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A B S T R A C T

Nowadays there exists a wide variety of automatic machines that perform analytical tests on liquid samples,
such as water, blood, urines, saliva, etc. A test can be modelled as a set of activities with given precedences
and through sharing a set of limited resources. A scheduling process is therefore required to find a feasible or
optimal execution of a set of tests. An important particularity of the machines performing tests are their storage
areas of limited capacity. For instance, one activity may require a sample to be moved to an observation area,
while another activity may later remove this sample from that observation area.

In this paper, we introduce a real problem encountered in the analytical instrument industry known as
the Sample Analysis Machine Scheduling Problem (SAMSP). We show that the SAMSP is a particular case of
the Resource Constrained Project Scheduling Problem with Cumulative Resources (RCPSP-Cu), and present a
successful application of optimization techniques for it. We are interested in exact approaches, since the models
presented will be used to prove the maximum throughput of the selected machine layouts. In particular, we
compare the performance of approaches based on Constraint Programming (CP), Satisfiability Modulo Theories
(SMT), and Mixed Integer Linear Programming (MILP), on real instances of SAMSP.
1. Introduction

When designing analytical test machines many aspects must be
taken into account: the duration of the processes (activities), the quan-
tity of resources available, the capacity of the storage areas, etc. For
this reason, having a software prototype to simulate the throughput of
several possible configurations of a machine using several test scenarios
is extremely useful. The result of the simulations should be made
available early on to machine designers to enable them to evaluate
the tradeoff between the cost of technological improvement efforts (for
example, decreasing the sample acquisition time by making a faster
robotic arm) and the quantity of resources available in the machine (for
example, allocating more space in some areas). Relevant information
will only be obtained following an enormous number of simulations and
the subsequent data analysis of the schedules acquired. For instance,
some experiments may show that improving the speed of obtaining a
sample is pointless unless the amount of room available in the heating
area is greater than the threshold. Therefore, simulations need to be
efficient and, where possible, provide a theoretical optimal.

We were commissioned by a company to develop a software pro-
gram to help them design a new analytical test machine (a high level
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model of the machine is depicted in Fig. 2). The machine had to be able
to perform several distinct types of tests simultaneously. Furthermore,
all the tests consisted of several activities that had to be performed
using limited resources. In particular, there were to be two robotic
arms and a cuvette shuttle. A number of cuvettes were to contain the
samples to be analysed; all of which would occupy a position at any
time in a specific (limited) storage area. Because certain activities can
only be performed in particular areas, this position had to be able
to change during a specific test. For example, while dissolutions of
samples can be performed in a cold storage area, a hot area not only
allows for dissolutions, but incubations as well. Finally, there was to be
an observation area (which is also a storage area with limited capacity)
to evaluate the results of the tests on the samples. The activities making
up the tests had to be scheduled without exceeding the capacity of any
resource, while minimizing the global duration (makespan).

As said, when designing such machines many alternatives con-
templating the duration of activities and resource capacities must be
considered. Modelling the entire problem of obtaining an optimal de-
sign for the machine is not a realistic goal since, apart from complexity
issues, there are many external limitations on the machine that cannot
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be easily known beforehand. However, having a software prototype
to simulate the throughput of several possible configurations of the
prototype machine is extremely useful and will hopefully guide the
engineers to obtaining an accurate final design. While there are a
number of studies in the literature that deal with particular sample
analysis machines (Shin et al., 2010; You et al., 2017), we were unable
to find any that could match the requirements of the company that
approached us.

Our problem is related to the well-known Resource Constrained
Project Scheduling Problem (RCPSP), which consists of scheduling a
set of non-preemptive activities (or tasks) with predefined durations
and demands on each of a set of renewable resources, subject to
partial precedence constraints. Durations and precedence constraints
between tasks imply minimum distances between activities (minimum
time lags). Normally, the goal is to minimize the makespan, i.e., the
schedule’s end time. Many generalizations and specializations exist;
for a survey on variants and extensions of the RCPSP see Brucker
et al. (1999), Hartmann and Briskorn (2010). In particular, in the
RCPSP/max (Bartusch et al., 1988), minimum and maximum time lags
are considered. That is, a maximum delay between the start time of
every two tasks can be specified, in addition to the minimum de-
lays implied by precedences. An extension of the RCPSP/max is the
RCPSP with cumulative resources (RCPSP-Cu), where storage facilities
are added. The idea is that activities may require some intermediate
product which is withdrawn from a storage facility, or they may manu-
facture products which are then put into a storage facility. A cumulative
resource is given by the capacity and the minimum inventory level (or
safety stock) of the storage area for this particular resource. See Neu-
mann et al. (2005), Carlier et al. (2009), Hartmann and Briskorn (2010)
and Chaleshtarti and Shadrokh (2011) for details. Note that the RCPSP-
cu problem should not be confused with the Cumulative Scheduling
Problem (CuSP), which is a special case of the RCPSP with one resource.
It should also be noted that the term cumulative resource is used in some
of the literature as a synonym for renewable resources, see Artigues
et al. (2013).

With the problem at hand, we will have no manufactured products
stored in some stock-keeping facility, but rather storage areas that can
be occupied or vacated. An activity, in addition to having precedence
restrictions and resource demands, can occupy or vacate a number 𝑛 ≥ 0
of positions of a certain storage area. Each storage area will have a
limited number of positions (here we talk about cumulative demands
resource or storage constraints). If an activity occupies positions, it
begins to do so as soon as it starts and, on the contrary, if it vacates
some position, it will do so at the end. This is just the opposite to the
idea in the RCPSP-Cu. However, although the semantics are different,
the way of solving the problem will essentially be the same.

We introduce the Sample Analysis Machine Scheduling Problem
(SAMSP) as a special case of the RCPSP-Cu, and describe the methods
applied and the experiments performed to solve this industrial problem
in a real environment. Since in the design phase of the machine
optimality of solutions is required, we are interested in exact solving
methods. All known exact solvers for the RCPSP-Cu use branch-and-
bound or MILP approaches (Neumann et al., 2005; Carlier et al., 2009;
Chaleshtarti and Shadrokh, 2011). However, more recent research
has shown that other approaches, namely Constraint Programming
(CP) (Schutt et al., 2013; Vilím et al., 2015; Laborie, 2018; Lunardi
et al., 2020) and Satisfiability Modulo Theories (SMT) (Bofill et al.,
2016, 2017, 2020), are state-of-the-art for the particular case of the
RCPSP/max and other similar scheduling problems.

In this paper we consider a model-and-solve approach to the SAMSP
with CP, SAT/SMT and MILP. These technologies are well known for
their efficiency as well as for their flexibility regarding problem defini-
tion modifications and/or additions of constraints. The purpose of this
work is to present exact techniques to certify optimal solutions for the
SAMSP in order to define the best configuration of the machine being
2

designed. As shown in the experimental section, with this approach we
were able to solve most of the instances proposed very efficiently and
were able to certify optimality in most of the cases, thus allowing the
best configuration to be determined. This knowledge is crucial for good
decision making.

We consider the following technologies:

• Constraint Programming, in particular using the CP Optimizer
(IBM, 2019; Laborie et al., 2018), the proprietary IBM constraint
solver targeted at industrial scheduling problems, with excellent
results on various RCPSP-like problems. The CP Optimizer con-
sists of an exact algorithm which transparently embeds lots of
metaheuristic searches. Its hybrid method exploits the flexibility
of CP to integrate mathematical concepts, such as intervals, func-
tions, sequences, etc., into the model, while using the good ideas
of MILP solvers: model and run, conflict refinement, warm-starts,
etc.

• SMT, which is an excellent candidate for model-and-solve ap-
proaches to RCPSP-like problems thanks to its good balance be-
tween efficiency and expressiveness in combining logic state-
ments with arithmetic. The encodings that we present are inspired
by the state-of-the-art encodings on RCPSP and some of their
variants presented in Bofill et al. (2020), and we use the SMT
solver Yices (Dutertre and de Moura, 2006) which has proven to
be very competitive in solving scheduling problems.

• We also provide a pure MILP model using the techniques that
have shown the best performance in scheduling problems, such
as time index and disaggregated time formulations (Pritsker et al.,
1969; Christofides et al., 1987; Artigues, 2017). We use the IBM
MILP solver CPLEX (IBM, 2019).

The experiments show that the CP technology is clearly the best on the
SAMSP, followed at a certain distance behind by SMT, and with MILP
lagging far behind in performance.

The rest of the paper is organized as follows. In Section 2 we
(re)define the RCPSP-Cu. In Section 3 we describe our particular real
world industrial case, the SAMSP, and show how the SAMSP can be
reduced to the RCPSP-Cu. In Section 4 we define the preprocessing
and symmetry breaking used in all the formulations. In Section 5 we
provide a CP optimizer formulation of the SAMSP, along with a variant
of it. In Section 6 we provide an SMT encoding of the SAMSP, together
with some refinements. In Section 7 we provide an MILP formulation,
and also a variant of it. Section 8 is devoted to experiments, where we
compare the performance of the different formulations and refinements
on real SAMSP instances. We conclude in Section 9 by pointing out
some future work.

2. The resource-constrained project scheduling problem with cu-
mulative resources (RCPSP-Cu)

In the classic case of the RCPSP-Cu, production is considered to
be carried out at the completion of the corresponding manufacturing
activity, while consumption is always performed at the start of the
activity. In our case, an activity occupying positions in the storage
facility will begin to occupy them as soon as it starts and, on the
contrary, if it vacates a position, it will do so when the activity has
been completed (see Fig. 1).

This difference can be managed in the classical RCPSP-Cu by mod-
elling occupancy as consumption of a free space resource and vacation
as production of free space. However, since this is a bit unnatural, we
redefine the RCPSP-Cu as follows.

The Resource-Constrained Project Scheduling Problem with Cumulative
Resources (RCPSP-Cu) is a tuple 𝑇 = (𝒱 , 𝑑,ℰ , ℛ, 𝐵, 𝑏,𝒞 , 𝑃 , 𝑐) where:

• 𝒱 = {𝐴0, 𝐴1,… , 𝐴𝑛, 𝐴𝑛+1} is a set of non-preemptive activities.
Activities 𝐴0 and 𝐴𝑛+1 are dummy activities representing, by
convention, the start and the end of the schedule, respectively.
The set of non-dummy activities is defined by 𝒜 = {𝐴1,… , 𝐴𝑛}

with 𝑛 > 0.
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Fig. 1. Difference between the classical RCPSP-Cu and our variant on storage occupancy between two activities.
Fig. 2. Schematic machine architecture.
• 𝑑 is a vector of 𝑛 + 2 naturals, 𝑑𝑖 being the duration of activity 𝑖,
where 𝑑0 = 𝑑𝑛+1 = 0, and 𝑑𝑖 ≥ 0 ∀𝐴𝑖 ∈ 𝒜 .

• ℰ is a set of triplets of the form (𝐴𝑖, 𝐴𝑗 , 𝑙𝑖,𝑗 ) which represent prece-
dence relations between activities with a (positive or negative)
time lag, meaning that the difference between the start of 𝐴𝑗 and
𝐴𝑖 is at least 𝑙𝑖,𝑗 .1
We assume that we are given a precedence activity-on-node
(AON) graph 𝐺(𝒱 ,ℰ ) without cycles of a positive sum of time
lags, since otherwise the precedence relation would be inconsis-
tent. We also assume that ℰ is such that 𝐴0 is a predecessor of all
other activities and 𝐴𝑛+1 is a successor of all other activities.

• ℛ = {𝑅1,… , 𝑅𝑟} is a set of renewable resources.
• 𝐵 is a vector of 𝑟 naturals, 𝐵𝑖 being the available amount of each

resource 𝑅𝑖.
• 𝑏 is a matrix of (𝑛+2)× 𝑟 naturals corresponding to the renewable

resource demands of activities. That is, 𝑏𝑖,𝑗 represents the amount
of resource 𝑅𝑗 used during each unit of time of the execution of
activity 𝐴𝑖. Note that 𝑏0,𝑗 = 0 and 𝑏𝑛+1,𝑗 = 0 ∀𝑗 ∈ {1,… , 𝑟}.

• 𝒞 = {𝐶1,… , 𝐶𝑐𝑟} is a set of cumulative resources (storage areas).
• 𝑃 is a vector of 𝑐𝑟 naturals, 𝑃𝑖 being the available amount of

cumulative resource 𝐶𝑖.
• 𝑐 is a matrix of (𝑛 + 2) × 𝑐𝑟 integers corresponding to the number

of positions occupied or vacated by each activity; namely, 𝑐𝑖,𝑗 > 0
represents that activity 𝐴𝑖 occupies 𝑐𝑖,𝑗 positions in storage area
𝐶𝑗 and 𝑐𝑖,𝑗 < 0 represents that activity 𝐴𝑖 vacates |

|

|

𝑐𝑖,𝑗
|

|

|

positions
in storage area 𝐶𝑗 . Any activity occupying positions will begin
to occupy them as soon as it starts and, on the contrary, if it
vacates some positions, it will do so just after the activity has been
completed. Note that 𝑐0,𝑗 = 0 and 𝑐𝑛+1,𝑗 = 0 ∀𝑗 ∈ {1,… , 𝑐𝑟}.

The goal of the RCPSP-Cu is to find a schedule (start time) for
all activities, such that the global duration (makespan) is minimized
and the schedule is feasible with respect to the precedences, and the
renewable and cumulative resource constraints. This means that, for
each time instant:

(i) for each renewable resource, the amount of that resource re-
quired by all the activities running at that time is not greater
than the given resource’s availability, and

1 Positive 𝑙𝑖,𝑗 values are used to enforce a minimum delay of the start of 𝐴𝑗
w.r.t. 𝐴𝑖, and negative values are used to set a maximum delay of |𝑙𝑖,𝑗 | of the
start of 𝐴 w.r.t. 𝐴 .
3

𝑖 𝑗
(ii) for each storage area, its occupancy is between zero and the
given capacity.

3. The Sample Analysis Machine Scheduling Problem (SAMSP)

The industrial problem that we consider consists of scheduling a
set of tests in a sample analysis machine, minimizing the makespan.
The problem starts with a set of samples; each one located in a
different recipient of a sample pool. Multiple tests can be asked to
be performed on each sample. There are several distinct test types,
each one consisting of a particular collection of activities with their
corresponding precedences, durations, and renewable and cumulative
resource demands. The possible steps of a test are as follows:

1. A cuvette is acquired from a cuvette pool and moved to a storage
facility.

2. A sample from the sample pool is aspirated and deposited into
that cuvette.

3. Once the sample is in the cuvette, several diluents from a dilu-
ents pool can be added.

4. The previous actions can be performed both in cold or hot
storage areas. If the cuvette is already in a hot storage area then
incubation starts, otherwise it will be moved to the hot storage
area to start incubation.

5. During incubation, several reagents from a reagent pool can be
added to the sample.

6. The recipient is moved to an observation area, where other
reagents can also be added, and the observation process starts.
This observation process produces the test outcome.

7. Finally, the cuvette is thrown into the waste bin.

A Sample Analysis Machine specification is composed of a set of
resources with their respective available amounts and a set of storage
areas with their respective capacities. Several test types can be specified
according to the characteristics of the machine where they are to be
performed. A test type specification for a particular sample analysis ma-
chine is composed of a set of activities (e.g., sample aspiration, cuvette
transport between storage areas, addition of diluents or reagents, etc.)
that the machine must perform to accomplish that specific test type.
There is a generalized precedence relation between the activities of a
test type: minimum and maximum time lags. Each activity also has a
duration, a set of renewable resource demands (a robotic arm to acquire
samples, a shuttle to move cuvettes, etc.) and a number of occupied or
vacated positions in storage areas (cold, hot, etc.).
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Then, the Sample Analysis Machine Scheduling Problem (SAMSP) con-
sists of, a given sample analysis machine specification, a set of test type
specifications for that machine, the number of tests of each test type to
be performed, and a schedule generated of the activities that minimizes
the completion time and fulfils all precedences, renewable resource
and storage constraints. This problem is similar to those considered
in Shin et al. (2010) and You et al. (2017) albeit with different machine
architecture.

3.1. The Sample Analysis Machine architecture

As an example, the specific sample analysis machine that we con-
sider is structured into two zones: the sample zone and the reagent
zone. Each zone is only accessible by its own robotic arm: the sample
arm and reagent arm, respectively. A shuttle allows cuvettes to be
transported between the different storage areas allocated in the ma-
chine, thus connecting the two zones (see Fig. 2). The sample zone is
composed of two cuvette storage areas (Cold and Hot-I), and three pools
(Cuvette, Sample and Diluent pools). The reagent zone is also composed
of two cuvette storage areas (Hot-II and Observation), plus a Reagent
pool and a Waste bin.

The possible operations that can be performed in this machine are
the following:

• Shuttle movements:

– Move a cuvette from the cuvette pool to any storage area.
– Move a cuvette between storage areas.
– Move a cuvette from a storage area to the waste bin.

• Sample arm operations:

– Aspirate a sample and dispense it to a cuvette located in the
Cold or Hot-I storage areas.

– Aspirate from a cuvette located in the Cold or Hot-I storage
areas and dispense the contents to another cuvette of the
same zone.

• Reagent arm operations:

– Aspirate a reagent and dispense it to a cuvette located in the
Hot-II or Observation areas.

The activities making up the tests will correspond to the operations
described above, with their appropriate durations, precedences, renew-
able resource (shuttle and arms) demands and cumulative resource
(Cold, Hot-I, Hot-II storages and Observation area) demands and sup-
plies.

3.1.1. A test type example for the machine architecture considered
A test type example for the machine architecture described above

is depicted in Fig. 3. The meaning of each activity is as follows:

1. A cuvette (cuvette 1) is transported from the cuvette pool to the
cold storage area by the shuttle.

2. A cuvette (cuvette 2) is transported from the cuvette pool to the
cold storage area by the shuttle.

3. A sample is aspirated and deposited in cuvette 1 by the sample
arm.

4. A diluent is aspirated and deposited in cuvette 1 by the sample
arm.

5. A diluent is aspirated and deposited in cuvette 2 by the sample
arm.

6. A diluent is aspirated and deposited in cuvette 2 by the sample
arm.

7. The mixture in cuvette 2 is aspirated and deposited in cuvette 1
by the sample arm.

8. Cuvette 2 is transported from the cold storage area to the waste
bin by the shuttle.
4

9. Cuvette 1 is transported from the cold storage area to the hot-II
storage area by the shuttle.

10. A reagent is aspirated and deposited in cuvette 1 by the reagent
arm.

11. Cuvette 1 is transported from the hot-II storage area to the
observation area by the shuttle.

12. Cuvette 1 is transported from the observation area to the waste
bin by the shuttle.

.2. The SAMSP as an RCPSP-Cu instance

In this subsection we provide an example of a particular SAMSP
ith its machine configuration and one test type, and show how this
ecomes an RCPSP-Cu instance (cf. Section 2).

We assume we have a machine with the same architecture de-
cribed in Section 3.1 with three renewable resources ℛ = {Shuttle,
ample Arm,Reagent Arm}. All three resources have only one unit
vailable; therefore 𝐵 = ⟨1, 1, 1⟩. The machine has four cumulative
esources (storage areas) 𝒞 = {Cold, Hot-I, Hot-II, Observation}.
he capacities of the storage areas are: four positions for cold, hot-
and hot-II storage and two positions for observation area, i.e., 𝑃 =
4, 4, 4, 2⟩.

To turn an SAMSP instance into an RCPSP-Cu instance we need to
btain the global set of precedence relations ℰ𝑔 by merging all prece-
ence relations of the different tests to be performed. However, we will
onsider all initial activities as the same global initial activity 𝐴0 and all
he final activities as the same global final activity 𝐴𝑛+1, with 𝑛 being
he number of non-dummy activities of all joined tests. We denote by
𝑔 the resulting set with all activities. These activities have their cor-

esponding durations d, resource demands b and occupancy/vacation
mounts c. The set of non-dummy activities is then defined as 𝒜𝑔 =
𝑔 ⧵ {𝐴0, 𝐴𝑛+1}. Finally, we denote by 𝑇𝑔 = (𝒱𝑔 , d,ℰ𝑔 ,ℛ, 𝐵, b,𝒞 , 𝑃 , c)

he RCPSP-Cu instance resulting from the union of all the tests.
Fig. 4 shows the solution found for an RCPSP-Cu consisting of two

est instances of the test type depicted in Fig. 3.
Note that the SAMSP cannot be directly encoded as a traditional

CPSP. One could think of simply joining a storage occupancy task and
ts corresponding storage vacancy task into a single task, and consider
torage as a renewable resource. Unfortunately this is not possible in
raditional RCPSP because tasks have a fixed duration. Moreover, the
ccupancy and the vacancy tasks use a different renewable resource
shuttle) only during their execution, which again makes it impossible
o merge them into a single activity.

. Preprocessing and symmetry breaking

In this section we describe some preprocessing steps and the symme-
ry breaking considerations that will be used in the different approaches
o the problem.

.1. Preprocessing

We compute the transitive closure ℰ∗
𝑔 of ℰ𝑔 , and as a result ℰ∗

𝑔
contains a triplet (𝐴𝑖, 𝐴𝑗 , 𝑙𝑖,𝑗 ) for any pair of activities (𝐴𝑖, 𝐴𝑗 ) connected
by a path, where 𝑙𝑖,𝑗 is the maximum length of any path from 𝐴𝑖 to 𝐴𝑗
n 𝐺(𝒱𝑔 ,ℰ𝑔).

We obtain the trivial upper bound

𝐵 =
∑

𝐴𝑖∈𝒜𝑔

max(d𝑖, max
(𝐴𝑖 ,𝐴𝑗 ,𝑙𝑖,𝑗 )∈ℰ𝑔

𝑙𝑖,𝑗 )

and the trivial lower bound 𝐿𝐵 = 𝑙0,𝑛+1, where (𝐴0, 𝐴𝑛+1, 𝑙0,𝑛+1) ∈ ℰ∗
𝑔 .

Also, we can compute the time windows for the different activities,
represented by their earliest (𝐸𝑆𝑖) and latest (𝐿𝑆𝑖) start time, and
earliest (𝐸𝐶𝑖) and latest (𝐿𝐶𝑖) close time. They are computed, given an
upper bound 𝑈𝐵, based on the time lag of each activity w.r.t. activities
𝐴 and 𝐴 : 𝐸𝑆 = 𝑙 , 𝐿𝑆 = 𝑈𝐵−𝑙 , 𝐸𝐶 = 𝐸𝑆 +d , 𝐿𝐶 = 𝐿𝑆 +d .
0 𝑛+1 𝑖 0,𝑖 𝑖 𝑖,𝑛+1 𝑖 𝑖 𝑖 𝑖 𝑖 𝑖
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Fig. 3. Graph of precedences of a test type. Each activity is labelled by its duration and the number of positions occupied/vacated in the corresponding storage area (C:Cold;
H:Hot-II; O:Observation) if the activity includes this. Shuttle actions are depicted in yellow, sample arm actions in blue and reagent arm actions in purple. The label of the edges
are the requested time lags between activities.
Fig. 4. Solution for two instances of the test type depicted in Fig. 3. In each activity the triplet ⟨𝑡𝑡, 𝑖𝑡𝑡, 𝑛𝑎⟩ represents: 𝑡𝑡 the test type, 𝑖𝑡𝑡 the instance number of the test and 𝑛𝑎
he activity number in the test type.
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.2. Symmetry breaking

If we have several tests of the same type, the relative order between
hem is indifferent, so we can fix some relative order without losing
ptimality. To enforce this relative order, we incorporate two prece-
ence relations (1) and (3) in ℰ𝑔 (see below) before computing the
xtended precedence graph ℰ∗

𝑔 . Recall that inequality (14) transforms
ach precedence relation from ℰ∗

𝑔 into a precedence constraint. These
dditional symmetry breaking precedence constraints allow windows
o be significantly reduced.

To define the new precedence relations we introduce a function
(𝐴𝑖) = ⟨𝑡𝑡𝑖, 𝑖𝑡𝑡𝑖, 𝑛𝑎𝑖⟩ which, for each activity 𝐴𝑖 ∈ 𝒜𝑔 , returns its test
ype 𝑡𝑡𝑖, its instance number 𝑖𝑡𝑡𝑖 within its test type, and the activity
umber 𝑛𝑎𝑖 in its test type. The added precedences are the following:

• Resource. We can enforce a relative order between all identical
activities of test instances of the same test type.

(𝐴𝑖, 𝐴𝑗 , 𝑜)
∀𝐴𝑖, 𝐴𝑗 ∈ 𝒜𝑔 , s.t.

𝑡𝑡𝑖 = 𝑡𝑡𝑗 , 𝑛𝑎𝑖 = 𝑛𝑎𝑗 , 𝑖𝑡𝑡𝑖 = 𝑖𝑡𝑡𝑗 − 1
(1)

where 𝜎(𝐴𝑖) = ⟨𝑡𝑡𝑖, 𝑖𝑡𝑡𝑖, 𝑛𝑎𝑖⟩, 𝜎(𝐴𝑗 ) = ⟨𝑡𝑡𝑗 , 𝑖𝑡𝑡𝑗 , 𝑛𝑎𝑗⟩ and 𝑜 = 0 if
𝐴𝑖 (equivalently 𝐴𝑗) does not use any resources, or 𝑜 = d𝑖 if the
activity uses some resource (note that in our setting all resources
are unary).

• Storage. These precedences only apply to activities occupying
storage areas. Since each storage area has a certain capacity, we
can bound the number of activities with the same number and
the same test type that can be running in parallel. This amount
will depend on the storage capacity and the units occupied by
each activity. The bound can be enforced until the storage area is
vacated by, at least, one unit. We need to compute the minimum
amount of time that a certain storage area will be definitely be
occupied by such activities (2). These time lags will be computed
considering only test types of equal type 𝑡𝑡. Using (3) we compute
a set of new precedences that will replace the existing ones in ℰ∗

𝑔
when they

𝑝𝑡𝑖,𝑠,𝑘 = min
(

∞, min
𝐴𝑗 ∈ 𝒜𝑘, s.t.

c𝑖,𝑠 ≠ 0,
∗

𝑙𝑖,𝑗 + d𝑗
)

5

(𝐴𝑖, 𝐴𝑗 , 𝑙𝑖,𝑗 ) ∈ ℰ𝑘 , 𝑙𝑖,𝑗 > 0 𝑆
∀𝐴𝑖 ∈ 𝒜𝑘,∀𝐶𝑠 ∈ 𝒞 ,∀𝑇𝑚 (2)

(𝐴𝑖, 𝐴𝑗 , 𝑝𝑡𝑛𝑎𝑖 ,𝑠,𝑘)
∀𝐴𝑖, 𝐴𝑗 ∈ 𝒜𝑔 ,∀𝐶𝑠 ∈ 𝒞 ,∀𝑇𝑚, s.t.

𝑝𝑡𝑛𝑎𝑖 ,𝑠,𝑘 > 0, 𝑝𝑡𝑛𝑎𝑖 ,𝑠,𝑘 < ∞,
𝑡𝑡𝑖 = 𝑡𝑡𝑗 = 𝑘, 𝑛𝑎𝑖 = 𝑛𝑎𝑗 , 𝑖𝑡𝑡𝑖 = 𝑖𝑡𝑡𝑗 − ⌊

𝑃𝑠
c𝑖,𝑠

⌋

(3)

where 𝜎(𝐴𝑖) = ⟨𝑡𝑡𝑖, 𝑖𝑡𝑡𝑖, 𝑛𝑎𝑖⟩, 𝜎(𝐴𝑗 ) = ⟨𝑡𝑡𝑗 , 𝑖𝑡𝑡𝑗 , 𝑛𝑎𝑗⟩. In (3), activities
𝐴𝑖 and 𝐴𝑗 have the same test type and activity number, and the
distance between instances of that test type due to the capacity
of storage area 𝐶𝑠 and the storage area demand of 𝐴𝑖 is ⌊

𝑃𝑠
c𝑖,𝑠

⌋.
For example, if the size of a storage area 𝐶𝑠 is 𝑃𝑠 = 2 and the
demand for positions of an activity 𝐴𝑖 is c𝑖,𝑠 = 1, we will add
precedence relations between all activities with the same activity
number as 𝐴𝑖 in instance tests 1 and 3, 2 and 4, …

. CP formulation for the SAMSP

We use the CP Optimizer system, with a set of variables tasks de-
lared as IntervalVarArray tasks(nbTasks) which is a vector of variables
f type interval. These type of variables group all the information
duration, resource consumption, storage consumption, start, end, etc.)
f an activity. In our case, all the information specified in the instance,
uch as durations and resource consumption, are preassigned. The
umber of activities is nbTasks and is equal to the cardinality of 𝒱𝑔 .

The preprocessing and the symmetry breaking exposed in Section 4,
ave also been used in CP encoding with a notable reduction in
esolution time.

Since the CP models are not time indexed, in contrast with the SMT
nd MILP models, we do not need to provide an upper bound for the
akespan. Also, we have observed that constraining the start times of

he activities to be within their time windows does not result in any
mprovement in performance.

.1. CP formulation

𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 ∶ 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒(𝐸𝑛𝑑𝑂𝑓 (𝑡𝑎𝑠𝑘𝑠[𝑛𝑏𝑇 𝑎𝑠𝑘𝑠 − 1])) (4)

∗
𝑡𝑎𝑟𝑡𝐵𝑒𝑓𝑜𝑟𝑒𝑆𝑡𝑎𝑟𝑡(𝑡𝑎𝑠𝑘[𝑖], 𝑡𝑎𝑠𝑘𝑠[𝑗], 𝑙𝑖,𝑗 ) ∀(𝐴𝑖, 𝐴𝑗 , 𝑙𝑖,𝑗 ) ∈ ℰ𝑔 (5)
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𝑆

𝐸

p

𝑠

𝑆

(

𝑆

(

For the renewable resource constraints, we can declare Cumul-
FunctionExpr resources(nbResources) as an array of size 𝑛𝑏𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠 of
cumulative functions representing the sum of individual contributions
of interval variables.

𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠[𝑟] ≤ 𝐵𝑟 ∀𝑅𝑟 ∈ ℛ (6)

where

𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠[𝑟] =
∑

𝐴𝑖∈𝒜𝑔 ,b𝑖,𝑟>0
𝑃𝑢𝑙𝑠𝑒(𝑡𝑎𝑠𝑘[𝑖], b𝑖,𝑟)

For the storage constraints, we can declare CumulFunctionExpr stor-
ages(nbStorages) which is, again, an array of size nbStorages of cumula-
tive functions.

𝑠𝑡𝑜𝑟𝑎𝑔𝑒𝑠[𝑠] ≤ 𝐶𝑠 ∀𝐶𝑠 ∈ 𝒞 (7)

where

𝑠𝑡𝑜𝑟𝑎𝑔𝑒𝑠[𝑠] =
∑

𝐴𝑖 ∈ 𝒜𝑔 ,
c𝑖,𝑠 > 0

𝑆𝑡𝑒𝑝𝐴𝑡𝑆𝑡𝑎𝑟𝑡(𝑡𝑎𝑠𝑘[𝑖], c𝑖,𝑠)

−
∑

𝐴𝑖 ∈ 𝒜𝑔 ,
c𝑖,𝑠 < 0

𝑆𝑡𝑒𝑝𝐴𝑡𝐸𝑛𝑑(𝑡𝑎𝑠𝑘[𝑖],−c𝑖,𝑠)

The objective described in (4) is to minimize the makespan. Con-
straints (5) are the precedence constraints. Constraints (6) are the
renewable resource constraints and Constraints (7) are the cumulative
constraints. In (6) we use Pulse, which is an elementary cumulative
function expression representing the contribution of an individual in-
terval variable (activity) when the activity is running. In (7) we use
StepAtStart and StepAtEnd which are elementary cumulative function
expressions representing the contribution of an individual interval
variable (activity) when the activity is started or ended respectively,
up to our horizon.

5.2. Refinements

We have considered two refinements. The first consists of using the
𝑁𝑜𝑂𝑣𝑒𝑟𝑙𝑎𝑝 function to model the renewable resources given that they
are all one unit in size. The second consists of using the 𝑃𝑢𝑙𝑠𝑒 function
to model cumulative resources, since whenever we place a cuvette in a
warehouse it will, in accordance with our instructions, end up leaving
the warehouse.

5.2.1. Using NoOverlap for renewable resources
As stated earlier, in the machine architecture considered all re-

newable resources are unary (𝐵𝑟 = 1) and demands on them are
also unary (b𝑖,𝑟 = 1). Therefore, we can replace renewable resource
constraints (6) by employing a disjunction between the execution of
activities requiring the same resource.

The resources array is not declared, but instead we declare an
IntervalVarArray over for each resource 𝑟, which is an array of interval
variables. We will place in it the activities that cannot be overlapped
for each resource.

𝑁𝑜𝑂𝑣𝑒𝑟𝑙𝑎𝑝(𝑜𝑣𝑒𝑟𝑟) ∀𝑅𝑟 ∈ ℛ (8)

where

𝑜𝑣𝑒𝑟𝑟 = [ 𝑡𝑎𝑠𝑘𝑠[𝑖] | 𝐴𝑖 ∈ 𝒜𝑔 , s.t. b𝑖,𝑟 > 0]

5.2.2. Using pulse for cumulative resources
Every test has a description which says when a cuvette is to be

placed in a particular location and when it is to be removed from said
location, i.e., one task puts a cuvette in a specific storage area and
another removes this cuvette from that the storage point.

At preprocessing time we compute the set

𝒪𝑔 =
⋃

𝒪𝑠
6

∀𝐶𝑠∈𝒞
where each 𝒪𝑠 is the same as 𝒪𝑔 restricted to a storage 𝐶𝑠. Each 𝑜𝑖 ∈ 𝒪𝑔
is a virtual task that starts at the same time as the task with number
𝑜𝑠𝑖 (𝐴𝑜𝑠𝑖

∈ 𝒜𝑔) (put a cuvette in a storage area) and ends at the same
time as the task with number 𝑜𝑒𝑖 (𝐴𝑜𝑒𝑖

∈ 𝒜𝑔) (remove a cuvette from a
storage area). The 𝑜𝑠𝑖 and 𝑜𝑒𝑖 associated with 𝑜𝑖 are also computed at the
preprocessing time, depending on a description of a test.

To implement the set 𝒪𝑔 , we use an IntervalVarArray called
𝑜𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦. The constraints linking 𝑜𝑖 with their respective 𝐴𝑜𝑠𝑖

and 𝐴𝑜𝑒𝑖
re:

𝑡𝑎𝑟𝑡𝑎𝑡𝑆𝑡𝑎𝑟𝑡(𝑜𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦[𝑖], 𝑡𝑎𝑠𝑘𝑠[𝑜𝑠𝑖 ]) ∀𝑜𝑖 ∈ 𝒪𝑔 (9)

𝑛𝑑𝑎𝑡𝐸𝑛𝑑(𝑜𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦[𝑖], 𝑡𝑎𝑠𝑘𝑠[𝑜𝑒𝑖 ]) ∀𝑜𝑖 ∈ 𝒪𝑔 (10)

The execution of each element of occupancy determines the occu-
ancy of a position in a storage area, so Constrains (7) are replaced by:

𝑡𝑜𝑟𝑎𝑔𝑒𝑠[𝑠] ≤ 𝐶𝑠 ∀𝐶𝑠 ∈ 𝒞 (11)

where

𝑠𝑡𝑜𝑟𝑎𝑔𝑒𝑠[𝑠] =
∑

𝑜𝑖∈𝒪𝑠

𝑃𝑢𝑙𝑠𝑒(𝑜𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦[𝑖], 1)

we describe the variables used in the encoding and then the encoding
itself.

6. SMT encoding of the SAMSP

First, we describe the variables used in the encoding and then
the encoding itself. In the encoding, we use the preprocessing and
symmetry breaking described in Section 4. Furthermore, we define the
optimization method used, as well as some refinements made to the
initial encoding.

6.1. Variables

Below we define the following variables that will be used in our
constraints.

𝑆𝑖 integer variables that denote the start time of activity 𝐴𝑖, ∀𝐴𝑖 ∈
𝒱 .

𝑋𝑖,𝑡 integer variables that are 1 if 𝐴𝑖 is running at time 𝑡, or 0
otherwise. ∀𝐴𝑖 ∈ 𝒜 ,∀𝑡 ∈ [𝐸𝑆𝑖 …𝐿𝐶𝑖 − 1].

𝑌𝑖,𝑡 integer variables that are 1 iff 𝐴𝑖 has already started at time 𝑡, or
0 otherwise, ∀𝐴𝑖 ∈ 𝒜 ,∀𝑡 ∈ [𝐸𝑆𝑖 …𝐿𝑆𝑖 − 1], s.t.∃𝐶𝑠 ∈ 𝒞 , c𝑖,𝑠 ≠ 0.

6.2. SMT encoding

The following set of SMT constraints encode a schedule within a
given time horizon 𝐻 .

0 = 0 (12)

𝐸𝑆𝑖 ≤ 𝑆𝑖) ∧ (𝑆𝑖 ≤ 𝐿𝑆𝑖) ∀𝐴𝑖 ∈ 𝒱 (13)

𝑗 − 𝑆𝑖 ≥ 𝑙𝑖,𝑗 ∀(𝐴𝑖, 𝐴𝑗 , 𝑙𝑖,𝑗 ) ∈ ℰ∗ (14)

0 ≤ 𝑋𝑖,𝑡) ∧ (𝑋𝑖,𝑡 ≤ 1) ∀𝐴𝑖 ∈ 𝒜 ,∀𝑡 ∈ [𝐸𝑆𝑖 …𝐿𝐶𝑖 − 1] (15)

𝑋𝑖,𝑡 = 1 ↔ ((𝑆𝑖 ≤ 𝑡) ∧ (𝑡 < 𝑆𝑖 + d𝑖)) ∀𝐴𝑖 ∈ 𝒜 ,∀𝑡 ∈ [𝐸𝑆𝑖 …𝐿𝐶𝑖 − 1] (16)

(0 ≤ 𝑌𝑖,𝑡) ∧ (𝑌𝑖,𝑡 ≤ 1)
∀𝐴𝑖 ∈ 𝒜 ,∀𝑡 ∈ [𝐸𝑆𝑖 …𝐿𝑆𝑖 − 1], s.t.

∃𝐶𝑠 ∈ 𝒞 , c𝑖,𝑠 ≠ 0

(17)

𝑌𝑖,𝑡 = 1 ↔ (𝑆𝑖 ≤ 𝑡)
∀𝐴𝑖 ∈ 𝒜 ,∀𝑡 ∈ [𝐸𝑆𝑖 …𝐿𝑆𝑖 − 1], s.t.

∃𝐶𝑠 ∈ 𝒞 , c𝑖,𝑠 ≠ 0

(18)
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(

∑

𝐴𝑖 ∈ 𝒜 , s.t.
𝑡 ∈ [𝐸𝑆𝑖 …𝐿𝐶𝑖 − 1],

b𝑖,𝑟 > 0

b𝑖,𝑟 ⋅𝑋𝑖,𝑡

)

≤ 𝐵𝑟 ∀𝑅𝑟 ∈ ℛ,∀𝑡 ∈ [0…𝐻] (19)

0 ≤ 𝑃𝑆𝑠,𝑡 +

(

∑

𝐴𝑖 ∈ 𝒜 , s.t.
𝑡 ∈ [𝐸𝑆𝑖 …𝐿𝑆𝑖 − 1],

c𝑖,𝑠 > 0

c𝑖,𝑠 ⋅ 𝑌𝑖,𝑡

)

+

(

∑

𝐴𝑖 ∈ 𝒜 , s.t.
𝑡 ∈ [𝐸𝐶𝑖 …𝐿𝐶𝑖 − 1],

c𝑖,𝑠 < 0

c𝑖,𝑠 ⋅ 𝑌𝑖,(𝑡−d𝑖)

)

≤ 𝑃𝑠

∀𝐶𝑠 ∈ 𝒞 ,∀𝑡 ∈ [0…𝐻] (20)

where

𝑃𝑆𝑠,𝑡 =
∑

𝐴𝑗 ∈ 𝒜 , s.t.
𝐿𝑆𝑗 ≤ 𝑡,c𝑗,𝑠 > 0

c𝑗,𝑠 +
∑

𝐴𝑗 ∈ 𝒜 , s.t.
𝐿𝐶𝑗 ≤ 𝑡,c𝑗,𝑠 < 0

c𝑗,𝑠 (21)

Constraints (13) restrict the start times of each activity. Constraints
(14) are precedence constraints. Constraints (15) and (16) enforce
pseudo-Boolean variables 𝑋𝑖,𝑡 to be 1 if and only if activity 𝐴𝑖 is running
at time 𝑡. Constraints (17) and (18) enforce pseudo-Boolean variables
𝑌𝑖,𝑡 to be 1 if and only if activity 𝐴𝑖 has already started to run at
time 𝑡 and occupy/vacate a storage area. Constraints (19) and (20) are
the renewable resource and storage constraints, respectively. It can be
observed that when an activity occupies some positions in a storage
area (an activity having a positive value of c𝑖,𝑠) this occupancy counts
for each time instant ranging from the start time of the activity to 𝐻 .
On the other hand, when an activity vacates some positions in a storage
area (an activity having a negative value of c𝑖,𝑠) this also counts for each
time instant ranging from the end time of the activity to 𝐻 . We can
see that if the test is well constructed, then the non-negative restriction
in (20) is not necessary since a storage area will always be occupied
before being vacated, and there is a precedence between occupying and
vacating actions. Eq. (21) describes how we pre-compute the number
𝑃𝑆𝑠,𝑡 for all cumulative resources and for each time instance. This
number is the aggregate of the occupancy and vacation of storage 𝑠 due
to the activities that have already started or finished at time 𝑡 according
to their time windows.

6.3. Optimization

Since we use a time indexed formulation, the number of variables
and clauses of our SMT encoding is proportional to the given upper
bound of the makespan. Therefore, it is very important to find a good
upper bound. To do this, we have implemented a procedure based on
satisfiability queries to the SMT solver. We start with checking the
feasibility of the problem by setting as upper bound the trivial lower
bound. If we obtain a positive answer then we have an upper bound
(and hence an optimal solution because the upper bound is the same as
the lower bound). Otherwise, we keep doubling the value of this upper
bound and repeating the process until we obtain a positive answer, and
hence a valid upper bound. This technique is based on the destructive
lower bounds technique introduced in Klein and Scholl (1999).

Once we have obtained a valid upper bound, optimization is per-
formed using a binary search between the 𝑈𝐵 and the 𝐿𝐵, until the
difference between these limits is less than 10 units of time. Then,
we carry out a top-down sequential search avoiding re-encoding the
problem from scratch at each satisfiability call but instead simply
adding clauses to decrease the upper bound. In doing this, we are able
to take advantage of the lemmas learnt by the SMT solver between
successive calls.
7

6.4. Refinements

We made the following refinements to the encoding in Section 6.2:

1. Resource Constraints. In the machine architecture considered,
all renewable resources are unary (𝐵𝑟 = 1) and the demands
for them are also unary (b𝑖,𝑟 = 1). Therefore, we can replace
the renewable resource constraints (19) in the basic encoding in
Section 6.2 in several alternative ways:

• We can enforce a disjunction between the execution of
activities requiring the same resource:

(𝑆𝑗 ≥ 𝑆𝑖 + d𝑖) ∨ (𝑆𝑖 ≥ 𝑆𝑗 + d𝑗 )

∀𝐴𝑖, 𝐴𝑗 ∈ 𝒜𝑔 , 𝑖 < 𝑗, s.t.
[𝐸𝑆𝑖 …𝐿𝐶𝑖 − 1] ∩ [𝐸𝑆𝑗 …𝐿𝐶𝑗 − 1] ≠ ∅,

∃𝑅𝑟 ∈ ℛ, b𝑖,𝑟 > 0, b𝑗,𝑟 > 0
(22)

In this case, it is not necessary to introduce variables 𝑋𝑖,𝑡
nor constraints (15) and (16).

• Since integer variables 𝑋𝑖,𝑡 are in fact pseudo-Boolean
variables, we can easily replace them by Boolean variables
𝑥𝑖,𝑡 that are true iff 𝐴𝑖 is running at time 𝑡, ∀𝐴𝑖 ∈ 𝒜 ,∀𝑡 ∈
[𝐸𝑆𝑖 …𝐿𝐶𝑖 − 1], i.e., replacing constraints(15) and (16)
with:

𝑥𝑖,𝑡 ↔ ((𝑆𝑖 ≤ 𝑡) ∧ (𝑡 < 𝑆𝑖 + d𝑖)) ∀𝐴𝑖 ∈ 𝒜 ,∀𝑡 ∈ [𝐸𝑆𝑖 …𝐿𝐶𝑖 − 1]

(23)

Then (19) can be replaced by an SAT encoding of an
at-most-one (AMO) constraint:

𝐴𝑀𝑂 𝐴𝑖 ∈ 𝒜𝑔 , s.t.
𝑡 ∈ [𝐸𝑆𝑖 …𝐿𝐶𝑖 − 1],

b𝑖,𝑟 > 0

(𝑥𝑖,𝑡)

∀𝑅𝑟 ∈ ℛ,∀𝑡 ∈ [0,𝐻] (24)

In particular, we use two encodings for constraints(24):
regular/ladder encoding (see Biere et al., 2009), and the
pairwise encoding, which introduces the follow clauses:

𝑥𝑖,𝑡 ∨ 𝑥𝑗,𝑡
∀𝐴𝑖, 𝐴𝑗 ∈ 𝒜𝑔 , 𝑖 < 𝑗,

∀𝑡 ∈ [𝐸𝑆𝑖 …𝐿𝐶𝑖 − 1] ∩ [𝐸𝑆𝑗 …𝐿𝐶𝑗 − 1], s.t.
∃𝑅𝑟 ∈ ℛ, b𝑖,𝑟 > 0, b𝑗,𝑟 > 0

(25)

Notice that if (𝐴𝑖, 𝐴𝑗 , 𝑙𝑖,𝑗 ) ∈ ℰ∗
𝑔 and 𝑙𝑖,𝑗 > 0 or (𝐴𝑗 , 𝐴𝑖, 𝑙𝑗,𝑖) ∈ ℰ∗

𝑔
and 𝑙𝑗,𝑖 > 0 then:

• If 𝑙𝑖,𝑗 > d𝑖 or 𝑙𝑗,𝑖 > d𝑗 it is impossible that these two activi-
ties are simultaneously executed, therefore constraints (22)
and the pairwise encoding (25) do not introduce clauses for
such pairs of activities.

• Otherwise, there is a relative order between these activities
(w.l.o.g. d𝑖 ≥ 𝑙𝑖,𝑗 > 0) and only one part of the disjunction
of (22) is needed (i.e. (𝑆𝑗 ≥ 𝑆𝑖 + d𝑖)).

2. Cumulative Constraints. As with renewable resource
constraints, we can use Boolean variables 𝑦𝑖,𝑡 instead of inte-
ger variables 𝑌𝑖,𝑡 to deal with cumulative constraints, i.e., 𝑦𝑖,𝑡
Boolean variables that are true iff 𝐴𝑖 has already started at time
𝑡, ∀𝐴𝑖 ∈ 𝒜𝑔 ,∀𝑡 ∈ [𝐸𝑆𝑖 …𝐿𝑆𝑖 −1], thus replacing constraints (17)
and (18) with the following:

𝑦𝑖,𝑡 ↔ (𝑆𝑖 ≤ 𝑡) ∀𝐴𝑖 ∈ 𝒜𝑔 ,∀𝑡 ∈ [𝐸𝑆𝑖 …𝐿𝑆𝑖 − 1], s.t.,
∃𝐶𝑠 ∈ 𝒞 , c𝑖,𝑠 ≠ 0

(26)

Using Boolean variables 𝑦𝑖,𝑡 and the SAT encoding of cardinality
constraints presented in Abío et al. (2013), we can replace
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Table 1
Test Type description.
Test Act. Prec. LB Renewable resources Storages areas

Shuttle S. Arm R. Arm Cold Hot-I Hot-II Obser.

Type 1 7 8 25 3 1 1 0 1 0 1
Type 2 14 17 62 6 5 1 2 0 1 1
Type 3 9 11 44 4 1 2 0 1 1 1
Type 4 9 10 38 4 1 2 1 0 1 1
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constraints (20) with:

𝑃𝑆𝑠,𝑡 +

(

∑

𝐴𝑖 ∈ 𝒜𝑔 , s.t.
𝑡 ∈ [𝐸𝑆𝑖 …𝐿𝑆𝑖 ],

c𝑖,𝑠 > 0

𝑦𝑖,𝑡

)

+

(

∑

𝐴𝑖 ∈ 𝒜𝑔 , s.t.
𝑡 ∈ [𝐸𝐶𝑖 …𝐿𝐶𝑖 − 1],

c𝑖,𝑠 < 0

(𝑦𝑖,(𝑡−d𝑖) − 1)

)

≤ 𝑃𝑠

∀𝐶𝑠 ∈ 𝒞 ,∀𝑡 ∈ [0…𝐻] (27)

. MILP formulation for the SAMSP

Our formulation is based on the Disaggregated Time-Indexed (DDT)
ILP Formulation for RCPSP. This was formulated by Christofides

t al. (1987) for RCPSP, and is very similar to the Time-Indexed (DT)
ormulation of Pritsker et al. (1969). The two formulations mainly
iffer in how they formulate the precedence constraints. This is the best
ormulation in most cases; as can be seen in Artigues (2017). It only
ses a set of binary decision variables x𝑖,𝑡 ∈ {0, 1} that are 1 if 𝐴𝑖 starts
t time 𝑡, or 0 otherwise, ∀𝐴𝑖 ∈ 𝒱𝑔 ,∀𝑡 ∈ [𝐸𝑆𝑖 …𝐿𝑆𝑖]. Our formulation
s based on Chaleshtarti and Shadrokh (2011).

The preprocessing and the symmetry breaking detailed in Sec-
ion 6.4 have also been used in the MILP formulation, with a notable
eduction in encoding size and resolution time.

.1. MILP formulation

in
∑

𝑡∈[𝐸𝑆𝑛+1…𝐿𝑆𝑛+1]
𝑡 ⋅ x𝑛+1,𝑡 (28)

.t.
∑

∈[𝐸𝑆𝑖…𝐿𝑆𝑖]
x𝑖,𝑡 = 1 ∀𝐴𝑖 ∈ 𝒱𝑔 (29)

∑

∈[𝐸𝑆𝑗…𝐿𝑆𝑗 ]
𝑡 ⋅ x𝑗,𝑡 −

∑

𝑡∈[𝐸𝑆𝑖…𝐿𝑆𝑖]
𝑡 ⋅ x𝑖,𝑡 ≥ 𝑙𝑖,𝑗 ∀(𝐴𝑖, 𝐴𝑗 , 𝑙𝑖,𝑗 ) ∈ ℰ∗

𝑔 (30)

∑

𝐴𝑖 ∈ 𝒜𝑔 , s.t.
𝑡 ∈ [𝐸𝑆𝑖 …𝐿𝐶𝑖 − 1],

b𝑖,𝑟 > 0

(
𝑡

∑

𝑧=max(𝐸𝑆𝑖 ,𝑡−𝑝𝑖+1)
b𝑖,𝑟 ⋅ x𝑖,𝑧)

)

≤ 𝐵𝑟

𝑅𝑟 ∈ ℛ,∀𝑡 ∈ [0…𝐻] (31)

𝑆𝑠,𝑡 +

(

∑

𝐴𝑖 ∈ 𝒜𝑔 , s.t.
𝑡 ∈ [𝐸𝑆𝑖 …𝐿𝑆𝑖 − 1],

c𝑖,𝑠 > 0

(
𝑡

∑

𝑧=𝐸𝑆𝑖

c𝑖,𝑠 ⋅ x𝑖,𝑧)

)

+

(

∑

𝐴𝑖 ∈ 𝒜𝑔 , s.t.
𝑡 ∈ [𝐸𝐶𝑖 …𝐿𝐶𝑖 − 1],

c𝑖,𝑠 < 0

(
𝑡

∑

𝑧=𝐸𝐶𝑖

c𝑖,𝑠 ⋅ x𝑖,(𝑧−d𝑖))

)

≤ 𝑃𝑠

∀𝐶𝑠 ∈ 𝒞 ,∀𝑡 ∈ [0…𝐻] (32)

The objective is (28), minimize the makespan. Constraints (29) state
hat each activity has to be started exactly once in the scheduling hori-
on. Constraints (30) are the precedence constraints. Constraints (31)
8

s

re the renewable resource constraints and Constraints (32) are the
umulative resource constraints.

.2. Refinements

As stated above, in the machine architecture considered, all re-
ewable resources are unary (𝐵𝑟 = 1) and demands on them are
lso unary (b𝑖,𝑟 = 1). Therefore, we can replace renewable resource
onstraints (31) with a disjunction between the execution of activities
equiring the same resource:

𝑖,𝑡 +
min(𝑡+𝑑𝑖−1,𝐿𝑆𝑗 )

∑

𝑧=max(𝐸𝑆𝑖 ,𝑡−𝑑𝑗+1)
x𝑗,𝑧 ≤ 1

∀𝐴𝑖, 𝐴𝑗 ∈ 𝒜𝑔 , 𝑖 < 𝑗,∀𝑡 ∈ [𝐸𝑆𝑖 …𝐿𝑆𝑖], s.t.
[𝐸𝑆𝑖 …𝐿𝐶𝑖 − 1] ∩ [𝐸𝑆𝑗 …𝐿𝐶𝑗 − 1] ≠ ∅,

∃𝑅𝑟 ∈ ℛ,b𝑖,𝑟 > 0,b𝑗,𝑟 > 0

(33)

The disjunction between activities 𝐴𝑖 and 𝐴𝑗 is enforced by forbidding
𝐴𝑗 to run when 𝐴𝑖 starts. For this purpose, we consider all time instants
𝑧 such that if activity 𝐴𝑗 starts at time 𝑧, it will be running at time 𝑡.
Time windows are also taken into account when considering the ranges
of times 𝑡 and 𝑧.

8. Experiments

We ran our experiments on an 8 GB Intel® Xeon® E3-1220v2
achine at 3.10 GHz. For our experiments, we consider four different

est types for the actual machine layout described in Section 3.1. In
ections 8.1–8.4, we experiment with SMT, CP and MILP with the
irst machine configuration proposal from the company itself, which is
4, 4, 4, 2⟩, i.e., there are four positions for Cold, Hot-I and Hot-II Storage
reas, and two positions for the Observation Area. In Section 8.5, we
xperiment with different configurations of the machine.

In Table 1 we summarize the main characteristics of the test types
hat we consider for our experiments. We recall that these test types
re based on the ones that our client was using. These test types
nvolve activities of short duration ranging from three to seven time
nits (corresponding to fast shuttle or arm operations), but with larger
ime lag, of up to 30 time units (corresponding to the durations of
he different chemical processes), between them. For each test type,
e indicate the number of (non-dummy) activities, the total number of
recedences between activities, the initial LB, the number of activities
equiring each renewable resource (shuttle, sample arm, reagent arm)
nd the number of activities that occupy storage resources. Recall that,
n our layout an activity corresponds to either a shuttle movement or
n arm action and therefore only one renewable resource is required
y each activity. Furthermore, in our test types, for each activity that
ccupies a storage position, there is another activity that vacates that
osition. Notice, therefore, that a single test of a particular type by
tself is not a hard problem to solve, since in most cases the activities
equiring the resource must be executed in a certain order defined by
he precedence relations. Nevertheless, the instances we consider are
omprised of several tests, and therefore many activities may require
he same resource.

We name the instances following the nomenclature 𝐼𝐿, where 𝐿 =
⟨𝑖, 𝑗⟩] is a list of pairs in which 𝑖 is a test type identifier and 𝑗 is the
umber of required tests of test type 𝑖. The instances are divided in two
ets: Set I contains basic instances and Set II contains more complex
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Table 2
Set I Instances Description.
Instance Opt. Act. Precedences Act. demanding LB initial

w/o SB w SB Renewable Storage w/o SB w SB

𝐼[⟨1,5⟩] 59 27 131 341 25 10 25 59
𝐼[⟨1,10⟩] 102 52 261 1206 50 20 25 100
𝐼[⟨1,20⟩] 192 102 521 4511 100 40 25 185
𝐼[⟨2,5⟩] 173 62 541 1501 60 20 62 128
𝐼[⟨2,10⟩] 297 122 1081 5401 120 40 62 200
𝐼[⟨2,20⟩] 548 242 2161 20401 240 80 62 365
𝐼[⟨3,5⟩] 89 37 251 681 35 15 44 88
𝐼[⟨3,10⟩] 145 72 501 2436 70 30 44 139
𝐼[⟨3,20⟩] 264 142 1001 9171 140 60 44 249
𝐼[⟨4,5⟩] 69 37 206 546 35 15 38 66
𝐼[⟨4,10⟩] 124 72 411 1941 70 30 38 101
𝐼[⟨4,20⟩] 244 142 821 7281 140 60 38 171
𝐼[⟨1,5⟩,⟨2,5⟩] 197 87 671 1891 85 30 62 128
𝐼[⟨1,10⟩,⟨2,10⟩] 357 172 1341 6606 170 60 62 200
𝐼[⟨1,5⟩,⟨3,5⟩] 122 62 381 1021 60 25 44 88
𝐼[⟨1,10⟩,⟨3,10⟩] 224 122 761 3641 120 50 44 139
𝐼[⟨1,5⟩,⟨4,5⟩] 109 62 336 866 60 25 38 66
𝐼[⟨1,10⟩,⟨4,10⟩] 214 122 671 3146 120 50 38 101
𝐼[⟨2,5⟩,⟨3,5⟩] 205 97 791 2131 95 35 62 128
𝐼[⟨2,10⟩,⟨3,10⟩] 365 192 1581 7836 190 70 62 200
𝐼[⟨2,5⟩,⟨4,5⟩] 201 97 746 2056 95 35 62 128
𝐼[⟨2,10⟩,⟨4,10⟩] 361 192 1491 7341 190 70 62 191
𝐼[⟨3,5⟩,⟨4,5⟩] 124 72 456 1226 70 30 44 88
𝐼[⟨3,10⟩,⟨4,10⟩] 244 142 911 4376 140 60 44 139
Table 3
Set II Instances Description.
Instance Opt. Act. Precedences Act. demanding LB initial

w/o SB w SB Renewable Storage w/o SB w SB

𝐼[⟨1,60⟩] 552 302 1561 38731 300 120 25 525
𝐼[⟨1,120⟩] 1092 602 3121 153061 600 240 25 1035
𝐼[⟨2,60⟩] 1548 722 6481 176401 720 240 62 1025
𝐼[⟨2,120⟩] 3048 1442 12961 698401 1440 480 62 2015
𝐼[⟨3,60⟩] unk 422 3001 79111 420 180 44 689
𝐼[⟨3,120⟩] unk 842 6001 313021 840 360 44 1349
𝐼[⟨4,60⟩] 724 422 2461 62641 420 180 38 451
𝐼[⟨4,120⟩] 1444 842 4921 247681 840 360 38 871
𝐼[⟨1,20⟩,⟨2,20⟩] 677 342 2681 24911 340 120 62 365
𝐼[⟨1,20⟩,⟨3,20⟩] 432 242 1521 13681 240 100 44 249
𝐼[⟨1,20⟩,⟨4,20⟩] 424 242 1341 11791 240 100 38 185
𝐼[⟨2,20⟩,⟨3,20⟩] 685 382 3161 29571 380 140 62 365
𝐼[⟨3,20⟩,⟨4,20⟩] 681 382 2981 27681 380 140 62 365
𝐼[⟨3,20⟩,⟨4,20⟩] 484 282 1821 16451 280 120 44 249
𝐼[⟨1,5⟩,⟨2,5⟩,⟨3,5⟩] 232 122 921 2521 120 45 62 128
𝐼[⟨1,5⟩,⟨2,5⟩,⟨4,5⟩] 232 122 876 2386 120 45 62 128
𝐼[⟨1,5⟩,⟨3,5⟩,⟨4,5⟩] 169 97 586 1566 95 40 44 88
𝐼[⟨2,5⟩,⟨3,5⟩,⟨4,5⟩] 236 132 996 2726 130 50 62 128
𝐼[⟨1,10⟩,⟨2,10⟩,⟨3,10⟩] 427 242 1841 9041 240 90 62 200
𝐼[⟨1,10⟩,⟨2,10⟩,⟨4,10⟩] 427 242 1751 8546 240 90 62 200
𝐼[⟨1,10⟩,⟨3,10⟩,⟨4,10⟩] 334 192 1171 5581 190 80 44 139
𝐼[⟨2,10⟩,⟨3,10⟩,⟨4,10⟩] 431 262 1991 9776 260 100 62 200
𝐼[⟨1,5⟩,⟨2,5⟩,⟨3,5⟩,⟨4,5⟩] 267 157 1126 3066 155 60 62 128
𝐼[⟨1,10⟩,⟨2,10⟩,⟨3,10⟩,⟨4,10⟩] unk 312 2251 10981 310 120 62 200
c
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instances. Set II is only run with CP, which is the only setting able to
solve all instances of Set I with small running times.

The different instances that we consider capture the most common
and interesting test sets according to our customer’s requirements. A
commonly used benchmarking setting is to test the throughput of an
analysis machine given a certain number of tests of the same type,
such as instances 𝐼[⟨1,20⟩] or 𝐼[⟨1,60⟩]. Also, it is interesting to consider in-
tances with many combinations of different test types, like 𝐼[⟨3,10⟩,⟨4,10⟩]
r 𝐼[⟨1,5⟩,⟨2,5⟩,⟨3,5⟩,⟨4,5⟩], in order to detect patterns in the optimal solutions
n distinct scenarios. A common case is to receive a set of samples and
o perform the same test types on all of them, hence having the same
umber of tests for each type.

Tables 2 and 3 describe the sets of instances: the column Instance
ontains the instance name; column Opt. the optimum makespan of the
nstances (or – if unknown); column Act. the total number of activities;
9

olumns Precedences report the total number of extended precedence re-
ations without and with the symmetry breaking precedences explained
n Section 4.2; columns Act. demanding report the number of activities
emanding a renewable resource (column Renewable) and the number
f activities that occupy a storage position (column Storage); columns
B initial contain the initial LB of the makespan, computed from the
xtended precedence graph without and with the symmetry breaking
recedences. The number of activities in the considered instances range
rom 27 to 242 in Set I, and from 97 to 1442 in Set II. It can be
bserved that the number of precedence relations grows significantly
hen using symmetry breaking, especially in the instances where there

s a large number of tests of a same type. This increase in the number
f precedences results in an improvement in the computed LB of
he makespan. In fact, when symmetry breaking is not used, the LB
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Table 4
Set I. Performance comparison of CP encoding variants. Time in seconds (time limit 600).
Instance Opt. 𝐶𝑃 𝐶𝑃𝑠𝑏 𝐶𝑃𝑛𝑜 𝐶𝑃𝑠𝑏𝑝 𝐶𝑃𝑛𝑜𝑝

𝐼[⟨1,5⟩] 59 300 <1 <1 <1 <1
𝐼[⟨1,10⟩] 102 334 <1 <1 <1 <1
𝐼[⟨1,20⟩] 192 – <1 <1 1 <1
𝐼[⟨2,5⟩] 173 <1 <1 <1 <1 <1
𝐼[⟨2,10⟩] 298 2 <1 <1 <1 <1
𝐼[⟨2,20⟩] 548 103 <1 <1 <1 1
𝐼[⟨3,5⟩] 89 1 <1 <1 <1 <1
𝐼[⟨3,10⟩] 145 – <1 <1 <1 <1
𝐼[⟨3,20⟩] 264 – 3 4 3 5
𝐼[⟨4,5⟩] 69 <1 <1 <1 <1 <1
𝐼[⟨4,10⟩] 124 17 <1 <1 <1 <1
𝐼[⟨4,20⟩] 244 – <1 <1 <1 <1
𝐼[⟨1,5⟩,⟨2,5⟩] 197 5 <1 <1 1 1
𝐼[⟨1,10⟩,⟨2,10⟩] 357 – 7 5 7 6
𝐼[⟨1,5⟩,⟨3,5⟩] 122 191 2 1 1 2
𝐼[⟨1,10⟩,⟨3,10⟩] 224 – 27 23 40 38
𝐼[⟨1,5⟩,⟨4,5⟩] 109 3 <1 <1 <1 <1
𝐼[⟨1,10⟩,⟨4,10⟩] 214 – 1 1 2 2
𝐼[⟨2,5⟩,⟨3,5⟩] 205 4 1 1 1 2
𝐼[⟨2,10⟩,⟨3,10⟩] 365 14 13 17 13 29
𝐼[⟨2,5⟩,⟨4,5⟩] 201 9 1 1 5 4
𝐼[⟨2,10⟩,⟨4,10⟩] 361 – 15 18 21 17
𝐼[⟨3,5⟩,⟨4,5⟩] 124 4 1 1 2 1
𝐼[⟨3,10⟩,⟨4,10⟩] 244 262 2 4 9 6

𝑇𝑂𝑇𝐴𝐿𝑆 24 16 24 24 24 24
Table 5
Set II. Performance comparison of CP encoding variants for difficult instances. Time in seconds (time limit 600).
Instance Opt. 𝐶𝑃 𝐶𝑃𝑠𝑏 𝐶𝑃𝑛𝑜 𝐶𝑃𝑠𝑏𝑝 𝐶𝑃𝑛𝑜𝑝

𝐼[⟨1,60⟩] 552 – 9 9 7 7
𝐼[⟨1,120⟩] 1092 – 103 75 83 97
𝐼[⟨2,60⟩] 1548 – 2 2 10 13
𝐼[⟨2,120⟩] 3048 – 11 11 70 63
𝐼[⟨3,60⟩] unk – – – – –
𝐼[⟨3,120⟩] unk – – – – –
𝐼[⟨4,60⟩] 724 – 1 2 2 2
𝐼[⟨4,120⟩] 1444 – 10 10 12 9
𝐼[⟨1,20⟩,⟨2,20⟩] 677 – 53 50 78 76
𝐼[⟨1,20⟩,⟨3,20⟩] 432 – 495 – – –
𝐼[⟨1,20⟩,⟨4,20⟩] 424 – 8 7 26 13
𝐼[⟨2,20⟩,⟨3,20⟩] 685 – 130 57 56 96
𝐼[⟨2,20⟩,⟨4,20⟩] 681 – 309 157 328 271
𝐼[⟨3,20⟩,⟨4,20⟩] 484 – 12 12 19 17
𝐼[⟨1,5⟩,⟨2,5⟩,⟨3,5⟩] 232 67 6 4 6 11
𝐼[⟨1,5⟩,⟨2,5⟩,⟨4,5⟩] 232 – 9 13 12 11
𝐼[⟨1,5⟩,⟨3,5⟩,⟨4,5⟩] 169 19 3 3 8 4
𝐼[⟨2,5⟩,⟨3,5⟩,⟨4,5⟩] 236 194 8 6 11 10
𝐼[⟨1,10⟩,⟨2,10⟩,⟨3,10⟩] 427 – 123 44 79 93
𝐼[⟨1,10⟩,⟨2,10⟩,⟨4,10⟩] 427 – 260 184 373 167
𝐼[⟨1,10⟩,⟨3,10⟩,⟨4,10⟩] 334 – 28 15 28 20
𝐼[⟨2,10⟩,⟨3,10⟩,⟨4,10⟩] 431 – 232 240 340 285
𝐼[⟨1,5⟩,⟨2,5⟩,⟨3,5⟩,⟨4,5⟩] 267 – 69 70 109 84
𝐼[⟨1,10⟩,⟨2,10⟩,⟨3,10⟩,⟨4,10⟩] unk – – – – –

𝑇𝑂𝑇𝐴𝐿𝑆 24 3 21 20 20 20
corresponds to the largest LB among the different test types included
in the instance.

8.1. CP experiments

In the CP experiments we have used the IBM ILOG CP Optimizer
V12.9.0 (IBM, 2019) as the CP engine and we have considered the
following encodings:

• 𝐶𝑃 : the basic encoding provided in Section 5.1, consisting of a
Pulse formulation for the renewable resource constraints. Symme-
try breaking is not applied.

• 𝐶𝑃 : 𝐶𝑃 plus symmetry breaking.
10

𝑠𝑏
• 𝐶𝑃𝑛𝑜: the encoding refinement provided in Section 5.2, where
no-overlap formulation is used for the renewable resource con-
straints. Symmetry breaking is also applied.

• 𝐶𝑃𝑠𝑏𝑝: 𝐶𝑃𝑠𝑏 using Pulse function for cumulative resources.
• 𝐶𝑃𝑛𝑜𝑝: 𝐶𝑃𝑛𝑜 using Pulse function for cumulative resources.

Table 4 reports on the utilization of CP Optimizer for our problem
for the instances in Set I. The first thing to observe is that using
symmetry breaking makes a huge difference in the performance of the
solver, since both 𝐶𝑃𝑠𝑏 and 𝐶𝑃𝑛𝑜 are able to optimally solve all the
instances and, in most cases, in less than one second. On the contrary,
if symmetry breaking is not used, the solver is unable to certify the
optimality of eight instances. Moreover, among the optimally certified

instances, it requires more than 100 s in some cases.
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t
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Table 6
Set I. Performance comparison of SMT encoding variants. Time in seconds (time limit 600).
Instance 𝑂𝑝𝑡 𝑆𝑀𝑇 𝑆𝑀𝑇𝑠𝑏 Resources 𝑆𝑀𝑇𝑎𝑚𝑜,𝑐𝑎𝑟𝑑

𝑆𝑀𝑇𝑎𝑚𝑜 𝑆𝑀𝑇𝑏 𝑆𝑀𝑇𝑑𝑗
𝐼[⟨1,5⟩] 59 <1 <1 <1 <1 <1 <1
𝐼[⟨1,10⟩] 102 – 1 1 1 1 2
𝐼[⟨1,20⟩] 192 – 7 5 6 6 14
𝐼[⟨2,5⟩] 173 20 3 2 3 2 4
𝐼[⟨2,10⟩] 298 – 42 17 25 54 36
𝐼[⟨2,20⟩] 548 – – 152 202 – 427
𝐼[⟨3,5⟩] 89 1 1 1 1 <1 1
𝐼[⟨3,10⟩] 145 – 2 2 2 2 5
𝐼[⟨3,20⟩] 264 – 130 92 91 255 96
𝐼[⟨4,5⟩] 69 1 <1 <1 <1 <1 1
𝐼[⟨4,10⟩] 124 – 4 3 3 14 6
𝐼[⟨4,20⟩] 244 – 162 148 152 – 139
𝐼[⟨1,5⟩,⟨2,5⟩] 197 – 16 11 12 237 15
𝐼[⟨1,10⟩,⟨2,10⟩] 357 – – – – – –
𝐼[⟨1,5⟩,⟨3,5⟩] 122 – 4 3 4 8 5
𝐼[⟨1,10⟩,⟨3,10⟩] 224 – – – – – –
𝐼[⟨1,5⟩,⟨4,5⟩] 109 – 75 51 57 489 81
𝐼[⟨1,10⟩,⟨4,10⟩] 214 – – – – – –
𝐼[⟨2,5⟩,⟨3,5⟩] 205 – 23 14 16 – 23
𝐼[⟨2,10⟩,⟨3,10⟩] 365 – – – – – –
𝐼[⟨2,5⟩,⟨4,5⟩] 201 – 24 12 15 374 26
𝐼[⟨2,10⟩,⟨4,10⟩] 361 – – – – – –
𝐼[⟨3,5⟩,⟨4,5⟩] 124 – 57 64 81 240 54
𝐼[⟨3,10⟩,⟨4,10⟩] 244 – – – – – –

𝑇𝑂𝑇𝐴𝐿𝑆 24 4 17 18 18 15 18
8
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We observe very similar results for 𝐶𝑃𝑠𝑏 and 𝐶𝑃𝑛𝑜, and there appears
o be no significant difference when using the Pulse function for cumula-
ive resources in the 𝐶𝑃𝑠𝑏𝑝 and 𝐶𝑃𝑛𝑜𝑝 encodings. As the results for these

four encodings are extraordinarily good, we have carried out tests with
more difficult instances, corresponding to Set II, see Table 5. In these
difficult instances the need of symmetry breaking is still more evident,
since only three optimums are certified if not used. We also observe
that, although 𝐶𝑃𝑠𝑏 optimally certifies one more instance, the times of
𝐶𝑃𝑛𝑜 and 𝐶𝑃𝑛𝑜𝑝 are a bit better in general. The 𝐶𝑃𝑠𝑏𝑝 encoding seems
to be the one that exhibits the worst solving times in more instances.
Finally, 𝐶𝑃𝑠𝑏, 𝐶𝑃𝑛𝑜, 𝐶𝑃𝑠𝑏𝑝 and 𝐶𝑃𝑛𝑜𝑝 are able to find some solution for
all instances of Set II.

8.2. SMT experiments

In the SMT experiments we have used Yices 2.6.1 (Dutertre and
de Moura, 2006) as the core SMT solver. We have considered the
following incremental combinations of encodings:

• 𝑆𝑀𝑇 : the basic encoding provided in Section 6.2, without sym-
metry breaking.

• 𝑆𝑀𝑇𝑠𝑏: 𝑆 plus symmetry breaking.
• 𝑆𝑀𝑇𝑎𝑚𝑜: 𝑆𝑀𝑇𝑠𝑏 with AMO constraints for resource constraints

(24) with a regular/ladder encoding.
• 𝑆𝑀𝑇𝑏: 𝑆𝑀𝑇𝑠𝑏 with a Boolean pairwise encoding (25) of renew-

able resource constraints.
• 𝑆𝑀𝑇𝑑𝑗 : 𝑆𝑀𝑇𝑠𝑏 with disjunction for resources constraints (22).
• 𝑆𝑀𝑇𝑎𝑚𝑜,𝑐𝑎𝑟𝑑 : 𝑆𝑀𝑇𝑎𝑚𝑜 with cardinality constraints for storage con-

straints (27).

Table 6 contains the results for the different SMT encodings. In
SMT, using symmetry breaking is also decisive since 𝑆𝑀𝑇 only certi-
fies four optimums while 𝑆𝑀𝑇𝑠𝑏 certifies 17. Regarding the variants
of the constraints on renewable resources (19), 𝑆𝑀𝑇𝑎𝑚𝑜 and 𝑆𝑀𝑇𝑏
are the only variants that really improve solving times compared to
𝑆𝑀𝑇𝑠𝑏. From between these two, the one with best solving times is
𝑆𝑀𝑇𝑎𝑚𝑜. Configuration 𝑆𝑀𝑇𝑑𝑗 is clearly worse than 𝑆𝑀𝑇𝑠𝑏. On the
other hand, we can observe that the use of SAT encodings of cardinality
constraint (27) to deal with cumulative resource constraints in setting
𝑆𝑀𝑇 does not improve 𝑆𝑀𝑇 , which uses the LIA theory.
11

𝑎𝑚𝑜,𝑐𝑎𝑟𝑑 𝑎𝑚𝑜
Table 7
Set I. Performance comparison of MILP encoding variants. Time in seconds (time limit
600).

Instance Opt. 𝑀𝐼𝐿𝑃 𝑀𝐼𝐿𝑃𝑠𝑏 𝑀𝐼𝐿𝑃𝑑

𝐼[⟨1,5⟩] 59 17 <1 <1
𝐼[⟨1,10⟩] 102 – 2 7
𝐼[⟨1,20⟩] 192 – 243 –
𝐼[⟨2,5⟩] 173 – – –
𝐼[⟨2,10⟩] 298 – – –
𝐼[⟨2,20⟩] 548 – – –
𝐼[⟨3,5⟩] 89 436 1 1
𝐼[⟨3,10⟩] 145 – 135 –
𝐼[⟨3,20⟩] 264 – – –
𝐼[⟨4,5⟩] 69 213 1 <1
𝐼[⟨4,10⟩] 124 – 96 –
𝐼[⟨4,20⟩] 244 – – –
𝐼[⟨1,5⟩,⟨2,5⟩] 197 – – –
𝐼[⟨1,10⟩,⟨2,10⟩] 357 – – –
𝐼[⟨1,5⟩,⟨3,5⟩] 122 – – –
𝐼[⟨1,10⟩,⟨3,10⟩] 224 – – –
𝐼[⟨1,5⟩,⟨4,5⟩] 109 – 525 –
𝐼[⟨1,10⟩,⟨4,10⟩] 214 – – –
𝐼[⟨2,5⟩,⟨3,5⟩] 205 – – –
𝐼[⟨2,10⟩,⟨3,10⟩] 365 – – –
𝐼[⟨2,5⟩,⟨4,5⟩] 201 – – –
𝐼[⟨2,10⟩,⟨4,10⟩] 361 – – –
𝐼[⟨3,5⟩,⟨4,5⟩] 124 – – –
𝐼[⟨3,10⟩,⟨4,10⟩] 244 – – –

𝑇𝑂𝑇𝐴𝐿𝑆 24 3 8 4

We have observed that Set II is too hard for any of the SMT encod-
ings. The best encoding, 𝐸𝑎𝑚𝑜, is only able to certify the optimality of
the instance 𝐼[⟨1, 60⟩] and find a solution for nine instances more.

.3. MILP experiments

In the MILP experiments we have used the IBM ILOG CPLEX
12.9.0 (IBM, 2019) as the MILP solver. We have considered the

ollowing encodings:

• 𝑀𝐼𝐿𝑃 : the basic encoding provided in Section 7.1, without
symmetry breaking.
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Table 8
Set I Comparison CP/SMT/MILP. Time in seconds (time limit 600).

Instance Opt. CP SMT MILP

Time LB UB Gap Time LB UB Gap Time LB UB Gap

𝐼[⟨1,5⟩] 59 <1 59 59 0.0 <1 59 59 0.0 <1 59 59 0.0
𝐼[⟨1,10⟩] 102 <1 102 102 0.0 1 102 102 0.0 2 102 102 0.0
𝐼[⟨1,20⟩] 192 <1 192 192 0.0 5 192 192 0.0 243 192 192 0.0
𝐼[⟨2,5⟩] 173 <1 173 173 0.0 2 173 173 0.0 – 172 175 1.7
𝐼[⟨2,10⟩] 298 <1 298 298 0.0 17 298 298 0.0 – – – –
𝐼[⟨2,20⟩] 548 <1 548 548 0.0 152 548 548 0.0 – – – –
𝐼[⟨3,5⟩] 89 <1 89 89 0.0 1 89 89 0.0 1 89 89 0.0
𝐼[⟨3,10⟩] 145 <1 145 145 0.0 2 145 145 0.0 135 145 145 0.0
𝐼[⟨3,20⟩] 264 4 264 264 0.0 92 264 264 0.0 – – – –
𝐼[⟨4,5⟩] 69 <1 69 69 0.0 <1 69 69 0.0 <1 69 69 0.0
𝐼[⟨4,10⟩] 124 <1 124 124 0.0 3 124 124 0.0 96 124 124 0.0
𝐼[⟨4,20⟩] 244 <1 244 244 0.0 148 244 244 0.0 – – – –
𝐼[⟨1,5⟩,⟨2,5⟩] 197 <1 197 197 0.0 11 197 197 0.0 – – – –
𝐼[⟨1,10⟩,⟨2,10⟩] 357 5 357 357 0.0 – 351 357 1.7 – – – –
𝐼[⟨1,5⟩,⟨3,5⟩] 122 1 122 122 0.0 3 122 122 0.0 – 112 142 21.1
𝐼[⟨1,10⟩,⟨3,10⟩] 224 23 224 224 0.0 – 218 225 3.2 – – – –
𝐼[⟨1,5⟩,⟨4,5⟩] 109 <1 109 109 0.0 14 109 109 0.0 525 109 109 0.0
𝐼[⟨1,10⟩,⟨4,10⟩] 214 1 214 214 0.0 – – – – – – – –
𝐼[⟨2,5⟩,⟨3,5⟩] 205 1 205 205 0.0 12 205 205 0.0 – – – –
𝐼[⟨2,10⟩,⟨3,10⟩] 365 17 365 365 0.0 – 351 375 6.8 – – – –
𝐼[⟨2,5⟩,⟨4,5⟩] 201 1 201 201 0.0 64 201 201 0.0 – – – –
𝐼[⟨2,10⟩,⟨4,10⟩] 361 18 361 361 0.0 – 358 363 1.4 – – – –
𝐼[⟨3,5⟩,⟨4,5⟩] 124 1 124 124 0.0 18 124 124 0.0 – – – –
𝐼[⟨3,10⟩,⟨4,10⟩] 244 4 244 244 0.0 – 209 277 32.5 – – – –

𝑇𝑂𝑇𝐴𝐿𝑆 24 24 24 24 0 18 23 23 5 8 10 10 2
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• 𝑀𝐼𝐿𝑃𝑠𝑏: 𝑀𝐼𝐿𝑃 plus symmetry breaking.
• 𝑀𝐼𝐿𝑃𝑑 : 𝑀𝐼𝐿𝑃𝑠𝑏 using the refinement provided in Section 7.2.

We have observed in our preliminary experiments that a pure MILP
model provided an extremely poor performance in the SAMSP. There-
fore, in order to confirm that SAMSP is beyond this approach, we use
an upper bound highly adjusted to the optimal makespan. In particular,
for each instance we consider the value of the known 𝑜𝑝𝑡𝑖𝑚𝑢𝑚 + 20, as
initial upper bound.

Table 7 reports on the utilization of CPLEX (IBM, 2019) on our
problem. Using symmetry breaking allowed the system to solve five
more instances than not using it did. It can also be observed that the
results for 𝑀𝐼𝐿𝑃𝑠𝑏, corresponding to our adaptation of the classical
DDT encoding, are better than those for 𝑀𝐼𝐿𝑃𝑑 .

With any of the three encodings considered, the number of solved
instances is very small. We have also observed that no encoding is able
to solve any instance of Set II.

8.4. Comparison experiments

In this subsection we provide a comparison between the best encod-
ings of CP, SMT and MILP. That is:

• 𝐶𝑃𝑛𝑜 for CP, which corresponds to the Pulse formulation for the
renewable resource constraints.

• 𝑆𝑀𝑇𝑎𝑚𝑜 for SMT, which is the ladder encoding for renewable
resource constraints and LIA encoding for cumulative resource
constraints.

• 𝑀𝐼𝐿𝑃𝑠𝑏 for MILP, which corresponds to our DDT adaptation.

Table 8 reports on the results obtained. For each approach and each
instance we report the following: the time in seconds required to obtain
and certify an optimal solution (or – if the optimal solution has not been
certified in less than 600 s); the best LB and UB; and the optimality gap.
We can see that the CP approach is clearly the best, and that MILP
is much worse than SMT and CP. MILP only finds and certifies the
optimum for eight instances out of 24, while SMT certifies 18 instances
with much better times and CP certifies the optimum of all 24 instances
with very little time. In addition, MILP only finds a suboptimal solution
for two more instances, and SMT for five instances more. In total, CP
12
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finds solution for the 24 instances, SMT for 23 instances and MILP for
10 instances.

We can conclude that the CP approach is clearly better, followed
at a certain distance by SMT, while MILP lags far behind them in
performance. In the problem studied, all test types have an activity
that occupies a position in the observation storage, which is a scarce
resource. As a result, the instances tend to have large makespans, which
penalizes time-indexed formulations such as the SMT and MILP ones.

8.5. Machine design experiments

Table 9 reports on another type of experiment in which we illustrate
how the company designing the machine is using our software. What
they do is to consider several machine configurations and study what
their throughput is for several representative scenarios. Each additional
resource has a significant cost and it is mandatory to be able to evaluate
whether adding them or not is of interest. We consider the following
machine configurations with respect to the number of cold, hot-I, hot-II
and observation storage positions: ⟨4, 4, 4, 2⟩, ⟨4, 4, 4, 4⟩ and ⟨6, 6, 6, 4⟩.
t can be observed that extending the initial configuration with two
ore observation storage positions produces a small improvement on

he throughput of the machine, i.e., most of the makespans are reduced
y 10%. On the other hand, configuration ⟨6, 6, 6, 4⟩ does not provide
ny benefit regarding makespan.

. Conclusions and further work

We have described a successful application of model-and-solve tech-
iques with which to tackle a real world industrial scheduling problem:
he Sample Analysis Machine Scheduling Problem (SAMSP). We have
rovided CP, SMT and MILP formulations for the problem and shared
ome preprocessing and symmetry breaking ideas.

The instances obtained from this industrial application have in-
eresting characteristics. First, each activity uses only one renewable
esource. Second, the durations of the activities are short compared to
he values of the time lags. Third, although there is a large number
f activities, these activities are grouped into tests of a particular
ype, which allow us to apply symmetry breaking techniques based on

re-established execution orders.
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Table 9
Set I. Comparison of different machine configurations, reporting the optimal makespan
with each configuration.

Instance ⟨4, 4, 4, 2⟩ ⟨4, 4, 4, 4⟩ ⟨6, 6, 6, 4⟩

𝐼[⟨1,5⟩] 59 53 53
𝐼[⟨1,10⟩] 102 92 92
𝐼[⟨1,20⟩] 192 182 182
𝐼[⟨2,5⟩] 173 173 173
𝐼[⟨2,10⟩] 298 298 298
𝐼[⟨2,20⟩] 548 548 548
𝐼[⟨3,5⟩] 89 73 73
𝐼[⟨3,10⟩] 145 127 127
𝐼[⟨3,20⟩] 264 247 247
𝐼[⟨4,5⟩] 69 69 69
𝐼[⟨4,10⟩] 124 120 120
𝐼[⟨4,20⟩] 244 240 240
𝐼[⟨1,5⟩,⟨2,5⟩] 197 183 183
𝐼[⟨1,10⟩,⟨2,10⟩] 357 343 343
𝐼[⟨1,5⟩,⟨3,5⟩] 122 107 107
𝐼[⟨1,10⟩,⟨3,10⟩] 224 212 212
𝐼[⟨1,5⟩,⟨4,5⟩] 109 105 105
𝐼[⟨1,10⟩,⟨4,10⟩] 214 210 210
𝐼[⟨2,5⟩,⟨3,5⟩] 205 202 202
𝐼[⟨2,10⟩,⟨3,10⟩] 365 362 362
𝐼[⟨2,5⟩,⟨4,5⟩] 201 197 197
𝐼[⟨2,10⟩,⟨4,10⟩] 361 357 357
𝐼[⟨3,5⟩,⟨4,5⟩] 124 120 120
𝐼[⟨3,10⟩,⟨4,10⟩] 244 240 240

The CP formulation, using the IBM ILOG CP Optimizer, produced
ome truly impressive results. In fact, this approach was by far the best,
ollowed by SMT in second place, while the pure MILP approach was
distant third.

Thanks to this study, our partner company has been able to use an
xact tool to experimentally evaluate the goodness of different machine
onfigurations, and enhance the machine designing process. We have
bserved that the real bottleneck component of the machines with the
iven architecture is the shuttle. Since introducing an extra shuttle
s not affordable, the shuttle moving packs of several cuvettes at the
ame time has been suggested as a way to compensate this. Dealing
ith such a complex configuration, however, is beyond the scope of

his study and will form part of future work, along with incorporating
ew symmetry breaking techniques for similar test types, and a better
euristic procedure to compute an initial upper bound of the makespan.
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