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A B S T R A C T   

The conversion of alkynes into functionalised alkenes catalyzed by Au(NHC) complexes (NHC = N-heterocyclic 
carbene) is a fundamental and atom-economical transformation yet its mechanistic understanding is limited. In 
order to shed light on such catalytic reaction mechanisms, computational tools are utilized to gain insights into 
the gold catalyzed intermolecular hydroamination of internal alkynes. The combination of alkynes and benzo-
triazole leads to vinylazoles via a solvent free, gold(I) mediated hydroamination. DFT permits an in-depth dis-
cussion of single versus dual metal catalysis in this transformation. The role of the triflate anion is studied, being 
essential for the protodeauration and it helped to clarify the rate determining step, that consists of the gold- 
tiazolyl nucleophilic attack to the gold-alkyne π-complex.   

Introduction 

Among privileged scaffolds in the pharmaceutical industry, N-func-
tionalized azoles are frequently encountered structural motifs displaying 
activities against bacterial and fungal infections [1–3], and are used as 
anxiolytic [4], analgesic, antidepressant drugs, and even as anticancer 
agents [5]. Even though the synthesis of azole derivatives centers 
around cycloaddition and multicomponent reactions [6–10], the 
hydroamination of alkynes, but also alkenes or alkynyl sulfamides [11], 
proves more step-economical. One of the lacking incarnations of the 
latter approach (although it has been used in inter- and intramolecular 
hydroamination of terminal alkynes [12–14]) is the intermolecular 
hydroamination of alkenes [15]. In addition, the intermolecular 
hydroamination of internal alkynes with primary amines has been suc-
cessfully catalyzed mainly by titanium (IV) based catalysts [16–23], 
while dialkylamines or heterocycles fail as nucleophiles. On the other 
hand, the hydroamination of internal alkynes under solvent free con-
ditions has been found feasible [24]. 

In seminal efforts in this direction, Schaffer succeeded in achieving a 
selective anti-Markovnikov hydroamination of terminal and internal 
alkynes with N-silylamines, leading to primary amines with a bis 

(amidate)bis(amido)titanium(IV) catalyst [25,26]. Subsequent efforts 
focused on rhodium(I) catalysts [27,28], here, Dong and Sunoj devel-
oped the hydroamination of internal alkynes via tandem metal catalysis 
to yield N-allyl indolines [29] and branched N-allylic amines, whereas 
Breit and coworkers accomplished the rhodium(I) catalyzed chemo‑, 
regio‑, and enantioselective allylation of triazoles and pyrazoles with 
internal alkynes [30]. Zhao and coworkers explored the hydroamination 
combined with C–H activation in a highly selective [4 + 2] imi-
ne/alkyne annulation leading to multi-substituted 3,4-dihydroisoquino-
lines [31]. Additionally, looking beyond rhodium, silver(I) and copper 
(II) complexes were found to be active in the regioselective intermo-
lecular hydroamination of internal alkynes, functionalized with 
electron-withdrawing groups [32,33], while gold(I) catalysts enabled 
catalytic additions to C–C bonds leading to intramolecular reactions 
[34–43]. Mechanistic insights were provided for intermolecular re-
actions including the hydroamination of alkynes with ammonia, hy-
drazine and amines catalyzed by gold complexes with cyclic(alkyl) 
(amino)carbenes [44,45]. The same synthetic methodology led to 1, 
2-dihydroquinolines [46,47], here insights shed light on the stereo 
and regioselective hydroamination of internal alkynes using dialkyl-
amines [48,49], and the intermolecular hydroamination of internal 
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alkynes with primary amines, using an acid co-catalyst [50]. Interest-
ingly, the latter methodology led to vinyl-substituted triazoles [51], and 
pyrazoles [52]. 

Among the catalysis for azide-alkyne cycloaddition reactions [53], in 
2019, Michon, Nolan and coworkers developed a gold(I)-catalyzed 
intermolecular hydroamination strategy to couple internal alkynes and 
benzotriazole for the effective synthesis of functionalized vinylazoles 
[54], in high yields and high regio-, chemo-, and stereoselectivity, under 
solvent free conditions. The synthetic methodology proved simple and 
scalable (See Fig. 1), using standard thermal heating or more convenient 
microwave heating. However, the reaction mechanism was not probed 
in detail, despite recent synthetic efforts [55,56]. 

Actually, this difficulty in studying the mechanism was also an issue 
for the gold(I)-catalyzed hydroamination of alkenes by Michon and co-
workers [57–61], or the gold(I)-catalysed hydroalkoxylation, hydro-
phenoxylation, and hydrocarboxylation of alkynes by Nolan and 
coworkers [62–65]. In collaboration with the latter experimental group, 
Poater and coworkers have provided evidence for the dual gold cata-
lyzed hydrophenoxylation of alkynes [66,67]. The main conclusion of 

this study was that not only is a gold(I) center needed to activate the 
alkyne, but that an addition gold is required to activate the phenol 
substrate as well [68,69]. Houk, Toste and collaborators reached the 
same conclusion, nearly one decade ago, for the cycloisomerization of 
allenynes mediated by a digold catalyst [70], i.e. including a nucleo-
philic addition to the allene double bond to a cationic phosphinegold 
(I)-complexed phosphinegold(I) acetylide. This was followed by a se-
ries of experiments [71–73], and seminal calculations [74]. 

During the last decade, the area of dual gold catalysis has seen 
evolutions on going from phosphinegold(I) catalysts to (NHC)gold(I) 
catalysts (NHC = N-heterocyclic carbene) [75,76]. In addition to DFT 
calculations that validated the dual gold catalyzed hydrophenoxylation 
of alkynes, mass spectrometry (MS) experiments by Roithová and co-
workers showed that these digold species were not simple catalyst res-
ervoirs [77,78], being particularly active in the synthesis of 
functionalized alkenes [79–81], including especially (Z)-vinyl ethers 
[82,83]. Reek and coworkers subsequently confirmed that encapsula-
tion of the gold catalysts enhanced the dual gold catalyzed hydro-
phenoxylation [84,85]. Furthermore, the heterobimetallic catalytic 

Fig. 1. Catalytic reaction of alkynes and benzotriazole to N-functionalized azole (a sand bath at 100 ◦C for 72 h; a= 0.22 mmol of 3a; b= 1.10 mmol of 3a) [54].  
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system with two different metal moieties, including gold and copper, 
showed enhanced catalytic activity in the same reaction, confirming the 
dual metal catalysis concept to not be limited to homobimetallic systems 
[86,87]. However, the discussion of mono vs. dual catalysis remains an 
ongoing topic of debate for various transformations, including water 
oxidation catalysis as a paradigmatic case [88–90]. Of note, this dis-
cussion continues especially because not all kinetic experiments match 
the dual gold catalysis model [91,92], with additional controversy for 
other dual metal catalyzed reactions [93–95]. The crucial role of the 
counterion in dual catalysis has also been addressed and highlights the 
complex nature of the mechanistic issues [96–102]. 

Since the dual metal catalyzed reaction mechanism is usually 
omitted in DFT calculations, we wish to correct this situation and pro-
vide details for the transformation of internal alkynes and benzotriazole 
for the effective synthesis of functionalized vinylazoles where two gold 
moieties must be in proximity for the reaction to proceed and therefore 
should involve, a dual metal catalytic scheme [103,104]. However, the 
effort for finding dual metal catalyzed mechanisms should not be biased 
[105,106], and it should be understood that most processes do not 
follow this dual model [107–109]. 

Materials and methods 

Geometry optimizations have been carried out by means of DFT 
calculations with Gaussian09 [110]. The gradient generalized approxi-
mation (GGA) BP86 functional of Becke and Perdew was used [111, 
112]. The electronic configurations of the molecular systems were 
described with the standard split-valence basis set including the polar-
ization function of Ahlrichs and coworkers for hydrogen, carbon, ni-
trogen, an oxygen (SVP keyword in Gaussian09) [113], whereas for gold 
we used the quasi-relativistic Stuttgart/Dresden effective core potential 
with the associated valence basis set (standard sdd keyword in 
Gaussian09) [114–116]. The stationary points were characterized by 
analytical frequency calculations. 

On the BP86/SVP~x223Csdd optimised geometries, single-point 
calculations were performed using the M06 functional [117] with the 
triple-ζ basis set of Weigend and Ahlrichs for main-group atoms (TZVP 

keyword in Gaussian) [118], and for gold the sdd pseudopotential and 
basis set. In those latter calculations, the polarizable conductor calcu-
lation model (CPCM) was also used to model the solvent effects (pyri-
dine) [119–121]. The reported free energies in this work include 
energies obtained at the M06/TZVP~x223Csdd level of theory corrected 
with zero-point energies, thermal corrections and entropy effects eval-
uated at 298 K with the BP86/SVP~x223Csdd method in the gas phase, 
omitting corrections of entropy and standard state of 1 M concentration 
in solution [122]. 

Results and discussion 

The reaction between the alkyne and the benzotriazole substrates 
described in Fig. 1 is catalyzed by [{Au(IPr)}2(μ-OH)][BF4] 1c, with the 
assistance of the triflate anion. Apart from the greater coordinating ca-
pacity of the triflate anion, the BF4 anion was not taken into account 
according to previous computational studies [66]. To dissect the exact 
mechanism at play, first it is necessary to determine which is, or which 
are, the catalytically active species when two metal moieties are 
involved in the catalytic cycle. 

In Fig. 2, on the basis of previous mechanistic studies, we propose the 
cationic [{Au(IPr)}2(μ-OH)]+ as a simplification of [{Au(IPr)}2(μ-OH)] 
[BF4], since the latter neutral complex is isoenergetic with respect to 
both, [{Au(IPr)}2(μ-OH)]+ and BF4

− , bearing a nearly complete ionic 
link between the two moieties. However, there are several potential 
dissociation routes available to the hydroxide bridged complex. If this 
gem‑digold complex coordinates to the alkyne to form π-complex D, the 
Brønsted base [Au(IPr)(OH)] is generated. This step needs to overcome 
an energy barrier of 15.5 kcal/mol and is thermodynamically unfavored 
by 6.6 kcal/mol, whereas when benzotriazole opens the bridge, the 
energy barrier is 2.4 kcal/mol, and leads to a rather stable intermediate 
A. However, the benzotriazole has two N atoms which can coordinate 
the metal center. If the benzotriazole binds gold, the corresponding 
energy barrier is nearly identical via the external or middle nitrogen 
(0.1 kcal/mol more favored for the middle nitrogen), whereas the 
thermodynamics favours by 4.0 kcal/mol the external coordination, 
thus not leading to the less stable intermediate B. Nevertheless, both 

Fig. 2. Computed stationary points calculated at the M06/TZVP~x223Csdd(cpcm)//BP86/SVP~x223Csdd level of theory for the reaction pathways referred to 1c 
catalyst using diphenylacetylene and benzotriazole as the substrates (Gibbs energies are given in kcal/mol, in red labels the relative values for the transition states, in 
green the direct participation of OTf− ). 
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Fig. 3. Computed stationary points from intermediates F to G calculated at the M06/TZVP~x223Csdd(cpcm)//BP86/SVP~x223Csdd level of theory referred to 1c 
catalyst for the dual gold-catalyzed hydroamination (Gibbs energies are given in kcal/mol, in red labels the relative values for the transition states, in green the direct 
participation of OTf− ). 

Fig. 4. Transition states (a) F-G and (b) J-K assisted by triflate (selected distances given in Å).  
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isomers, A and B, collapse into intermediate F by action of the [Au(IPr) 
(OH)] intermediate, which is able to deprotonate the charged azole-gold 
intermediates A and B, with barrierless and highly favored thermody-
namic processes (2.8 and 13.5 kcal/mol, respectively). However, after 
the deprotonation from the gold-azole A to its neutral form E, an addi-
tional step is required, overcoming an energy barrier of 13.8 kcal/mol 
the coordination atom of the former azole is changed, from the central or 
any of the terminal N atoms, assisted with an additional benzotriazole 
molecule. 

On the other hand, the potential active role of the triflate anion, as 
well as water molecule that is formed as a by-product, was explored for 
the cleaving of [{Au(IPr)}2(μ-OH)]+, with energy barriers of 15.9 and 
16.4 kcal/mol, respectively, thus neither is the best starting reagent to 
cleave the digold species, despite stabilizing the cationic gold moiety. 
The triflate leads to intermediate C that can replace the alkyne over-
coming an energy barrier of 14.5 kcal/mol, and leads to the cationic 
intermediate D. Of note, in the absence of OTf− anion the formation of 
the Au-alkyne species would not be diminished. Even though the dimer 
is only cleaved by the triazole, the OTf− anion could facilitate the for-
mation of the π-complex D in a stepwise process, first with the exchange 
of the triazole by the OTf− anion with the next exchange of the anion by 
the alkyne, with an upper barrier of 16.5 kcal/mol. However, the direct 
formation of the π-complex D from the Au-azole species A has an energy 
barrier lower by 0.7 kcal/mol. Thus, the presence of OTf− is not 
mandatory for the initiation step to take place. 

The neutral Au-azole species F, where Au is bound to the azole 
through its central nitrogen atom, is the active species in the catalytic 

cycle (see Fig. 3). The subsequent nucleophilic attack of the gold-azole F 
toward π-complex D would lead to the formation of the diaurated species 
G. The formation of the C–N bond involves a kinetic cost of 19.8 kcal/ 
mol (see Fig. 4a), but exergonically, with an energy gain of 6.2 kcal/mol. 

To point out that the absence of gold with benzotriazole is disad-
vantaged kinetically by 10.5 kcal/mol, in agreement with past studies 
[15]. Then a benzotriazole molecule could displace the second gold 
center overcoming an energy barrier of 17.2 kcal/mol, leading to in-
termediate J. However, the simple rearrangement of the di-gold species 
could proceed with less kinetic cost with the migration of this second 
gold moiety. Regardless, this process needs to overcome three energy 
barriers since intermediates H and I are also present along the reaction 
coordinate. The first two energy barriers are lower than that of the 
external triazole attack, by 3.4 and 8.3 kcal/mol, respectively, while the 
third is 5.2 kcal/mol more kinetically demanding. On the other hand, 
the OTf− anion could also compete with the external triazole but this is 
less favored by 2.0 kcal/mol. Alternatively, the nucleophilic attack of 
gold-azole F toward π-complex D in an anti-fashion would lead to the 
formation of a gem‑diaurated species, however all of those off-cycle 
species were found to be disfavored either thermodynamically and/or 
kinetically. 

From intermediate J, the protonation of the former alkyne group 
leads to the alkene product (see Fig. 5). The formation of the vinylazole 
product would be favored if the cationic [Au(OH2)]+ species was 
available [66,123], but this strategy is not right since we never enjoy the 
presence of water to generate it. Then the second option is the proton-
ation by means of the cationic Au-azole moiety with a cost of 26.0 

Fig. 5. Computed stationary points from intermediates J to O calculated at the M06/TZVP~x223Csdd(cpcm)//BP86/SVP~x223Csdd level of theory referred to 1c 
catalyst for the dual gold-catalyzed hydroamination (Gibbs energies are given in kcal/mol, in red labels the relative values for the transition states, in green the direct 
participation of OTf− ). 
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kcal/mol, and thus this would be the rate determining step (rds) [124]. 
However, this is not dramatic, as a third option, the protonated OTf−

anion can carry out this protonation, overcoming a rather low energy 
barrier of 11.9 kcal/mol (see Fig. 4b). Then the next steps to release the 
product are simple rearrangements of the gold center, which is finally 
removed by a triazole ligand, delivering the organic product. 

Alternative pathways were explored, including the one leading to the 
cis-alkene product, but none being competitive in energy (see Fig. S1), 
since the cis attack involves an increase in steric pressure in an area of 
the space between the two metal moieties in the homologous transition 
state F-G [66,125]. What is most affected is the distortion that is re-
flected with the C–C-N angle moving from 106.1 to 113.8◦ when 
passing from the trans attack to the cis. However, using the sterical 
hindrance index developed by Cavallo and coworkers [126], there is 
also a clear worsening of the steric part in the cis attack (from 33.0 to 
34.3% Vbur) [127], and observing Fig. 6 can be seen in the steric maps 
[128,129] (see Figs. S2 and S3 for further details). There is a much more 
sterically occupied area in the cis attack [130], due to the fact that the 
metal moiety bound to the alkyne is close [131,132]. In addition, to 
make sure that the rds barrier, i.e. of the F-G step, is not an artifact of the 
method, it was found that the use of BP86 in geometry optimization was 
not decisive, as the inclusion of dispersion with the Grimme GD3 model 
[133], i.e. BP86-D3, led to an energy barrier increase of only 0.9 
kcal/mol, whereas 4.3 kcal/mol reoptimizing the geometries. On the 
other hand, the use of M06L or M06L-D3 decreased by 2.4 kcal/mol 
[134], and neither did the functional hybrids significantly change the 
results, with an increase in the energy barrier in 1.1 and 1.8 by B3LYP 
and B3LYP-D3 [135–137], respectively. 

Results included in Figs. 3 and 5 validate the hypothesis that two 
metal moieties must be in close proximity for the reaction to occur [138, 
139]. Thus, the digold catalyst 1c in Fig. 1, where both metals are linked 
by a hydroxide ligand facilitates the preparation of both metal moieties 
that must assist the hydroamination reaction, similarly to other gold 
catalyzed reactions [140,141]. In particular, the digold-hydroxides had 
been synthesized some years ago [141], and even though some subse-
quent gem‑diaurated compounds were considered as potential off-cycle 
catalytic species [64,142,143], they behave as a combination of a Lewis 
acid and a Brønsted base [144]. In detail, the cationic gold fragment 
with the alkyne bonded to gold is considered as a Lewis acid whereas the 
neutral gold hydroxide as a Brønsted base [145,146]. However, the 
latter species is transformed to the neutral species with the deprotonated 
azole, i.e. another Brønsted base [147]. 

Conclusions 

The synthetic efforts that provided the gold(I)-catalyzed regio- and 
stereoselective intermolecular hydroamination of internal alkynes, 
under solvent free conditions, leading to functionalised vinylazoles, 
were computationally studied here by DFT calculations. Calculations not 
only provided the reaction mechanism, but they led to the identification 
of the key role of the triflate anion, without which the final vinylazole 
product could not be obtained. This is because the triflate anion is 
essential for protodeauration which would otherwise be kinetically very 
demanding. In the reported system which does utilize a triftate anion, 
the rate-determining step is the addition of the gold-tiazolyl nucleophile 
to the gold-alkyne π-complex. 
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Fig. 6. Steric maps (plane xy) with the linking N in the center, the linking C in the z axis, and the C bonded to Au on the X axis, of the TS F-G (left) and the 
corresponding TS for the cis attack (right), with a radius of 3.5 Å. 
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[86] F. Lazreg, S. Guidone, A. Gómez-Herrera, F. Nahra, C.S.J. Cazin, 
Hydrophenoxylation of internal alkynes catalysed with a heterobimetallic Cu- 
NHC/Au-NHC system, Dalton Trans. 46 (2017) 2439–2444. 
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[143] D. Weber, M.R. Gagné, Aurophilicity in gold(I) catalysis: for better or worse? Top. 
Curr. Chem. 357 (2015) 167–211. 

[144] I. Braun, A.M. Asiri, A.S.K. Hashmi, Gold catalysis 2.0, ACS Catal. 3 (2013) 
1902–1907. 

[145] J.D. Egbert, A.M.Z. Slawin, S.P. Nolan, Synthesis of N-heterocyclic carbene gold 
complexes using solution-phase and solid-state protocols, Organometallics 32 
(2013) 2271–2274. 

[146] N. Ibrahim, M.H. Vilhelmsen, M. Pernpointner, F. Rominger, A.S.K. Hashmi, Gold 
phenolate complexes: synthesis, structure, and reactivity, Organometallics 32 
(2013) 2576–2583. 
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