
Computers & Graphics 103 (2022) 75–89

A
V

p
a
a
s
v
m
t
o
s
c

n
v
r
n
r
d
s
T
p
c
r

h
0

Contents lists available at ScienceDirect

Computers & Graphics

journal homepage: www.elsevier.com/locate/cag

Technical Section

Clustered voxel real-time global illumination✩

lejandro Cosin Ayerbe, Gustavo Patow ∗

iRVIG, Universitat de Girona, Spain

a r t i c l e i n f o

Article history:
Received 30 September 2021
Received in revised form 16 January 2022
Accepted 20 January 2022
Available online 29 January 2022

Dataset link: https://github.com/AlejandroC
1983/cvrtgi

Keywords:
Real-time
Global illumination
Voxelization
Clustering
Diffuse surfaces

a b s t r a c t

Real-time global illumination is an extremely challenging problem because of its intrinsic complexity
due to the interplay between complex geometry, multiple light bounces, and stringent real-time
frame-rate requirements. In this paper, we present a new technique that enables the real-time
computation of global illumination in generic scenes for diffuse surfaces and static geometry. Our
technique combines a voxel-based representation of the scene, a voxel-clustering algorithm, and an
iterative light-propagation algorithm based on the resulting clusters. Although our implementation
is currently designed to handle the first (and main) bounce, the technique allows for multiple light
bounces. Summing up all these components results in a flexible algorithm capable of providing global
illumination effects and on-the-fly illumination computations.

© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Real-time global illumination is still an open problem in Com-
uter Graphics. In the last decades, we have witnessed many
ttempts to solve light transport in real-time, some of them
pproaching acceptable similarities with ground truth renders for
imple cases, but without fully solving the problem, e.g., without
isibility computations [1–3]. Lambertian, glossy and specular
aterials have been reproduced with different degrees of success

hrough different families of techniques [4,5], each having its
wn limitations. The resulting techniques already allow impres-
ive, yet limited, real-time visualizations of global illumination in
omplex scenes.
The ability to reproduce real-time indirect illumination with

o strong restrictions in the number of light bounces for all
ariety of materials with quality near to a production renderer
emains unsolved. The main problems are the visibility determi-
ation at the point where irradiance is being evaluated, and the
ecursive nature of that evaluation, as described by Kajiya’s ren-
ering equation [6]. Without this information or an adequate sub-
titute, no irradiance gathering can be appropriately performed.
raditional renderers solve this problem through brute force sam-
ling and working at geometry level for the whole scene, which
annot be achieved in real-time for complex scenes [6,7] although
ecently some advances have been achieved relying in foveated

✩ This article was recommended for publication by P. Poulin.
∗ Corresponding author.

E-mail address: gustavo.patow@udg.edu (G. Patow).
ttps://doi.org/10.1016/j.cag.2022.01.005
097-8493/© 2022 The Author(s). Published by Elsevier Ltd. This is an open access a
rendering like in the work by Koskela et al. [8]. Bottlenecks like
scene geometry, probe density and placement, or voxelization
data structure updates populate current real-time techniques [9–
11]. Finding means to solve this visibility problem occupies most
of the efforts in the field.

In our work, we gather irradiance following a scene-voxeliz-
ation approach, using a discrete representation of the diffuse
indirect illumination at the voxel level. Our design allows mul-
tiple emitters and light bounces for dynamic cameras, although
we implement only a single light bounce for performance rea-
sons. Following the steps of Thiedemann et al. [12] and Sugihara
et al. [13], we extend this family of techniques by clustering
voxels to increase the gathering effectiveness and control the
number of elements to deal with in the scene regardless of the
voxelization resolution, which in the case of a voxel approach
can quickly escalate for complex scenes such as the one shown
in Fig. 1, with more than half a million voxels. In particular, our
contributions are:

• The adaptation of GPU clustering techniques into the voxel
domain, using normal directions assigned to voxels to gen-
erate the clusters.

• An efficient set of data structures to store voxelization and
clustering information, allowing quick retrieval of all frag-
ments, visibility and cluster information for each voxel.

• A real-time global illumination algorithm accounting for
visibility based on a 3D version of Bresenham’s [14] line
algorithm in voxel space, a lazy irradiance evaluation for
voxels only visible from the camera and the use of clusters
to gather irradiance from large visible portions of the scene
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.cag.2022.01.005
http://www.elsevier.com/locate/cag
http://www.elsevier.com/locate/cag
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cag.2022.01.005&domain=pdf
https://github.com/AlejandroC1983/cvrtgi
https://github.com/AlejandroC1983/cvrtgi
https://github.com/AlejandroC1983/cvrtgi
https://github.com/AlejandroC1983/cvrtgi
https://github.com/AlejandroC1983/cvrtgi
https://github.com/AlejandroC1983/cvrtgi
https://github.com/AlejandroC1983/cvrtgi
https://github.com/AlejandroC1983/cvrtgi
https://github.com/AlejandroC1983/cvrtgi
https://github.com/AlejandroC1983/cvrtgi
https://github.com/AlejandroC1983/cvrtgi
https://github.com/AlejandroC1983/cvrtgi
https://github.com/AlejandroC1983/cvrtgi
https://github.com/AlejandroC1983/cvrtgi
https://github.com/AlejandroC1983/cvrtgi
https://github.com/AlejandroC1983/cvrtgi
https://github.com/AlejandroC1983/cvrtgi
https://github.com/AlejandroC1983/cvrtgi
https://github.com/AlejandroC1983/cvrtgi
https://github.com/AlejandroC1983/cvrtgi
https://github.com/AlejandroC1983/cvrtgi
https://github.com/AlejandroC1983/cvrtgi
https://github.com/AlejandroC1983/cvrtgi
https://github.com/AlejandroC1983/cvrtgi
https://github.com/AlejandroC1983/cvrtgi
https://github.com/AlejandroC1983/cvrtgi
https://github.com/AlejandroC1983/cvrtgi
https://github.com/AlejandroC1983/cvrtgi
https://github.com/AlejandroC1983/cvrtgi
https://github.com/AlejandroC1983/cvrtgi
https://github.com/AlejandroC1983/cvrtgi
https://github.com/AlejandroC1983/cvrtgi
https://github.com/AlejandroC1983/cvrtgi
https://github.com/AlejandroC1983/cvrtgi
https://github.com/AlejandroC1983/cvrtgi
https://github.com/AlejandroC1983/cvrtgi
https://github.com/AlejandroC1983/cvrtgi
https://github.com/AlejandroC1983/cvrtgi
https://github.com/AlejandroC1983/cvrtgi
https://github.com/AlejandroC1983/cvrtgi
http://creativecommons.org/licenses/by/4.0/
mailto:gustavo.patow@udg.edu
https://doi.org/10.1016/j.cag.2022.01.005
http://creativecommons.org/licenses/by/4.0/

A. Cosin Ayerbe and G. Patow Computers & Graphics 103 (2022) 75–89

b
f
t
p
L
s
m
o
d
o
o
P
G
m
p
e
i
s
b
t
o
l
e
s
q
p

t
o
i
e
i
w

Fig. 1. Real-time single bounce diffuse indirect illumination for the Amazon Bistro Scene with voxelization size 64 at 63 FPS on a GeForce RTX 2060 with 6 GB of
VRAM.
from each voxel, avoiding exhaustive visibility tests for the
voxels each cluster comprises.

The complete source code of our approach is available for down-
load at https://github.com/AlejandroC1983/cvrtgi.

2. Related work

Real-Time Global Illumination is a challenging research topic
eing tackled in the last decades by many approaches with dif-
erent levels of success. The main research directions were es-
ablished with Instant Radiosity by Keller [15], giving birth to a
lethora of techniques based on the idea of building Virtual Point
ights (VPLs) from a shadow map generated at the emitter po-
ition, and having as main drawback requiring visibility shadow
aps for each VPL. Irradiance Volumes by Greger et al. [16]
ffered a precomputed cosine-weighted approximation of irra-
iance in a two-level uniform grid, opening the road to many
ther techniques relying on the integration of irradiance on a set
f points in the scene. Sloan et al. [17] established with their
recomputed Radiance Transfer another reference in real-time
I, modeling also shadows, interreflections and diffuse-to-glossy
aterials for dynamic environments although requiring a pre-
rocess of the model. Reflective Shadow Maps by Dachsbacher
t al. [1] constitutes also a pillar in the field achieving indirect
llumination in a cheap and scalable fashion, although occlu-
ions are not accounted for. Other approaches like from Dachs-
acher et al. [18] achieve occlusion considering light that needs
o be removed or antiradiance, taking as basis clustering meth-
ds used for hierarchical radiosity. Irradiance Volumes became
ater the basis for Light Propagation Volumes from Kaplanyan
t al. [19] where lattices and spherical harmonics represent the
patial and angular distribution of light in the scene, not re-
uiring any precomputation and accounting for occlusion and
articipating media.
Nalbach et al. [20] pushed the boundaries of screen space

echniques by building a surfel version of the scene and splatting
nto a multi-resolution framebuffer, which achieves one-bounce
ndirect illumination for dynamic scenes. In their work, Mara
t al. [21] show how deep G-buffers can be applied to global
llumination, using previous frames to perform depth peeling
ith minimum separation and multi-bounce GI by computing
76
one bounce per frame and accumulating results from several
frames. Kol et al. [22] show another way to overcome the Virtual
Point Light limitation by rendering the scene multiple times with
a combined scene and view hierarchical representation, which
allows one to achieve sublinear performance for scene complexity
and scene view number, sharing renderings among views. An-
other major contribution to Irradiance Volumes is the work from
Majercik et al. [23], which computes global illumination with
fully dynamic scenes and lighting for diffuse, glossy and spec-
ular materials and several light bounces with a technique that
can be used in production engines. New approaches allow tech-
niques like Precomputed Radiance Transfer to keep contributing
to the area. In their work, Currius et al. [24] train convolutional
neural networks to estimate light field values through spherical
Gaussians for static scenes.

Scene geometry voxelization is an active research field with
implications in many areas in Computer Graphics. Starting from
the first CPU approaches like the one by Wang et al. [25] offering
an efficient 3D voxelization algorithm that, through an analytical
3D antialiasing technique, generates gap-free voxel models. Later
versions like the work by Beckhaus et al. [26] gave place to effi-
cient and elaborate GPU methods. Zhang et al. [27] extended with
their work GPU conservative voxelization algorithms improving
performance and memory footprint compared with previous ap-
proaches. Further improvements were introduced by Schwarz
et al. [28] achieving an efficient algorithm for a 6-separating sur-
face GPU voxelization, thinner while also gap-free, together with
a solid voxelization algorithm. Crassin et al. [29] showed how to
build a sparse voxel octree from a voxelized volume, constructing
acceleration structures on the GPU thanks to buffer load and store
operations, which were added with OpenGL 4.2. In their work,
Heitz et al. [30] achieve smooth transitions between LoD levels,
local illumination, occlusion and anti-aliasing using an enriched
voxel representation of detailed surfaces. Vicini et al. [31] use
voxels as well to model both opaque and non-structured geo-
metric aggregates for volumetric scene representations, which are
able to approximate level of detail with a quality close to ground
truth.

Precomputation times have been one of the main bottlenecks
in many Global Illumination techniques for various cases like
computing light transport paths, probe location and radiance

https://github.com/AlejandroC1983/cvrtgi

A. Cosin Ayerbe and G. Patow Computers & Graphics 103 (2022) 75–89

t
3
i
n
p
p
e
c
t
p
p
v
M
t
v
i
t
T
b
R
b
s
k
p
f
a
R
i
n
i
c
b
t
w
l

t
s
b
s
g
e
a
o
t
g
g
t
o
g
t
r
n
g
t
s
i
a
a
c
t

3

a

ransport or wavelet representation of light transport [11,32,
3]. In the past decade, some voxel-based techniques achieved
ndirect illumination, avoiding the main bottlenecks of older tech-
iques and considering the whole voxelization volume as the
lace to simulate light transport, allowing view-independent ap-
roaches in scenes with increasing amount of geometry. Crassin
t al. [10] relied on elaborate and complex GPU data structures, in
ombination with mip-mapping, to reduce the cost for evaluating
he irradiance at a point by launching several cones around the
oint’s hemisphere. Thiedemann et al. [12] developed a fast voxel
ath tracer that allowed a quick traversal of the voxelization
olume, backprojecting the hit points into a Reflective Shadow
ap (RSM) [1] to compute irradiance from that point. These

echniques rely on building additional data structures from the
oxelized scene, scene postprocessing being a common procedure
n the area. Many papers later on have based their work on these
wo last techniques, e.g., Sugihara et al. [13] extended Voxel Cone
racing, using voxel information just for determining visibility,
ackprojecting onto layered RSMs but requiring therefore one
SM per emitter. Chen et al. [34] presented an improvement for
oth techniques which only considers the set of lit voxels in a
cene to perform irradiance computations, avoiding the need to
eep the RSM of each light, which can scale poorly in terms of
erformance and memory, addressing the many-light problem
or the voxel-based GI techniques. Irradiance Volume and voxel
pproaches were also combined by Papaioannou [35], where
SMs approximate irradiance values through spherical harmonics
n a uniform grid. This allows a big performance increase since
o shadow maps need to be built for visibility testing. Our work
s closer to Thiedemann et al. [12] and Chen et al. [13] but we
ompletely avoid RSMs, relying on some scene postprocessing
ut, unlike methods that require more than 40 min of precompu-
ations for scenes like Sponza Atrium as Silvennoinen et al. [11],
e are able to offer GI in less than three seconds at a cost of a

ower quality.
There are approaches that avoid to deal with a part, or the to-

ality, of scene elements. Lehtinen et al. [36] completely avoided
cene geometry processing by building a hierarchical function
asis to simulate light transport for complex scenes using point
amples and a scattered data approximation approach. In the
eometry domain we can find Delta Radiance Transfer by Loos
t al. [37], where they use a set of precomputed shapes that have
predominant role in the scene to compute a coarse version
f light transport for dynamic scenes, extending previous work
o add indirect shadows and interreflections from finer-scale
eometry. Partially avoiding scene elements through clustering
eometry is another example. One of the first papers about this
opic by Smits et al. [38] achieved improvements of two orders
f magnitude for hierarchical radiosity in complex scenes by
rouping scene elements and bounding energy transfer error. In
heir work, Willmott et al. [39] presented another hierarchical
adiosity offline algorithm with geometry clustering based on the
ormal vector direction, using level of detail in some steps, having
reat performance in larger and more complex scenes. In the real-
ime GI area, we can find examples of clustering applied to RSM,
uch as the work by Prutkin et al. [40] where a k-means clustering
s applied to the RSM results, considering the resulting clusters as
rea light sources, greatly reducing the number of VPLs with a low
pproximation error. Our technique is related to these as it uses
lustered voxels as a proxy to simulate light transport, to finally
ransfer the GI results to the actual scene geometry.

. Overview

Our technique works by clustering voxels using as criteria the
pproximate normal direction similarity, as done by Willmott
77
Fig. 2. Pipeline of our system. From left to right: (a) rendered geometry, (b)
voxelization step, (c) voxel clustering, (d) cluster visibility, (e) light propagation
from an emitter, (f) two voxels (green outline) gather irradiance from lit clusters.

et al. [39]. Working at cluster level allows in the first place,
when computing the irradiance reaching each voxel, to gather
in a single step all the irradiance of all lit voxels contained at
all clusters visible from the one being processed. Of course, this
assumes some error for the whole cluster visibility and irradiance
arriving from the voxel computations, but greatly reduces the
number of evaluations needed. Secondly, the cluster approach
keeps under control the number of scene elements to process
for the light transport simulation, with only a few thousands of
clusters for scenes with more than half a million voxels. Also,
we avoid irradiance computation in the final frame, focusing on
caching irradiance per voxel face for later interpolation through
a lazy computation for voxels visible from the camera. Those two
measures greatly decouple the dependency from the scene vox-
elization resolution, allowing good quality results while scaling
up with a much better performance. This supposes an advantage
over similar approaches for static scenes.

Our goal is to compute, in real-time, the diffuse indirect illumi-
nation in a voxel-based 3D scene representation by an aggressive
reduction of the elements involved in the simulation thanks to
clustering the voxels and using the clusters to compute light
transport. Fig. 2 summarizes the most important steps of our
approach.

Our technique starts by voxelizing the scene (only once, since
our approach is for static scenes) using standard techniques.
During this process we also keep the list of geometry fragments
generated, called voxel fragments, for later reuse. They are stored
in streamlined data structures in linear buffers. See Section 4.1
and the supplemental material for a detailed description.

Independently of the efficiency of our data structures, us-
ing a voxel-based approach for light exchange might be pro-
hibitive for real-time calculations, so we further reduce the num-
ber of interactions by clustering voxels using a criterion based on
approximate normal directions. See Section 4.2.

We then compute and cache, for each voxel face of each
generated voxel, the visible clusters from that face through ray
marching in voxel space. See Section 4.3.

After these steps, real-time light transport can occur. Our
algorithm uses, for each face of every voxel in the camera view,
the list of cached visible clusters and identifies the lit ones to
compute irradiance reaching that voxel face, resembling the ir-
radiance gathering techniques used for off-line rendering. See
Section 4.4.

A. Cosin Ayerbe and G. Patow Computers & Graphics 103 (2022) 75–89

e
o
a
t

Fig. 3. Voxelization example. Left: Generated fragments (red dots) are stored in
a buffer, using a linked-list data structure for each voxel. Right: fragment voxel
coordinates (green capitalized letters) are hashed (function H()) and tagged in
a buffer, using hashed coordinate values as indices. The content of the buffer
at that index is the index of the first fragment in the fragment buffer, which
allows fragment retrieval for any voxel coordinates.

Our implementation supports dynamic emitters and cameras.
Finally, we avoid costly rendering computations in the final frame
by computing irradiance with a simple interpolation between
the irradiances of each voxel neighbor of the fragments. See
Section 4.5.

4. Voxelization, clustering and light transport

4.1. Scene voxelization

We use a standard approach for the voxelization process,
where the scene is rendered with an orthographic camera from
the three axis–aligned directions with no depth test nor face
culling [41], even though it could be done in a faster way as in the
method by Schwarz and Seidel [28]. For each voxel, we need to
know whether it is empty or occupied, and which are the corre-
sponding generated fragments (the voxel fragments), information
necessary later on for the clustering stage, see Section 4.2. For
this reason, we build a set of auxiliary data structures, such as a
linear buffer (the fragment buffer) to store all generated fragment
information, which avoids extra memory requirements since, in
most scenes, only a small percentage of voxels are actually oc-
cupied. Please view the supplemental material for an in-depth
explanation of this buffer. For each fragment, we store its world
position, normal, reflectance, and an index to the next fragment
in the same voxel. See Fig. 3(left).

We opted for a trivial hashing with no collision, although
voxel data access can be done with more sophisticated parallel-
friendly methods [42,43]. At run-time, to speed up access to
voxel fragments, we hash the voxel coordinates and use them
as indices in a temporal buffer, the voxel buffer, with as many
indices as the voxelization. At each index position we store the
index in the fragment buffer of the first fragment generated at
that voxel. See Fig. 3(right). Since each voxel can generate an
number of fragments that varies greatly, trying to store them in
the voxel buffer would represent a challenge: We would either
need to keep all fragments generated at each voxel sequentially
in a buffer, together with an indirection table storing how many
fragments each voxel has, and with the voxel buffer pointing
to the first fragment in the buffer (equivalent to the current
approach); or we would need an extended voxel buffer where
ach element has enough room to store the maximum number
f fragments generated at any voxel, which can consume the
vailable GPU memory. For a detailed explanation and example of
hose data structures, please refer to the supplemental material.

The voxel buffer offers quick access to all voxel fragments
generated, but its size can quickly top available GPU memory
78
Fig. 4. Compacted buffers: These buffers avoid the use of the original voxel
buffer (green), saving memory. Indices to access fragment data for each voxel
are stored (upper blue buffer), together with voxel hashed coordinates (bottom
blue buffer).

Fig. 5. Left: Irradiance is computed only for visible voxels from the camera,
caching the values for reuse. If the camera moves, already computed irradiance
is reused (green voxels). Right: Computations for the top face of the red voxel.
During the per voxel face cluster visibility step in Section 4.3, several rays
in texture space are cast using Bresenham line algorithm (gray voxel lines)
in search for visible clusters (brown and cyan clusters intersected by the
gray voxel lines). An atomic OR operation avoids two or more threads which
intersect the same cluster from adding the same cluster as visible more than
once (gray voxel lines on the right part reaching the same cluster). During
the irradiance gathering step, cached visible clusters are reviewed. Lit clusters
(cyan) add irradiance to the voxel face, non-lit clusters (brown) do not add any
irradiance. For the irradiance computation we use a differential area form factor
formula where the normal directions considered are the voxel face’s main axis
(±x, ±y, ±z) and the cluster normal direction, explained in Section 4.2.

if voxelization resolution increases, wasting a lot of memory
due to a vast majority of empty voxels. We implement a GPU
prefix sum algorithm [44,45] to compact all non-empty indices
in the voxel buffer. Fig. 4 shows the result of this process, storing
only occupied voxel indices into the fragment index buffer, and
their hashed values into another buffer. For a description of the
remaining buffers used and an in-depth analysis and examples of
how to use them, please refer to the supplemental document for
more details on these data structures.

4.2. Voxel clustering

As a second stage, we cluster the non-empty voxels. This func-
tionality allows us to remove negligible voxel–voxel interactions
to compute the irradiance for scene elements. See Fig. 5(right)
for an example. Once a group of voxels with similar traits have
been clustered, the owner cluster is assigned a common mean
normal and mean reflectance value, which can be used to gather
irradiance in a much quicker way than in a per voxel basis,
making also data structures much simpler and flexible.

Mesh clustering and segmentation is still an active research
field. Some methods use point clouds as input [46–48], whereas
others directly use the geometry [49]. To properly process vox-
elized volumes, which essentially are 3D images, we found that

A. Cosin Ayerbe and G. Patow Computers & Graphics 103 (2022) 75–89

t
t
d
i
t
c
t
T
c
d

d

d
s
l
d
s
o
t
S
p
p
g
i
n
v

Fig. 6. Sponza Atrium processing at 221 FPS on a GeForce RTX 2060 with 6 GB of VRAM. Left half: screen capture. Right half: from left to right, and top to bottom,
cluster mean reflectance, cluster mean normal, fragment density and clustering results. The fragment density goes from 1 (green) to 20 or more (red) fragments per
voxel.
methods based on 2D image segmentation could be good can-
didates. Since we wanted a fully GPU-based implementation, we
discarded techniques such as the one by Comaniciu et al. [50], for
its dependence on recursiveness; or the one by Vedaldi et al. [51],
which does not allow control over cluster size or number. We
determined to use Achanta et al.’s [52] SLIC Superpixels, which
overcomes all those limitations. This algorithm considers a five-
dimensional space Labxy, where the first three dimensions (Lab)
are in a perceptually uniform color space, and where numerical
changes map to equivalent changes in perceived color; and the
other two xy correspond to pixel position. Pixel clustering uses
a distance measure in this space, making the clusters to have
similar size and area.

In our case, the distance function used for voxel clustering
is not based on color, but on an approximate normal direction,
using a distance function that favors only voxels with a normal
very similar to the cluster’s normal. Eq. (1) shows the distance
function, where we compute the angle between the normal di-
rection of the cluster and the normal direction of the candidate
voxel to be added to the cluster. If the angle is smaller than 35◦,
he voxel is added to the cluster. Since several clusters can be
rying concurrently to add the same voxel, we store the minimum
istance of each voxel to the latest cluster it was added to, allow-
ng each cluster to check atomically if it is possible to minimize
he distance to a specific voxel and add it. As a consequence, a
luster will always add a voxel tested for the first time, even if
he angle between the two normal directions is larger than 35◦.
his minimizes the number of voxels that are not added to any
luster. See Algorithm 1 for a breakdown of the steps followed
uring voxel clustering.

istance(n0, n1) =

{
1 if angle(n0, n1) < 35◦

0 otherwise (1)

To help the clustering step to classify voxels, we have to
etermine the normal direction for each voxel, which can involve
ome computations since some voxels in the scene can have a
arge number of fragments. The size of a voxel in world space
epends on both the voxelization resolution and the size of the
cene being voxelized. However, independently of the resolution
f the voxelization, there will always be some voxels with more
han one fragment (e.g., at edges or corners of the geometry).
ince geometric density cannot be controlled, many fragments
er voxel can be generated in dense regions of the scene, giving
lace to a high disparity in the normal directions of the fragments
enerated. See Fig. 6(right), fragment density. Due to this dispar-
ty, we follow a two-step approach to determine an approximate
ormal, called heuristic normal. For each voxel we consider a
olume of 3 × 3 voxels in each of the major axes (X , Y and Z) in
79
Algorithm 1 Voxel Clustering
1: Compute mean normal for each voxel
2: for numIterations = 10 do
3: Init cluster-voxel distance buffer with max value
4: for each cluster do
5: for each voxel in cluster neighbourhood do
6: if voxel is occupied then
7: if distance(cluster normal, voxel normal)

is minimized then
8: assign voxel to cluster
9: end if

10: end if
11: end for
12: end for
13: Compute new cluster centers and mean normal directions
14: end for
15: Compute cluster info (AABB, main direction, reflectance)
16: Prefix sum pass with generated clusters to compact results
17: Compute generated cluster neighbours

both the positive and negative directions. For each 3 × 3 grid, we
count the number of voxels that are not occupied, which leads to
a lower occlusion of the voxel being analyzed. We then pick as
normal direction the axis with the smaller number of occupied
voxels. In case of a tie, we use the per-fragment normal data as
criteria to determine which direction to choose. We accumulate
the angle formed by each normal and the major axes analyzed
and we pick the direction with the lowest accumulated value.
Fig. 7 shows an example of this heuristic computation. Voxels
in need of this heuristic approach do not always generate a
satisfactory outcome, possibly resulting in light or shadow leaks,
since the resulting clusters adopt as mean normal the one given
by the voxels they include. However, in all our experiments this
has not been a problem, and its effect is even further reduced by
the use of filtering techniques, as explained below.

Our implementation starts with a user-defined number of
empty clusters, ranging between 60 K and 250 K. We base this
number on two points. First, we make sure the total number of
voxels each empty cluster has to test is not too large while guar-
anteeing empty clusters to be densely and uniformly distributed
in the voxelization volume before the clustering process starts.
The second and most important point is to keep the final number
of clusters generated below 10 K, which in our experience is
enough to offer good results. In the sixth row of Fig. 12 we can
see how an excessively small number of clusters can result in
a lower frequency irradiance and can also generate light leaks.
We achieve the 10 K cluster limit for all scenes tested after 10

iterations of our clustering algorithm. See Fig. 8 for a detailed

A. Cosin Ayerbe and G. Patow Computers & Graphics 103 (2022) 75–89

l
r

Fig. 7. Heuristic normal computation. In the top row we show how we apply
the x axis test. In the leftmost part we show a set of voxels, considering the
central one for testing. In the center, we show the sets of voxels to be tested
for the negative and positive x directions. In the rightmost part we can see how
both tests lead to one occupied voxel, highlighted in red. In the bottom row
we show the y axis test, with the same set of voxels and central voxel to be
tested. The central part shows the voxels to test for the positive and negative y
directions, the rightmost part shows the results. As we can see, the y axis test is
able to find more free voxels (3) than the x axis test (2). Since both positive and
negative y have the same number of non occupied voxels, to decide between
both directions we consider the accumulated angle between the +y and −y
directions and the normal directions of the fragments present at the voxel being
tested, which in this case is a single fragment with a normal N pointing in the
+y axis. The direction +y is the one minimizing the accumulated angle value,
and is therefore selected as the heuristic normal.

Fig. 8. Number of generated clusters depending on the number of iterations
of the clustering algorithm for Sponza Atrium and Amazon Bistro scenes for
voxelization resolutions 64, 128 and 256. As can be seen, we achieve our goal of
keeping the number of generated clusters below 10 K from iteration 10 onwards.

plot of the number of voxels generated for the Sponza Atrium
and Amazon Bistro scenes at voxelization sizes of 64, 128 and
256, depending on the number of iterations of the clustering algo-
rithm. The empty clusters are disposed in a uniform grid scheme
according to Achanta et al. [52]. See Table 4 for a detailed descrip-
tion of the number of empty clusters and final clusters generated
for different voxelization sizes and scenes. Each initial empty
cluster is driven by a separate thread in a compute shader, each
collecting voxels in a greedy way. Non-empty clusters are stored
in an array with additional information generated in later steps
(i.e., index to the voxels owned by the cluster, mean reflectance,
mean normal, AABB, neighbor clusters, etc.).
 p

80
Once the clustering finishes, the vast majority of the voxels
have been assigned a cluster. The remaining ones will not be
taken into account as sources of irradiance when performing light
gathering. Voxels in this situation ranged from 0.15% and 0.4% of
the total voxels of the scene for the Sponza Atrium and Amazon
Bistro scenes respectively, to around 10% and 4.4% in the case
of a fine-grained voxelization. One possibility would be to do a
pass checking all voxel assignments, and creating new clusters for
each unassigned voxel. However, in our current implementation
we determined to skip this step as, in our experiments, this
approximation had a small impact on the simulation. See Fig. 9
for a comparison of irradiance gathering between our current
approach and when adding an extra pass that assigns all unas-
signed voxels to the nearest cluster, taking them into account for
irradiance gathering.

4.3. Per voxel face cluster visibility caching

Since our technique works for static scenes, we perform a
single fast visibility step where we cache the clusters visible
from each voxel face. Later, when light exchange computations
are performed, this allows us to reduce the computation of the
irradiance reaching a voxel face. This is done by testing the list of
visible clusters from that voxel face, looking for clusters tagged as
lit, meaning they have at least one voxel visible from the emit-
ter, and therefore receiving irradiance. For each voxel face, we
dispatch 128 compute threads. Each thread shoots a ray from its
corresponding voxel face into the upper hemisphere with respect
to that voxel face’s normal direction (±x, ±y, ±z axis) using a
3D implementation of Bresenham’s [14] line algorithm. If a non-
empty voxel is found, we take the index of the cluster of that
non-empty voxel and add it to the list of clusters visible from that
voxel face. The index of the cluster found is atomically verified to
avoid two or more threads from the same voxel face being tested
from adding the same cluster index more than once. The process
to build the list of visible clusters per voxel face follows a similar
approach to other buffers in our work aiming to save memory:
We build an initial buffer with size (number of generated voxels) ×

(voxelization resolution, i.e., 64, 128 or 256) × 6 and later perform
a prefix sum operation to compact all indices, generating also two
more buffers that indicate, for each voxel face, how many visible
clusters that voxel face has and where in the compacted buffer
those cluster indices begin. This allows us to use only between
14% and 22% of memory when compared with the brute force
approach. Table 3 shows a comparison of the performance in the
clustering visibility and final frame stages when using 32, 64 and
128 rays per voxel face for different voxelization sizes for the
Sponza Atrium and Amazon Bistro scenes. We can see a ratio of
6–10 more time needed to compute the cluster visibility as the
number of rays per face grows. See Fig. 12 for a comparison of
the quality in the Amazon Bistro scene when using 32, 64 and
128 rays per voxel face at different voxelization resolutions.

4.4. Real-time light transport

Light transport computation consists of four steps. The first
one builds one shadow map from each emitter, a scene geometry
distance shadow map used in the second step to determine if
a given voxel is visible from an emitter, allowing us to inject
irradiance.

In the second step, we identify lit voxels and their respective
clusters. We accumulate irradiance from the emitter into the
voxels, and then we pull it to their owner clusters, so we can
ater test at each voxel face whether any visible cluster has ir-
adiance and compute a light bounce. A compute shader analyses

er voxel visibility from the emitter, atomically accumulating

A. Cosin Ayerbe and G. Patow Computers & Graphics 103 (2022) 75–89
Fig. 9. From left to right: Sponza Atrium scene at a voxelization of size 256 (leftmost), showing in red the voxels that have not been assigned to any cluster
(center-left). We added an extra pass to assign all unassigned voxels to its nearest cluster (center-right). A difference between the scene where not all voxels are
assigned to a cluster (leftmost) and the scene where all voxels have been assigned to a cluster (center-right), generated using NVIDIA’s FLIP [53] tool. As we can
see in the leftmost image, taking into consideration all scene voxels as sources of irradiance for light gathering represents a small contribution in the final results
for this scene and this voxelization size, which has the highest number of unassigned voxels to clusters (around 10%).
(through the use of GLSL atomicAdd to prevent other threads from
overwriting irradiance to the same cluster), for each lit voxel, the
irradiance into its owner cluster. We avoid a filtering pass and
any 2D postprocess in the scene geometry distance shadow map
regarding voxel visibility by testing just a set of points generated
around each voxel, one from the center of each face and one
from the center of each edge, displaced from the voxel center
1.5 times the size of a voxel. See Fig. 10(left). This simplification
can lead to light leaks, but they are vastly avoided by using a
simple neighbor occupied test for each lit voxel, as described
in Fig. 10. Also, two buffers, one for each occupied voxel and
one for each occupied cluster, are used to identify lit voxels and
clusters with at least one lit voxel. One possible approach for
the lit voxel test could be to project the shadow map texels to
world space and verify if they fall inside or are close enough to
an occupied voxel. This would imply projecting all the texels of
the geometry distance shadow map which, for lower resolutions
like 2048 × 2048, already suppose processing several millions
of elements. This option requires further research since on one
side, it could improve the performance in scenes where the
number of generated voxels is too large, but on the other it might
impact the performance of scenes with a small number of voxels,
since each occupied voxel found requires a search of its index in
the compacted data structure, which has a cost due to memory
bandwidth consumption. To support more than one emitter, we
only require to compute the distance shadow map for each one
and repeat the test for the set of points generated around each
voxel. Our approach can therefore support an arbitrary number
of (primary) emitters with a straightforward extension of the
current implementation. We currently test all voxels in the scene,
not applying any culling technique. Adding simple approaches
like frustum culling could increase performance, specially helping
to avoid texture data access when testing the set of points for
a culled voxel. As Sugihara et al. [13] did, we use a proxy data
structure (the clusters in our case) to store irradiance from the
emitters, with the advantage that we only need to deal with a few
thousands of clusters per scene on the worst case, independently
of the number of voxels used.

The third step computes the light bounces. First, a compute
shader determines the voxels visible from the main camera using
a small geometry distance shadow map in the same way the lit
voxels are identified from the emitter. In this case, having a lower
accuracy does not have big consequences like light or shadow
leaks. Therefore we just generate 12 points around each voxel
at a distance twice the size of a voxel for the test. This avoids
computing irradiance reaching non-visible voxels, and to reuse al-
ready computed results whenever possible. See Fig. 5(left). Then,
the core of the light transport simulation is computed: For each
visible voxel, we dispatch 64 threads per voxel face, caching
the gathered irradiance at each voxel. This per voxel irradiance
caching can be done at the center of the voxel, at each voxel face,

or using a finer subdivision. We opted for doing it for each voxel

81
face since it eases per voxel face Gaussian filtering and indirect
lighting interpolation with neighboring voxels in the final lighting
pass. Each thread takes up to two cached visible clusters from
its corresponding voxel face, and verifies whether each cluster
has any lit voxels. If it has, the accumulated irradiance at the
cluster is gathered and assigned to the corresponding voxel face
being tested. Fig. 5(right) shows an example. In our experiments,
taking from one to up to four visible clusters per thread generated
a performance penalty between 16% and 35% respectively when
compared with the two-cluster case, two clusters per thread be-
ing the value that offers a better balance between the number of
threads dispatched and the time and memory needed to process
each cluster. When the voxelization is too coarse, irregularities
may appear because of considering the cluster center as the
geometric origin of irradiance. To prevent this, for those clusters
closer than a given threshold from the voxel face tested, instead
of adding the computed cluster irradiance, we loop through each
of the voxels the cluster owns and we add the irradiance of
each lit voxel found. We follow this approach regardless of the
voxelization resolution and the scene size.

The final step is to apply twice a Gaussian filtering to remove
noise in the gathered irradiance. For each voxel visible from
the camera, we apply a Gaussian filter to the faces in the same
direction of its neighboring non-empty voxels. To avoid shadow
leaks due to non-lit or empty neighbor voxels, the kernel discards
these cases by assigning a weight of 0, before renormalization. In
Fig. 11 we compare two Cornell Box scenes, manually configured
to be as similar as possible, one with our technique and one with
a ground truth render. Thanks to the Gaussian filtering the ceiling
is able to blur and distribute strong irradiance values reaching
a few voxels, achieving similar results to the ground truth. See
Fig. 12 for an in-depth comparison of results with and without
filtering.

When the emitter changes its position or orientation, indirect
lighting is rebuilt only for the voxels visible from the camera,
saving unnecessary computations, which in our experiments are
usually more than 70% of the total candidate exchanges for the
rendering-oriented scenes we tested. In case only the camera
moves, irradiance is computed only for those visible voxels whose
irradiances have not yet been computed, caching any previous
computation. See Fig. 5(left). This eventually removes any unnec-
essary re-computations as long as the emitter does not change
position or orientation.

As the first bounce carries most of the total energy exchanged
[54], our current implementation only accounts for this bounce.
In Fig. 13 we compare our work with a ground truth render
(obtained with the ray-tracer LuxCoreRender). In Fig. 14 we show
a comparison of our work with other real-time techniques and
a ground truth render in a more complex scene. For successive
light bounces, we would only need, for each bounce and camera
visible voxel, to extend the computation of irradiance to all voxels

visible from each of those voxels that contribute to the camera

A. Cosin Ayerbe and G. Patow Computers & Graphics 103 (2022) 75–89

a
e
l
(
A
a

1
o

s
s
b
c
d
i
i
p
F

5

5

a
c
o
m

o
t
2
s
f

Fig. 10. Lit voxel computations. Left: Points generated around each voxel center
t distance 1.5 times the size of a voxel to test for the visibility from the
mitter. Center: Scene geometry distance shadow map precision can sometimes
ead to voxels which are not visible from the emitter to be identified as visible
red arrows) even if using high resolution shadow maps for scenes like Sponza
trium. Right: A simple neighboring test verifies if the voxel identified as lit has
n occupied neighbor in the light direction, to reduce these issues.

Table 1
Timings in ms for each one of the most important steps in our approach, for 643 ,
283 and 2563 resolutions for the Sponza Atrium and a 1.8M triangles version
f the Amazon Bistro scene.

Sponza Atrium Amazon Bistro

Voxelization size 64 128 256 64 128 256
Voxelization 33.5 46.9 82.9 231.6 246.9 256.8
Prefix Sum 3.1 9.7 195.8 1.49 8.9 58.7
Clustering x10 loop 235.1 1512.8 1512.9 205.1 1426.6 1244.8
Cluster Visibility 108.3 580.4 3676.6 104.6 605.2 5431.9
Light bounce 1.7 6.3 32.4 0.4 1.9 7.4
Frame (Full HD) 3.3 3.7 4.2 9.8 10.2 11.6

view, information we already have from the cluster visibility step.
The implementation would not require any extra data structures,
just an extended implementation of the light bounce algorithm
that adds irradiance from the precomputed visible clusters. One
option we consider to increase performance of successive light
bounces is to limit by distance which clusters add irradiance to
each voxel face, this idea being left for further research.

4.5. Final frame

Finally, each rendered fragment, knowing its own world po-
ition, computes its own voxel coordinates. Through the data
tructures presented in Section 4.1, we recover the index in the
uffer where we store per voxel filtered irradiance information,
onsidering the voxel face most similar to the fragment normal
irection. Direct lighting is computed through a form factor, while
ndirect lighting is computed through bilinear interpolation with
ts neighboring voxels. Both contributions are added and multi-
lied by the fragment reflectance. Also, we apply a post-process
XAA [55] pass to reduce aliasing artifacts.

. Results & discussion

.1. Results

We developed our technique in C++ using Vulkan as real-time
nd compute graphics API. We used for all the measurements a
omputer with a Ryzen 7 3800XT AMD CPU, 16 GB of RAM mem-
ry and a GeForce RTX 2060 graphics card with 6 GB of VRAM
emory. All captures were done at 1920 × 1080 resolution.
Table 1 shows times measured for the most important steps in

ur approach for the Sponza Atrium (262 K triangles) and a 1.8M
riangles version of the Amazon Bistro scene, which originally has
.8M triangles (we removed some of the peripheral parts of the
cene since they were not playing any role in the simulation),
or three different voxelization resolutions. The light transport
82
Table 2
Breakdown of techniques performed for each light bounce update for 643 , 1283

and 2563 resolutions and their times (ms) for the Sponza Atrium and a 1.8M
triangles version of the Amazon Bistro scene. The Distance Shadow Map (i.e.,
scene geometry distance shadow map) and Lit Cluster rows correspond to the
single emitter present in the scene.

Sponza Atrium Amazon Bistro

Voxelization size 64 128 256 64 128 256
Dist. Shadow Map 2.9 2.8 2.7 8.7 9.8 9.7
Lit Cluster 0.2 0.8 2.6 0.3 0.8 3.2
Camera visible voxel 0.1 0.4 1.9 0.1 0.1 0.5
Light bounce 1.7 6.3 32.4 0.4 1.9 7.4
Gaussian filtering 0.9 2.9 22.3 0.6 1.0 8.1
Total 5.8 13.2 61.9 10.1 13.6 28.9

Table 3
Comparison of times in ms for the cluster visibility and final frame (1080p)
stages in Sponza Atrium (top table) and Amazon Bistro (bottom table) at
voxelization resolution of 64, 128 and 256 when using 32, 64 and 128 rays
per voxel face.
Scene Sponza Atrium

Rays/Face 32 64 128

Voxel Size 64 128 256 64 128 256 64 128 256
Cluster Vis. 5.4 34.2 438.4 6.7 41.1 760.2 108.3 580.4 3676.6
Frame Time 3.4 4.1 4.1 3.1 3.8 4.3 3.3 3.7 4.2

Scene Amazon Bistro

Rays/Face 32 64 128

Voxel Size 64 128 256 64 128 256 64 128 256
Cluster Vis. 3.2 27.3 314.3 2.9 29.2 276.9 205.1 1426 1244
Frame Time 10.3 11.0 11.1 10.3 10.1 11.3 9.8 10.2 11.6

computation performed when the emitter moves offers real-time
frame-rates (5.8 ms to 61.9 ms). We can observe that, as voxeliza-
tion resolution increases, there are two main factors that affect
the cost of the light transport computation. First, the number of
voxels to test for light gathering increases proportionally to the
resolution of the voxelization. Second, the increasing number of
evaluations for querying data structures and Bresenham’s line al-
gorithm traversal. GPU prefix sum and clustering steps also grow
as voxelization resolution increases. On the other side, scene vox-
elization and final frame times offer a quite stable performance,
the final frame times being specially interesting, always below
12 ms for a full HD viewport: thanks to the simplicity of our data
structures, the process to compute irradiance at each fragment
is the same for every voxelization resolution, consisting of an
interpolation of the neighboring voxels, while the heavy light
transport computations are all performed only when the emitter
is updated or new voxels, whose irradiance has not yet been
computed, become visible. We observed the number of scene ele-
ments rendered affected the performance of the final frame times,
specially for the most complex scene analyzed, Amazon Bistro.
After adding a simple compute frustum culling implementation
based on the work by Willems [56] we observed an increased
frame-rate of about 120%. More sophisticated occlusion culling
and LOD algorithms like the one by Hudson et al. [57], which in
similar urban environments are able to cull an average of 55% of
the geometry, could further improve the final frame times.

As we can see, there is a clear trade-off between the voxeliza-
tion resolution, the number of rays shot for the cluster visibility
computations and the size of the Gaussian filter used to smooth
the results out. Fig. 12 shows a comparison of indirect illumi-
nation results for different voxelization resolutions maintaining
the same number of rays per voxel face and the Gaussian kernel
size. As voxelization resolution increases, the need for a wider
Gaussian filtering becomes evident.

A. Cosin Ayerbe and G. Patow Computers & Graphics 103 (2022) 75–89

(
r
a

u
i
t
o
o
v
a
t
w
s
a
y
i
c
b
d
f
w
s
s
w

Fig. 11. Two Cornell Box scenes. Top row: Our technique with 128 rays per voxel face at 323 resolution at 786 FPS on a GeForce RTX 2060 with 6 GB of VRAM
left) and ground truth at 1024 samples per pixel rendered with Cycles (right), peak signal-to-noise ratio error between the two images is 20.122. In the bottom
ow, details of our technique and the ground truth render (PSNR error between both images 23.233). In both cases the scenes have been configured manually to be
s similar as possible.
Table 4
Voxelization vs. clustering comparison and memory usage for 643 , 1283 and 2563

voxelization resolutions for the Sponza Atrium and an 1.8M triangles version
of the Amazon Bistro scene. The Memory Total row represents the amount of
memory in MB used by our technique including temporal buffers not used in the
light bounce and final frame steps. The Memory Final row shows the amount
of memory in MB finally used by our technique.

Sponza Atrium Amazon Bistro

Voxel size 64 128 256 64 128 256
Voxel # 23K 107K 514K 15K 68K 300K
SupePixel # 30K 250K 120K 30K 250K 120K
Cluster # 1357 7873 8733 745 3685 4983
Cluster % 5.9% 7.3% 1.7% 5.0% 5.4% 1.6%
Mem. Total 90.7 428.5 1945.8 60.9 284.9 1190.3
Mem. Final 13.4 77.9 313.6 7.9 42.7 176.3

5.2. Light bounce performance

Table 2 shows a breakdown of the techniques performed when
pdating the emitter for light transport and the associated times
n ms. The camera view for this time measurements is similar to
he one in Fig. 6 for the Sponza Atrium scene, and similar to the
ne in Fig. 12 for the Amazon Bistro scene. We used the same size
f tridimensional Gaussian filtering kernel (53) for all different
oxelizations. In Fig. 15 we show the time per frame in ms for
scene camera traversal and dynamic emitter update for both

he Sponza Atrium and Amazon Bistro scenes at a voxelization
ith resolution 128. The values for the dynamic emitter update
how stable and bounded values around 16 ms for Sponza Atrium
nd 20 ms for Amazon Bistro, since using the same camera view
ields the same computations for each emitter update. The times
n the scene traversal show some spikes for both scenes, which
orrespond to irradiance being computed for those voxels that
ecome visible as the camera traverses the scene, also expected
ue to the geometrical complexity of the scene. In both cases the
rame times are well bounded, offering a stable behavior. Since
e store all the irradiance in a common and view-independent
tructure (the generated clusters), each primary emitter in the
cene just requires a scene geometry distance shadow map pass,
hich is already present in many game engines, and to test
83
the visible voxels from that emitter. The first two rows in Ta-
ble 2 show the associated times for an emitter in Sponza Atrium
and Amazon Bistro for different voxelization sizes, ranging from
3.1 ms to 12.9 ms. We detected a performance bottleneck in
the scene geometry distance shadow map. Disabling all compute
thread dispatches during a light bounce (lit cluster, camera visible
voxel and light bounce) reduced the time needed by the scene
geometry distance shadow map by about 40%. A performance
analysis with NVIDIA’s Nsight showed a higher amount of time of
idle unused warp slots, affecting the time the shadow map step
needs to complete. Further research is needed to proper diagnose
this bottleneck and to find the best order for the techniques
in our pipeline to maximize GPU performance. Our technique
could support analytical area lights, the only requirement for an
emitter being to be able to test whether each voxel is visible.
Point lights could also be supported, requiring to test voxel visi-
bility from each one of the six scene geometry distance shadow
maps generated. The cost to generate those shadow maps could
be compensated with techniques like improved dual-paraboloid
shadow maps (Vanek et al. [58]).

The three parameters affecting the quality of our technique are
the number of rays per voxel face during the cluster visibility
cache computation, the filtering kernel size, and the number of
clusters. We show in Fig. 12 their influence on the results. In the
first row, we show captures for the same scene at 64, 128 and
256 voxelization resolutions with the default parameters (128
rays per voxel face for cluster visibility, Gaussian filter kernel of
size 53). The second and third rows cover the cases when 64 and
32 rays per voxel face for cluster visibility are considered, the
latter one showing some small sampling problems like a lower
gathered irradiance resulting in a darker indirect illumination,
and also a slightly poorer quality, as can be seen in the reddish
indirect illumination in the windows on top of the awnings. See
Table 3 for a comparison of the performance when using 32,
64 and 128 rays per voxel face in the clustering visibility and
frame time stages for different voxelization sizes for both the
Sponza Atrium and Amazon Bistro scenes. The fourth row in
Fig. 12 shows the effect of using a Gaussian filter with a 33 kernel
instead of the 53 usual one. In this situation, as the density of
the voxelization increases, the error to properly filter irradiance

A. Cosin Ayerbe and G. Patow Computers & Graphics 103 (2022) 75–89

k
d
k
n

Fig. 12. First row: Example scene at three different voxelization resolutions: 643 (left), 1283 (center) and 2563 (right), with 128 rays per voxel face and Gaussian
ernel of size 53 . As can be seen, the 643 case is unable to reproduce the light bounce on the blue roof, while the 2563 case starts suffering from irradiance aliasing
ue to the need of a larger Gaussian kernel filtering. Second and third rows: Influence of the numbers of rays per voxel face. Fourth row: Smaller Gaussian filtering
ernel size. Fifth row: No irradiance interpolation. Sixth row: Small cluster number for three different voxelization resolutions displayed in the first row. Insufficient
umber of rays per voxel face leads to inhability to properly sample the environment, visible in the 32 ray per voxel face case for the 643 and 1283 voxelizations.

A Gaussian filter of size below 33 makes irradiance distribution not uniform, noticeable in the 2563 voxelization case. A smaller number of clusters reduces the
frequency of irradiance changes, leading to a poorer quality, the 1283 voxelization being a good example. In the last row (seventh), a ground truth render at 1024
samples per pixel with Cycles (Blender v2.83) is shown (left), together with a clustering using only 10% of the usual clusters (center), showing the default results
on the right.
from neighboring voxels increases, as can be seen in the 256
voxelization resolution case. The need to interpolate irradiance
from neighboring voxels is shown in the fifth row. The sixth row
shows how the number of clusters influences the results: A small
number limits the frequency of the irradiance distribution, which
is specially visible in the 128 voxelization case. The last row
shows how the number of generated clusters vary when using a
84
too small number of clusters together with a ground truth render.
Comparing the ground truth render with our work in the first row
of Fig. 12, as voxelization resolution increases we can appreciate
a more detailed indirect illumination and occlusion, although the
256 voxelization case shows some light leaks in areas with a weak
illumination due to the size of the Gaussian kernel 53 not being
big enough to cover a large enough area around each filtered

A. Cosin Ayerbe and G. Patow Computers & Graphics 103 (2022) 75–89
Fig. 13. Our technique at 258 FPS (top left) and a ground truth render at 1000 samples per pixel (top right) of the same scene. As can be seen, the irradiance
distribution in our work resembles the render results, although the irradiance reaching some voxels can vary in some cases (bottom left) due to the rays traced in
voxel space coming across more clusters containing lit voxels. The color code varies from green (no lit voxel found) to red (225 or more lit voxels found).
Fig. 14. Light propagation in Sponza Atrium for different techniques: Voxel Cone Tracing (VCT) at 1283 voxelization (a), Voxel Cone Tracing at 5123 voxelization
at 613 FPS on an RTX 3090, which roughly is 250 FPS on an RTX 2060 (b), Light Propagation Volumes (LPV) in Unreal Engine 4 at 197 FPS (c), RTXGI at 108 FPS
with Unreal Engine 4.25.3 RTXGI branch and RTXGI v1.1.12 using a 16 × 16 × 16 probe grid (d), our technique at 643 voxelization at 199 FPS (e), our technique
at 1283 voxelization at 183 FPS (f), our technique at 2563 voxelization at 163 FPS (g) and a render of the same scene with LuxCoreRender at 1024 samples per
pixel (h). Both VCT images courtesy of Cyril Crassin. At 1283 voxelization our technique is able to reproduce color bleeding where VCT is not. At 2563 voxelization
we offer higher frequencies and more detailed irradiance gathering than VCT at 5123 while only using less than 30% of memory. See Fig. 17 for a detailed memory
comparison. Note that Unreal Engine’s implementation of LPV does not have occlusion. Note also that both LPV and RTXGI captures do not have alpha maps. All
images in this figure have been configured manually.
voxel. The 33 filtering case illustrates, in the same figure, how
those light leaks aggravate for the 256 voxelization case. Reducing
the number of clusters and using a smaller number of rays per
voxel face in the cluster visibility stage can help minimize this
issue, as can be seen in the 64 rays/voxel face and Lower cluster
number cases, in Fig. 12.

In Fig. 13(top-left) we can see another limitation of our tech-
nique, where the back wall is unable to gather enough irradiance
when compared with the ground truth render in the top-right
part of the figure. The lack of visible lit clusters from the voxels
on that wall, depicted in the bottom-left part of the figure, avoids
those voxels from gathering enough irradiance. This could be
solved by redistributing the sampling rays, increasing ray density
(bottom-middle in the figure).
85
5.3. Ground truth comparison

Fig. 13 shows a comparison between our technique and a
ground truth render with LuxCoreRender [61]. As can be seen,
there are some differences in the irradiance distribution in certain
areas, although our technique displays a great similarity with the
ground truth render. The differences are due to, when performing
the per voxel face irradiance gathering, some voxel faces coming
across more clusters that contain lit voxels than other voxel faces.
The bottom left part of Fig. 13 shows a false color heatmap of
the number of lit voxels each voxel face computes, ranging from
green (no lit voxels found) to red (225 or more lit voxels found).
As can be seen, the areas matching the perceptible differences
show a higher accumulation of lit voxels. The bottom right part
of Fig. 13 shows, in false color, the error in the irradiance dis-
tribution between our technique and the ground truth render
using NVIDIA’s FLIP tool, which is an algorithm that emphasizes

A. Cosin Ayerbe and G. Patow Computers & Graphics 103 (2022) 75–89

f
p

p
r
a
f
s
a
o
l

5

g
a
o
a
a
t
t
g

Fig. 15. Plot of the frame rate (ms) for Amazon Bistro with a scene camera
traversal (green, mean time is 14.8 ms), Amazon Bistro with a dynamic emitter
(cyan, mean time 19.8 ms), Sponza Atrium with a scene camera traversal (blue,
mean time 5.3 ms) and Sponza Atrium with a dynamic emitter (red, mean time
16.3 ms). For the camera traversal plots, the emitter was modified before starting
the traversal, triggering the computation of irradiance for each new visible voxel,
which explains the spikes. In the dynamic emitter plots, the spikes correspond to
emitter updates. We took the emitter update measurements with a voxelization
size 1283 and a camera similar to Fig. 6 for Sponza Atrium, and similar to Fig. 12
or Amazon Bistro. The frame times for dynamic emitter include the final frame
ass.

erceptual differences. Fig. 16 shows how, as the voxelization
esolution increases, the difference with ground truth decreases,
s the increasing number of voxels allows us reproduce higher
requencies and a more detailed irradiance gathering in complex
cenarios. For instance, in the figure we can see that the tables
nd chairs below the awnings on both sides of the scene show
cclusion effects similar to the ground truth and not present in
ower voxelization resolutions.

.4. Comparison of real-time techniques

In Table 4 we show how voxel number and memory usage
row proportionally with the voxelization resolution, showing
dependency on the number of voxels and clusters but not

n the scene geometry, since the Amazon Bistro scene contains
lmost 7 times more geometry than Sponza Atrium. Although
ny voxelization grows with n3, with n the number of voxels on
he side of the volume, the main source of non-empty voxels are
he surfaces, which are the ones that actually exchange light, and
row as n2. The number of initial clusters needed for the cluster-

ing step varies between 30 K and 250 K. After the clustering step,
empty clusters are discarded. The number of final non-empty
clusters ends up being of only a few thousands, i.e., for n = 256
the clustering is able to deal with more than half a million voxels
and boil it down to less than 8.75 K clusters. Thus, the number
of generated clusters is below 7.5% of the total number of voxels,
for all resolutions and scenes tested.

Fig. 17 shows a comparison of memory usage for different
voxelization sizes between our technique and the Sparse Voxel
Octree used by Crassin et al. [10] for Voxel Cone Tracing, using the
data provided by Crassin [59]. As can be seen, as the voxelization
resolution increases, our technique shows a memory growth rate
similar to the Sparse Voxel Octree. We show in Table 4 the final
amount of memory used, with only the resources needed for the
light bounce and final frame steps. It includes the per voxel face
cluster visibility data, which represents between 37% and 53% of
the final memory usage. Fig. 14 shows a set of Sponza Atrium
scenes configured to be as similar as possible. As can be seen,
our technique can generate color bleeding at voxelization size
1283, where Voxel Cone Tracing (VCT) at the same voxelization
size cannot, requiring a higher voxelization level (2563), which
86
requires more memory than our technique (77.9MB vs 167.6MB).
In the same figure, we show how our technique at voxelization
size 2563 is able to offer better quality, with higher frequencies
and more detailed irradiance gathering than VCT at voxelization
resolution 5123 using less than 40% of memory (313.6MB vs
827MB). Thanks to our compact data structures and to our strong
irradiance gathering method, we can offer similar results to VCT
with less memory and with a smaller level of voxelization. Also,
when comparing with VCT we can see the effect of thin geometry
in our work: VCT shows clear light leaks between the drapes
and the wall, whereas in our case we can correctly approximate
irradiance for most of the fragments thanks to storing irradi-
ance per voxel face. We also offer captures of Light Propagation
Volumes and NVIDIA’s RTXGI, both done with Unreal Engine. In
comparison, our technique is able to offer higher frequencies and
a better sampling of the close and distant scene elements that
contribute to the irradiance at a point, although those techniques
support fully dynamic scenes and glossy materials (and specular
materials as well in the case of RTXGI). The techniques compared
in Fig. 14 order RTXGI as the least performing technique (108
FPS), followed by our work at voxelizations 2563 (163 FPS) and
1283 (183 FPS), Light Propagation Volumes (197 FPS), our work
at voxelization 643 (199 FPS) and Voxel Cone Tracing at 5123

(250 FPS). We do not have information about the performance
of VCT at voxelization 1283. In Fig. 18 we compare our work
with the same techniques from Fig. 14, in a much simpler scene.
We can see how in this case our work (496 FPS) has a much
higher performance than Light Propagation Volumes (LPV) (276
FPS) and RTXGI (139 FPS), while showing a greater similarity with
the ground truth. When compared with VCT, and since there is
no access to the original implementation by Crassin et al. [10],
we extrapolated the FPS values using the implementation by
Kröker [60] with the same (manual) scene configurations as in
Figs. 14 and 18. We estimate that the VCT implementation from
Crassin et al. [10] would run at 350–400 FPS on this figure, below
our work’s performance (496 FPS). Another possible comparison
with VCT to see the impact of our cluster approach could consist
of using a hybrid approach. We could use the same information
as in VCT (a Sparse Voxel Octree) but, instead of tracing cones
in texture space selecting different mip map levels based on
distance, tracing rays in texture until they get across an occupied
voxel and sampling from the corresponding mip map level based
on distance as well. In our estimations, this could allow a higher
quality than VCT when using a considerable number of rays
(probably 64 or more) thanks to the more precise sampling, but
the associated cost of tracing those rays would be prohibitive,
since in VCT the indirect lighting is computed per fragment,
instead of using a view independent structure to store irradiance
such as our voxels and clusters, which allows us to decouple it
from the final frame.

Conclusions

We presented clustered voxel global illumination, a technique
to compute diffuse indirect illumination with dynamic cameras
and emitters based on clustering of a voxelized scene. We show
an efficient irradiance gathering technique relying only on the
generated clusters and requiring a very small amount of per voxel
information. We introduced the concept of voxel clustering, a
way to deal with the uncontrolled growth of voxels as resolution
increases, keeping under control the number of final clusters.
We also decoupled irradiance from the final frame computation,
being computed only once for visible voxels if the emitter re-
mains the same. As avenues for future work, we would like to
find ways to accelerate irradiance gathering, e.g., discarding voxel
faces that we can determine as not needed for irradiance approx-
imation, handle dynamic scenes, and introduce glossy materials
and participating media.

A. Cosin Ayerbe and G. Patow Computers & Graphics 103 (2022) 75–89
Fig. 16. In (a), (b) and (c) we show how, as voxelization size increases, the quality offered by our work gets closer to the ground truth, rendered in (d) with Cycles
renderer (Blender v2.83) with 1024 samples per pixel. The 256 voxelization size case shows great similarities with the ground truth render, reproducing occlusion
effects that are not present in renders with lower voxelizations. This is especially visible around the chairs and tables (see detail images). The peak signal-to-noise
ratio values for our work at voxelization sizes 64, 128 and 256 and the ground truth render are 18.172, 18.203 and 17.42 respectively.
A

o

Fig. 17. Comparison of memory usage between our technique (blue) and
VCT Sparse Voxel Octree implementation [59] (red). As the voxelization size
increases, our memory usage grows at a similar rate while achieving results
with quality similar to higher VCT Sparse Voxel Octree voxelization sizes. See
Fig. 14.

CRediT authorship contribution statement

Alejandro Cosin Ayerbe: Methodology, Software, Investiga-
tion, Conceptualization, Writing – original draft, Writing – review
87
& editing. Gustavo Patow: Formal analysis, Investigation, Su-
pervision, Conceptualization, Writing – original draft, Writing –
review & editing.

Code availabiliy

The code to reproduce the images in this paper is available on
GitHub (https://github.com/AlejandroC1983/cvrtgi).

Acknowledgments

We would like to thank Cyril Crassin for all the help and
information he provided during the revisions of this manuscript.
This work was partially funded by the TIN2017-88515-C2-2-R
from Ministerio de Ciencia, Innovación y Universidades, Spain.

ppendix A. Supplementary data

Supplementary material related to this article can be found
nline at https://doi.org/10.1016/j.cag.2022.01.005.

https://github.com/AlejandroC1983/cvrtgi
https://doi.org/10.1016/j.cag.2022.01.005

A. Cosin Ayerbe and G. Patow Computers & Graphics 103 (2022) 75–89
Fig. 18. Comparing methods. Top row: Our work at 496 FPS (left) and ground truth with LuxCoreRender with 1024 samples per pixel (right). Bottom row: Voxel
Cone Tracing implementation from Kröker [60], Light Propagation Volumes at 276 FPS (center) and RTXGI at 139 FPS (right). Since we do not have access to the
original Sparse Voxel Octree Voxel Cone Tracing implementation from Crassin et al. [10], the FPS value for Voxel Cone Tracing for this figure has been extrapolated,
measuring the FPS from Kröker [60] with the same scene configurations as in Fig. 14 and in this figure. We estimate the original implementation from Crassin
et al. [10] would run at about 350–400 FPS on this scene. Scenes have been manually configured to be as similar as possible.
References

[1] Dachsbacher C, Stamminger M. Reflective shadow maps. In: Proceedings of
the 2005 symposium on interactive 3D graphics and games. I3D ’05, New
York, NY, USA: ACM; 2005, p. 203–31. http://dx.doi.org/10.1145/1053427.
1053460, URL http://doi.acm.org/10.1145/1053427.1053460.

[2] Nichols G, Shopf J, Wyman C. Hierarchical image-space radiosity for
interactive global illumination. Comput Graph Forum 2009;28:1141–9.

[3] Dachsbacher C, Stamminger M. Splatting indirect illumination. In: Proceed-
ings of the 2006 symposium on interactive 3D graphics and games. New
York, NY, United States: Association for Computing Machinery; 2006, p.
93–100.

[4] Wang R, Wang R, Zhou K, Pan M, Bao H. An efficient GPU-based approach
for interactive global illumination. In: ACM SIGGRAPH 2009 papers. Oxford,
UK: Wiley-Blackwell Publishing Ltd; 2009, p. 1–8.

[5] Kaplanyan A, Dachsbacher C. Cascaded light propagation volumes for real-
time indirect illumination. In: Proceedings of the 2010 ACM SIGGRAPH
symposium on interactive 3D graphics and games. I3D ’10, New York, NY,
USA: ACM; 2010, p. 99–107. http://dx.doi.org/10.1145/1730804.1730821,
URL http://doi.acm.org/10.1145/1730804.1730821.

[6] Kajiya JT. The rendering equation. ACM SIGGRAPH Comput Grap
1986;20(4):143–50.

[7] Whitted T. An improved illumination model for shaded display. In:
Proceedings Of the 6th annual conference on computer graphics and inter-
active techniques. New York, NY, United States: Association for Computing
Machinery; 1979, p. 14.

[8] Koskela M, Lotvonen A, Mäkitalo M, Kivi P, Viitanen T, Jääskeläinen P.
Foveated real-time path tracing in visual-polar space. In: Boubekeur T,
Sen P, editors. Eurographics symposium on rendering - dl-only and
industry track. Avenue de Frontenex 32, 1207 Geneva, Switzerland: The
Eurographics Association; 2019, p. 367–74. http://dx.doi.org/10.2312/sr.
20191219.

[9] Ritschel T, Grosch T, Kim MH, Seidel HP, Dachsbacher C, Kautz J. Im-
perfect shadow maps for efficient computation of indirect illumination.
ACM Trans Graph 2008;27(5):129:1–8. http://dx.doi.org/10.1145/1409060.
1409082, URL http://doi.acm.org/10.1145/1409060.1409082.

[10] Crassin C, Neyret F, Sainz M, Green S, Eisemann E. Interactive indirect
illumination using voxel cone tracing: A preview. In: Symposium on
interactive 3D graphics and games. I3D ’11, New York, NY, USA: ACM;
2011, p. 207. http://dx.doi.org/10.1145/1944745.1944787, URL http://doi.
acm.org/10.1145/1944745.1944787.

[11] Silvennoinen A, Lehtinen J. Real-time global illumination by pre-
computed local reconstruction from sparse radiance probes. ACM
Trans Graph 2017;36(6):230:1–230:13. http://dx.doi.org/10.1145/3130800.
3130852, URL http://doi.acm.org/10.1145/3130800.3130852.

[12] Thiedemann S, Henrich N, Grosch T, Müller S. Voxel-based global illumina-
tion. In: Symposium on interactive 3D graphics and games. I3D ’11, New
88
York, NY, USA: ACM; 2011, p. 103–10. http://dx.doi.org/10.1145/1944745.
1944763, URL http://doi.acm.org/10.1145/1944745.1944763.

[13] Sugihara M, Rauwendaal R, Salvi M. Layered reflective shadow maps for
voxel-based indirect illumination. In: Proceedings of high performance
graphics. HPG ’14, Goslar Germany, Germany: Eurographics Association;
2014, p. 117–25, URL http://dl.acm.org/citation.cfm?id=2980009.2980022.

[14] Bresenham JE. Algorithm for computer control of a digital plotter. IBM Syst
J 1965;4(1):25–30.

[15] Keller A. Instant radiosity. In: Proceedings Of the 24th annual conference
on computer graphics and interactive techniques. SIGGRAPH ’97, New
York, NY, USA: ACM Press/Addison-Wesley Publishing Co.; 1997, p. 49–56.
http://dx.doi.org/10.1145/258734.258769.

[16] Greger G, Shirley P, Hubbard PM, Greenberg DP. The irradiance volume.
IEEE Comput Graph Appl 1998;18(2):32–43. http://dx.doi.org/10.1109/38.
656788.

[17] Sloan P-P, Kautz J, Snyder J. Precomputed radiance transfer for real-time
rendering in dynamic, low-frequency lighting environments. In: Proceed-
ings of the 29th annual conference on computer graphics and interactive
techniques. New York NY United States: Association for Computing
Machinery; 2002, p. 527–36.

[18] Dachsbacher C, Stamminger M, Drettakis G, Durand F. Implicit visibility and
antiradiance for interactive global illumination. ACM Trans Graph (TOG)
2007;26(3):61–es.

[19] Kaplanyan A, Dachsbacher C. Cascaded light propagation volumes for real-
time indirect illumination. In: Proceedings of the 2010 ACM SIGGRAPH
symposium on interactive 3D graphics and games. New York, NY, United
States: Association for Computing Machinery; 2010, p. 99–107.

[20] Nalbach O, Ritschel T, Seidel H-P. Deep screen space. In: Proceedings of
the 18th Meeting of the ACM SIGGRAPH symposium on interactive 3D
graphics and games. 2014, p. 79–86.

[21] Mara M, McGuire M, Nowrouzezahrai D, Luebke DP. Deep g-buffers for
stable global illumination approximation. In: High performance graphics.
2016, p. 87–98.

[22] Kol TR, Bauszat P, Lee S, Eisemann E. MegaViews: Scalable many-view
rendering with concurrent scene-view hierarchy traversal. Comput Graph
Forum 2018;38(1):235–47. http://dx.doi.org/10.1111/cgf.13527.

[23] Majercik Z, Guertin J-P, Nowrouzezahrai D, McGuire M. Dynamic diffuse
global illumination with ray-traced irradiance fields. J Comput Graph Tech
2019;8(2).

[24] Currius RR, Dolonius D, Assarsson U, Sintorn E. Spherical Gaussian light-
field textures for fast precomputed global illumination. Comput Graph
Forum 2020;39:133–46.

[25] Wang SW, Kaufman AE. Volume sampled voxelization of geomet-
ric primitives. In: Proceedings visualization’93. Berlin, Heidelberg:
Springer-Verlag,IEEE; 1993, p. 78–84.

[26] Beckhaus S, Wind J, Strothotte T. Hardware-based voxelization for 3d
spatial analysis. In: Proceedings of the 5th international conference on

http://dx.doi.org/10.1145/1053427.1053460
http://dx.doi.org/10.1145/1053427.1053460
http://dx.doi.org/10.1145/1053427.1053460
http://doi.acm.org/10.1145/1053427.1053460
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb2
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb2
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb2
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb3
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb3
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb3
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb3
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb3
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb3
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb3
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb4
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb4
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb4
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb4
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb4
http://dx.doi.org/10.1145/1730804.1730821
http://doi.acm.org/10.1145/1730804.1730821
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb6
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb6
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb6
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb7
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb7
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb7
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb7
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb7
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb7
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb7
http://dx.doi.org/10.2312/sr.20191219
http://dx.doi.org/10.2312/sr.20191219
http://dx.doi.org/10.2312/sr.20191219
http://dx.doi.org/10.1145/1409060.1409082
http://dx.doi.org/10.1145/1409060.1409082
http://dx.doi.org/10.1145/1409060.1409082
http://doi.acm.org/10.1145/1409060.1409082
http://dx.doi.org/10.1145/1944745.1944787
http://doi.acm.org/10.1145/1944745.1944787
http://doi.acm.org/10.1145/1944745.1944787
http://doi.acm.org/10.1145/1944745.1944787
http://dx.doi.org/10.1145/3130800.3130852
http://dx.doi.org/10.1145/3130800.3130852
http://dx.doi.org/10.1145/3130800.3130852
http://doi.acm.org/10.1145/3130800.3130852
http://dx.doi.org/10.1145/1944745.1944763
http://dx.doi.org/10.1145/1944745.1944763
http://dx.doi.org/10.1145/1944745.1944763
http://doi.acm.org/10.1145/1944745.1944763
http://dl.acm.org/citation.cfm?id=2980009.2980022
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb14
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb14
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb14
http://dx.doi.org/10.1145/258734.258769
http://dx.doi.org/10.1109/38.656788
http://dx.doi.org/10.1109/38.656788
http://dx.doi.org/10.1109/38.656788
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb17
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb17
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb17
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb17
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb17
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb17
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb17
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb17
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb17
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb18
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb18
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb18
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb18
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb18
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb19
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb19
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb19
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb19
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb19
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb19
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb19
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb20
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb20
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb20
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb20
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb20
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb21
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb21
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb21
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb21
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb21
http://dx.doi.org/10.1111/cgf.13527
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb23
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb23
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb23
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb23
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb23
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb24
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb24
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb24
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb24
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb24
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb25
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb25
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb25
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb25
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb25
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb26
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb26
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb26
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb26

A. Cosin Ayerbe and G. Patow Computers & Graphics 103 (2022) 75–89
computer graphics and imaging. 20, New York, NY, United States: As-
sociation for Computing Machinery, Canmore, Alberta, Canada; 2002, p.
47–54.

[27] Zhang L, Chen W, Ebert DS, Peng Q. Conservative voxelization. Vis Comput
2007;23(9–11):783–92.

[28] Schwarz M, Seidel H-P. Fast parallel surface and solid voxelization on GPUs.
ACM Trans Graph (TOG) 2010;29(6):1–10.

[29] Crassin C, Green S. Octree-based sparse voxelization using the
GPU hardware rasterizer. In: Opengl insights. Patrick Cozzi and
Christophe Riccio,Boca Ratón, Florida, USA: CRC Press; 2012, p. 303–
19, http://www.seas.upenn.edu/~pcozzi/OpenGLInsights/OpenGLInsights-
SparseVoxelization.pdf,Chapter.

[30] Heitz E, Neyret F. Representing appearance and pre-filtering subpixel data
in sparse voxel octrees. In: High performance graphics 2012. Eurographics;
2012, p. 125–34.

[31] Vicini D, Jakob W, Kaplanyan A. A non-exponential transmittance
model for volumetric scene representations. ACM Trans Graph (TOG)
2021;40(4):1–16.

[32] Jendersie J, Kuri D, Grosch T. Real-time global illumination using precom-
puted illuminance composition with chrominance compression. J Comput
Graph Tech Vol 2016;5(4):8–35.

[33] Kontkanen J, Turquin E, Holzschuch N, Sillion FX. Wavelet radiance trans-
port for interactive indirect lighting. In: Symposium on rendering. Avenue
de Frontenex 32, 1207 Geneva, Switzerland: The Eurographics Association;
2006, p. 161–71.

[34] Chen Y-Y, Chien S-Y. Lighting-driven voxels for memory-efficient com-
putation of indirect illumination. Vis Comput 2016;32(6–8):781–9. http:
//dx.doi.org/10.1007/s00371-016-1235-y.

[35] Papaioannou G. Real-time diffuse global illumination using radiance hints.
In: Proceedings of the ACM SIGGRAPH symposium on high performance
graphics. HPG ’11, New York, NY, USA: ACM; 2011, p. 15–24. http://dx.doi.
org/10.1145/2018323.2018326, URL http://doi.acm.org/10.1145/2018323.
2018326.

[36] Lehtinen J, Zwicker M, Turquin E, Kontkanen J, Durand F, Sillion FX, et al. A
meshless hierarchical representation for light transport. In: ACM SIGGRAPH
2008 papers. New York NY United States: ACM Transactions on Graphics;
2008, p. 1–9.

[37] Loos BJ, Nowrouzezahrai D, Jarosz W, Sloan P-P. Delta radiance transfer. In:
Proceedings of the ACM SIGGRAPH symposium on interactive 3D graphics
and games. New York NY United States: Association for Computing
Machinery; 2012, p. 191–6.

[38] Smits B, Arvo J, Greenberg D. A clustering algorithm for radiosity in
complex environments. In: Proceedings of the 21st annual conference on
computer graphics and interactive techniques. New York NY United States:
ACM Transactions on Graphics; 1994, p. 435–42.

[39] Willmott AJ, Heckbert PS, Garland M. Face cluster radiosity. In: Rendering
techniques’ 99. Vienna: Springer; 1999, p. 293–304.

[40] Prutkin R, Kaplanyan A, Dachsbacher C. Reflective shadow map clustering
for real-time global illumination. In: Eurographics (short papers). Avenue
de Frontenex 32, Geneva, Switzerland: Eurographics Association; 2012, p.
9–12.

[41] Takeshige M. In: Nvidia, editor. The basics of gpu voxelization. 2015,
https://developer.nvidia.com/content/basics-gpu-voxelization.
89
[42] García I, Lefebvre S, Hornus S, Lasram A. Coherent parallel hashing. ACM
Trans Graph (TOG) 2011;30(6):1–8.

[43] Alcantara DA, Sharf A, Abbasinejad F, Sengupta S, Mitzenmacher M,
Owens JD, et al. Real-time parallel hashing on the GPU. In: ACM SIGGRAPH
asia 2009 papers. New York, NY, United States: Association for Computing
Machinery; 2009, p. 1–9.

[44] Bruce M. Prefix sums on GPUs. GPGPU2 workshop, University of Cape
Town; 2014, URL http://gpu.cs.uct.ac.za/Slides/prefix-sum.pdf.

[45] Merrill Duane GM. Single-pass parallel prefix scan with decoupled look-
back. Tech. rep, NVIDIA Corporation; 2016, URL https://research.nvidia.
com/sites/default/files/pubs/2016-03_Single-pass-Parallel-Prefix/nvr-
2016-002.pdf.

[46] Gelfand N, Guibas LJ. Shape segmentation using local slippage analysis.
In: Proceedings of the 2004 Eurographics/ACM SIGGRAPH symposium
on geometry processing. Computer Graphics Laboratory, Stanford Uni-
versity: Eurographics Symposium on Geometry Processing, ACM; 2004,
p. 214–23.

[47] Wang J, Yu Z. Surface feature based mesh segmentation. Comput Graph
2011;35(3):661–7.

[48] Yan D-M, Wang W, Liu Y, Yang Z. Variational mesh segmentation via
quadric surface fitting. Comput Aided Des 2012;44(11):1072–82.

[49] Lee J, Kim S, Kim S-J. Mesh segmentation based on curvatures using the
GPU. Multimedia Tools Appl 2015;74(10):3401–12.

[50] Comaniciu D, Meer P. Mean shift: A robust approach toward feature space
analysis. IEEE Trans Pattern Anal Mach Intell 2002;24(5):603–19.

[51] Vedaldi A, Soatto S. Quick shift and kernel methods for mode seeking.
In: European conference on computer vision. European Conference on
Computer Vision, Springer, University of California, Los Angeles, Computer
Science Department; 2008, p. 705–18.

[52] Achanta R, Shaji A, Smith K, Lucchi A, Fua P, Süsstrunk S. Slic super-
pixels. Tech. rep, School of Computer and Communication Sciences, École
Polytechnique Fédrale de Lausanne; 2010.

[53] Andersson P, Nilsson J, Akenine-Möller T, Oskarsson M, Åström K,
Fairchild MD. FLIP: A difference evaluator for alternating images. Proc ACM
Comput Graph Interact Tech 2020;3(2).

[54] Tabellion E, Lamorlette A. An approximate global illumination system for
computer generated films. ACM Trans Graph 2004;23(3):469.

[55] Lottes T. FXAA: Fast approximate anti-aliasing. Tech. rep, NVIDIA Corpo-
ration; 2011, URL http://developer.download.nvidia.com/assets/gamedev/
files/sdk/11/FXAA_WhitePaper.pdf.

[56] Willems S. In: Khronos, editor. Compute culling. 2015, https://github.
com/SaschaWillems/Vulkan/blob/master/examples/computecullandlod/
computecullandlod.cpp.

[57] Hudson T, Manocha D, Cohen J, Lin M, Hoff K, Zhang H. Accelerated
occlusion culling using shadow frusta. In: Proceedings of the thirteenth
annual symposium on computational geometry. 1997, p. 1–10.

[58] Vanek J, Navrátil J, Herout A, Zemčík P. High-quality shadows with
improved paraboloid mapping. In: International symposium on visual
computing. Springer; 2011, p. 421–30.

[59] Crassin C. Personal communication. 2021.
[60] Kröker W. Voxel cone tracing GI. 2021, GitHub Repository, GitHub, https:

//github.com/compix/VoxelConeTracingGI.
[61] LuxCoreRender team. LuxCoreRender. 2020, URL https://luxcorerender.org/.

http://refhub.elsevier.com/S0097-8493(22)00005-X/sb26
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb26
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb26
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb26
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb26
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb27
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb27
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb27
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb28
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb28
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb28
http://www.seas.upenn.edu/~pcozzi/OpenGLInsights/OpenGLInsights-SparseVoxelization.pdf,Chapter
http://www.seas.upenn.edu/~pcozzi/OpenGLInsights/OpenGLInsights-SparseVoxelization.pdf,Chapter
http://www.seas.upenn.edu/~pcozzi/OpenGLInsights/OpenGLInsights-SparseVoxelization.pdf,Chapter
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb30
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb30
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb30
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb30
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb30
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb31
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb31
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb31
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb31
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb31
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb32
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb32
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb32
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb32
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb32
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb33
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb33
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb33
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb33
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb33
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb33
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb33
http://dx.doi.org/10.1007/s00371-016-1235-y
http://dx.doi.org/10.1007/s00371-016-1235-y
http://dx.doi.org/10.1007/s00371-016-1235-y
http://dx.doi.org/10.1145/2018323.2018326
http://dx.doi.org/10.1145/2018323.2018326
http://dx.doi.org/10.1145/2018323.2018326
http://doi.acm.org/10.1145/2018323.2018326
http://doi.acm.org/10.1145/2018323.2018326
http://doi.acm.org/10.1145/2018323.2018326
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb36
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb36
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb36
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb36
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb36
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb36
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb36
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb37
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb37
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb37
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb37
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb37
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb37
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb37
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb38
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb38
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb38
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb38
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb38
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb38
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb38
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb39
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb39
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb39
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb40
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb40
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb40
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb40
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb40
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb40
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb40
https://developer.nvidia.com/content/basics-gpu-voxelization
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb42
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb42
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb42
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb43
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb43
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb43
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb43
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb43
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb43
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb43
http://gpu.cs.uct.ac.za/Slides/prefix-sum.pdf
https://research.nvidia.com/sites/default/files/pubs/2016-03_Single-pass-Parallel-Prefix/nvr-2016-002.pdf
https://research.nvidia.com/sites/default/files/pubs/2016-03_Single-pass-Parallel-Prefix/nvr-2016-002.pdf
https://research.nvidia.com/sites/default/files/pubs/2016-03_Single-pass-Parallel-Prefix/nvr-2016-002.pdf
https://research.nvidia.com/sites/default/files/pubs/2016-03_Single-pass-Parallel-Prefix/nvr-2016-002.pdf
https://research.nvidia.com/sites/default/files/pubs/2016-03_Single-pass-Parallel-Prefix/nvr-2016-002.pdf
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb46
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb46
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb46
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb46
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb46
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb46
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb46
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb46
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb46
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb47
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb47
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb47
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb48
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb48
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb48
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb49
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb49
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb49
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb50
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb50
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb50
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb51
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb51
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb51
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb51
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb51
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb51
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb51
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb52
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb52
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb52
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb52
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb52
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb53
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb53
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb53
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb53
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb53
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb54
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb54
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb54
http://developer.download.nvidia.com/assets/gamedev/files/sdk/11/FXAA_WhitePaper.pdf
http://developer.download.nvidia.com/assets/gamedev/files/sdk/11/FXAA_WhitePaper.pdf
http://developer.download.nvidia.com/assets/gamedev/files/sdk/11/FXAA_WhitePaper.pdf
https://github.com/SaschaWillems/Vulkan/blob/master/examples/computecullandlod/computecullandlod.cpp
https://github.com/SaschaWillems/Vulkan/blob/master/examples/computecullandlod/computecullandlod.cpp
https://github.com/SaschaWillems/Vulkan/blob/master/examples/computecullandlod/computecullandlod.cpp
https://github.com/SaschaWillems/Vulkan/blob/master/examples/computecullandlod/computecullandlod.cpp
https://github.com/SaschaWillems/Vulkan/blob/master/examples/computecullandlod/computecullandlod.cpp
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb57
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb57
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb57
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb57
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb57
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb58
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb58
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb58
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb58
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb58
http://refhub.elsevier.com/S0097-8493(22)00005-X/sb59
https://github.com/compix/VoxelConeTracingGI
https://github.com/compix/VoxelConeTracingGI
https://github.com/compix/VoxelConeTracingGI
https://luxcorerender.org/

	Clustered voxel real-time global illumination
	Introduction
	Related work
	Overview
	Voxelization, clustering and light transport
	Scene voxelization
	Voxel clustering
	Per voxel face cluster visibility caching
	Real-time light transport
	Final frame

	Results discussion
	Results
	Light bounce performance
	Ground truth comparison
	Comparison of real-time techniques

	Conclusions
	CRediT authorship contribution statement
	Code availabiliy
	Acknowledgments
	Appendix A. Supplementary data
	References

