use the Stochastic Partial Differential Equations (SPDE) represen
tation of the INLA approximation (Cameletti et al., 2013; Fiovaranti 
et al., 2021). Using MCMC implies a high computational model 
complexity that, in some cases, prevents the practical application of the 
methods proposed by these studies. As an exception, it is worth 
mentioning Nicolis et al. (2019), who use the spTimer package (Bakar 
and Sahu, 2015). This package, which uses MCMC, allows large 
space-time data sets to be handled with fast computation and very good 
data processing capacity. The INLA approach is much more computa
tionally effective than MCMC, producing accurate approximations to 
posterior distributions, even for very complex models (Lindgren and 
Rue, 2015). 

These few studies that provide methods for spatial prediction use a 
relatively large number of monitoring stations. In this study, however, 
we intend to present an equally effective model that allows the use of 
information from a small number of monitoring stations. Furthermore, 
we intend to make spatial predictions at a much lower computational 
cost than existing methods. In fact, we consider that our contributions do 
consist of providing a method that allows spatial predictions to be made 
in territories with a low density of monitoring stations and with a much 
shorter computational time than other alternative methods. 

Specifically, our objective in this work was to present a hierarchical 
Bayesian spatiotemporal model that allowed us to make effective spatial 
predictions of air pollution levels with very few computational costs. In 
this work, we used the SPDE representation of the INLA approximation 
to spatially predict, in the territory of Catalonia (Spain), the levels of the 
four pollutants for which there is the most evidence of an adverse health 
effect: PM10, NO2, O3 and PM2.5. We performed the spatial predictions at 
a point level (defined by its UTM coordinates), allowing them to be 
aggregated later into any spatial unit required. We were especially 
interested in the long-term exposure to air pollutants. That is, by living 
in a certain area an individual is exposed to a mix of pollutants that have 
lasting effects on their health. We also considered the performance of 
our method to spatially predict short-term exposure to air pollutants, 
which has more temporary effects on health. 

2. Methods 

2.1. Data 

We obtained information on the hourly levels of air pollution for 
2011–2020 from the 143 monitoring stations from the Catalan Network 
for Pollution Control and Prevention (XVPCA) (open data) (Departa
ment de Territori i Sostenibilitat, Generalitat de Catalunya, 2021), 
located throughout Catalonia (Fig. S1 in Supplementary material), and 
that were active during that period. The pollutants we were interested in 
for making spatial predictions were PM10, NO2, O3 and PM2.5 (all of 
them expressed as μm/m3) (air pollutants of interest, hereinafter). 
Nevertheless, the monitoring stations also measured other pollutants: 
nitrogen monoxide (NO), sulphur dioxide (SO2), carbon monoxide (CO), 
benzene (C6H6), hydrogen sulphide (H2S), dichloride (Cl2), and heavy 
metals (mercury, arsenic, nickel, and lead). We have used these other 
pollutants as covariates. 

Not all pollutants of interest were measured at all the monitoring 
stations. Thus, during the entire 2011–2020 period, PM10 was measured 
at 122 stations, NO2 at 77 stations, O3 at 62 stations and PM2.5 at 42 
stations. As can be seen in Fig. 1, most of the monitoring stations were 
located in the city of Barcelona and in its metropolitan area. In the rest of 
the territory, the stations were located in cities (especially those that 
measure NO2 and PM2.5) and, in the case of O3, also in rural areas. On 
the other hand, in 2020 (which we used to spatially predict short-term 
exposure), the number of air pollution monitoring stations dropped 
considerably; from 143 to 78. In particular, the number of stations 
measuring particles dropped dramatically (in the case of PM2.5 from 42 
to 3, 92.88% fewer; PM10 from 122 to 36, 70.49% fewer). The number of 
stations measuring O3 went from 62 to 50 (19.35% fewer stations) and 
NO2 from 77 to 67 (12.99% fewer) (Table 1). 

As our primary interest was in spatially predicting long-term expo
sure to air pollutants, we used the monthly averages, after obtaining the 
daily averages from the hourly data, from January 2011 to December 
2019. To make the spatial predictions of the short-term exposure, we 
used the daily averages from January 1, 2020, to November 29, 2020. 

We carried out the spatial predictions at a point level, with the 
centroids being Basic Health Areas (ABS, for its acronym in Catalan from 
here on). Catalan health planning defines an ABS as the elementary 
territorial unit through which primary health care services are organized 
(Atenció Primària Girona. Institut Català de la Salut, 2021). The ABSs 
are either made up of neighbourhoods or districts in urban areas, or by 
one or more municipalities in rural areas. Their delimitation is deter
mined by geographical, demographic, social and epidemiological factors 
and, in particular, based on the accessibility the population has to ser
vices and the efficiency in the organization of health resources (Atenció 
Primària Girona, 2021). Catalonia is divided into 376 ABSs with pop
ulations between 371 and 72,321 inhabitants (mean 20,266 inhabitants, 
standard deviation 13,391, median 18,457 inhabitants, first quartile 
-Q1- 10,554, third quartile -Q3- 27,529). The population density was in 
the range of 0.31–34,590.58 inhabitants/km2 (mean 3,486.36, standard 
deviation 6,719.23, median 309.18, Q1 44.83, Q3 3,752.54). In Cata
lonia, 769 of the 947 of the municipalities belong to a single ABS. Of the 
178 remaining, 46 were divided into more than one ABS, 37 of them into 
a maximum of five ABSs, eight between six and 14 ABSs and one, (the 
city of Barcelona) into 67 ABSs (Idescat, 2021). 

Less than a third of the ABSs have at least one air pollution moni
toring station (105 from a total of 376). That is, one ABS has five 
monitoring stations, six have three stations, 22 have two stations and the 
remaining 76 have only one station. 

As covariates, we included the altitude of the air pollution moni
toring station (in m) and the area of the ABS (in km2). The altitude (as 
well as other information related to the monitoring station, such as its 
latitude and longitude) were obtained from the Departament de Terri
tori i Sostenibilitat (2021). We transformed the geographic coordinates 
(latitude and longitude) to UTM coordinates (in km) using the R package 
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rgdal (Bivand et al., 2021). The areas of the ABS, as well as the UTM 
coordinates of their centroids, were calculated using QGIS (version 2.18) 
from the digitized cartography of the ABS (information of 2018) (open 
data) (Departament de Salut, 2021). 

It is known that, at least in the short term, exposure to air pollution is 
correlated with various meteorological variables. For this reason, in the 
case of spatial prediction of short-term exposure, we also included 
several meteorological variables as covariates. Most of them, such as 
temperature (in ◦C), relative humidity (in %), wind speed at 10 m (in m/ 
s) and atmospheric pressure (hPA), influence the dispersion of the 
pollutant; although some also influence its formation, for instance, 
global solar radiation (W/m2) (O3 is a secondary pollutant, formed when 
the two atoms that make up oxygen gas dissociate under the action of 
light solar). The sources of the data were the stations in the Network of 
Automatic Meteorological Stations (XEMA) of the Meteorological 

Service of Catalonia (METEOCAT) (open data). We also used the daily 
data from the State Meteorological Agency’s (AEMET) automatic 
stations. 

The meteorological stations (albeit not as much as the air pollutant 
monitoring stations) are also dispersed throughout the territory. Cata
lonia has 217 meteorological stations: 188 belonging to METEOCAT and 
29 to AEMET. All of them measured all the meteorological variables 
every day. In this case we had a spatial misalignment problem given that 
the meteorological station locations do not match the air pollutant 
monitoring locations. To address this problem, and along the lines of 
Wright et al. (2021), we jointly model air pollutants and meteorological 
variables. Further details can be found in Barceló et al. (2016). 

Fig. 1. Distribution in the territory of Catalonia (Spain), of the air pollution monitoring stations, according to where air pollutants (PM10, NO2, O3 and PM2.5) 
are measured. 

Table 1 
Description of the air pollutants.   

Long-term exposure Short-term exposure 

Number 
stations 

2011–2018 2019 Number 
stations 

Week 1–36, 2020 Week 1–10 and 26–36 (excluding 
lockdown), 2020 

Week 37–48, 
2020 

PM10 (μm/m3) 122   36    
mean (sd)  23.00 (7.79) 21.05 (6.37)  19.29 (9.85) 21.91 (10.96) 20.23 (11.34) 
median [Q1- 

Q3]  
22.32 
[18.10–27.15] 

20.68 
[16.67–25.37]  

17.83 
[13.13–23.42] 

20.29 [15.30–26.21] 18.08 
[12.71–25.42] 

NO2 (μm/m3) 77   67    
mean (sd)  25.00 (15.10) 21.78 (12.76)  15.49 (12.04) 18.40 (13.36) 19.07 (12.98) 
median [Q1- 

Q3]  
23.59 
[12.87–35.61] 

20.92 [11.59-30- 
61]  

12.25 
[6.54–21.46] 

15.21 [7.88–26.46] 17.11 
[8.71–28.13] 

O3 (μm/m3) 62   50    
mean (sd)  53.64 (20.56) 55.77 (20.22)  55.23 (19.76) 50.90 (21.26) 44,55 (19.40) 
median [Q1- 

Q3]  
55.33 
[37.62–68.86] 

57.47 
[39.60–70.15]  

56.67 
[43.92–68.00] 

53.27 [36.58–64.79] 43.92 
[30.25–58.42] 

PM2.5 (μm/m3) 42   3    
mean (sd)  13.98 (5.12) 10.85 (2.91)  11.42 (7.54) 11.94 (8.44) 10.30 (6.58) 
median [Q1- 

Q3]  
13.33 
[10.47–16.75] 

10.48 
[9.86–11.57  

9.33 [5.86–14.51] 9.33 [5.66–15.34] 9.13 [5.45–14.02]  

Number of 
stations 

143   78    

Daily averages. 
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2.2. Model specification 

We specified a hierarchical spatiotemporal model as follows: 
At the top of the hierarchy: 

Z(si, t) =Y(si, t) + ε(si, t) [1]  

where i denoted the air pollution monitoring station where the pollutant 
was observed; t was the time unit; si the location of the station; Y(., .) the 
spatiotemporal process, the realization of which corresponded to the 
pollutant measurements (at station i and time unit t); and ε(., .) the 
measurement error defined by a Gaussian white-noise process (i.e., 
spatially and temporally uncorrelated) (the variance of the measure
ment error, σ2

ε , was the nugget effect). 
The spatiotemporal process, Y(., .) was an independent in time 

Gaussian field (GF) with zero mean and a Matérn covariance function: 

Cov
(
η(si, t), η

(
s′

i, t
))

=
σ2

2ν− 1Γ(ν)
(
κsi − s′

i

)ν
Κν

(
κsi − s′

i

)
[2] 

Where η(., .) denotes a spatiotemporal process. Κν is the modified 
Bessel function of the second type and order ν > 0. ν is a parameter 
controlling the smoothness of the GF, σ2 is the variance and κ > 0, is a 
scaling parameter related to the range, ρ, the distance to which the 
spatial correlation becomes small. We used ρ =

̅̅̅̅̅̅̅
8 ν

√
/κ, where ρ cor

responded to the distance where the spatial correlation is close to 0.1 for 
each ν (Lindgren et al., 2011). κ = 2φ

̅̅̅
ν

√
, where φ is a parameter con

trolling the rate of decay of the spatial correlation as the distance si− s′i 
increases. 

At the next level, we specified the following measurement equation: 

y(si, t)= μ(si, t) + η(si, t) [3]  

where y(.,.), is the realization of the spatiotemporal process Y(.,.); μ(., .)
denoted the large-scale component, depending on the covariates; and 
η(., .) was a spatiotemporal process. 

Due to its computational problems, we chose to represent the GF as a 
Gaussian Markov Random Field (GMRF) (Rue et al., 2009). GMRFs are 
defined by a precision matrix with a sparse structure allowing inference 
to be performed in a computationally effective way. We linked the GF 
and GMRF through the Stochastic Partial Differential Equations (SPDE) 
approach (Lindgren et al., 2011). The SPDE allowed us to find a GMRF, 
with local neighbourhood and sparse precision matrix (instead of 
spatiotemporal covariance function and the dense covariance matrix of a 
GF, respectively), that best represented the Matérn field. Further details 
can be found in Lindgren et al. (2011) and in Cameletti et al. (2013). 

We specified the large-scale component, μ(.,.), as a generalized linear 
mixed model (GLMM) with response from the Gaussian family. Specif
ically, for each of the pollutants of interest (PM10, NO2, O3 and PM2.5) 
we specified two GLMMs: one for long-term exposure and the other for 
short-term exposure. 

Long-term exposure: 

μi,t = β0 +
∑14

j=1
βjpollutantj,it + β15altitudei + β16areai + sd yi,year + ωi + τmonth 

Short-term exposure:  

where i denoted the air pollution monitoring station where the pollutant 
was observed (i = 1,2, …143); t was the time unit (month in the case of 
long-term exposure, day in the case of short-term exposure); μi,t = E(yit), 
yit denoted the air pollutants of interest, PM10, NO2, O3 and PM2.5; 
pollutantj,it corresponded to the pollutant j measurements at station i and 
time unit t. Pollutants considered were, first, the pollutants of interest 
other than the pollutant for which the spatial prediction was made and, 
second, the rest of the pollutants (i.e., NO, SO2, CO, C6H6, H2S, Cl2, 
mercury, arsenic, nickel, and lead); areai was the area of the ABS i; sd yi,., 
ηi and τ. denoted random effects. 

In the models, we included sd yi,year, sd yi,week structured random 
effects, indexed on a standard deviation of the air pollutant that was 
being predicted, in the ABS i, during a particular year (2011–2018) and 
a particular week of 2020 (weeks 1–37), respectively. We chose a 
random walk of order one (rw1) as the structure of the random effect. In 
the integrated nested Laplace approximations (INLA) approach (Rue 
et al., 2009, 2017), the random walk of order 1 for the Gaussian vector x 
is constructed assuming independent increments (R INLA project, 
2021a): 

Δxi = xi − xi− 1 ∼ N
(
0, σ2

x

)

Following the INLA approach when, as in our case, the random ef
fects are indexed on a continuous variable (such as sd yi,year, sd yi,week,

τmonth and τday), they can be used as smoothers to model non-linear de
pendency on covariates in the linear predictor. 

ωi denoted a random effect indexed on the air pollution monitoring 
station. This random effect was unstructured (independent and identi
cally distributed random effects) and captured individual heterogeneity, 
i.e., unobserved confounders specific to the station and invariant in 
time. 

We also included τmonth and τday, structured random effects indexed 
on time, in order to control the temporal dependency associated to 
possible seasonal effects throughout the year (long-term exposure) and 
throughout the week (short-term exposure). In this case, a model for 
seasonal variation with periodicity m (12 for long-term exposure, seven 
for short-term exposure), for the random vector (x1, x2, …,xn) (n > m) 
was obtained assuming that the sums were independent Gaussian with a 
precision τ. The density for x is derived from the n-m+1 increments (R 
INLA project, 2021b): 

τn− m+1
2 e−

τ
2

∑
(xi+xi+1+…+xi+m− 1 )2  

2.3. Inference 

Inferences for GMRFs were made following a Bayesian perspective 
using the INLA approach (Rue et al., 2009, 2017). 

We started from the SPDE representation, which uses a finite element 
representation to define the Matérn field as a linear combination of basis 
functions defined on a triangulation of the domain (mesh, hereinafter). 
This consists of subdividing the domain into a set of non-intersecting 
triangles meeting in, at most, a common edge or corner (Lindgren 
et al., 2011; Cameletti et al., 2013). 

Then, instead of projecting the subsequent mean of the random field 
onto mesh nodes to target locations where we do not have observed 

μi,t = β0 +
∑14

j=1
βjpollutantj,it + β15temperatureit + β16relative humidityit + β17wind speedit + β18atmospheric pressureit + β19solar radiationit + β20altitudei

+ β21areai + sd yi,week + ωi + τday   
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data, we performed the spatial prediction of the random field jointly 
with the parameter estimation process. For this, we projected the mesh 
into those locations with no air pollutants observed and then we jointly 
computed the posterior means at all the locations (with observed and 
unobserved air pollutants measurements) (Krainski et al., 2020). 

We separately estimated each year (long-term exposure) and each 
week (short-term exposure) and then merged every year and every 
week. 

We used priors that penalize complexity (PC priors). These priors are 
robust in that they do not have an impact on the results and, further
more, they have an epidemiological interpretation (Simpson et al., 
2017). 

All analyses were carried out using the free software R (version 
4.0.3), through the INLA package (Rue et al., 2009, 2017; R INLA 
project, 2021c). The maps were represented using the leaflet package 
(Cheng et al., 2019). 

2.4. Measures of predictive performance 

The predictive performance of each model was assessed by cross- 
validation, considering a training set (2011–2018 for long-term expo
sure, weeks 1–36 - January 1 to September 8, 2020 -, for short-term 

exposure) and a test set (2019 for long-term exposure and weeks 37 - 
September 9 - to 48 - November 29, 2020-for short-term exposure). 

The prediction accuracy was assessed by:  

- Mean absolute percentage error (MAPE) 

MAPE =
1
N

∑

i

∑

t

⃒
⃒
⃒
⃒
y(si, t) − ŷ(si, t)

ŷ(si, t)

⃒
⃒
⃒
⃒*100  

where N was the total number of available observations in the test set; 
y(si, t) were the pollutant measurements (at station i and time unit t) at 
the test set; and ŷ(si, t) were the posterior means.  

- Root mean square error (RMSE) 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
N
∑

i

∑

t
(y(si, t) − ŷ(si, t))2

√

- Correlation coefficient 

r =
∑

i
∑

t(y(si, t) − y(si, t))(ŷ(si, t) − ŷ(si, t))
( ∑

i
∑

t(y(si, t) − y(si, t))2∑
i
∑

t(ŷ(si, t) − ŷ(si, t))2)1
2    

- Actual coverage of the 95% prediction intervals 

2.5. Sensitivity analysis 

We conducted two sensitivity analyses. First, we carried out a new 
cross-validation and then we changed the spatiotemporal model. In both 
cases, we consider the spatial prediction of long-term exposure to NO2. 

As regards cross-validation, we considered five random samples from 
the monitoring stations in which NO2 was measured during the entire 
period 2011–2019 as training sets. Specifically, we considered random 
samples of approximately 75% of the stations (58 out of a total of 77 
stations), of 70% (55 stations), 50% (41 stations), 45% (35 stations), and 

20% (18 stations). As a test set, we considered the rest of the stations 
(19, 22, 36, 42 and 59 remaining stations, respectively). 

Next, we calculated the measures’ prediction accuracy (explained 
previously). 

With respect to the spatiotemporal model above, we considered an 
independent in time Gaussian field (GF), and following Camelleti et al. 
(2013) we assumed a spatiotemporal Gaussian field that changes in time 
according to an autoregressive of order one (AR(1)). 

Returning the measurement equation {2}: 

y(si, t) = μ(si, t) + η(si, t) [2a]  

the realization of the spatiotemporal process, η(., .), was specified as, 

η(si, t)=φη(si, t − 1) + ω(si, t) [4]  

where |φ| < 1. 
Here, it was ω(si, t) which was assumed to be a zero mean Gaussian 

and a Matérn covariance function (equation {3}). 
In the addition, in the GLMM specification of the large-scale 

component, μ(., .), in the linear predictor we included structured 
random effects indexed on year, τyear, to capture the long-term trend.   

With this analysis, our objective was to compare not only the pre
dictive performance of the model {1–2}, {4–5} with the one specified 
above {1–3} but, above all, to compare the computation time in the 
inference of both specifications. 

3. Results 

Descriptive results are shown in Table 1. Regarding long-term 
exposure, we observed that, apart from O3, the daily averages of pol
lutants decreased in 2019 (PM2.5 22.39% less, NO2 12.88% less and 
PM10 8.48% less). In contrast, the daily average of O3 increased by 
3.97% in 2019 compared to 2011–2018. With regard to short-term 
exposure, the levels of NO2 and PM10 were higher from September 9 
(week 37) (23.11% and 4.87%, respectively). Conversely, the levels of 
O3 and PM2.5 (although in this case only measured in three stations) 
were lower than the levels before September 9 (19.34% and 9.81%). 
When we excluded the lockdown (in Spain this took place from March 

Table 2 
Description of the spatial predictions of air pollutants.  

PM10 (μm/m3)  

mean (sd) 21.33 (5.59) 
median [Q1-Q3] 

minimum, maximum 
20.78 [17.10–25.04] 
9.71, 35.58 

NO2 (μm/m3)  
mean (sd) 25.92 (11.41) 
median [Q1-Q3] 

minimum, maximum 
23.37 [16.80–34.73] 
4.33, 58.14 

O3 (μm/m3)  
mean (sd) 53.91 (16.96) 
median [Q1-Q3] 

minimum, maximum 
54.93 [42.02–70.08] 
10.37, 80.02 

PM2.5 (μm/m3)  
mean (sd) 7.53 (5.69) 
median [Q1-Q3] 

minimum-maximum 
8.52 [1.62–11.91] 
0.31, 25.28  

μi,t = β0 +
∑14

j=1
βjpollutantj,it + β15altitudei + β16areai + sd yi,year + ηi + τmonth + τyear   
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14 - week 11- to June 21 - week 25 -, both 2020), the variations from 
September 9 changed sign for PM10, it was 7.67% lower, they were 
moderated for NO2 (which was 3.64% higher) and O3 (12.48% lower), 
while they were increased in the case of PM2.5 (13.74% lower). 

In the Supplementary material we provide some results of fitting the 
models for long-term exposure. In Table S1 we show the results for the 
hyperparameters of the model, as well as various measures of goodness- 
of-fit and complexity of the model. In Fig. S2, the posterior distribution 
of the betas of the fixed effects and in Fig. S3, the posterior means of the 
fitted values of the long-term exposure to air pollutants by ABS vs. the 
observed levels of the air pollutants in each ABS. As can be seen, the fit 
was quite good in all cases. 

In Table 2 we show some descriptions of the spatial predictions. In 
particular, we would like to point out the symmetry of the predictions 
(means and medians are similar in all cases) and the non-existence of 
negative values in the predictions. 

The measures of predictive performance are shown in Table 3. 
Except for PM2.5, the results for long-term exposure were quite good. 
Achieved coverages of the 95% credibility intervals for predictions were 
greater than 90%, correlation coefficients were greater than 0.80, and 
MAPEs less than 10%. Furthermore, if Table 3 is compared with Table 1, 
it is observed that the reduction in the variability of the spatial predic
tion, measured between the ratio of the RMSE and the standard de
viations of the pollutants observed, was, at most, one third of the 
standard deviations of the pollutants during the period 2011–2018 
(19.40% for NO2, 25.71% for O3 and 33.89% for PM10), again with the 
exception of PM2.5 (the RMSE in this case was 59.92% of the standard 
deviation in the period 2011–2018). Therefore, except for PM2.5, our 
method managed to significantly reduce the variability of the spatial 
prediction around fairly accurate predictions. Although quite good note 
that, in relative terms, the results for PM10 were somewhat worse than 
for gaseous pollutants (NO2 and O3). 

The poor results obtained for PM2.5 are because of its smaller sample 
size. Although it is true that in the period as a whole up to 42 stations 
measured PM2.5, the year with the lowest number of active stations was 
2018 (31 stations), with the rest of the years ranging between 33 and 35 
active stations. No year fell below 40 active stations for the rest of 
pollutants (the year with the lowest number of stations measuring PM10 
was 2018 with 94 stations, while the other years ranged between 100 
and 107 stations; in the cases of NO2 and O3 it was 2015 with 59 and 44 

stations, respectively, with the other years oscillating between 62 and 
66, and 45 and 57, respectively). 

Regarding the short-term exposure, first, the predictive performance 
was worse when we did not exclude the lockdown period (which took 
place in Spain from March 14 to June 21, 2020) than when we did. In 
fact, note that the predictive performance measures were much better 
for gaseous pollutants (NO2 and O3). The results for the coarse particles, 
PM10, were quite poor (we did not interpret the results for PM2.5 as it was 
measured in only three stations). This was likely due to the lower 
number of stations where PM10 was measured (36 stations, versus 67 for 
NO2 and 50 for O3, see Table 1). The variability of the spatial prediction 
was reduced by much less than in long-term exposure, especially for 
NO2. The RMSEs were between 36.09% for O3 and 54.86% for NO2, of 
the standard deviations of the pollutants (excluding lockdown). 

The results of the sensitivity analyses, when the number of stations in 
the training set was greater than 40 and when the spatiotemporal 
Gaussian field changed in time according to an AR(1) (model {1–2}, 
{4–5}), were quite similar to the results for the spatiotemporal process 
independent in time Gaussian field (model {1–3}) and all the stations 
were included in the training set (Table 4). 

When we varied the number of stations in the training set but used 
every year (2011–2019), the predictive performance seemed to depend 
on the size of the sample. The more stations the training set had, the 
better the results were. In other words, dramatically deteriorating with a 
small sample size. In fact, the cut-off appears to be 40 stations. Below 
this, the predictive performance measures were poor. 

Although the predictive performance of the spatiotemporal Gaussian 
field model changed in time according to an AR (1), (model {1–2}, 
{4–5}) was very similar to that of the spatiotemporal process indepen
dent in time Gaussian field (model {1–3}) (perhaps somewhat worse, in 
relative terms), the computation time was much longer. Using a 6-core 
Intel Core i9 (2.9 GHz 32 GB RAM), while the model inference {1–3} 
required on average 0.05 s per observation (a total of 569 s on average), 
the model {1–2}, {4–5} required 0.354 s (a total of 3,947 s), that is, 
seven times more computing time. 

The maps of the posterior means and the posterior standard de
viations for 2019 (in quintiles) of the spatiotemporal process indepen
dent in time Gaussian field (model {1–3}) for the long-term exposure of 
PM10, NO2 and O3 are shown in Fig. 2. We decided not to represent the 

Table 3 
Measures of predictive performance. Spatiotemporal process independent in 
time Gaussian field.  

Long-term exposure  

MAPE RMSE Correlation Coverage 

PM10 7.429% 2.640 0.838 0.917 
NO2 4.345% 2.930 0.937 0.973 
O3 6.795% 5.287 0.916 0.945 
PM2.5 16.037% 3.068 0.696 0.750 

Short-term exposure – Training set Weeks 1–37  
MAPE RMSE Correlation Coverage 

PM10 15.263% 6.002 0.401 0.441 
NO2 17.119% 7.920 0.801 0.840 
O3 19.323% 9.530 0.832 0.835 
PM2.5 45.169% 6.103 0.400 0.078 

Short-term exposure – Training set Weeks 1–10 and 26–36 (excluding lockdown)  
MAPE RMSE Correlation Coverage 

PM10 14.002% 5.910 0.469 0.497 
NO2 7.122% 5.623 0.901 0.910 
O3 9.023% 7.002 0.865 0.899 
PM2.5 38.532% 5.489 0.402 0.083 

MAPE: Mean absolute percentage error. 
RMSE: Root mean square error. 
Correlation: Correlation coefficient. 
Coverage: Actual coverage of the 95% prediction credibility intervals. 

Table 4 
Sensitivity analyses. Measures of predictive performance.  

NO2. Long-term exposure 2011–2019. 

Total of active monitoring stations in the period: 77 

Spatiotemporal process independent in time Gaussian field  

MAPE RMSE Correlation Coverage 

Training set 58 monitoring 
stations (75%) 

4.973% 3.205 0.930 0.963 

Training set 55 monitoring 
stations (70%) 

5.902% 6.464 0.851 0.925 

Training set 41 monitoring 
stations (50%) 

6.072% 7.201 0.786 0.870 

Training set 35 monitoring 
stations (45%) 

8.020% 8.088 0.776 0.633 

Training set 18 monitoring 
stations (20%) 

8.806% 10.159 0.609 0.590  

Spatiotemporal Gaussian field that changed in time according to an autoregressive of 
order one (AR(1)) 

Long-term exposure  

MAPE RMSE Correlation Coverage 

NO2 8.843% 3.388 0.957 0.958 

MAPE: Mean absolute percentage error. 
RMSE: Root mean square error. 
Correlation: Correlation coefficient. 
Coverage: Actual coverage of the 95% prediction credibility intervals. 
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posterior means for PM2.5 because of its poor predictive performance. 
The spatial distributions of the subsequent means of PM10 and NO2 were 
quite similar, although in the high levels of NO2, (fourth and fifth 
quintiles) there was somewhat more spatial variation. Note that, unlike 
PM10 and NO2, the lowest levels of O3 (first and second quintiles) 
occurred in the urban areas. As expected, the uncertainty, as measured 
by the posterior standard deviations, was, in general, higher in those 
areas with few (or no) monitoring stations. Note, however, that higher 
levels of air pollutants do not always coincide with higher standard 
deviations. 

4. Discussion 

Our results were quite good in terms of predictive performance, at 
least for those pollutants that were observed in more than 40 collecting 
stations (PM10, NO2 and O3 in long-term exposure and NO2 and O3 in 
short-term exposure). 

The current coverage of the spatial predictions of these pollutants are 
in line with similar studies. Using the same model and the same data 
(PM10), but applying two different methods for the inference, Camelleti 
et al. find coverage between 0.95 and 0.97 (using MCMC) (Cameletti 
et al., 2011) and 0.897 (using INLA SPDE) (Cameletti et al., 2013). 
Mukhopadhyay and Sahu (2018) find coverage between 0.91 and 0.92 
for the spatial predictions for O3 (in our case, 0.89 for short-term 
exposure and 0.945 for long-term exposure), between 0.89 and 0.90 
for PM10 (in our case, 0.917 for long-term exposure) and between 0.95 
and 0.965 for NO2 (in our case, 0.905 for short-term exposure and 0.963 
for long-term exposure). Note: we have preferred not to comment on the 
results in which we found poor predictive performance. Our coverage 
could also be comparable to those provided by Pirani et al. (2013) for the 
spatial predictions for PM10 (between 0.87 and 0.93), although it should 
be noted that these show the coverage at 90%. 

The correlation coefficients between the observed levels of air pol
lutants and the subsequent means of the spatial predictions are in the 
range reported in Fiovaranti et al. (2021) for PM10 (0.79–0.91). In our 
case, they were higher than in Camelleti et al. (0.863 when the in
ferences were made with MCMC - Cameletti et al., 2011- and 0.702 
when they were made with INLA SPDE - Cameletti et al., 2013-, 
compared to 0.917 in our case), or than in Pirani et al. (2013) (between 
0.73 and 0.78), in both cases for PM10. However, they were somewhat 
lower than in Mukhopadhyay and Sahu (2018) (0.88–0.89 for PM10, 
0.92–0.94 for NO2, and 0.93–0.94 for O3). It should be said, nonetheless, 

that the number of observations in Mukhopadhyay and Sahu range be
tween 56,625 (for PM10) and 100,138 (for NO2), while in our case we 
had 11,157 observations. 

The reduction in the variability of the spatial prediction can only be 
compared with Mukhopadhyay and Sahu (2018), since they are the only 
ones who show these standard deviations. In this sense, both Mukho
padhyay and Sahu and ourselves achieved a similar reduction in the 
variability of the spatial prediction. 

Although good, the results of the predictive performance were less so 
for the spatial prediction of long-term exposure to PM10 (despite being 
observed in the largest number of collecting stations, see Table 1) and 
for the short-term exposure for gaseous pollutants (NO2 and O3). 

Regarding the spatial prediction of long-term exposure to PM10, we 
believe that it is a consequence of the location of the monitoring stations. 
The stations that measure PM10, although more abundant in urban 
areas, are also located in rural areas, while those that measure NO2 are 
located almost exclusively in urban areas. In the city of Barcelona, even 
though 13% of NO2 is generated outside the municipality, it is 71% in 
the case of PM10 (Barcelona City Council, 2015; Saez et al., 2020). It is 
not unreasonable to suppose that these figures can be extrapolated to the 
entire Barcelona Metropolitan Area, which comprises 41.75% of the 
total population of Catalonia and where the majority of PM10 and NO2 
monitoring stations are located. In other words, while NO2 monitoring 
stations measured almost all the NO2 pollution, PM10 monitoring sta
tions did not collect all the PM10 pollution data. This could also explain 
why the posterior means of the PM10 predictions exhibited less spatial 
variability than the NO2 predictions (Fig. 2a and b). 

With regard to the spatial predictions of short-term exposure, the 
reduction in the number of monitoring stations during 2020 could have 
led to a deterioration in the predictive performance. However, we 
believe it could also be due to the data behaviour during 2020. As a 
consequence of the lockdown to flatten the COVID-19 pandemic curve, 
mobility was greatly reduced in 2020. Specifically, mobility was 
reduced by 40% on average, compared to pre-COVID-19 levels, during 
the lockdown and did not fully recover in the September–November 
2020 period (being 5–15% lower, depending on the area of Catalonia 
[26]). We are sure that this anomalous behaviour would have influenced 
the predictive performance of the spatial predictions of short-term 
exposure. 

The predictive performance of our model depends on the number of 
stations where pollutants are measured. We have found that with fewer 
than 40 stations, probably spread throughout the territory (although not 

Fig. 2a. Posterior mean and posterior standard deviation of PM10 for 2019. Spatiotemporal process independent in time Gaussian field.  
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necessarily homogeneously), the predictive performance deteriorates 
considerably. 

Our method is quite similar to that of Camelleti et al. (2013). How
ever, as we show with the sensitivity analysis, our method, in which we 
perform the inference year by year (or week by week) and then merge 
the subsequent ones, has a much shorter computation time, in addition 
to somewhat better results, even for such an atypical year such as 2020. 

In our study we preferred to use a hierarchical Bayesian model rather 
than, for example, atmospheric chemistry models. There reasons why 
we chose our approach are two-fold. First, and most importantly, we are 
interested in predicting at a higher spatio-temporal resolution than is 
usually handled by atmospheric chemistry models (up to one hundredth 
of a degree by one hundredth of a degree) and, second, these models do 
not usually take into account temporal and spatial dependencies, which 
hierarchical Bayesian models do. 

We believe that several points warrant further investigation. First, 
we are convinced that our results might not be as good if the spatial and 
temporal dimensions were dependent and not separable, that is, if the 
spatial dependence varied over time. Fortunately, the spatial 

dependence of air pollutants does not vary over time. Even during 2020, 
although air pollution levels decreased as a consequence of the reduc
tion in mobility, the spatial dependence was more or less similar to 
previous years. For spatial dependence to vary over time, major changes 
in infrastructures or, likewise, lasting limitations in mobility that were 
not homogeneous throughout the territory be produced. Of course, other 
types of spatiotemporal data could imply other results. Spatial predic
tion when spatial and temporal dependencies are non-separable requires 
other more complex methods, in line with Krainski’s non-separable 
space-time models (2018), which are a derivation of the iterated heat 
equation with spatially correlated driving noise. 

Second, air pollution exposure misclassification due to between-area 
mobility and within-area variation should be mitigated using, for 
example, the methods proposed by Richmond-Bryant and Long (2020) 
to help mitigate the impact of measurement error. 

Another problem that deserves further investigation is non- 
stationarity in variance. For this we will start from the works of 
Ossandón et al. (2021) and Verdin et al. (2019), who model the spatial 
process by adjusting a hierarchical model at each location and apply a 

Fig. 2b. Posterior mean and posterior standard deviation of NO2 for 2019. Spatiotemporal process independent in time Gaussian field.  

Fig. 2c. Posterior mean and posterior standard deviation of O3 for 2019. Spatiotemporal process independent in time Gaussian field.  
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spatial process on the betas. This enables us to also model the variance 
spatially. 

5. Conclusion 

In this work, we have shown a hierarchical Bayesian spatiotemporal 
model that has allowed us to make fairly accurate spatial predictions 
with a low computational cost. Our model provides predictions of both 
long-term and short-term exposure. The only requirements of the 
method that we propose lie in a minimum number of stations being 
distributed throughout the territory where the prediction is to be made 
and that the spatial and temporal dimensions are either independent or 
separable. 
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We used open data with free access from these sources. 
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-Ambient/Qualitat-de-l-aire-als-punts-de-mesurament-autom-t/tasf-th 
gu, last accessed on March 14, 2021]. 

Meteorological variables 
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XEMA [Available at: https://analisi.transparenciacatalunya.cat/en/ 
Medi-Ambient/Dades-meteorol-giques-de-la-XEMA/nzvn-apee, last 
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Krainski, E.T., Gómez-Rubio, V., Bakka, H., Lenzi, A., Castro-Camilo, D., Simpson, D., 
Lindgren, F., Rue, H., 2020. Advanced Spatial Modelling with Stochastic Partial 
Differential Equations Using R and INLA. Chapman and Hall/CRC, London (chapter 
2).5 [Available at: https://becarioprecario.bitbucket.io/spde-gitbook/. (Accessed 6 
March 2021). last accessed on.  

Liang, X., Zou, T., Guo, B., Li, S., Zhang, H., Zhang, S., Huang, H., Chen, S.X., 2015. 
Assessing Beijing’s PM2.5 pollution: severity, weather impact, APEC and winter 
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