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A B S T R A C T

The translaminar fracture toughness of laminated composites can be determined experimentally assuming
either linear elastic fracture mechanics (LEFM) or cohesive zone model (CZM) hypotheses. Each theoretical
frame is different in terms of complexity and predictive capabilities. To clarify the latter point, we derived the
𝑅(𝛥𝑎) (LEFM) and 𝐽 (𝜔) (CZM) curves from a set of published results on over-height compact tension fracture
specimens of different sizes. Then, these curves were used to predict the strength of other coupons of the same
material (geometrically similar, scaled, open hole and center cracked specimens). Since the idealization of the
fracture phenomena in cohesive zone models is more realistic than in LEFM, the fracture property so obtained
is more independent from the size of the specimen used to measure it and its predictive capability embraces
a wider range of sizes and geometries.
1. Introduction

Crack growth in laminated composite materials involves several
damage mechanisms at different scales. For example, fiber failure, ma-
trix cracking and splitting, fiber–matrix debonding and delaminations
occur during a translaminar crack growth (Fig. 1 [1] illustrates the
damage pattern of a 00 ply in a carbon fiber composite). These damage
mechanisms account for the material’s resistance to crack advance,
referred to as fracture toughness.

Fracture toughness is an important property in structural design as
it determines the strength of components with stress raisers as notches,
holes or slits [2–4]. Tough, or damage tolerant materials are able
to largely retain their strength in spite of in-service degradation or
manufacturing defects.

The experimental determination of the fracture toughness relies on
the assumption of a theoretical frame which dictates the data reduction
process. The most common frame is Linear Elastic Fracture Mechanics
(LEFM). LEFM assumes small scale bridging, that is, the non-linear
zone at the crack tip is very small in comparison to any other relevant
dimension of the problem (coupon dimensions, crack length, etc.). It
considers that both 𝓁𝐻 and 𝓁𝑉 in Fig. 1 (characteristic lengths in the
specimen plane of the zone where damage spreads) are small. Accord-
ingly, fracture toughness is described by a single parameter: the critical
energy release rate (or its equivalent critical stress intensity factor). In
many materials, this scalar value increases as the crack grows, defining
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what is known as the 𝑅-curve. In laminated composites, however,
the size of the failure process zone may not fulfill the assumption of
being small. Several reports assert the limitations of LEFM methods to
characterize fracture toughness [5–8]. Some studies proposed enlarging
specimen sizes to fulfill the LEFM assumption of a relatively small
non-linear zone [9].

On the other hand, the crack bridging concept, or cohesive zone
model (CZM), introduced by Barenblatt [10] and Dugdale [11], ac-
counts explicitly for a damage zone length in the direction of the
crack propagation. The non-linear zone is defined as a line (Fig. 1),
the length 𝓁𝐻 is considered explicitly but 𝓁𝑉 is still expected to be
small. The Cohesive Zone Model relies on the cohesive law, which
relates the bridging stresses to the crack opening, 𝜎(𝜔). The integration
of the cohesive stress with respect to the crack opening is equivalent
to the 𝐽 -integral [12]. The cohesive law represents better than a
single parameter (as in LEFM) the process of fracture, especially in
those materials where dissipation is governed by extrinsic degradation
mechanisms [13].

As fracture toughness is a crucial macromechanical property in
design, it is convenient to clarify which theoretical frame, LEFM or
CZM, has a wider predictive capability; or whether the increased com-
plexity of CZM pays off. This dilemma is even more relevant in modern
high fracture toughness materials where several damage mechanisms
intervene at different scales (i.e. hierarchical microstructures).
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Fig. 1. Computed Tomography (CT) of the damage near the crack tip from Xu et al. [1] and simplifications of the cohesive model and LEFM.
To answer these questions, we took a set of experimental re-
sults on fracture specimens (Over-Height Compact Tension) published
by researchers from University of Bristol and University of British
Columbia [1,14,15] and analyzed the data applying both LEFM and
CZM, so that to obtain the 𝑅 and 𝐽 curves, respectively. This set of
experimental data is particularly useful for the purpose of this work
because, in addition to being reported in great detail, it embraces a
large range of specimen sizes (specimens scaled up to a factor of 4).
As fracture properties, as for any other material property, are expected
to be independent of the size of the specimen used to measure it, the
experimental results from the scaled specimens represent a validation
test for any data reduction procedure [5,16,17]. To check the predictive
capability of the 𝑅 and 𝐽 curves, we compared the predicted strength
of Center Cracked and Open Hole specimens of the same material, and
with scale factors up to 16, with the experimental data reported by the
same group from Bristol [18,19].

2. Methodology

2.1. Experimental data

This work makes use of a set of experimental results published by
Xu et al. [1,14] and Zobeiry et al. [15]. The authors analyzed the
translaminar fracture of quasi-isotropic laminates with geometrically
similar specimens of different sizes. In particular, we use the results
from the Over-height Compact Tension (OCT) tests [1,9,14,15,20–22]
to extract the 𝑅(𝛥𝑎) and 𝐽 (𝜔) curves. Fig. 2 illustrates the geometry of
this specimen.

The compliance of the OCT specimen for quasi-isotropic laminates
is approximated from a finite element computation, following the same
procedure used by Ortega et al. [23], with the polynomial expression

�̄� =
( 1 + �̄�
1 − �̄�

)2
(

1.489 + 9.9265�̄� − 25.633�̄�2 + 39.058�̄�3

−31.12�̄�4 + 10.305�̄�5
)

(1)

where the compliance and crack length are normalized as �̄� = 𝐶ℎ𝐸
and �̄� = 𝑎∕𝑊 , respectively. ℎ is the specimen thickness and 𝐸 the
Young modulus. This paper also analyzes data from the Open Hole and
Centered Crack Tension tests from the same set of publications [1,14,
15].
2

Fig. 2. Over-Height Compact Tension geometry.

Table 1
Laminate properties, where ℎ is the laminate thickness and 𝑎0 the initial notch
length.

Stacking 𝑊 [mm] 𝑎0 [mm] ℎ [mm] 𝐸 [MPa] 𝜎𝑢 [MPa]

[45, 90,−45, 0]4𝑠 40.3/80.6/161.2 [14] 0.4 W 4 61 645 990 [24]
[90, 45, 0,−45]4𝑠 40.3 [1]/80.6 [15] 0.4 W 4 61 645 990a

aProperty assumed equal to the [45, 90,−45, 0]4𝑠 laminate.

The two laminates studied here were made of Hexcel HexPly®

IM7/8552 carbon-epoxy pre-preg, with a nominal ply thickness of
0.125 mm. Table 1 gives the laminate stacking sequences, specimen
sizes and homogenized properties. More details on the test setup and
materials can be found in the Refs. [1,14,15].
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The load–displacement curves provided in the cited works were
corrected for the compliance of the testing system. That is, the displace-
ments (𝑢𝑃 ) reported in the papers [1,14,15] were corrected according
to the expression 𝑢 = 𝑢𝑃 − 𝐶𝑆𝑃 , where 𝐶𝑆 is the compliance of
the testing system. 𝐶𝑆 was found by fitting the linear part of the
load–displacement curve to the theoretical compliance of the specimen
(defined in Eq. (1)).

2.2. Data reduction for 𝑅(𝛥𝑎) and 𝐽 (𝜔) curves

This section describes the methodology followed to obtain the 𝑅-
curve (based on LEFM assumptions) and the 𝐽 -curve (CZM) from the
same set of load–displacement curves from the OCT tests.

There are several methods to characterize the translaminar fracture
of composite laminates. Laffan et al. [25] review methods to obtain
the 𝑅 curve, while Maimí et al. [26] do so for 𝐽 curves. In this work,
we selected methodologies that require only the data provided by the
universal testing machine (load and displacement). This decision was
taken to follow the easiest experimental methodology and to permit the
fairest comparison between both curves (both use the same set of data).

The load displacement curves were idealized with a total of 20
points obtained by a Gaussian average (Fig. 3). We applied the data
reduction scheme described below to this set of representative points.

2.2.1. The 𝑅(𝛥𝑎) curve
Every method to obtain the 𝑅-curve relies on the measurement of

the increment of the crack length 𝛥𝑎. This can be done by optical
monitoring of the crack front, but this measure is not objective due to
the presence of a failure process zone near the crack tip. An alternative,
and more objective, method deduces an ‘‘apparent’’ crack length from
equaling the experimental compliance to the one defined by the elastic
problem in the presence of a sharp crack. Laffan et al. [25] and
Bergan et al. [16] compare both methods (optical and compliance) and
conclude that, while both methods are acceptable, visual inspection
may lead to greater variability in addition to the increased complexity
of the test.

In this work, we calculated the compliance for each experimental
load displacement point as 𝐶 = 𝑢∕𝑃 . An equivalent crack length
resulted from equaling the experimental normalized compliance to
Eq. (1). The increment of crack length was then defined as: 𝛥𝑎 =
�̄�𝑊 − 𝑎0.

The Energy Release Rate (ERR) for each experimental point results
from the corresponding known load, 𝑃 , and crack length and the use
of the Irwin–Kies equation [25]:

𝐺 = 𝑃 2

2ℎ2𝐸𝑊
𝜕�̄�
𝜕�̄�

(2)

2.2.2. The 𝐽 (𝜔) curve
The cohesive zone model postulates that the tractions transferred

through the crack faces depend on the local separation 𝜎(𝜔), as sketched
in Fig. 1. The integration of the traction separation, or cohesive, law
defines the 𝐽 (𝜔) curve:

𝐽 = ∫

𝜔

0
𝜎𝑑𝜔 (3)

The 𝐽 (𝜔) curve defines the amount of energy dissipated per unit
surface area to reach a given crack separation, 𝜔.

The most direct method to measure 𝐽 is by applying its definition
as a path integral [12,27]. This is experimentally expensive and prone
to scattered results because it requires measuring (usually by Digital
Image Correlation) the local displacement field along the path enclosing
the failure process zone and the local opening of the crack faces.

Another option is to use a fitting or optimization algorithm that min-
imizes the deviation between the experimental measurement and the
output of a numerical model accounting for the cohesive zone [28–45].
These works differ on the experimental parameters and the algorithm
3

used to obtain the best solution. In this work, we follow the method pro-
posed by Ortega et al. [43,44]. Taking the point of lower displacement
from the set of 20 points (Fig. 3), the fitting algorithm adjusts the slope
of a linear cohesive law in the numerical model to fit the experimental
measurement. Once the error is less than a prescribed tolerance, the
crack opening at the initial notch is read from the numerical model to
provide the first segment of the cohesive law. Then, the procedure is
repeated point by point to build a cohesive law with as many segments
as experimental points that have been selected (20 in the present case).

3. 𝑹(𝜟𝒂) And 𝑱 (𝝎) curves from OCT tests

Fig. 3 shows the experimental load displacement curves (solid lines)
and the set of 20 representative points of each specimen (cross sym-
bols) used for data reduction. The 20 points are distributed uniformly
between the first point deviating from linearity and the onset point
of other damage mechanisms (i.e., back end failure or buckling), as
explained in Ortega et al. [43].

Fig. 4 exhibits the cohesive law for each of the OCT specimens
in Fig. 3, obtained following the procedure described in the previous
section.

Figs. 5a and 5b shows the 𝑅-curve of the laminates [45, 90,−45, 0]4𝑠
and [90, 45, 0,−45]4𝑠, respectively, while Figs. 5c and 5d the 𝐽 curves
resulting from the integration of the respective cohesive law.

The initial parts of the R-curves in Figs. 5a and 5b are similar to
those deduced in a recent paper based on X-ray CT measurements of
the crack length in the different sized OCT specimens [46].

3.1. Comparison of the 𝐽 (𝜔) and the 𝑅(𝛥𝑎) curve

A remarkable fact is that while the 𝐽 curves are almost independent
of the specimen size, the 𝑅 curves for small specimens are higher than
for the other specimens. The explanation lies in the fact that the 𝑅 curve
approach can be applied only under the condition of a small non-linear
zone compared to any other dimension of the specimen. This condition
is more likely to be violated in tests on small specimens. ASTM [47,48]
establishes a threshold for LEFM validity based on the expected size
of the plastic zone: 𝐺𝐶𝐸∕𝜎2𝑢 < 0.4(𝑊 − 𝑎), as illustrated in Figs. 5a
and 5b. This threshold is plausible for metals where the FPZ is indeed
governed by plasticity with hardening. However, it underestimates the
extension of the FPZ in materials with other constitutive equations,
in particular, quasi-brittle materials [8]. In view of the independence
of the 𝐽 curve on the specimen size, this parameter provides a more
objective measure of the fracture properties of the material. It appears
that the small specimen limit is less restrictive or non-existent in the
𝐽 curve characterization. This trend should be attributed to the ideal-
ization sketched in Fig. 1. In the cohesive zone model, the damaged
length 𝓁𝐻 is explicitly considered and the only condition is that 𝓁𝑉
be small. This condition is very appropriate in materials with extrinsic
dissipation mechanisms that tend to dissipate most of the energy in a
localized region, such as laminated composites or concrete.

𝐽 and 𝑅, at the LEFM limit, define the same physical property [12]
in spite of being determined through different procedures. Additionally,
the 𝐽 curve is expressed in terms of the crack opening and 𝑅 in terms
of the equivalent crack length. As a consequence, 𝑅 usually starts at a
finite value, the initiation toughness, while the 𝐽 curve departs from
origin (zero opening). One advantage of the 𝐽 (𝜔) curve is that it can
be easily implemented in finite element software with a user material
cohesive law.

The comparison of the fracture properties of the two tested lami-
nates, which have the same number of plies for each orientation and
differ only on the stacking sequence (Table 1) illustrates how the
cohesive law reflects the particular damage micromechanisms taking
place in each material. The cohesive laws for both laminates and same
specimen size, 𝑊 = 80.6 mm (Fig. 6) are very similar for small crack
openings, 𝜔 < 0.3 mm, while they diverge afterwards. The cohesive law
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Fig. 3. Experimental load displacement curves and selected points to apply data reduction methods.
Fig. 4. Fitted translaminar traction separation law.
in the laminate [45, 90,−45, 0]4𝑠 is not fully determined because the FPZ
could not develop entirely before the test ended. The reason being the
cluster of 00 plies at the center of this laminate, which promotes the
growth of splittings in the load direction and delamination in the adja-
cent plies, increasing the damage extension in the direction defined by
𝓁𝑉 . Nonetheless, it is remarkable how consistent the 𝐽 -curves obtained
for both laminates are, even in the presence of crack-splitting.

4. Predictive capability: Open hole and center cracked specimen
strengths

Whether or not the 𝑅(𝛥𝑎) and 𝐽 (𝜔) curves characterize the fracture
behavior of the studied laminates, should be demonstrated by eval-
uating their predictive capability on specimens of different geometry
than the one used to extract them. For that purpose, this section
shows the prediction of the Open Hole (OH) and Center Cracked (CC)
specimen strengths from the measured 𝑅(𝛥𝑎) and 𝐽 -curves in the OCT
experiments.

These predictions are compared against the nominal strength of
geometrically similar CC and OH specimens presented for the laminate
[45, 90,−45, 0] by Green et al. [18] and Xu et al. [19]. These authors
4

4𝑠
tested a broad range of specimen sizes, with hole radii (OH), or half
crack lengths (CC), 𝑎0 = 1.5875, 3.175, 6.35, 12.7 and 25.4 mm. The
𝑎0∕𝑏 ratio was 0.2, 𝑏 being the specimen width.

4.1. OH and CC strength from 𝐽 (𝜔)

Considering that the 𝐽 (𝜔) curve is a material property, means that
it is considered to develop similarly at any notch or stress raiser,
independent of the specimen geometry.

We calculate the nominal strength of OH and CC specimens assum-
ing a cohesive zone model following the approach presented in [49–
51]. The cohesive law used is the mean cohesive law defined with the
segments bounded by the points: 𝜎(𝜔) = [990(0), 250(0.0893), 175(0.7)].
The area below the curve is 𝐺𝐶 = 185 N/mm up to 𝜔 = 0.7 mm.
Fig. 7a shows the calculated ultimate net sectional stress for OH and
CC geometrically similar specimens of different sizes, as well as the
corresponding experimental results. It also includes the limit values
for small and large specimens. For very small specimens, the response
is notch insensitive and corresponds to the laminate strength 𝜎𝑁 =
990 MPa.

For large specimens, the CC strength tends to the LEFM limit,
governed by 𝐺 (taken as 185 N/mm, although it could be larger
𝐶
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Fig. 5. 𝑅 and 𝐽 -curves for the materials and sizes tested.
Fig. 6. Comparison of the CL and 𝐽 curve for the two laminates. Responses for
𝑊 = 80.6 mm.
5

because the cohesive law from which it is derived could not be entirely
determined, Fig. 6 and Section 3.1), while the OH strength tends to
the notch sensitivity response defined by the stress concentration factor
𝐾𝑡 = 2.53 [52]; 𝜎𝑁 = 391.3 MPa

The calculation of the nominal strength of the CC specimen under-
predicts the experimental results and slightly overpredicts those for OH.
These results suggest that the nucleation and growth of the crack in the
CC specimen requires more energy, and the OH less energy, than that
represented by the 𝐽 (𝜔) curve extracted from the OCT test. The source
of this increment of dissipated energy is probably caused by different
behavior of crack splitting at crack tip.

Fig. 7b displays the maximum crack opening at failure load (the
crack opening at 𝑎0) according to the cohesive zone model. For the
OH specimen, the crack opening displacement is almost zero for large
and small specimens. It reaches its maximum for hole radii between 2
and 3 mm. In any case, 𝜔𝑚𝑎𝑥 < 0.06 mm for any hole radius. Taking
into account that the kink point in the cohesive law of Fig. 4a is about
0.09 mm, the fact that 𝜔𝑚𝑎𝑥 < 0.06 mm for any hole radius means that
only the first part of the cohesive law is important to define the nominal
strength of open hole specimens [50,51,53–55].

On the other hand, the maximum crack opening increases with
specimen size for the CC specimens. Therefore, the first part of the
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Fig. 7. Response of OH and CC for [45, 90,−45, 0]4𝑠 laminate.
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cohesive law determines the strength in small specimens, whereas the
complete cohesive law is involved in the fracture of large specimens.
Consequently, the strength is defined by 𝐺𝐶 , according to LEFM, in
large specimens [51].

4.2. CC strength from 𝑅(𝛥𝑎)

The 𝑅-curve alone does not allow for predicting the nominal
strength of the OH specimens because it does not contain information
on the material strength. Existing methods to obtain the notched
strength by variations of the inherent flaw model or finite fracture
mechanics [3,51,56,57] are outside the scope of this contribution.

The nominal strength of CC specimens has been estimated by con-
sidering the conditions for crack stability: 𝑅 = 𝐺 and 𝑑𝑅∕𝑑𝑎 = 𝑑𝐺∕𝑑𝑎.
The expression for the Energy Release Rate, 𝐺 of the CC specimen
is [58]:

𝐺 =
𝜎2𝑁 𝑏
𝐸 𝑘2 where 𝑘2 = 𝜋(1 − �̄�0)2�̄� sec (𝜋�̄�∕2) (4)

where �̄� = 𝑎∕𝑏 and �̄�0 = 𝑎0∕𝑏 = 0.2, 𝑏 being the specimen width.
The nominal strength of the CC specimens computed by means of

he 𝑅 curve of each of the three tested OCT specimens (𝑊 = 40.3, 80.6
nd 161.2 mm) is shown in Fig. 8. The calculations agree reasonably
ell with the experimental results although the calculations do not tend

o the laminate strength for very small specimens.

.3. Characterization of fracture properties with center cracked specimen

As an additional analysis of the sensitivity of the strength of coupons
f a particular geometry to the method used to determine the charac-
eristic curves, 𝐽 (𝜔) or 𝑅(𝛥𝑎), we find the cohesive law that betters fits
he nominal strength of the OH and CC specimens, and the 𝑅 curve that
etter fits the CC strength, the latter by means of the size effect law.
hen, for example, the cohesive laws obtained in OCT experiments can
e compared to the cohesive laws that better fit the nominal strength
or OH and CC.

The curves of the nominal strength of OH and CC generated by
eans of the cohesive law derived from OCT tests are compared with

he ones obtained by fitting in Fig. 9a. The cohesive laws for OH
nd CC determined by means of fitting appear in Fig. 9b, as well as
hose obtained from OCT tests. To find the cohesive law shape that
etter fits the experimental data, we used a numerical model as in
aimí et al. [50] and the shape of the cohesive law is changed to fit
6

Fig. 8. Size effect law of CC specimen determined from the 𝑅-curve of the OCT
pecimens.

he experimental data. The cohesive law that better fits the nominal
trength of OH specimens is defined by a straight line with a larger
lope. Only the first part of the cohesive law can be determined because
t is the only fraction that governs the strength of these specimens. On
he other hand, the complete cohesive law can be determined from CC
pecimens provided that the specimen size is big enough which, in fact,
s not practical. The cohesive law in CC specimens exhibits a smaller
rop than the one found in the OCT tests. These results suggest that
he damage mechanisms depend on the specimen geometry: splits are
robably larger in cracked specimens than in open hole ones.

The 𝑅-curve can be derived from the nominal strength of CC speci-
ens of different sizes following the size effect law proposed by Bažant

t al. [8,59,60]. This has also been applied to edge cracked specimens
f composite materials [61]. The 𝑅 curve results from enforcing the
onditions 𝑅 = 𝐺 and 𝑑𝑅∕𝑑𝑏 = 𝑑𝐺∕𝑑𝑏 = 0 on specimens of different

sizes; where 𝑏 is a measure of the specimen size, in this case the
specimen width. 𝐺 is defined in Eq. (4). The nominal strength 𝜎𝑁
should be derived with respect to 𝑏, which can be done with the help
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of the size effect law:

𝜎𝑁 = 𝜎𝑢
(

1 +
(

𝑏
𝑏0

)𝑟) −1
2𝑟 where 𝑏0 =

𝐸𝐺𝐶
𝑘20𝜎

2
𝑢

(5)

The strength limit for small size specimens is determined by taking
into account a notch insensitive response (i.e. 𝜎𝑁 = 𝜎𝑢). 𝐺𝐶 and 𝑟,
the latter usually assumed to be 1, should be found by fitting the CC
experimental data. We have performed three different fittings of the
size effect law (Fig. 10a): (i) fixing 𝑟 = 1 and searching 𝐺𝐶 ; (ii) setting
𝐺𝐶=185 N/mm and looking for 𝑟; and (iii) searching for both 𝑟 and 𝐺𝐶 .
In all cases, 𝜎𝑢=990 MPa as it results from an independent experiment.
The 𝑅-curve is defined by the equations [8,59,60]:

𝛥𝑎 = 𝑏0
(

𝑘
2𝑘′(�̄�−�̄�0)

− 1
)

1
𝑟 (�̄� − �̄�0) and

𝑅 =
(

2𝑘2𝑟−1𝑘′(�̄� − �̄�0)1−𝑟
)
1
𝑟 𝛥𝑎

𝑘20𝑏0

(6)

he 𝑅 curves corresponding to the three fittings are represented to-
7

ether with that from the OCT tests in Fig. 10b. The 𝑅 curves from z
itting tend to a steady value whereas the one obtained in the OCT tests
rows continuously for the range of crack extension explored.

The main drawback of the determination of the 𝑅-curve by means
f the size effect law is that it requires testing very large specimens to
it 𝐺𝐶 properly. Determined by this method, the 𝑅-curve goes through
he origin as the nominal strength for very small specimen is enforced,
ontrarily to the response determined from the OCT specimen shown
n Fig. 8. The 𝑅-curve defined in this way is obviously independent on
pecimen size but it depends on specimen shape [8].

. Conclusions

We have made use of a thorough experimental study on fracture
pecimens of laminated composites of different sizes published by
ther authors to investigate the suitability of the 𝑅 curve and the
ohesive law, taken as the 𝐽 curve, to represent the fracture behavior
f the tested materials at notches or stress raisers. Each of these curves
manate from a different theoretical frame: LEFM for 𝑅 and cohesive
one models for the cohesive law / 𝐽 curve.
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The 𝑅 and 𝐽 curves were obtained from data reduction of the
oad–displacement curves of the Over-Height Compact Tension tests.
omparison of the results for scaled specimens showed that the 𝑅
urves for small specimens deviate from the rest of the tests while 𝐽

offers more consistent results. The 𝑅 and 𝐽 curves so deduced have
been used to predict the nominal strength of OH and CC specimens
as a predictive capability validation. Both curves, 𝐽 and 𝑅, offer good
predictions when computing the nominal strength of CC specimens.
The 𝑅 curve fails to reproduce the laminate strength for the CC small
specimens while, for the analyzed material, 𝐽 under-predicts the size
effect of the CC specimens. Regarding the OH nominal strength, this can
only be computed using 𝐽 , as 𝑅 does not encompass any information on
the material strength. Using 𝐽 , the size effect of the OH specimens was
able to be captured correctly, although the numerical results tend to
slightly over-predict the experimental results. The predictive capability
of 𝐽 should be considered as very positive, taking into account the
difference in the stress raiser configuration between OCT (sharp notch)
and OH (circular hole).

In a reverse effort, the cohesive laws for the CC and OH specimens
were determined by fitting the experimental nominal strength data.
This analysis revealed that the cohesive law is only slightly different
for each specimen geometry. Finally, we determined the 𝑅 curve by
fitting the strength of the CC specimens to the size effect law. However,
the determination of the fracture properties through the size effect law
is expensive as it needs testing on large specimens to obtain the total
fracture toughness. This limitation contrasts with using OCT specimens
that only requires one specimen of appropriate size.

The paper evidences that methods based on the cohesive zone model
better represent, and for a wider specimen size range, the fracture
behavior of the explored laminated composites than the methods based
on linear elastic fracture mechanics. The cause lies in the cohesive zone
models assumptions being less restrictive than the LEFM hypothesis,
thus permitting a better representation of the failure process zone.
In spite of the increased complexity of the methods to obtain the
cohesive law parameters (or the corresponding 𝐽 curve), it appears
to be the adequate methodology for fracture characterization of new
engineered materials with high toughness, if very large specimens are
to be avoided.
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