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Abstract: Information theory can be used to analyze the cost–benefit of visualization processes.
However, the current measure of benefit contains an unbounded term that is neither easy to estimate
nor intuitive to interpret. In this work, we propose to revise the existing cost–benefit measure by
replacing the unbounded term with a bounded one. We examine a number of bounded measures that
include the Jenson–Shannon divergence, its square root, and a new divergence measure formulated
as part of this work. We describe the rationale for proposing a new divergence measure. In the
first part of this paper, we focus on the conceptual analysis of the mathematical properties of these
candidate measures. We use visualization to support the multi-criteria comparison, narrowing the
search down to several options with better mathematical properties. The theoretical discourse and
conceptual evaluation in this part provides the basis for further data-driven evaluation based on
synthetic and experimental case studies that are reported in the second part of this paper.

Keywords: information theory; theory of visualization; cost–benefit analysis; divergence measure;
benefit of visualization; human knowledge in visualization; abstraction; deformation; volume visual-
ization; metro map

1. Introduction

To most of us, it seems rather intuitive that visualization should be accurate, different
data values should be visually encoded differently, and visual distortion should be disal-
lowed. However, when we closely examine most (if not all) visualization images, we can
notice that inaccuracy is ubiquitous. The two examples in Figure 1 evidence the presence
of such inaccuracy. In volume visualization, when a pixel is used to depict a set of voxels
along a ray, many different sets of voxel values may result in the same pixel color. In a
metro map, a variety of complex geographical paths may be distorted and depicted as
a straight line. Since there is little doubt that volume visualization and metro maps are
useful, some “inaccurate” visualization must be beneficial.

In terms of information theory, the types of inaccuracy featured in Figure 1 are differ-
ent forms of information loss (or many-to-one mapping). Chen and Golan proposed an
information-theoretic measure [1] for analyzing the cost–benefit of data intelligence work-
flows. It enables us to consider the positive impact of information loss (e.g., reducing the
cost of storing, processing, displaying, perceiving, and reasoning about the information) as
well as its negative impact (e.g., being mislead by the information). The measure provides
a concise explanation about the benefit of visualization because visualization and other
data intelligence processes (e.g., statistics and algorithms) all typically cause information
loss and visualization allows human users to reduce the negative impact of information
loss effectively using their knowledge.
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Figure 1. Visual encoding typically features many-to-one mapping from data to visual representa-
tions, hence information loss. For example, (a) in volume visualization, the color of each pixel results
from a complex process of combining a sequence of voxel values, and (b) in metro maps, different
geographical paths are often represented using indistinguishable line segments. The significant
amount of information loss in volume visualization and metro maps suggests that viewers not only
can abide the information loss but also benefit from it. Measuring such benefits can lead to new
advancements of visualization, in theory and practice.

The mathematical formula of the cost–benefit ratio features a term based on the
Kullback–Leibler (KL) divergence [2] for measuring the potential distortion of a user or
a group of users in reconstructing the information that may have been lost or distorted
during a visualization process. The cost–benefit ratio instigates that a user with more
knowledge about the source data and its visual representation is likely to suffer less
distortion. While using the KL-divergence is mathematically intrinsic for measuring the
potential distortion, its unboundedness property has some undesirable consequences. The
simplest phenomenon of making a false representation (i.e., always displaying 1 when
a binary value is 0 or always 0 when it is 1) happens to be a singularity condition of the
KL-divergence. The amount of distortion measured by the KL-divergence often has many
more bits than the entropy of the information space itself. This is not intuitive to interpret
and hinders practical applications.

In this two-part paper, we propose to replace the KL-divergence with a bounded
term. In the first part, we first confirm the boundedness is a necessary property. We then
conduct multi-criteria decision analysis (MCDA) [3] to compare a number of bounded
measures, which include the Jensen–Shannon (JS) divergence [4], its square root, and a new
divergence measure Dk

new (including its variations) formulated as part of this work. We
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use visual analysis to aid the observation of the mathematical properties of these candidate
measures, narrowing down from eight options to five. In the second part of this paper [5],
we use synthetic and experimental case studies to to instantiate values that may be returned
by the five options. It also explores the relationship between measuring the benefit of
visualization and measuring the viewers’ knowledge used during visualization.

The search for the best way to measure the benefit of visualization will likely entail a
long journey. The main aim of this work is to initiate this endeavor. The main technical
contributions of this two-part paper include:

• Identifying a shortcoming of using the KL-divergence in the information-theoretic
measure proposed by Chen and Golan [1] and evidencing the shortcoming using
practical examples (Parts I and II);

• Presenting a theoretical discourse to justify the use of a bounded measure for finite
alphabets (Part I);

• Proposing a new bounded divergence measure, while studying existing bounded
divergence measures (Part I);

• Analyzing nine candidate measures using seven criteria reflecting desirable concep-
tual or mathematical properties, and narrowing the nine candidate measures to six
measures (Part I);

• Conducting several case studies for collecting instances for evaluating the remaining
six candidate measures (Part II);

• Demonstrating the uses of the cost–benefit measurement to estimate the benefit of
visualization in practical scenarios and the human knowledge used in the visualization
processes (Part II);

• Discovering a new conceptual criterion that a divergence measure is a summation of
the entropic values of its components, which is useful in analyzing and visualizing
empirical data (Part II);

• Offering a recommendation to revise the information-theoretic measure proposed by
Chen and Golan [1] based on multi-criteria decision analysis (Parts I and II).

2. Related Work

Claude Shannon’s landmark article in 1948 [6] signifies the birth of information
theory. It has been underpinning the fields of data communication, compression, and
encryption since. As a mathematical framework, information theory provides a collection
of useful measures, many of which, such as Shannon entropy [6], cross entropy [7], mutual
information [7], and Kullback–Leibler divergence [2] are widely used in applications
of physics, biology, neurology, psychology, and computer science (e.g., visualization,
computer graphics, computer vision, data mining, machine learning), and so on. In this
work, we also consider Jensen-Shannon divergence [4] in detail.

Information theory has been used extensively in visualization [8]. It has enabled
many applications in visualization, including scene and shape complexity analysis by
Feixas et al. [9] and Rigau et al. [10], light source placement by Gumhold [11], view
selection in mesh rendering by Vázquez et al. [12] and Feixas et al. [13], attribute selection
by Ng and Martin [14], view selection in volume rendering by Bordoloi and Shen [15],
and Takahashi and Takeshima [16], multi-resolution volume visualization by Wang and
Shen [17], focus of attention in volume rendering by Viola et al. [18], feature highlighting
by Jänicke and Scheuermann [19,20], and Wang et al. [21], transfer function design by
Bruckner and Möller [22], and Ruiz et al. [23,24], multi-modal data fusion by Bramon
et al. [25], isosurface evaluation by Wei et al. [26], measuring observation capacity by
Bramon et al. [27], measuring information content by Biswas et al. [28], proving the
correctness of “overview first, zoom, details-on-demand” by Chen and Jänicke [29] and
Chen et al. [8], and confirming visual multiplexing by Chen et al. [30].

Ward first suggested that information theory might be an underpinning theory for
visualization [31]. Chen and Jänicke [29] outlined an information-theoretic framework for
visualization, and it was further enriched by Xu et al. [32] and Wang and Shen [33] in



Entropy 2022, 24, 228 4 of 25

the context of scientific visualization. Chen and Golan proposed an information-theoretic
measure for analyzing the cost–benefit of visualization processes and visual analytics
workflows [1]. It was used to frame an observation study showing that human developers
usually entered a huge amount of knowledge into a machine learning model [34]. It
motivated an empirical study confirming that knowledge could be detected and measured
quantitatively via controlled experiments [35]. It was used to analyze the cost–benefit of
different virtual reality applications [36]. It formed the basis of a systematic methodology
for improving the cost–benefit of visual analytics workflows [37]. It survived qualitative
falsification by using arguments in visualization [38]. It offered a theoretical explanation
of “visual abstraction” [39]. It provided a theoretical basis to a design space that was
structured according to different ways of “losing information” in origin-destination data
visualization [40]. The work reported in this paper continues the path of theoretical
developments in visualization [41], and is intended to improve the original cost–benefit
formula [1], in order to make it a more intuitive and usable measurement in practical
visualization applications.

The information-theoretic measure proposed by Chen and Golan [1] can be applied
to a variety of processes for transforming some input data to some output data [42].
These include machine-centric processes (e.g., computing statistical measures, importance
sampling, feature extraction, dimensionality reduction, etc.) and human-centric processes
(e.g., data visualization, human-computer interaction, written communication, human
cognition, etc.). In this work, we focus on processes of data visualization.

3. Overview and Motivation

A short introduction to information-theoretic cost–benefit analysis can be found in
an arXiv report [43]. For self-containment, we provide a brief overview to accompany our
description of the problem that motivated this work.

Visualization is useful in most data intelligence workflows, but the usefulness is not
universally true because the effectiveness of visualization is usually data-, user-, and task-
dependent. The cost–benefit ratio proposed by Chen and Golan [1] captures the essence of
such dependency. Below is the qualitative expression of the measure:

Benefit
Cost

=
Alphabet Compression− Potential Distortion

Cost
(1)

Consider the scenario of viewing some data through a particular visual representation.
The term Alphabet Compression (AC) measures the amount of information loss due to visual
abstraction [39] (or any transformation featuring many-to-one mappings). Since the visual
representation is fixed in the scenario, AC is thus largely data-dependent. AC is a positive
measure reflecting the fact that visual abstraction must be useful in many cases though
it may result in information loss. This apparently counter-intuitive term is essential for
asserting why visualization is useful. Note that the term also helps assert the usefulness of
statistics, algorithms, and interaction since they all usually cause information loss [37].

The positive implication of the term AC is counterbalanced by the term Potential
Distortion, while both being moderated by the term Cost. The term Cost encompasses all
costs of the visualization process, including computational costs (e.g., visual mapping and
rendering), cognitive costs (e.g., cognitive load), and consequential costs (e.g., impact of
errors). As illustrated in Figure 2, increasing AC typically enables the reduction of cost
(e.g., in terms of energy, or its approximation such as time or money).

The term Potential Distortion (PD) measures the informative divergence between
viewing the data through visualization with information loss and reading the data without
any information loss. The latter might be ideal but is usually at an unattainable cost except
for values in a very small data space (i.e., in a small alphabet as discussed in [1]). As
shown in Figure 2, increasing AC typically causes more PD. PD is data-dependent or user-
dependent. Given the same data visualization with the same amount of information loss,
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one can postulate that a user with more knowledge about the data or visual representation
usually suffers less distortion. This postulation is a focus of this paper.

Pi Pi+1 

AC PD 

Cost 

AC PD 

Cost 

increasing AC can lead to cost reduction 

increasing AC can cause more PD 

human knowledge can 
reduce PD in visualization 

Visual Mapping & Displaying Performing Visualization Tasks 

increasing 
PD can 
lead to 

more cost 

Figure 2. Each process in a data intelligence workflow can be characterized using three abstract
measures: alphabet compression (AC), potential distortion (PD), and cost. They can be used to reason
about the shortcomings in a workflow and identify possible solutions in abstraction [37]. For example,
increasing data filtering in visualization (AC) may reduce the cost of Pi and Pi+1, especially when
human knowledge can reduce perceptual errors (PD).

Consider the visual representation of a network of arteries in Figure 3. The image was
generated from a volume dataset using the maximum intensity projection (MIP) method.
While it is known that MIP cannot convey depth information well, it has been widely used
for observing some classes of medical imaging data, such as arteries. The highlighted
area in Figure 3 shows an apparently flat area, which is a distortion from the actuality
of a tubular surface likely with some small wrinkles and bumps. The doctors who deal
with such medical data are expected to have sufficient knowledge to reconstruct the reality
adequately from the “distorted” visualization, while being able to focus on the more
important task of making diagnostic decisions, e.g., about aneurysm.

As shown in some recent works, it is possible for visualization designers to estimate
AC, PD, and Cost qualitatively [36,37] and quantitatively [34,35]. It is highly desirable to
advance the scientific methods for quantitative estimation, towards the eventual realization
of computer-assisted analysis and optimization in designing visual representations. This
work focuses on one challenge of quantitative estimation, i.e., how to estimate the benefit
of visualization to human users with different knowledge about the depicted data and
visual encoding.

Building on the methods of observational estimation [34] and controlled experi-
ment [35], one may reasonably anticipate a systematic method based on a short interview
by asking potential viewers a few questions. For example, one may use the question in
Figure 3 to estimate the knowledge of doctors, patients, and any other people who may
view such a visualization. The question is intended to tease out two pieces of knowledge
that may help reduce the potential distortion due to the “flat area” depiction. One piece
is about the general knowledge that associates arteries with tube-like shapes. Another,
which is more advanced, is about the surface texture of arteries and the limitations of the
MIP method.
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Question 5: The image on the right depicts a computed 
tomography dataset (arteries) that was rendered using a 
maximum intensity projection (MIP) algorithm. Consider 
the section of the image inside the red circle (also in the 
inset of a zoomed-in view). Which of the following 
illustrations would be the closest to the real surface of 
this part of the artery?   

A B 

C D 

Curved, 
rather smooth 

Flat, 
rather smooth 

Flat, 
with wrinkles and bumps   

Curved, 
with wrinkles and bumps  

Image by Min Chen, 2008 

Figure 3. A volume dataset was rendered using the maximum intensity projection (MIP) method,
which causes curved surfaces of arteries to appear rather flat. Posing a question about a “flat area” in
the image can be used to tease out a viewer’s knowledge that is useful in a visualization process.

In the second part of this paper [5], the question in Figure 3 is one of eight ques-
tions used in a survey for collecting empirical data for evaluating the bounded measures
considered in this paper. As this paper focuses on the theoretical discourse and con-
ceptual evaluation, we use a highly abstracted version of this example to introduce the
relevant information-theoretic notations and elaborate the problem statement addressed
by this paper.

4. Mathematical Notations and Problem Statement
4.1. Mathematical Notation

Consider a simplified scenario in Figure 4, where three sequences of voxels are ren-
dered using the MIP method, resulting in three pixel values on the left. Here the three
sequence voxels examplifies a volume with Nx × Ny × NZ voxels (illustrated as 1× 3× 10).
Let each voxel value be an 8-bit unsigned integer. In information theory, the possible
256 values are referred to as an alphabet, denoted here as Dvxl = {0, 1, 2, . . . , 255}. The
256 valid values [0, 255] are its letters. The alphabet is associated with a probability mass func-
tion (PMF) P(Dvxl). The Shannon entropy of this alphabetH(Dvxl) measures the average
uncertainty and information of the voxel, and is defined as:

H(Dvxl) = −
255

∑
0

pi log2 pi where pi ∈ [0, 1],
255

∑
0

pi = 1

where pi indicates the probability for the voxel to have its value equal to i ∈ [0, 255]. When
all 256 values are equally probable (i.e., ∀i ∈ [0, 255], pi = 1/256), we haveH(Dvxl) = 8 bits.
In practice, an application usually deals with a specific type of volume data, the probability
of different values may vary noticeably. For example, in medical imaging, a voxel at the
boundary of a volume is more likely to have a value indicating an empty space.

The entire volume of Nx × Ny × NZ voxels be defined as a composite alphabet Dvlm.
Its letters are all valid combinations of voxel values. If the Nx × Ny × NZ voxels are
modelled as independent and identically distributed random variables, we have:

H(Dvml) =
M

∑
k=1
H(Dvxl,k) = 8× Nx × Ny × NZ bits

where M = Nx × Ny × Nz. For the volume illustrated in Figure 4, H(Dvml) would be
240 bits. However, this is the maximum entropy of such a volume. In real world applica-
tions, it is very unlikely for the Nx × Ny × NZ voxels to be independent and identically
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distributed random variables. Although domain experts may not have acquired the ground
truth PMF, by measuring a very large corpus of volume data, they have intuitive knowledge
as to what may be possible or not. For example, doctors, who handle medical imaging data,
do not expect to see a car, ship, aeroplane, or other “weird” objects in a volume dataset.
This intuitive and imprecise knowledge about the PMF can explain the humans’ ability to
decode visualization featuring some “short comings” such as various visual multiplexing
phenomena (e.g., occlusion, displacement, and information omission) [30]. In the second
part of this paper [5], we will explore means to measure such ability quantitatively.

Pixel Value Voxel Values 

“curved” 
or “flat” 

Decision 

Figure 4. In this 2D illustration of a simplified scenario of volume visualization, three sequences of
voxels are rendered using the MIP method. The volume on the right features a curved surface defined
by those brightest voxels. By projecting the maximum voxel values to the pixels in the middle, the
curvature information of the surface is lost. A viewer needs to determine if the surface in the volume
is curved or flat, for which the viewer’s knowledge is critical.

Similarly, we can define an alphabet for an pixel Rpxl and a composite alphabet for an
image Rimg. For the example in Figure 4, we assume a simple MIP algorithm that selects
the maximum voxel value along each ray, and assigns it as the corresponding pixel as an
8-bit monochromatic value. It is obvious that the potential variation of a pixel is much
less than the potential combined variation of all voxels along a ray. Hence in terms of
Shannon entropy, most likelyH(Dvlm)−H(Dimg) ≫ 0, indicating significant information
loss during the rendering process.

Given an analytical task to be performed through visualization, the analytical decision
alphabet A usually contains a small number of letters, such as {contain artefact X, no artefact
X} or {big, medium, small, tiny, none}. The entropy of A is usually much lower than that
of Dimg, i.e.,H(Dimg)−H(A)� 0, indicating further information loss during perception
and cognition. As discussed in Section 3, this is referred to as alphabet compression and is
a general trend of all data intelligence workflows. The question is thus about how much
the analytical decision was disadvantaged by the loss of information. This is referred to as
potential distortion.

In the original quantitative formula proposed in [1], the potential distortion is mea-
sured using Kullback–Leibler divergence (or KL-divergence) [2]. Given an alphabet Z
with two PMFs P and Q, KL-divergence measures how much Q differs from the reference
distribution P:

DKL(P(Z)||Q(Z)) =
n

∑
i=1

pi
(
log2 pi − log2 qi

)
=

n

∑
i=1

pi log2
pi
qi

(2)

where n = ‖Z‖ is the number of letters in the alphabet Z, and pi and qi are the probability
values associated with letter zi ∈ Z. DKL is also measured in bit. Because DKL is an
unbounded measure regardless the maximum entropy of Z, it is easy to relate, quantita-
tively, the value of potential distortion and that of alphabet compression. This leads to the
problem to be addressed in this two-part paper.

Note: In this paper, to simplify the notations in different contexts, for an information-
theoretic measure, we use an alphabet Z and its PMF P interchangeably, e.g.,H(P(Z)) =
H(P) = H(Z). An arXiv report [43] provides a short introduction to the cost–benefit
analysis and the relevant mathematical background of information theory, which some
readers may find helpful.



Entropy 2022, 24, 228 8 of 25

4.2. Problem Statement

Recall our brief discussion about an analytical task that may be affected by the MIP
image in Figure 3 in Section 3. Let us define the analytical task as binary options about
whether the “flat area” is actually flat or curved. In other words, it is an alphabet A =
{curved, flat}. The likelihood of the two options is represented by a probability distribution
or probability mass function (PMF) P(A) = {1− ε, 0 + ε}, where 0 < ε < 1. Since most
arteries in the real world are of tubular shapes, one can imagine that a ground truth
alphabet AG.T. might have a PMF P(AG.T.) strongly in favor of the curved option. However,
the visualization seems to suggest the opposite, implying a PMF P(AMIP) strongly in favor
of the flat option. It is not difficult to interview some potential viewers, enquiring how they
would answer the question. One may estimate a PMF P(Adoctors) from doctors’ answers,
and another P(Apatients) from patients’ answers.

Table 1 shows two scenarios where different probability data is obtained. The values
of PD are computed using the KL-divergence as proposed in [1]. In Scenario 1, without
any knowledge, the visualization process would suffer 6.50 bits of potential distortion
(PD). As doctors are not fooled by the “flat area” shown in the MIP visualization, their
knowledge is worth 6.50 bits. Meanwhile, patients would suffer 1.12 bits of PD on average,
their knowledge is worth 5.38 = 6.50− 1.12 bits.

Table 1. Imaginary scenarios where probability data is collected for estimating knowledge related
to alphabet A = {curved, flat}. The ground truth (G.T.) PMFs are defined with ε = 0.01 and 0.0001
respectively. The potential distortion (as “→ value”) is computed using the KL-divergence.

Scenario 1 Scenario 2

Q(AG.T.): {0.99, 0.01} {0.9999, 0.0001}
P(AMIP): {0.01, 0.99} → 6.50 {0.0001, 0.9999} → 13.28
P(Adoctors): {0.99, 0.01} → 0.00 {0.99, 0.01} → 0.05
P(Apatients): {0.7, 0.3} → 1.12 {0.7, 0.3} → 3.11

In Scenario 2, the PMFs of P(AG.T.) and P(AMIP) depart further away, while P(Adoctors)
and P(Apatients) remain the same. Although doctors and patients would suffer more PD,
their knowledge is worth more than that in Scenario 1 (i.e., 13.28− 0.05 = 13.23 bits and
13.28− 3.11 = 10.17 bits respectively).

Similarly, the binary options about whether the “flat area” is actually smooth or not
can be defined by an alphabet A = {wrinkles-and-bumps, smooth}. Table 2 shows two
scenarios about collected probability data. In these two scenarios, doctors exhibit much
more knowledge than patients, indicating that the surface texture of arteries is a piece of
specialized knowledge.

The above example demonstrates that using the KL-divergence to estimate PD can
differentiate the knowledge variation between doctors and patients regarding the two
pieces of knowledge that may reduce the distortion due to the “flat area”. When it is used
in Equation (1) in a relative or qualitative context (e.g., [36,37]), the unboundedness of the
KL-divergence does not pose an issue.

However, this does become an issue when the KL-divergence is used to measure PD in
an absolute and quantitative context. From the two diverging PMFs P(AG.T.) and P(AMIP)
in Table 1, or P(BG.T.) and P(BMIP) in Table 2, we can observe that the smaller ε is, the
more divergent the two PMFs become and the higher value the PD has. Indeed, consider
an arbitrary alphabet Z = {z1, z2}, and two PMFs defined upon Z: P = [0 + ε, 1− ε] and
Q = [1− ε, 0 + ε]. When ε→ 0, we have the KL-divergence DKL(Q||P)→ ∞.

Meanwhile, the Shannon entropy of Z,H(Z), has an upper bound of 1 bit. It is thus not
intuitive or practical to relate the value of DKL(Q||P) to that ofH(Z). Many applications
of information theory do not relate these two types of values explicitly. When reasoning
such relations is required, the common approach is to impose a lower-bound threshold
for ε (e.g., [35]). However, there is yet a consistent method for defining such a threshold
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for various alphabets in different applications, while preventing a range of small or large
values (i.e., [0, σ) or (1− σ, 1]) in a PMF is often inconvenient in practice. Indeed, for a
binary alphabet with two arbitrary P and Q, in order to restrict its DKL(P||Q) ≤ 1, one has
to set 0.0658 . σ . 0.9342, rendering some 13% of the probability range [0, 1] unusable.
In the following section, we discuss several approaches to defining a bounded measure
for PD.

Table 2. Imaginary scenarios for estimating knowledge related to alphabet B = {wrinkles-and-bumps,
smooth}. The ground truth (G.T.) PMFs are defined with ε = 0.1 and 0.001 respectively. The potential
distortion (as “→ value”) is computed using the KL-divergence.

Scenario 3 Scenario 4

Q(BG.T.): {0.9, 0.1} {0.999, 0.001}
P(BMIP): {0.1, 0.9} → 2.54 {0.001, 0.999} → 9.94
P(Bdoctors): {0.8, 0.2} → 0.06 {0.8, 0.2} → 1.27
P(Bpatients): {0.1, 0.9} → 2.54 {0.1, 0.9} → 8.50

5. Bounded Measures for Potential Distortion (PD)

Let Pi be a process in a data intelligence workflow, Zi be its input alphabet, and
Zi+1 be its output alphabet. Pi can be a human-centric process (e.g., visualization and
interaction) or a machine-centric process (e.g., statistics and algorithms). In the original
proposal [1], the value of Benefit in Equation1 is measured using:

Benefit = AC− PD = H(Zi)−H(Zi+1)−DKL(Z′i||Zi) (3)

where H() is the Shannon entropy of an alphabet and DKL() is the KL-divergence of an
alphabet from a reference alphabet. AC, which isH(Zi)−H(Zi+1), defines the entropic
difference between the input and output alphabets. Because the Shannon entropy of an
alphabet with a finite number of letters is bounded, AC is also bounded. On the other
hand, as discussed in the previous section PD (i.e., DKL(Z′i||Zi)) is unbounded. Although
Equation (3) can be used for relative comparison, it is not quite intuitive in an absolute
context, and it is difficult to imagine that the amount of informative distortion can be more
than the maximum amount of information available.

Given a divergence or difference measure ∆(α, β), the term bound may be used in two
different contexts. (i) In the general context, the bounds of ∆(α, β) are defined based on
all possible α and β values in their generic variable domain (e.g., integer, real, or PMF).
(ii) In a specific or conditional context, the bounds of ∆(α, β) are defined based on possible α
and β values subject to a specific condition. For example, if we have a specific condition
α, β ∈ [−1, 1] ⊂ R, it is not unusual to expect a difference measure ∆(α, β) to be bounded.
However, as discussed in the previous section, the KL-divergence DKL(P||Q), can still
be unbounded even if we have a finite alphabet Z and the Shannon entropy measures
H(P(Z)) andH(Q(Z)) are bounded.

In this section, we present the unpublished work by Chen and Sbert [44], which
reasons mathematically that for alphabets of a finite size, the KL-divergence used in
Equation (3) should ideally be bounded. In their arXiv report, they also outlined a new
divergence measure and compare it with a few other bounded measures. Building on the
initial comparison by Chen and Sbert in [44], we use visualization in Section 6 to assist
the multi-criteria analysis and selection of a bounded divergence measure to replace the
KL-divergence used in Equation (3). In the second part of this paper [5], we will further
examine the practical usability of a subset of bounded measures by evaluating them using
synthetic and experimental data.

5.1. A Conceptual Proof of Boundedness

According to the mathematical definition of DKL in Equation (2), DKL is of course
unbounded. We do not in anyway try to prove that this formula is bounded. We are inter-
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ested in a scenario where an alphabet Z is associated with two PMF, P and Q, which is very
much the scenario of measuring the potential distortion in Equation (1). We ask a question:
is it conceptually necessary for DKL to yield a unbounded value to describe the divergence
between P and Q in this scenario despite thatH(P) andH(Q) are both bounded?

We highlight the word “conceptually” because this relates to the concept about another
information-theoretic measure, cross entropy, which is defined as:

HCE(P, Q) =
n

∑
i=1

pi log2
1
qi

=
n

∑
i=1

pi log2
pi
qi
−

n

∑
i=1

pi log2 pi = DKL(P||Q) +H(P) (4)

Conceptually, cross entropy measures the cost of a coding scheme. If a code (i.e., an
alphabet Z) has a true PMF P, the optimal coding scheme should require onlyH(P) bits
according to Shannon’s source coding theorem [7]. However, if the code designer mistakes
the PMF as Q, the resulting coding scheme will have HCE(P, Q) bits. From Equation (4),
we can observe that the inefficiency is described by the term DKL(P||Q). Naturally, we can
translate our aforementioned question to: should such inefficiency be bounded if there is a
finite number of codewords (letters) in the code (alphabet).

Coding theory has been applied to visualization, e.g., for explaining the efficiency
of logarithmic plots in displaying data of a family of skewed PMFs and the usefulness of
redundancy in visual design [29]. Here, we focus on proving thatHCE(P, Q) is conceptu-
ally bounded.

Let Z be an alphabet with a finite number of letters, {z1, z2, . . . , zn}, and Z is associated
with a PMF, Q, such that:

q(zn) = ε, (where 0 < ε < 2−(n−1)),

q(zn−1) = (1− ε)2−(n−1),

q(zn−2) = (1− ε)2−(n−2),

· · ·
q(z2) = (1− ε)2−2,

q(z1) = (1− ε)2−1 + (1− ε)2−(n−1).

(5)

When we encode this alphabet using an entropy binary coding scheme [45], we can be
assured to achieve an optimal code with the lowest average length for codewords. One
example of such a code for the above probability is:

z1 : 0, z2 : 10, z3 : 110

· · ·
zn−1 : 111 . . . 10 (with n− 2 “1”s and one “0”)

zn : 111 . . . 11 (with n− 1 “1”s and no “0”)

(6)

In this way, zn, which has the smallest probability, will always be assigned a codeword with
the maximal length of n− 1. Entropy coding is designed to minimize the average number
of bits per letter when one transmits a “very long” sequence of letters in the alphabet over
a communication channel. Here the phrase “very long” implies that the string exhibits the
above PMF Q (Equation (5)).

Suppose that Z is actually of PMF P, but is encoded as Equation (6) based on Q. The
transmission of Z using this code will have inefficiency. As mentioned above, the cost
is measured by cross entropy HCE(P, Q), and the inefficiency is measured by the term
DKL(P||Q) in Equation (4).

Clearly, the worst case is that the letter, zn, which was encoded using n− 1 bits, turns
out to be the most frequently used letter in P (instead of the least in Q). It is so frequent
that all letters in the long string are of zn. So the average codeword length per letter of
this string is n− 1. The situation cannot be worse. Therefore, n− 1 is the upper bound of
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the cross entropy. From Equation (4), we can also observe that DKL(P||Q) must also be
bounded sinceHCE(P, Q) andH(P) are both bounded as long as Z has a finite number of
letters. Let >CE be the upper bound ofHCE(P, Q). The upper bound for DKL(P||Q), >KL,
is thus:

DKL(P||Q) = HCE(P, Q)−H(P) ≤ >CE − min
∀P(Z)

(
H(P)

)
(7)

There is a special case worth noting. In practice, it is common to assume that Q is
a uniform distribution, i.e., qi = 1/n, ∀qi ∈ Q, typically because Q is unknown or varies
frequently. Hence the assumption leads to a code with an average length equaling log2 n
(or in practice, the smallest integer ≥ log2 n). Under this special (but rather common)
condition, all letters in a very long string have codewords of the same length. The worst
case is that all letters in the string turn out to the same letter. Since there is no informative
variation in the PMF P for this very long string, i.e.,H(P) = 0, in principle, the transmission
of this string is unnecessary. The maximal amount of inefficiency is thus log2 n. This is
indeed much lower than the upper bound >CE = n− 1, justifying the assumption or use
of a uniform Q in many situations.

A more formal proof of the boundedness ofHCE(P, Q) andDKL(P||Q) for an alphabet
with a finite number of letters can be found in Appendix A with more detailed discussions.
It is necessary to note again that the discourse in this section and Appendix A does not
imply that the KL-divergence is incorrect. Firstly, the KL-divergence applies to both discrete
probability distributions (PMFs) and continuous distributions. Secondly, the KL-divergence
is one of the many divergence measures found in information theory, and a member of the
huge collection of statistical distance or difference measures. There is no simply answer
as to which measure is correct and incorrect or which is better. We therefore should not
over-generalize the proof to undermine the general usefulness of the KL-divergence.

5.2. Existing Candidates of Bounded Measures

In practical applications, numerical approximation is commonly used to bound KL-
divergence by setting a small value 0 < ε < 0.5 and adjusting probability values in a PMF
to ensure all ε ≤ p ≤ 1− ε. While numerical approximation may provide a bounded
KL-divergence, it is not easy to determine the value of ε and it is difficult to ensure everyone
to use the same ε for the same alphabet or comparable alphabets. For a small alphabet, ε
has to be a fairly large value, reducing the probability range noticeably. For example, a
binary alphabet has maximum Shannon entropy 1 bit. One would need to set an ε > 0.22
in order bound any DKL for this alphabet within [0, 1]. It is therefore desirable to consider
bounded measures that may be used in place of DKL.

Jensen-Shannon divergence is such a measure:

DJS(P||Q) = DJS(Q||P) =
1
2
(
DKL(P||M) +DKL(Q||M)

)

=
1
2

n

∑
i=1

(
pi log2

2pi
pi + qi

+ qi log2
2qi

pi + qi

) (8)

where P and Q are two PMFs associated with the same alphabet Z and M is the average
distribution of P and Q. Each letter zi ∈ Z is associated with a probability value pi ∈ P and
another qi ∈ Q. With the base 2 logarithm as in Equation (8), DJS(P||Q) is bounded by 0
and 1.

The square root of DJS(P||Q), denoted as
√DJS(P||Q), is not only a bounded diver-

gence measure, but also a distance metric [46,47]. It is thus interesting to include
√DJS as

a candidate measure.
Another bounded measure is the conditional entropyH(P|Q):

H(P|Q) = H(P)− I(P; Q) = H(P)−
n

∑
i=1

n

∑
j=1

ri,j log2
ri,j

piqj
(9)
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where I(P; Q) is the mutual information between P and Q and ri,j is the joint probability of
the two conditions of zi, zj ∈ Z that are associated with P and Q. H(P|Q) is bounded by 0
andH(P). Because I(P; Q) measures the amount of shared information between P and Q
(and therefore a kind of similarity),H(P|Q) thus increases if P and Q are less similar. Note
that we useH(P|Q) and I(P; Q) here in the context that P and Q are associated with the
same alphabet Z, though the general definitions ofH(P|Q) and I(P; Q) are more flexible.

The above two measures in Equations (8) and (9) consist of logarithmic scaling of
probability values, in the same form of Shannon entropy. They are entropic measures.
There are many other divergence measures in information theory, including many in the
family of f -divergences [48]. However, many are also unbounded.

Meanwhile, entropic divergence measures belong to the broader family of statisti-
cal distances or difference measures. In this work, we considered a set of non-entropic
measures in the form of Minkowski distances, which have the following general form:

Dk
M(P, Q) =

k
√

n

∑
i=1
|pi − qi|k (k > 0) (10)

where we use symbol D instead of D because it is not entropic.

5.3. New Candidates of Bounded Measures

For each letter zi ∈ Z, DKL(P||Q) measures the difference between its self-information
− log2(pi) and − log2(qi) with respect to P and Q. Similarly, DJS(P||Q) measures the
difference of self-information with the involvement of an average distribution (P + Q)/2.
Meanwhile, it will be interesting to consider the difference of two probability values, i.e.,
|pi − qi|, and the information content of the difference. This would lead to measuring
log2 |pi − qi|, which is unfortunately an unbounded term in [−∞, 0].

Let u = |pi − qi|, the function log2 uk + 1 (where k > 0) is an isomorphic trans-
formation of log2 u. The former preserves all information of the latter, while offering a
bounded measure in [0, 1]. Although log2 uk + 1 and log2 u are both monotonically increas-
ing measures, they have different gradient functions, or visually, different shapes. We
thus introduce a power parameter k to enable our investigation into different shapes. The
introduction of k reflects the open-minded nature of this work. It follows the same general-
ization approach as Minkowski distances and α-divergences [49], avoiding a fixation on
their special cases such as the Euclidean distance or DKL.

We first consider a commutative measure Dk
new:

Dk
new(P||Q) =

1
2

n

∑
i=1

(pi + qi) log2
(
|pi − qi|k + 1

)
(11)

where k > 0. Because 0 ≤ |pi − qi|k ≤ 1, we have

1
2

n

∑
i=1

(pi + qi) log2(0 + 1) ≤ Dk
new(P||Q) ≤ 1

2

n

∑
i=1

(pi + qi) log2(1 + 1)

Since log2 1 = 0, log2 2 = 1, ∑ pi = 1, ∑ qi = 1, Dk
new(P||Q) is thus bounded by 0 and 1.

The formulation of Dk
new(P||Q) was derived from its non-commutative version:

Dk
ncm(P||Q) =

n

∑
i=1

pi log2
(
|pi − qi|k + 1

)
(12)

which captures the non-commutative property of DKL. In this work, we focus on two
options of Dk

new and Dk
ncm(P||Q), i.e., when k = 1 and k = 2.

As DJS, Dk
new, and Dk

ncm are bounded by [0, 1], if any of them is selected to replace
DKL, Equation (3) can be rewritten as



Entropy 2022, 24, 228 13 of 25

Benefit = H(Zi)−H(Zi+1)−Hmax(Zi)D(Z′i||Zi) (13)

whereHmax denotes maximum entropy, while D is a placeholder for DJS, Dk
new, or Dk

ncm.
Note that whileHmax(Zi)D(Z′i||Zi) is bounded byHmax(Zi),Hmax(Zi) can have any non-
negative value and is calculated as log2 ‖Zi‖, where ‖Zi‖ is the number of letters in Zi.

We have considered the option of using H(Zi) instead of Hmax(Zi). However, this
would lead to an undesirable paradox. Consider an alphabet Zi = {za, zb} with a PMF
Pi = {pa, 1 − pa}. Consider a simple visual mapping that is supposed to encode the
probability value pa using the luminance of a monochrome shape with, luminance(pa) =
pa, black = 0, and white = 1. Unfortunately, the accompanying legend displays incorrect
labels as black for pa = 1 and white for pa = 0. The visualization results thus feature a
“lie” distribution Pi = {1− pa, pa}. An obvious paradoxical scenario is when Pi = {1, 0},
which has an entropy value H(Zi) = 0. Although DJS, Dk

new, and Dk
ncm would all return

1 as the maximum value of divergence for the visual mapping, the termH(Zi)D(Z′i||Zi)
would indicate that there would be no divergence. HenceH(Zi) cannot be used instead of
Hmax(Zi).

6. Conceptual Evaluation of Bounded Measures

Given those bounded candidates in the previous section, we would like to select
the most suitable measure to be used in Equation (13). In the history of measurement
science [50], there have been an enormous amount of research effort devoted to inventing,
evaluating, and selecting different candidate measures (e.g., metric vs. imperial measure-
ment systems; temperatute scales: Celsius, Fahrenheit, kelvin, Rankine, and Reaumur;
and Seismic magnitude scales: Richter, Mercalli, moment magnitude, and many others).
There is usually no ground truth as to which is correct, and the selection decision is rarely
determined only by mathematical definitions or rules [51]. Similarly, there are numerous
statistical distance and difference measures. selecting a measure in a certain application is
often an informed decision based on multiple factors. Measuring the benefit of visualiza-
tion and the related informative divergence in visualization processes is a new topic in the
field of visualization. It is not unreasonable to expect that more research effort will be made
in the coming years, decades, or unsurprisingly, centuries. The work presented in this
two-part paper represents the early thought and early effort in this endeavor. In this work,
we devised a set of criteria and conducted multi-criteria decision analysis (MCDA) [3] to
evaluate the candidate measures described in the previous section.

Our criteria fall into two main categories. The first group of criteria reflect seven
desirable conceptual or mathematical properties, as shown in Table 3. The second group
of criteria reflect the assessments based on numerical instances constructed synthetically
or obtained from experiments. This first part of the paper focuses conceptual evaluation
based on the first group of criteria, while the second part focuses on empirical evaluation
based on the second group of criteria [5].

Table 3. A summary of multi-criteria decision analysis in the first part of this paper. Each measure
is scored against a conceptual criterion using an integer in [0, 5] with 5 being the best. The symbol
I indicates an interim conclusion after considering one or a few criteria. In the second part of the
paper [5], we will discuss another five criteria.

Criteria Importance 0.3DKL DJS
√
DJS H(P|Q) Dk=1

new Dk=2
new Dk=1

ncm Dk=2
ncm Dk=2

M Dk=200
M

1. Boundedness critical 0 5 5 5 5 5 5 5 3 3
I 0.3DKL is eliminated but used below only for comparison. The other scores are carried forward.

2. Number of PMFs important 5 5 5 2 5 5 5 5 5 5
3. Entropic measures important 5 5 5 5 5 5 5 5 1 1
4. Distance metric helpful 2 3 5 2 4 3 2 2 5 5
5. Easy to understand helpful 4 4 3 4 4 3 4 3 5 4
6. Curve shapes (Figure 5) helpful 5 5 3 1 2 4 2 4 2 2
7. Curve shapes (Figure 6) helpful 5 3 4 1 3 5 3 5 2 3
I EliminateH(P|Q), D2

M, D200
M based on criteria 1–7 sum: 30 30 20 28 30 26 29 23 23
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Figure 5. The different measurements of the divergence of two PMFs, P = {p1, 1− p1} and Q = {q1, 1− q1}. The x-axis shows p1,
varying from 0 to 1, while we set q1 = (1− α)p1 + α(1− p1), α ∈ [0, 1]. When α = 1, Q is most divergent away from P. The curve
0.3DKL(α = 0.5) is shown in a dashed black line, and is used as a benchmark for observing the corresponding curves (in orange)
produced by the candidate measures in (c–i).

Figure 5. The different measurements of the divergence of two PMFs, P = {p1, 1− p1} and Q =

{q1, 1− q1}. The x-axis shows p1, varying from 0 to 1, while we set q1 = (1− α)p1 + α(1− p1), α ∈
[0, 1]. When α = 1, Q is most divergent away from P. The curve 0.3DKL(α = 0.5) is shown in a
dashed black line, and is used as a benchmark for observing the corresponding curves (in orange)
produced by the candidate measures in (c–i).
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Figure 6. A visual comparison of the candidate measures in a range near zero. Similar to Figure 5,
P = {p1, 1− p1} and Q = {q1, 1− q1}, but only the curve α = 1 is shown, i.e., q1 = 1− p1. The line
segments of DKL and 0.3DKL in the range [0, 0.110] do not represent the actual curves. The ranges
[0, 0.110] and [0.1, 0.5] are only for references to the nearby contexts as they do not use the same
logarithmic scale as in [0.110, 0.1].

For criteria 1, 6, and 7 in the first group, we use visualization plots to aid our analysis
of the mathematical properties. Based on our analysis, we score each divergence measure
against a criterion using ordinal values between 0 and 5 (0 unacceptable, 1 fall-short,
2 inadequate, 3 mediocre, 4 good, 5 best). We intentionally do not assign weights to these
criteria. While we will offer our view as to the importance of different criteria, we encourage
readers to apply their own judgement to weight these criteria. We hope that readers will
reach the same conclusion as ours. We draw our conclusion about the conceptual evaluation
in Section 7, where we also outline the need for data-driven empirical evaluation.

6.1. Criterion 1: Is It a Bounded Measure?

This is essential since the selected divergence measure is to be bounded. Otherwise
we could just use the KL-divergence. Let us consider a simple alphabet Z = {z1, z2},
which is associated with two PMFs, P = {p1, 1 − p1} and Q = {q1, 1 − q1}. We set
q1 = (1− α)p1 + α(1− p1), α ∈ [0, 1], such that when α = 1, Q is most divergent away
from P. The entropy values of P and Q fall into the range of [0, 1]. Hence semantically,
it is more intuitive to reason an unsigned value representing their divergence within the
same range.

Figure 5 shows several measures by varying the values of p1 in the range of [0, 1]. We
can obverse that DKL raises its values quickly above 1 when α = 1, p1 ≤ 0.22. Its scaled
version, 0.3DKL, does not rise up as quick as DKL but raises above 1 when α = 1, p1 ≤ 0.18.
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In fact DKL and 0.3DKL are not only unbounded, they do not return valid values when
p1 = 0 or p1 = 1. We therefore score them 0 for Criterion 1.
DJS,

√DJS,H(P|Q),Dk
new, andDk

ncm are all bounded by [0, 1] and they can potentially
be used in the rewritten formula Equation (13). We score them 5. Although Dk

M is a bounded
measure, its semantic interpretation is not ideal, because its upper bound depends on k
and is always >1. We thus score it 3. Although 0.3DKL is eliminated based on criterion 1, it
is kept in Table 3 as a benchmark in analyzing criteria 2–7. Meanwhile, we carry all other
scores forward to the next stage of analysis.

6.2. Criterion 2: How Many PMFs Does It Have as Dependent Variables

For criteria 2–7, we follow the base-criterion method [52] by considering DKL and
0.3DKL as the benchmark. Criterion 2 concerns the number of PMFs as the dependent (or
input) variables of each measure. DKL and 0.3DKL depend on two PMFs, P and Q. All
candidates of the bounded measures depend on two PMFs, except the conditional entropy
H(P|Q) that depends on three. Because in most practical applications, it requires some
effort to obtain a PMF, e.g., by observing an alphabet for a period. A joint probability
distribution, which is required for calculating the mutual information term I(P; Q) in
Equation (9), would need observation of both input and output alphabets of a process in a
synchronized manner. The need for an extra PMF makes H(P|Q) much less favourable,
and it is scored 2. All others are scored 5.

6.3. Criterion 3: Is It an Entropic Measure?

An entropic measure characteristically features a logarithmic transformation of some
numerical compositions of probability values. The logarithmic transformation accentuates
the change from a state of order to a state of disorder or vice versa. The probabilistic mean
of such changes related to all letters in an alphabet pertains to the Shannon entropy. With
base 2 logarithm, an entropic measure usually has or features the unit bit. As the AC term
in Equation (3) and the original PD term (i.e., DKL) are measured in bits, we prefer to have
an entropic divergence measure for the PD term so the “benefit” can be measured in bits.
For this reason, Dk

M is scored 1, and all others are given 5.

6.4. Criterion 4: Is It a Distance Measure?

When a measure is referred to as a divergence measure, it usually implies that it is not
a distance metric. A true distance metric must have the following mathematical properties:

1. identity: d(x, y) = 0 ⇐⇒ x = y,
2. symmetry: d(x, y) = d(y, z),
3. triangle inequality: d(x, y) ≤ d(x, z) + d(z, y),
4. non-negativity: d(x, y) ≥ 0.

The first three conditions are axioms of a metric system. Among the candidate
measures, Dk

M and
√DJS are metrics. They are scored 5. 0.3DKL,H(P|Q), Dk=1

ncm, and Dk=2
ncm

satisfy only conditions 1 and 4. They are scored 2. DJS and Dk=2
new satisfy conditions 1, 2, 4,

and they are scored 3. At the moment, we do not know if Dk=1
new is a metric or not. There is

a mathematical proof to show that Dk=1
new is a metric for 2-letter alphabets [53], but a proof

or disproof for n-letter alphabets is yet known. We thus give Dk=1
new a score 4.

6.5. Criterion 5: Is It Intuitive or Easy to Understand?

One reason that DKL is the most popular divergence measure is that it is easy to
understand the meaning of its element function f (p, q) = log(p/q) = log(p) − log(q),
where p, q ∈ [0, 1] are two probability values. It is the difference of the logarithmic
representations of p and q. As 0.3DKL introduces a global scaling transformation, it adds a
barrier in understanding. We take one score away for such a barrier by giving 0.3DKL a
score 4.

As shown in Equation (8), DJS introduces an intermediate value m = (p + q)/2. The
element function splits into two parts f (p, m) and f (q, m). Such a transformation adds a
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barrier in our appreciation of meaning of the measure. Note that one could take two points
away as this transformation is rather complex. Nevertheless, for consistency, we take one
point away per transformation.

√DJS introduces a square root as a global transformation,
adding a further barrier in understanding. With DKL as the benchmark (score 5), we score
DJS 4 and

√DJS 3 by counting the number of barriers in understanding.
Consider another element function g(p, q) = log |p − q|, which is the logarithmic

representation of the difference between p and q. It is as easy to understand as f (p, q).
Dk=1

new introduces a transformation as log(|p− q|+ 1), while Dk=2
new introduces an additional

one as log(|p− q|2 + 1). Each transformation adds a new barrier in understanding. We
therefore give Dk=1

new a score 4 and Dk=2
new a 3. Similarly we assign a score 4 to Dk=1

ncm and a 3
to Dk=2

ncm.
For n-letter alphabet, Dk

M(k = 2) is the same as the n-dimensional Euclidean distance.
We thus gives it a full score 5. As Dk

M(k = 200) is considered to have an extra barrier in
understanding, we score it 4.

Finally, H(P|Q) is the composition of two commonly-used information-theoretic
measures. We give it a score 4 by considering the composition as a transformation.

6.6. Criterion 6: Visual Analysis of Curve Shapes in the Range of (0, 1)

One may wish for a bounded measure to have a geometric behaviour similar to DKL
since it is the most popular divergence measure. Since DKL rises up far too quickly as
shown in Figure 5, we use 0.3DKL as a benchmark, though it is still unbounded. As Figure 5
plots the curves for α = 0.0, 0.1, . . . , 1.0, we can visualize the “geometric shape” of each
bounded measure, and compare it with that of 0.3DKL.

From Figure 5, we can observe that DJS has almost a perfect match when α = 0.5,
while Dk

new(k = 2) is also fairly close. They thus score 5 and 4 respectively in Table 3.
Meanwhile, the lines of H(P|Q) curve in the opposite direction of 0.3DKL. We score it 1.√DJS,Dk

new(k = 1), and Dk
M(k = 2, k = 200) are of similar shapes. In terms of the direction

of curvature,
√DJS correlates slightly better with 0.3DKL than Dk

M and Dk
new(k = 1). We

thus assign a score 3 to
√DJS and a score 2 to Dk

new(k = 1) and Dk
M(k = 2, k = 200). For

the PMFs P and Q concerned, Dk
ncm has the same curves as Dk

new. Hence Dk
ncm has the

same score as Dk
new in Table 3.

6.7. Criterion 7: Visual Analysis of Curve Shapes in a Range near Zero, i.e., [0.110, 0.1]

We now consider Figure 6, where the candidate measures are visualized in comparison
with DKL and 0.3DKL in a range close to zero, i.e., [0.110, 0.1]. The ranges [0, 0.110] and
[0.1, 0.5] are there only for references to the nearby contexts as they do not have the same
logarithmic scale as that in the range [0.110, 0.1]. We can observe that in [0.110, 0.1] the
curve of 0.3DKL rises as almost quickly as DKL. This confirms that simply scaling the
KL-divergence is not an adequate solution. The curves of Dk=1

new and Dk=2
new converge to their

maximum value 1.0 earlier than that of DJS. The
√DJS curve appears between those of

Dk=1
new and Dk=2

new. If the curve of 0.3DKL is used as a benchmark as in Figure 5, the curve of
Dk=2

new is much closer to 0.3DKL than that of DJS. We thus score Dk=2
new: 5,

√DJS: 4, DJS: 3,
Dk=1

new: 3, Dk
M(k = 200): 3, Dk

M(k = 200): 2, andH(P|Q): 1. Same as Figure 5, Dk
ncm has the

same curves and thus the same score as Dk
new.

The sums of the scores for criteria 1–7 indicate that H(P|Q) and Dk
M are much less

favourable than DJS,
√DJS, Dk

new, and Dk
ncm. Because these criteria have more holistic sig-

nificance than the data-driven analysis in the second part of this paper [5], we can eliminate
H(P|Q) and Dk

M for further consideration. Ordinal scores in MCDA are typically subjective.
Nevertheless, in our analysis, ±1 in those scores would not affect the elimination.

7. Discussions and Conclusions

In this paper, we have considered the need to improve the mathematical formulation
of an information-theoretic measure for analyzing the cost–benefit of visualization as well
as other processes in a data intelligence workflow [1]. The concern about the original
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measure is its unbounded term based on the KL-divergence. As discussed in the early
sections of this paper, although using the KL-divergence measure in [1] as part of the cost–
benefit measure is a conventional or orthodox choice, its unboundedness leads to several
issues in the potential applications of the cost–benefit measure to practical problems:

• It is not intuitive to interpret a set of values that would indicate that the amount of
distortion in viewing a visualization that features some information loss, could be
much more than the total amount of information contained in the visualization.

• It is difficult to specify some simple visualization phenomena. For example, before a
viewer observes a variable x using visualization, the viewer incorrectly assumes that
the variable is a constant (e.g., x ≡ 10, and probability p(10) = 1). The KL-divergence
cannot measure the potential distortion of this phenomenon of bias because this
is a singularity condition, unless one changes p(10) by subtracting a small value
0 < ε < 1.

• If one tries to restrict the KL-divergence to return values within a bounded range, e.g.,
determined by the maximum entropy of the visualization space or the underlying
data space, one could potentially lose a non-trivial portion of the probability range
(e.g., 13% in the case of a binary alphabet).

To address these problems, we have proposed to replace the KL-divergence in the cost–
benefit measure with a bounded measure. We have obtained a proof that the divergence
used in the cost–benefit formula is conceptually bounded, as long as the input and output
alphabets of a process have a finite number of letters.

We have considered a number of bounded measures to replace the unbounded term,
including a new divergence measure Dk

new and its variant Dk
ncm. We have conducted multi-

criteria decision analysis to select the best measure among these candidates. In particular,
we have used visualization to aid the observation of the mathematical properties of the
candidate measures, assisting in the analysis of three criteria in considered in this paper.

From Table 3, we can observe the process of narrowing down from eight candidate
measures to five measures. In particular, three candidate measures DJS,

√DJS, and Dk=2
new)

received the same total scores. They are followed by Dk=2
ncm and Dk=1

new. It is not easy to
separate them. We therefore conducted two groups of case studies to collect empirical
evidence for further evaluating these candidate measures.

In the history of measurement science [50], as shown in Figure 7, scientists encountered
many similar dilemma in choosing different measures. For example, temperature measures
Celsius, Fahrenheit, Réaumur, Rømer, and Delisle scales exhibit similar mathematical
properties, their proposal and adoption were largely determined by practical instances:

• Rømer—0 degree: freezing brine, 7.5 degree: the freezing point of water, 60 degree:
the boiling point of water;

• Fahrenheit (original)—0 degree: the freezing point of brine (a high-concentration
solution of salt in water), 32 degree: ice water, 96 degree: average human body
temperature;

• Fahrenheit (present)—32 degree: the freezing point of water, 212 degree: the boiling
point of water;

• Réaumur—0 degree: the freezing point of water, 80 degree: the boiling point of water;
• Delisle—0 degree: the boiling point of water,−1 degree; the contraction of the mercury

in hundred-thousandths.
• Celsius* (original)—0 degree: the boiling point of water, 100 degree: the freezing point

of water;
• Celsius (1743–1954)—0 degree: the freezing point of water, 100 degree: the boiling

point of water;
• Celsius (1954–2019)—redefined based on absolute zero and the triple point of VSMOW

(specially prepared water);
• Celsius (2019–now)—redefined based on the Boltzmann constant.
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Figure 7. Some of the major temperature scales considered by scientists in the history. It took four
decades from Isaac Newton’s instance-based proposal to arrive at the most-commonly used Celsius
scale. It took another century to discover absolute zero as the lower bound.

Before the development of these scales, Newton proposed two temperature systems
based on his observation of some 18 instance values [54]. The effort of these scientific
pioneers suggested that observing how candidate measures relate to practical instances
was part of the scientific processes for selecting different candidate measures.

The work reported in this paper outlines a conceptual notion that measuring the
divergence that may be caused by a transformation from an input alphabet (e.g., data) to
an output alphabet (e.g., visualization) is more intuitive if it has a lower bound 0 and an
upper bound of the maximum entropy of the input alphabet (as enforced in Equation (13)).
The more complex the input alphabet (i.e., the input information space), the wider the
range of the potential divergence. As all candidate measures are bounded by [0, 1] and
the maximum entropy of an alphabet is easy to calculate, we have addressed part of the
problem where DKL has no upper bound regardless how complex the input alphabet is.

Building on the work presented in this paper, we carried out further investigation into
a group of criteria based on observed instances in synthetic and experimental data. This
data-driven evaluation is presented in the second part of this paper [5], where we aim to
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narrow the remaining six candidate measures to one measure, and to revise the original
cost–benefit ratio in [1] based on the combined conclusion derived from the conceptual
evaluation (i.e., this work) and empirical evaluation. The empirical evidence collected
in several case studies helps identify some additional strengths and weaknesses of the
remaining six candidate measures. Based on conceptual and empirical criteria considered in
both parts of the paper, we will offer a conclusion that the candidate measure Dk

new(k = 2)
is ahead of

√DJS, especially when we include an additional conceptual criterion discovered
during the case studies. Readers can find the detailed description and analysis of these
case studies in the second part of this paper [5].
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Appendix A. Conceptual Boundedness of HCE(P, Q) and DKL

According to the mathematical definition of cross entropy:

H(P, Q) = −
n

∑
i=1

pi log2 qi =
n

∑
i=1

pi log2
1
qi

(A1)

H(P, Q) is of course unbounded. When qi → 0, we have log2
1
qi
→ ∞. As long as pi 6= 0

and is independent of qi, H(P, Q) → ∞. Hence the discussion in this appendix is not
about a literal proof thatH(P, Q) is unbounded when this mathematical formula is applied
without any change. It is about that the concept of cross entropy implies that it should be
bounded when n is a finite number.

Definition A1. Given an alphabet Z with a true PMF P, cross-entropy H(P, Q) is the average
number of bits required when encoding Z with an alternative PMF Q.

This is a widely-accepted and used definition of cross-entropy in the literature of
information theory. Firstly, with Shannon entropy H(P) = ∑n

i=0 pi log2(1/pi), the term
log2(1/pi) is considered as the mathematically-supposed length of a codeword that is used
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to encode letter zi ∈ Z with a probability value pi ∈ P. Note that if pi = 0, zi does not need
to be encoded since it will never occur in communication. Here, a codeword is the digital
representation of a letter in an alphabet. A code is a collection of the codewords for all letters
in an alphabet. In communication and computer science, we usually use binary codes as
digital representations for alphabets, such as ASCII code and variable-length codes.

When PMF Q is used for encoding Z instead of PMF P, we can observe from the
cross entropy formula in Equation (A1), log2(1/qi) is considered as the mathematically-
supposed length of a codeword that is used to encode letter zi ∈ Z with a probability value
qi ∈ Q. Because ∑n

i=1 pi = 1,H(P, Q) is thus the weighted or probabilistic average length
of the codewords for all letters in Z, such that the weights are based on the actual PMF P
and the codeword lengths are based on the supposed PMF Q.

When a letter zi ∈ Z is given a probability value qi, it is not necessary for zi to be
encoded using a codeword of length log2(1/qi) bits. More precisely, it is the nearest integer
above or equal to it, i.e., dlog2(1/qi)e bits, since a binary codeword cannot have fractional
bits digitally. For example, consider a simple alphabet Z = {z1, z2}. Regardless what PMF
is associated with Z, Z can always be encoded with a 1-bit code, e.g., codeword 0 for z1 and
codeword 1 for z2, as long as neither of the two probability values in Q is zero, i.e., q1 6= 0
and q2 6= 0. (Note that if a codeword were to have a zero probability, we would not need
to encode the codeword. It would not increase the number of bits required for coding.)
However, if we had followed Equation (A1) literally, we would have created codes similar
to the following examples:

• if Q = { 1
2 , 1

2}, codeword 0 for z1 and codeword 1 for z2;
• if Q = { 3

4 , 1
4}, codeword 0 for z1 and codeword 10 for z2;

• · · ·
• if Q = { 63

64 , 1
64}, codeword 0 for z1 and codeword 111111 for z2;

• · · ·
As shown in Figure A1a, such a code is very wasteful. Hence, in practice, encoding

Z according to Equation (A1) literally is not desirable. Note that the discussion about
encoding is normally conducted in conjunction with the Shannon entropy. Here, we use the
cross entropy formula for our discussion to avoid a deviation from the flow of reasoning.

zn-1 

0 1 

0 1 

0 

0 1 

0 1 

11...10 11..11 

11...0 

110 

10 

0 
z1 

z2 

zn 

zn-2 

z3 
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0 

0 1 

0 1 

11...10 11..11 

11...0 

110 

10 

0 
z1 

z2 

? 

? 

? 

? 

(a) a wasteful binary tree (b) the most unbalanced binary tree 

Figure A1. Two examples of binary codes illustrated as binary trees.



Entropy 2022, 24, 228 22 of 25

Let Z be an alphabet with a finite number of letters, {z1, z2, . . . , zn}, and Z is associated
with a PMF, Q, such that:

q(zn) = ε, (where 0 < ε < 2−(n−1)),

q(zn−1) = (1− ε)2−(n−1),

q(zn−2) = (1− ε)2−(n−2),

· · ·
q(z2) = (1− ε)2−2,

q(z1) = (1− ε)2−1 + (1− ε)2−(n−1).

(A2)

We can encode this alphabet using the Huffman encoding that is a practical binary coding
scheme and adheres the principle to obtain a code with the Shannon entropy as the average
length of codewords [45]. Entropy coding is designed to minimize the average number of
bits per letter when one transmits a “very long” sequence of letters in the alphabet over
a communication channel. Here the phrase “very long” implies that the string exhibits
the above PMF Q (Equation (A2)). In other words, given an alphabet Z and a PMF Q, the
Huffman encoding algorithm creates an optimal code with the lowest average length of
codewords when the code is used to transmit a “very long” sequence of letters in Z. One
example of such a code for the above PMF Q is:

z1 : 0, z2 : 10, z3 : 110

· · ·
zn−1 : 111 . . . 10 (with n− 2 “1”s and one “0”)

zn : 111 . . . 11 (with n− 1 “1”s and no “0”)

(A3)

Figure A1b shows illustrates such a code using a binary tree. In this way, zn, which has the
smallest probability value, will always be assigned a codeword with the maximum length
of n− 1.

Lemma A1. Let Z be an alphabet with n letters and Z is associated with a PMF Q. If Z is encoded
using the aforementioned entropy coding, the maximum length of any codeword for zi ∈ Z is always
≤ n− 1.

We can prove this lemma by confirming that when one creates a binary code for an
n-letter alphabet Z, the binary tree shown in Figure A1b is the worst unbalanced tree
without any wasteful leaf nodes. Visually, we can observe that the two letters with the
lowest values always share the lowest internal node as their parent node. The remaining
n− 2 letters are to be hung on the rest binary subtree. Because the subtree is not allowed to
waste leaf space, the n− 2 leaf nodes can be comfortably hung on the root and up to n− 3
internal node. A formal proof can be obtained using induction. For details, readers may
find Golin’s lecture notes useful [55]. See also [7] for related mathematical theorems.

Theorem A1. Let Z be an alphabet with a finite number of letters and Z is associated with two
PMFs, P and Q. With the Huffman encoding, conceptually the cross entropy H(P, Q) should
be bounded.

Let n be the number of letters in Z. According to Lemma A1, when Z is encoded in
conjunction with PMF Q using the Huffman encoding, the maximum codeword length is
≤ n− 1. In other words, in the worst case scenario, there is letter zk ∈ Z that has the lowest
probability value qk, i.e., qk ≤ qj∀j = 1, 2, . . . n and j 6= k. With the Huffman encoding, zk
will be encoded with the longest codeword of up to n− 1 bits.
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According to Definition A1, there is a true PMF P. Let L(zi, qi) be the codeword length
of zi ∈ Z determined by the Huffman encoding. We can write a conceptual cross entropy
formula as:

H(P, Q) =
n

∑
i=1

pi · L(zi, qi) ≤
n

∑
i=1

pi · L(zk, qk) ≤ n− 1

where qk is the lowest probability value in Q and zk is encoded with a codeword of up to
n− 1 bits (i.e., L(zk, qk) ≤ n− 1). Hence conceptuallyH(P, Q) is bounded by n− 1 if the
Huffman encoding is used. Since we can find a bounded solution for any n-letter alphabet
with any PMF, the claim of unboundedness has been falsified.

Corollary A1. Let Z be an alphabet with a finite number of letters and Z is associated with two
PMFs, P and Q. With the Huffman encoding, conceptually the KL-divergence DKL(P‖Q) should
be bounded.

For an alphabet Z with a finite number of letters, the Shannon entropy H(P) is
bounded regardless any PMF P. The upper bound ofH(P) is log2 n, where n is the number
of letters in Z. Since we have

H(P, Q) = H(P) +DKL(P||Q)

DKL(P||Q) = H(P, Q)−H(P)

using Theorem A1, we can infer that with the Huffman encoding, conceptually DKL(P||Q)
is also bounded.

Further Discussion: The code created using Huffman encoding is also considered
to be optimal for source coding (i.e., assuming without the need for error correction and
detection). A formal proof can be found in [55].

Let Z be an n-letter alphabet, and Q be its associated PMF. When we use the Shannon
entropy to determine the length of each codeword mathematically, we have:

L(zi, qi) = dlog2
1
qi
e, zi ∈ Z, qi ∈ Q

As we showed before, the length of a codeword can be infinitely long if qi → 0. Huff-
man encoding makes the length finite as long as n is finite. This difference between the
mathematically-literal entropy encoding and Huffman encoding is important to our proof
that conceptuallyH(P, Q) and DKL(P‖Q) are bounded.

However, we should not draw a conclusion that there is much difference between the
communication efficiency gained based on the mathematically-literal entropy encoding
and that gained using the Huffman encoding. In fact, in terms of the average length of
codewords, they differ by less than one bit since both lie betweenH(Q) andH(Q) + 1 [7],
although their difference in terms of the maximum length of individual letters can be
very different.

For example, if Z is a two-letter alphabet, and its PMF Q is {0.999, 0.001}, the Huffman
encoding results in a code with one bit for each letter, while the mathematically-literal
entropy encoding results in 1 bit for z1 ∈ Z and 10 bits for z2 ∈ Z. The probabilistic average
length of the two codewords, which indicate the communication efficiency, is 1 bit for the
Huffman encoding, and 1.009 bits for the mathematically-literal entropy encoding, while
the entropyH(Q) is 0.0114 bits. As predicted, 0.0114 < 1 < 1.009 < 1.0114.

Consider another example with a five-letter alphabet and Q = {0.45, 0.20, 0.15, 0.15, 0.05}.
The mathematically-literal entropy encoding assigns five codewords with lengths of {2, 3, 3, 3, 5},
while the Huffman encoding assigns codewords with lengths of {1, 3, 3, 3, 3}. The probabilistic
average length of the former is 2.65, while that of the Huffman encoding is 2.1, while the entropy
H(Q) is 2.0999. As predicted, 2.0999 < 2.1 < 2.65 < 3.0999.
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