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A B S T R A C T

The use of fibre reinforced polymer (FRP) in civil construction applications with near‐surface mounted (NSM)
method has gained considerable popularity worldwide as suitable method for strengthening existing concrete
structures. However, there is very little experience in the implementation of methods able to give a reliable
prediction about the health of this type of structures even although sudden and brittle failure modes are likely
to happen. Because of it, more contributions on this topic are really needed in order to prevent possible catas-
trophic failures. In this paper, a novel approach based on linear mixed effects models implemented on results
from experimental tests performed on concrete beams strengthened with NSM FRP has been explored. In spite
of their rapid growth in other areas, mixed effects models have barely been applied in structural problems.
Impedance measurements captured from PZT sensors embedded and externally bonded to the beam are used
for the quantitative and qualitative analysis. This research shows that the evolution of the progressive damage
for this kind of repairing method can be effectively monitored using the proposed approach.
1. Introduction

Strengthening of concrete structures with fiber‐reinforced polymers
(FRPs) plates externally bonded (EB) onto concrete surface is more and
more usual [1–3]. Another alternative technique to strengthen con-
crete beams consists on inserting FRP rods into grooves on concrete
covers; this technique is named near surface method (NSM). NSM‐
FRP technique has some advantages compared to the EB FRP method,
such as a better bond performance and better protection to accidental
damages as those due to, for instance, vandalism and environmental
effects [4–6].

Various failure modes have been identified for NSM FRP strength-
ened concrete members. In addition to the conventional failures due to
concrete crushing and FRP rupture, debonding failures due to the loss
of composite action at FRP‐adhesive‐concrete substrate interfaces or
by separation of the concrete cover, play an important role [4–6].
These last failure modes occur in a sudden a brittle way. The imple-
mentation of a damage identification methodology able to detect dam-
age in the earliest stages appears to be a very needed and challenging
strategy with the purpose of avoiding possible catastrophic and sudden
failures and it is the main purpose of this work.
One of the characteristics of the damage we want to identify is that
it is very localized and little severe. Conventional vibration‐based tech-
niques have been successfully applied for structural health monitoring
in other applications [7–9] or even in concrete beams strengthened
with NSM‐FRP rods [10]; in this case, modal properties such as natural
frequencies and mode shapes are used for damage identification. How-
ever, due to the non‐local nature of these modal properties, their use to
detect successfully local minor damage is unsuitable. Furthermore, the
use of smart materials capable of providing autonomous, real‐time,
wireless, reliable and cost effective monitoring is more and more
demanded by SHM engineers. Therefore, two issues must be solved
for our purposes. The first one is related with the choice of the type
of sensor and the suitable physical quantity to be monitored while
the second one is concerned with the definition of the damage metric
dependent on the monitored signal and the procedure of categoriza-
tion of the structural modifications once the metric has been chosen.

In the last decades, the use of piezoelectric transducers (PTs) and
the electromechanical impedance (EMI) active sensing technique have
emerged as attractive tools for the implementation of an online mon-
itoring system [11–14]. Piezoelectric materials are smart materials
due to their sensing and actuating properties and some of their advan-
tages lie in their non‐invasive nature, the capability of collecting high
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frequency information in real time and the possibility for a wireless
mobile survey configuration [15]. The EMI technique, based on the
piezoelectric or electromechanical coupling effects, has shown a great
potential in the field of monitoring. On one hand, the host structure
can be excited by means of vibrations originated by the application
of an electric field in the PT. But, in the same way, the mechanical
and geometrical parameters of a PT are coupled electromechanically
with the host structure in such a way that the mechanical properties
of a structure and, therefore, its possible damage, can be captured
using the electric impedance response of PTs coupled to the structure.

By analyzing the electric impedance variation of the piezoelectric
sensors in different frequency intervals along the monitoring process
the structural damage can be investigated. For it, suitable metrics able
to identify variations on the electrical signatures are needed. However,
it is also needed the development of methodologies able to discrimi-
nate variations in the metrics due to damage of other effects which
might cause variations too since not all the changes in the electrical
impedances can be attributed to mechanical damage; this interpreta-
tion might lead to a mistaken analysis of the problem. Additionally,
in case of damage, these methods should be able to perform a catego-
rization of the structural modifications in terms of severity.

Linear Mixed‐effects Models (LMMs), also known as multilevel or
random effects models, are becoming increasingly popular as a data
analysis method [16,17]. The use of LMMs is set to dominate statistical
analyses in psychological science and medical sciences [18] and may
become the default approach in the future to analyzing quantitative
data in different areas, such as SHM. These models can be considered
as a generalization of the classic regression approach which includes,
along with the usual explanatory variables called fixed effects, also
random effects accounting for data auto‐correlation and independent
random error. Their application is suitable to analyze data collected
during a multi‐stage or multilevel sampling or repeated measures
design, such as those obtained from a continuous monitoring of a
structure. The correlations between the different conditions and,
therefore, the evolution of the possible structural damage and other
phenomena might be captured with LMMs.

In spite of its potential and numerous applications [19–21], to the
knowledge of the authors, LMMs have hardly ever been applied to
SHM problems and, of course, never for NSM‐FRP strengthened struc-
tures, where the contributions involving SHM are very few [10,22].

In this work, NSM‐FRP strengthened concrete beams subjected to
progressive damage stages and instrumented with PTs of different
types and bonded in different locations are analyzed. There is an
important knowledge gap concerning the amount of information pro-
vided by the different proximal sensors for estimating the damage as
well as the best suited statistical approach to be applied for fulfilling
the task. With this purpose, the objective of this work is to evaluate
the single or combined contribution of proximal sensing information
provided by EMI data in estimating minor damage in NSM‐FRP
strengthened concrete beams by using a LMM approach.

This paper is organized as follows. To begin, a review of the EMI
method for structural damage identification and the definition of the
damage metrics are introduced. The formulation of the linear mixed
effects model for our problem is illustrated in Section 3. The descrip-
tion of the experimental tests and the impedance datasets obtained
from them are carried out in Section 4. This section describes also in
detail the analysis of results performed with the proposed approach.
Finally, in the last section, conclusions are presented.

2. Electromechanical impedance

Although EMI method can be implemented experimentally, its
modeling is a more complex task. As commented in the introduction,
PTs present electrical and mechanical properties which are coupled
by the electromechanical phenomenon. A coupling analysis should
2

capture suitably the complex coupling that exists between the mechan-
ical behavior of the structure and the electrical behavior of the trans-
ducer. This way, it might be fully explained why structural damage can
be detected from the EMI spectrum of the sensor. The analysis methods
should be able to make an explicit prediction of the admittance and
impedance as it is to be measured in the impedance analyzer con-
nected to the transducer. The implementation of this relationship is
necessary to be able to perform a critical analysis of the experimental
results obtained.

The model of PT‐structure electromechanical interaction in 1D and
2D structure proposed by Liang et al. [23], Xu et al. [24] and Bhalla
et al. [25] is frequently used for this purpose.

A PT satisfies the properties of electrical circuits. The electrical
admittance Y(ω) of a PT represents the relation between the output
current I0(ω) and its excitation voltage V(ω) and is the inverse of the
electromechanical impedance Z(ω)

Y ωð Þ ¼ I0 ωð Þ
V ωð Þ ¼

1
Z ωð Þ ¼ G ωð Þ þ jB ωð Þ ð1Þ

where ω is the input frequency and the admittance has been decom-
posed in a real part or conductance, G, and an imaginary part or sus-
ceptance, B. Usually, the conductance is preferred to identify
mechanical variations of a structure to the susceptance, which shows
low sensitivity to structural modifications [26,27].

The one‐dimensional simple model proposed by Liang et al [23]
allows to represent the relation between the electro‐mechanical admit-
tance of a piezo‐transducer bonded to a structure and the mechanical
impedance of the structure, Zs(ω), as follows

Y ωð Þ ¼ jω
wl
h

ɛT33 �
Zs ωð Þ

Zs ωð Þ þ Za ωð Þ d
2
3x
bYE

xx

� �
ð2Þ

where w, l and h denote the width, length and thickness of the PT

patch, respectively; d23x and bYE

xx are the piezoelectric coupling constant
and complex Young’s modulus of the PT, respectively, and
ɛT33 ¼ ɛT33 1� δjð Þ is the complex dielectric constant of a PT patch under
constant stress, where δ is the dielectric loss factor. Finally, Za(ω) is the
mechanical impedance of the PT patch.

For the monitoring of the health of a structure with the EMI tech-
nique, it is necessary to quantify variations in the electrical admittance
signatures obtained from the monitoring process. For that purpose, dif-
ferent damage metrics or statistical indices have been developed. The
root mean square deviation (RMSD) has been usually chosen as statis-
tical metric to detect variations of the impedance signatures in differ-
ent frequency intervals for concrete structures [12]:

RMSD %ð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
n

i¼1
Re Z0 ωið Þð Þ � Re Z1 ωið Þð Þ½ �2

∑
n

i¼1
Re Z0 ωið Þð Þ2

vuuuuut Â � 100 ð3Þ

where Z0 ωið Þ is the impedance of the PT sensor measured before
loading the structure in different frequency intervals, Z1 ωið Þ is the cor-
responding value once the structure has been already loaded, at the ith
frequency point and n is the number of testing frequency points in dif-
ferent frequency intervals. As commented previously, the real part of
impedance is more sensitive to the changes in impedance signature;
then, RMSD index is usually defined in terms of the conductance (real
part of the admittance).

However, changes in the impedance signatures can be due to
mechanical damage but also to other phenomena such as operational
and environmental variations besides the random uncertainties associ-
ated with the experimental readings of the structural response. These
variations and uncertainties can arise as unwanted effects in the struc-
tural responses, affecting damage‐sensitive features and masking
changes caused by damage. In this sense, the application of the linear
mixed effects models might be evaluated as a method to filter changes
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in the damage‐sensitive features caused by structural damage from
those caused by varying operational and environmental conditions
and experimental uncertainties.

3. Linear mixed effects models

LMMs are used in this work as a tool to assess the structural integ-
rity of concrete beams strengthened with NSM‐FRP bars. This type of
models is an extension of linear regressions models describing the rela-
tionship between a responsive variable and independent variables and
allow to handle data with repeated measures as those due to the impe-
dances captured in different sensors along different loading stages
applied on the beam. In LMMs the data to be analyzed are modelled
as the additive combination of fixed effects, random effects and inde-
pendent random errors. Fixed‐effects terms are usually the regression
part, i.e. the factors of interest we manage in the study, while the ran-
dom effects are generally associated with individual experimental
units drawn from a population whose specific level values we actually
do not care about.

In our particular scenario, we want analyze with a LMM how the
RMSD index is affected by the possible variations introduced by the
successive loading stages applied on the beam. If variations are due
to mechanical damage, RMSD evolution might give us an indication
about the real condition of the structure. In this sense, RMSD index
would be the responsive variable (or the dependent variable) of the
problem, while the condition or damage stage of the beam would be
the explanatory variable (or the independent variable). This relation-
ship can be expressed with the following equation:

RMSDd~amage state ð4Þ
The independent variable is also referred to as fixed effect.
However, it cannot be stated that the variations of RMSD index are

only completely determined by the damage state. There are other fac-
tors such as the frequencies used in the experimental tests, the type of
sensors, the experimental conditions or any other elements that might
influence the RMSD.

Experimental tests are performed over a defined range of frequen-
cies. We should expect that the RMSD index might also be affected by
this range. Different frequency ranges might affect in a different way to
RMSD. This effect can be controlled and, therefore, is a fixed effect.
With the addition of this effect the previous model becomes

RMSDd~amage stateþ frequency ð5Þ
However, there’s one important point that we have missed. One of

the key assumptions of this model is that all measurements must be
independent from each other. Since every sensor has been used to
compute the impedance several times during the loading procedure,
it is to be expected that there will be a certain correlation in the values
that it has measured. Therefore, multiple responses from the same sen-
sor cannot be regarded as independent from each other. In our scenar-
io, every sensor, either due to its type or due its location on the beam,
has different characteristics that affect to its measurements and, there-
fore, these must be considered interdependent or correlated rather
than independent. To deal with this, the model proposes adding a ran-
dom effect for the sensors. That way, the model assumes a different
baseline for each sensor, and estimates a different baseline for each.
This is how this model deals with this issue and resolves the non‐
independence. That way, the expression to model the RMSD becomes
the following

RMSDd~amage stateþ frequency þ 1jsensorð Þ ð6Þ
The term “(1|sensor)” is a way of defining the variable sensor as a

random variable, so multiple responses should be expected per sensor.
Finally, there will always be some external factors which have not

been taken into consideration and might affect the RMSD. They are
3

independent random errors which include all the random or uncon-
trollable phenomena affecting RMSD and whose variance cannot be
explained by the variables of our model. To capture these effects,
the previous expression is updated with an error term

RMSDD~amageStateþ frequency þ 1jsensorð Þ þ ɛ ð7Þ
The error term, ε, represents the deviations from the predictions

due to random factors which cannot control experimentally.
The model (7) is a mixed effects model. The variables are divided

into two groups. In the first group, the systematic (the fixed effects,
also known as explanatory variables) and the error term would be
included while, in the second group, the random effects, which define
the characteristic variation that is due to individual differences in the
sensors, are included. The mixture of both fixed and random effects is
what gives the name to the mixed model.

Finally, a last update of the model will be done. Apart from study-
ing how each of the variables affects the RMSD, we might want to
explore if there is any interaction between them. For example, the fact
that some frequencies affect the RMSD index more in some damage
states than in others. For that purpose, the model should be updated
as follows

RMSDd~amage state � frequency þ 1jsensorð Þ þ ɛ ð8Þ
Equation (8) corresponds to the final expression of the linear mixed

effects model which will be used in this work. However, before its
application, the model requires to check if some conditions or assump-
tions are satisfied. These assumptions are usually tested graphically,
plotting the model residuals (the difference between the observed val-
ues and the model‐estimated values) against the predictions.

• Linearity: LMMs are based on the assumption that the data follow a
straight line This condition is met when the residuals of the model
do not show any obvious pattern when plotted against the fitted or
predicted values.

• Absence of collinearity. To meet this condition the predictors used
in the model cannot be correlated.

• Homocedasticity. This condition is met when the residuals have a
similar amount of deviation from the predicted values regardless
of the fitted value, i.e. the variance of the residuals for each fitted
value is similar.

• Normality of residuals: LMMs assume that the residuals of the anal-
ysis are normally distributed. Q‐Q plots (quantile–quantile plots)
are useful to give an estimation of where the standardized residuals
lie with respect to normal quantiles. If a strong deviation from the
provided line occurs, it is a symptom of non‐normality of the resid-
uals. In this study, Gaussianity was also tested using Shapiro‐Wilk
and Kolmogorov‐Smirnov tests.

However, the normality of residuals assumption is the one that is
least important [17], since these models are robust even to the absence
of normality in the data.

Sometimes the normality of the residuals is improved performing a
log transformation of the data.

• Independence. The independence is guaranteed when there is no
correlation between one measurement and the next one. As we
have explained before, we solve the potential non‐independency
created by the sensors by using a random effect variable.

In this work, the LMM models were estimated using the lme func-
tions of the R library [28]. Although, there is no a single correct way to
implement an LMM, residual maximum likelihood has been used here
to estimate variance parameters because they are less biased than both
maximum likelihood estimates and method‐of‐moment estimates
obtained from residuals of a fitted trend.



Fig. 2. Load-Displacement curve for the tested beams.
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4. Experimental tests and validation of the method

Two laboratory tests were carried out on two beams to experimen-
tally validate the proposed method used to detect and distinguish the
different damage scenarios.

4.1. Specimen A

4.1.1. Experimental set-up
The first specimen was designed to be tested on the short term. The

predicted damage mode for this beam was the rupture of the compos-
ite reinforcement at the central section under bending stress. To pro-
mote this, an initial crack was induced at the center of the beam.
The test carried out was a four‐point bending test. The reinforced
beam was cast with a length of 1.7 m, a width of 0.12 m and a height
of 0.18 m such as shown in Fig. 1. A CFRP strip was inserted on the
cover of the beam following the NSM method. The material properties
of the concrete, the reinforcement steel and the CFRP were the follow-
ing: a) Concrete: fc = 30 MPa, Ec = 26 GPa, fct = 3 MPa; b) Steel:
fy = 500 MPa, Es = 210 GPa; c) CFRP: ffu = 2500 MPa, Ef = 170 GPa.

Additionally, the characteristics of the strenghtened section were
theoretically calculated prior to the test assuming that the rupture
mode is via the breakage of the FRP strip (Fig. 2). The computed char-
acteristics were the following: Mcr = 1.94 kNm, My = 5.04 kNm,
Mu = 9.79 kNm, Pcr = 6.5 kNm, Py = 16.8 kNm, Pu = 32.6 kNm.

Concerning the instrumentation of the beam, eight PZT sensors
were bonded in different locations such as shown in Fig. 3. The PZT
sensors measured the electromechanical impedance after each loading
state, once the beam was in a resting state. Moreover, sensors PZT1
and PZT2 were of different size from sensors PZT3 to PZT9 in order
to investigate the sensitivity of different types of sensors. Additionally,
sensors PZT6 to PZT9 were embedded inside the concrete beam and
attached to the FRP to examine the difference in damage detection
capability between these sensors and the sensors PZT3 and PZT4,
which were surface‐bonded. For purpose of illustration, sensors
PZT2 and PZT4 are shown in Fig. 4 once the beam has reached its ulti-
mate limit state.

Concerning the loading procedure, 6 loading steps were applied on
the beam until its rupture which was reached at step 6. For each load-
ing step, the beam was subjected to three cycles of loading and unload-
ing, reaching the charge defined for each step at the end of every
loading. The purpose of this method was to stabilize the cracks that
appeared on the beam after each loading step. The programmed loads
reached at each loading step for specimen A are indicated with red
points in the load–displacement plot shown in Fig. 2. Additionally,
the real evolution that these loading steps followed during the exper-
iment is shown in Fig. 5 for a strain sensor bonded to the FRP bar and
located where the left load point applies. The correlation with the ini-
tially proposed loading steps is clearly observable. First cracks
appeared during the second loading stage and grew during the subse-
Fig. 1. Geometry and loading sch
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quent loading stages. Additionally, yielding initiated during the fourth
loading stage.

As commented previously, the electromechanical impedances were
measured initially and after each loading step. The initial measure-
ment, defined as the impedance signal at the healthy state (damage
state 0), served as a baseline for comparison. Five frequency sweeps
of 1 V were conducted for each sensor at each damage state, resulting
in 5 impedance signals that were averaged in order to obtain the impe-
dance signal that would be later on used for the damage assessment.
These sweeps covered the frequencies from 10 kHz to 100 kHz with
a frequency step of 12.5 Hz. Thus, seven measurements were taken
for each PZT sensor for this experiment, although the signals after step
6 were not very useful because the beam was already in a severely
damaged state. When a damage state is referred to for a PZT sensor,
that damage state is considered to be the measurement taken after that
same load step (i.e. damage state 3 refers to the measurements taken
just after the loading step 3). Only very small variations of temperature
occurred during the tests since they were carried in a short period of
time under controlled laboratory conditions, therefore, no temperature
compensation was needed.

Fig. 6 shows the real part of the impedance spectrum captured
by sensors PZT1 and PZT6 for the baseline and the five loading
stages. Considering the insufficient energy in actuating signal, a
PZT only monitors a limited area around itself and the EM signa-
ture contains the local dynamic information of the structure. Except
when the damage is already severe, from the observation of Fig. 6
it is difficult to get to get some information about the evolution of
damage which demonstrates the importance of applying a suitable
analysis tool for it.
eme – Experimental beams.



Fig. 3. Experimental layout for the PZT sensors – Specimen A.

Fig. 4. PZT sensors 2 and 4 on the beam after the damage state 6.

Fig. 5. Experimental load vs microstrain – Specimen A.

Fig. 6. Impedance spectra of the real part of the impedance.
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4.1.2. Slope-based RMSD index
A study was firstly performed from the computed RMSD values for

all the sensors and loading stages taking as baseline for their calcula-
tion the impedance signal associated to the undamaged state (state
0). This initial study will be useful to get in a simple way a first view
about the changes experienced by the specimen in different areas
along the loading procedure. A slope‐based RMSD index [29] will help
us to understand better how the evolution of the RMSD index is
affected by the severity of the changes.

Fig. 7 shows the RMSD values for all sensors and loading stages
together with the fitted straight line characteristic of the slope. RMSD
values for state 0 have been included by comparing the five frequency
sweeps that were done by each sensor at initial state.

As expected, RMSD values show a tendency to increase as the
applied load increases. This tendency is shown in all sensors, so it pro-
5

vides useful information to assess the structural integrity of the beam.
In addition, it can be observed how the RMSD indices for states 4 and 5
are significantly higher than for the rest of loading states for all sen-
sors, and, therefore, all sensors report the same consistent information
regarding the possible severity of changes at the last steps. This effect
is clearly noticeable in sensor PZT2, where RMSD indices show a dras-
tic increase after step 4. In summary, two important conclusions can be
extracted from this figure. First, all sensors show a clear distinction
between initial state and the rest of loading states, which means that
all sensors were able to detect the progressive changes experienced
by the beam. Second, since the RMSD increases as the changes propa-
gate, all sensors are capable to capture the increasing severity of these
changes.

The second result pertains to the slope of the RMSD values. The fact
that the slope for PZT2 is the greatest correlates with the fact that more
severe changes occurred in the vicinity of this sensor during the last
loading steps. In addition, the slope for this sensor is much greater
than for PZT1. Also, the fact that both sensors, PZT3 and PZT4, show
very similar slopes is remarkable and indicates that both sensors have
very similar behaviors.

All sensors but sensor PZT8, show an increasing RMSD index with
the loadsteps. However, as it was explained before, the potential of the
slope‐based RMSD relies on the fact that single outlying values do not
drastically change the conclusions, as the sensor PZT8 has a positive
slope. Therefore, although this sensor has not given the most impor-
tant information of all sensors, it still shows and increasing trend in
the RMSD indices, meaning that it has also been able to detect the pos-



Fig. 7. Slope-based RMSD values – Specimen A.

R. Perera et al. Composite Structures 273 (2021) 114322
sible growth of the changes. Concerning the rest of sensors, we can
appreciate the same behavior as with the previous sensors. They all
show higher RMSD values for higher loading states, and damage states
6

4 and 5 stand out from the rest of states. In addition, the RMSD and the
slope‐based RMSD show the most severe variation for PZT9 in compar-
ison with the rest of internal sensors.
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4.1.3. Application of LMMs
In the previous section, we have checked that RMSD index experi-

ences some changes along the different loading states which might be
interpreted as growing damage. However, before stating clear conclu-
sions there is an important issue which has not been fully addressed
yet: How likely is that the variation in the RMSD index is due to the
loss of structural integrity of the beam? There are various factors
which might affect to this metric such as the type of sensor, the exci-
tation frequency used or the damage state. Therefore, firstly, to set
some conclusions about the performance of the beam, we should assess
how responsible each of these factors is in the variation of the RMSD
index.

Secondly, if it is proved that the damage state has a significant
influence on the RMSD index, we should study how different each of
the individual damage states are from each other. The main objective
is to tell apart the damage states amongst themselves. Additionally, a
deeper study will be performed too in this section examining the influ-
ence of the type of sensor and the frequency of excitation on the dam-
age detection performance.

In order to achieve the first purpose, we will use a linear mixed
effects model such as presented in Section 3. As explained previously
(Eq. (8)), the fixed variables for the model will be the damage state
and the frequency interval, while the random variable will be the type
of sensor. We will be working with 5 possible damage states (1 to 5), 9
frequency intervals (intervals of 10 kHz, from 10 kHz up to 100 kHz)
and 8 sensors (PZT1 to PZT9). In this way, each data point in this anal-
ysis corresponds to the RMSD value for a specific sensor, at a certain
damage state, calculated in a specific frequency interval, leading to a
total of 360 data points. The first objective of the analysis will be to
study if the damage state and/or the different frequency ranges have
a significant influence on the RMSD. If so, a post‐hoc analysis will
be performed to study if there are significant differences amongst
the different levels within each fixed variable. In other words, if it is
demonstrated that the damage state has a significant influence on
the RMSD, then it’s justified to perform a pairwise comparison to study
if there are differences between each pair of damage states. This would
help us understand if the sensors are able to recognize the growing
damage in the beam.

The first analysis will be focused on studying the potential influ-
ence of the damage state on the RMSD using initially all the sensors
as a whole and using subsequently separately three different groups
of sensors. Group 1 includes sensors PZT1 and PZT2, which are the lar-
ger surface‐bonded sensors. Group 2 includes sensors PZT3 and PZT4,
which correspond to the smaller surface‐bonded sensors, and group 3
includes sensors PZT6, PZT7, PZT8 and PZT9, which are all embedded
sensors of the same type. The objective of performing this analysis split
in three groups is to study how the type and condition of a sensor
affects to the damage sensitivity. Finally, another analysis will be per-
formed focused on the frequencies, in order to understand which fre-
quencies, if any, have more influence on the RMSD or help
differentiate between damage states better.

Before heading directly to the statistic results, it is needed to exam-
ine firstly if the model conditions, sketched out in Section 3, are met.
The procedure to be followed will be shown here for all sensors jointly
but it will be similar when working with each one of the three groups
of sensors.

As a first step, it is interesting to examine the data and test if they
follow a normal distribution for each loading state required to carry
out an analysis with LMMs. Although what we really need to test are
the residuals of the model, it is always a good idea to first have a look
at the raw data. The RMSD index histograms for each loading state and
considering all sensors are shown in Fig. 8. Histograms provide a
visual judgment about whether the distribution is bell shaped. As it
can be observed, these data do not appear to follow a normal distribu-
tion. In order to further prove this hypothesis, Shapiro‐Wilk method is
widely used for normality tests. When this test is applied on some
7

experimental data, it tells us if the data have a significant departure
from normality by comparing the sample distribution to a normal
one. For it, the main parameter to inspect in this test is the p‐value.
The p‐value can be seen as the probability of our data following a nor-
mal distribution given our dataset. Low p‐values (typically below 0.05)
mean that there is a significant departure from normal distribution in
the data while values above the threshold imply that the distribution
of the data is not significantly different from normal distribution.
Table 1 shows the p‐values derived from the Shapiro‐Wilk test. It is
clear that there is a significant departure from normality for all loading
states (i.e. all tests provide a p‐value lower than 0.05). However, as it
was previously commented, it is important to test the normality of
residuals, although this first analysis makes us think that the residuals
will not follow a normal distribution either. Residuals are estimated
using the model shown in Eq. (8).

Figs. 9 and 10 show the Q‐Q plot and the histogram of the residuals,
respectively. These two approaches allow to check initially the normal-
ity by visual inspection. Q‐Q plots draw the correlation between a
given sample and the normal distribution. For the residuals to follow
a normal distribution, the data points in the Q‐Q plot should adjust
to a straight line. From the figures, it cannot be stated that the residu-
als of the model follow a normal distribution. To further support this
hypothesis, a significance test is applied on the residuals using the
Shapiro‐Wilk method. A p‐value of 2.2e‐16 is obtained, which con-
firms a significant departure from normality. To solve this issue, we
should apply some kind of transformation on the data in order to
obtain more reliable results.

In addition to the normality assumption, it is also important to test
the linearity and homocedasticity assumptions such as commented in
Section 3. This can be done by plotting the fitted values against the
residuals of the model (Fig. 11). As it can be observed, Fig. 11 shows
obvious heteroscedasticity (the opposite of homocedasticity). Higher
fitted values lead to higher absolute residuals, i.e. the variability of
the residuals is unequal along the range of fitted values. This means
that whenever the model is being less accurate the higher the fitted
values are, and therefore the variance is higher in the higher range,
which is not what we are looking for in the model. Therefore, the
homocedasticity condition is not met. In addition, it would not be
accurate to assume that the residuals do not show any obvious pattern,
and therefore it cannot be stated that the linearity condition is met.

There are several possible solutions to address the issue of
heteroscedasticity and non‐normal distribution of residuals. One of
the most widely used is using a non‐linear transformation of the
response, such as the log‐transform. In order to test if the data follow
a log‐normal distribution, it is possible to use the Kolmogorov‐Smirnov
test. Similar to the Shapiro‐Wilk test, the Kolmogorov‐Smirnov test
tells us if the data has a significant departure from log‐normality. In
this case, the p‐value can be seen as the probability of our data follow-
ing a log‐normal distribution given our dataset. As in the case of the
Shapiro‐Wilk test, low p‐values (typically below 0.05) mean that our
data show a significant departure from log‐normality. Table 2 shows
p‐values computed from the Kolmogorov‐Smirnov test for each loading
stage considering all the sensors. None of the loading stages shows a
significant departure from log‐normality (i.e. all p‐values are above
0.05), from which we can infer that the data might follow a log‐
normal distribution. It justifies to create a new variable, logRMSD,
computed from the log‐transform of the RMSD indices. The model
becomes now the following

log RMSDð Þd~amage state � frequency þ 1jsensorð Þ þ ɛ ð9Þ
Figs. 12 and 13 show the Q‐Q plot and the histogram of the resid-

uals, respectively, according to the new model based on the log‐
transform. Both figures show that the residuals now follow a distribu-
tion much closer to a normal. The data points in the Q‐Q plot adjust
well to the straight line up to the last few data points, and the his-



Fig. 8. RMSD histograms for each damage state- Specimen A.

Table 1
Shapiro-Wilk normality test – Specimen A.

Loading stage 1 Loading stage 2 Loading stage 3 Loading stage 4 Loading stage 5

p-value 0.01404 4.785e−11 1.168e−8 3.573e−15 5.052e−15

Fig. 9. Q-Q plot for the normality test – Specimen A.

Fig. 10. Histogram of the residuals including all the dataset – Specimen A.
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togram of the residuals has a shape that adjusts better to the typical
bell curve. Therefore, it can be assumed that the dataset will give more
reliable results, as it complies better with the normality assumption.

After this, we proceed to test the linearity and homocedasticity
assumptions for the model of Equation (9). This can be done, as previ-
ously, by plotting the fitted values against the residuals of the model
(Fig. 14). As it can be observed, the variance of the residuals is not
dependent on the fitted value, so we can conclude that the homocedas-
8

ticity condition is not violated. In addition, there is not any obvious
pattern in the residuals, and therefore the linearity assumption is also
met.

Finally, up to this moment three out of the five conditions listed
previously have been met by the model. Concerning the absence of
collinearity condition, this is met by considering the fact that the
two fixed variables of the model (damage state and frequency) do
not have any apparent relationship. The damage state is not defined
by the frequencies used; in fact, damage states 1 to 5 would have
the same progression regardless of the frequencies at which the sensors
operated. Therefore, it can be stated that there is no collinearity in the



Fig. 11. Fitted vs residual values for the model – Specimen A.
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data. On the other hand, regarding the independence condition, it has
been explained previously that this assumption is met by the introduc-
tion of the random effect on the model, thus removing the potential
non‐independencies that the sensors could introduce.

Once we have checked that the conditions required by the model
are verified, it is justified to perform an analysis on the data. As
explained before, the first objective will be to prove that the damage
variable has a significant influence on the RMSD value. If so, we will
proceed performing a post‐hoc analysis doing pairwise comparisons
in order to assess if there is a significant difference between each pair
of damage states.

To reach the first objective, an analysis of variance (ANOVA) using
a F‐test will be performed for model objects produced by LMM. This
analysis will give us a p‐value which can be interpreted as follows.
The null hypothesis in this model is that the damage state and the fre-
quency do not have effect on the RMSD. A low probability or p‐value
indicates that the sample data are unlikely when the null hypothesis is
true. According to this, the p‐value is a conditional probability, it is a
probability under the condition that the null hypothesis is true. There-
fore, if we have a very low p‐value, we can reject the null hypothesis
and, therefore, the damage state and the frequency affect to RMSD
value. We can rephrase the p‐value in this way: what is the probability
of observing our particular set of RMSD data if the damage state (or
the frequency) has no effect on the RMSD?

Table 3 shows the p‐values computed from the analysis of deviance
for the LMM. There are three important conclusions that can be
extracted from this analysis. First, it proves that the damage state
has a significant influence on the RMSD, since the p‐value for this vari-
able is significantly smaller than 0.05. This is an important conclusion
since it has led us to prove that, amongst all variables, the damage
state influences the RMSD significantly, and therefore it is reasonable
to use this damage metric to assess the structural condition of the
beam. In the same way, this analysis also proves that the frequency
interval has a significant influence on the RMSD, i.e. RMSD index will
be sensitive to the frequency range. Finally, from this analysis we can
also conclude that there is no significant interaction between the dam-
age state and the frequency.

This overall analysis allows us to perform a second analysis where
we test how different each damage state is from the rest. Fig. 15 shows
the boxplots for each damage state. As it can be observed, there is a
Table 2
Kolmogorov-Smirnov test – Specimen A.

Loading stage 1 Loading stage 2

p-value 0.5074 0.4991
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variation in the log(RMSD) value when we move from one damage
state to another. What the pairwise comparisons will do is evaluate
if this change is significant enough to affirm that the sensors have cap-
tured the increasing damage in the beam (Table 4). As in previous ana-
lyzes, what we need to inspect here is the p‐value. A p‐value smaller
than 0.05 means that there is a significant difference between that pair
of damage states, and therefore the model has successfully distin-
guished them. This analysis yields an important result, which is that
the sensors have been able to distinguish between every pair of dam-
age states with a significant confidence. Damage states 2–3 and 4–5
are the pairs for which the significance level is the lowest (i.e. the p‐
value is the highest), and still for these pairs the p‐value is below
the limit of 0.05. As a conclusion, it can be asserted that this method
has been able to distinguish amongst all damage scenarios with a sig-
nificant confidence.

Once an overall analysis has been carried out, the same analysis
will be performed but this time focusing on each group of sensors.
For it, the same procedure as in the previous analysis will be followed.
Although not shown here for simplicity, the model assumptions are not
satisfied for any of the groups when working directly with RMSD and,
because of it, a new variable consisting of the log(RMSD) value is
defined for each group. At this point the model assumptions will be
checked again considering the model with the new variable. If this test
gives enough confidence to continue with the analysis, the analysis of
variance test will be performed. Finally, if this test shows that the dam-
age state and/or the frequency have a significant influence on the
RMSD index, post‐hoc analysis with pairwise comparisons will be car-
ried out.

To avoid repetition, the whole test of assumptions will not be pre-
sented since it was made for the previous analysis. Instead, the Q‐Q
plot (Fig. 16), the histogram of the residuals (Fig. 17) and the fitted
vs residual values plot (Fig. 18) will be displayed in order to prove that
the assumptions have been met. For all groups, the data points in the
Q‐Q plot adjust well to a straight line and the histogram of the resid-
uals resembles the typical bell curve. Therefore, it can be guessed that
the residuals will meet the normality assumption. Moreover, according
to Fig. 19, it can be observed that there is not any obvious pattern in
the residuals, so it can be concluded that the linearity assumption is
not violated. In addition, from the scatter of the data points it can be
assumed that the variance of the residuals does not have a clear depen-
dence on the fitted value. For this reason, the analysis will be contin-
ued considering that the homocedasticity assumption is not violated.

After the model assumptions have been tested, the analysis of the
data will be performed. As explained previously, the first objective will
be to prove that the damage state variable has a significant influence
on the RMSD index. If so, a post‐hoc analysis will be made to perform
pairwise comparisons in order to assess if there is a significant differ-
ence between each pair of loading stages. Results from the first analy-
sis of variance for the three groups of sensors are shown in Table 5.

Following the same logic as we did for the overall analysis, the
study will be focused on the p‐value for each variable. As it can be
observed, the p‐value is much lower than 0.05 for the damage state
variable, meaning that the damage state has a significant influence
on the RMSD. Therefore, the three groups of sensors are able to cap-
ture the presence of the damage, as this variable affected significantly
the RMSD index. On the other hand, neither the frequency nor the
interaction of the frequency with the damage state have shown a sig-
nificant influence on the RMSD for groups 1 and 2. For this reason, a
further post‐hoc analysis for the frequency variable is not justified.
Loading stage 3 Loading stage 4 Loading stage 5

0.7454 0.08232 0.1358



Fig. 12. Q-Q plot for the normality test using log (RMSD) – Specimen A.

Fig. 13. Histogram of the residuals using log (RMSD) – Specimen A.

Fig. 14. Fitted vs residual values for the model using log(RMSD) – Specimen
A.

Table 3
Analysis of deviance – Specimen A.

Damage state Frequency Damage state:frequency

p-value 2.2e−16 4.375e−8 0.9808334

Fig. 15. Boxplots for each damage state – Specimen A.

Table 4
Damage states pairwise com-
parison – Specimen A.

Damage states p-value

1–2 3.09e−8
1–3 6.22e−15
1–4 <2e−16
1–5 <2e−16
2–3 0.018530
2–4 4.04e−9
2–5 <2e−16
3–4 0.000532
3–5 3.19e−9
4–5 0.018530
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However, for group 3, the frequency variable has a significant influ-
ence on the RMSD, yielding similar results to the overall analysis; this
means that sensors of group 3 play a more important role in the dam-
age detection than the other two groups.

In a second analysis, the difference between the different loading
stages (and damage stages) is tested. Boxplots shown in Fig. 19 con-
firm that there is an appreciable change between some pairs of damage
stages, but the high variance of the data is such that for some cases it is
not clear that all damage stages are different from each other. A pair-
wise analysis will help to understand better which pairs of damage
stages are significantly different from each other (Table 6).

From Table 6, as it can be noticed, this first group of sensors fails to
detect a significant difference between almost every pair of two con-
secutive damage states (1–2, 2–3, 3–4, 4–5) which means that damage
increment between two consecutive damage stages is small for sensors
belonging to this group. However, these sensors are able to detect a
significant difference for the rest of pairwise comparisons, meaning
that they capture the growing damage in the beam.

As a conclusion, it can be stated that Group 1 of sensors has been
useful to detect the presence and propagation of the damage. How-
ever, they only managed to do so when the damage states were more
separate to each other than in the overall analysis, since they had a
weak performance at differentiating consecutive damage states. Some-
thing similar occurs for Group 2. They are able to distinguish between
the most severe damage scenarios (4 and 5) and the initial ones (1 and
2) but they fail to distinguish between damage states that are closer to
each other, and, therefore, significant growth of damage between con-
secutive loading stages is not evident. The analysis of Group 3 yields
the most relevant results. As it can be observed, sensors of Group 3
are able to distinguish between almost every pair of damage states.
Only for pairs 2–3 and 3–4 the p‐value is higher than 0.05, and even
for pair 3–4 the p‐value is lower than 0.1, still partially significant.
As a conclusion, it can be stated that the sensors PZT6, PZT7, PZT8



Fig. 16. Q-Q plot for groups (a) 1, (b) 2 and (c) 3 – Specimen A.
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and PZT9 have shown the best performance amongst all groups at
detecting the presence and propagation of the damage which is a
symptom that failure of the beam originated internally where sensors
of group 3 were bonded.

A further study was performed focused separately on sensors of
group 3. Table 7 shows the p‐values for the damage state obtained
from an analysis of variance carried out for model objects produced
by LMM. As expected, damage state has a significant influence on
the RMSD of each internal sensor, especially for PZT6 and PZT9.

Fig. 20 shows the evolution of the boxplots for each internal sensor
along the different loading stages. Due to the high variance of the data,
apparently, only for sensors PZT6 and PZT9 the identification of the
growth of damage is clear. A pairwise analysis will be useful to analyze
this in more detail (Table 8). The most critical sensors are PZT6 and
PZT9. Results about these sensors demonstrate that an anomaly occurs
in the vicinity of these sensors which might be interpreted as a symp-
tom of a possible imminent failure.

Finally, once the analysis by damage state has been performed, it is
also interesting to carry out a second analysis this time focused on the
sub‐frequency intervals. As shown in Table 5, the frequency variable
has a significant influence on the RMSD value when working with sen-
sors belonging to Group 3 (embedded sensors). For this reason, it is
justified to perform a post‐hoc analysis for this group of sensors with
pairwise comparisons amongst sub‐frequencies intervals instead of
amongst damage states. The objective of this analysis is to study the
different sensitivity of RMSD index to different sub‐frequency intervals
[30] and, if so, how these intervals affect the damage state.

Table 9 shows the results of this comparison for the frequency vari-
able. The numbers on the first column represent the frequency inter-
11
vals subjected to the comparison. So, number 1 corresponds to
frequency interval 10–20 kHz, number 2 corresponds to frequency
interval 20–30 kHz and so on, until reaching the 9th interval between
90 and 100 kHz. As it can be observed, the model is able to distinguish
clearly between the frequency interval 10–30 kHz and the frequency
interval 60–100 kHz, although other intervals (30–40 kHz,
40–50 kHz and 50–60 kHz) show also a significant difference with
the highest frequency intervals (70–100 kHz). The conclusion that
can be extracted from this analysis is that lower and higher frequencies
had significantly different influence on the RMSD index, and therefore
the damage states might affect to the sensors differently depending on
the excitation frequency.

Once this frequency analysis has been carried out, we want to know
if a certain range of frequencies works better at differentiating some
damage states over others. Based on the results of Table 9, we will
establish two different groups of sub‐frequency intervals and perform
an analysis considering only the frequencies included in each group.
The first group will include sub‐frequency intervals 1 to 5 while the
second group will include sub‐frequency intervals 6 to 9.

Table 10 shows results from the analysis of variance performed on
sensors of group 3 considering the two intervals. A significant p‐value
for the damage state variable is computed for both cases, which allows
us to perform a pairwise analysis for the same two sub‐frequency inter-
vals. In this pairwise analysis we will study how the different set of
sub‐frequency intervals are able to differentiate amongst the damage
states (Table 11).

As it can be observed in Table 11, the fact of eliminating sub‐
frequency intervals 1 to 5 led to worse results compared to the analysis
performed for Group 3 using all the frequency range (Table 6). While



Fig. 17. Histogram of the residuals for groups (a) 1, (b) 2 and (c) 3 – Specimen A.

R. Perera et al. Composite Structures 273 (2021) 114322
the analysis for Group 3 showed a significant difference between dam-
age states 4 and 5, this differentiation is lost when we only use sub‐
frequency intervals 6 to 9. In addition, it does not provide any addi-
tional information compared to the analysis of Group 3, since all the
damage scenarios distinguished by these frequencies were also distin-
guished by the analysis of Group 3 with the same significance level.
The only difference could be identified in the comparison of damage
states 3 and 4, where the model that employs the higher frequencies
yields a higher significance level.

On the other hand, if we study the results for sub‐frequency inter-
vals 1 to 5, it is interesting to note how the significance level for dam-
age states 4 and 5 is higher than for the analysis of Group 3. This can
be due to the fact that the sensors were influenced by the propagation
of the damage across the beam rather than in their vicinity, and hence
affecting the lower sub‐frequency intervals more significantly. Despite
this, these sub‐frequency intervals were unable to differentiate
between damage states 2 and 4 and lost sensitivity in the differentia-
tion of damage states 3 and 4.

As a conclusion, excluding the lower sub‐frequency intervals from
the dataset led to worse results, as some of the damage differentiation
from the Group 3 analysis was lost. Furthermore, excluding the higher
sub‐frequency intervals led to better results when comparing the last
damage states, although the model lost sensitivity when comparing
damage states 2–4 and 3–4. Overall, the analysis shows that the best
results are obtained when we use a dataset with all the frequency
range (10–100 kHz), as the model was able to differentiate amongst
the majority of pairs of damage states.
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4.2. Specimen B

4.2.1. Experimental set-up
A new test campaign was carried out on a new beam, specimen B,

with the same geometric and material properties than specimen A
(Fig. 1). However, in this case, the expected damage mode was the
delamination of the internal composite reinforcement due to a loss
of adherence. To favour this, various areas of the FRP on the left side
of the specimen were not attached with epoxy to the concrete in order
to induce an initial debonded area at the FRP‐concrete interface.
Despite this, in the test, the damage mode of the beam was not the pre-
dicted one, as the FRP showed a strong adherence and the beam failed
by FRP bar rupture. Fig. 21 shows the experimental set‐up. Only the
portion of the beam between the left support and the applied load is
shown since it was the only instrumented region. The same type of
PZT sensors than in specimen A was used here, P‐876.A12 (PZT1
and PZT2) and P‐876.SP1 (the remaining sensors) transducers. The
regions shaded in blue in the figure are those which were not bonded
initially with epoxy.

An analogous loading and measurement procedure to the one fol-
lowed with specimen A was carried out on specimen B. Fig. 22 shows
the loading–unloading curves for each loading step obtained from a
strain sensor located close to the debonded area between sensors
PZT8 and PZT9. From the initial baseline stage, six loading steps were
applied reaching the failure in the sixth step. The first cracks are not
identified in the figure since the strain sensor is located far from the



Fig. 18. Fitted vs residual values for groups (a) 1, (b) 2 and (c) 3 – Specimen A.
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midspan, where the first cracks appeared. However, it is clear that
yielding initiated during the third loading stage.

4.2.2. Slope-based RMSD index
As we did in the previous beam analysis, we will firstly study the

evolution of the RMSD index from one loading state to another for
each sensor. This analysis is focused on the slope‐based RMSD index,
which links the evolution of the RMSD with the severity of the
changes. The procedure followed in this section is analogous to the
one we implemented on the first beam. Fig. 23 shows the RMSD values
for all sensors together with the fitted straight line.

As it can be observed, the RMSD index at loading state 1 is sig-
nificantly lower than for the rest of states, which demonstrates the
sensitivity of the sensors to the changes experienced by the
specimen.

This first result confirms the conclusion to which we arrived in
the previous beam, which is that the RMSD values show a ten-
dency to increase as the load increases. The fact that this tendency
is shown in all sensors gives us a strong indication that all of them
have been able to capture the propagation of the changes experi-
enced by the beam. In addition to this, sensors PZT1 and PZT3
show a significantly higher RMSD value compared to the other
two sensors, which correlates with the fact that the areas close
to sensors PZT1 and PZT3 were subjected to more severe changes.
This first analysis brings us to the same two outcomes we arrived
to previously; first, all sensors show a clear distinction between the
initial state (State 1) and the rest of states, which means that all
sensors where able to detect the variations. Second, since the
RMSD increases progressively, all sensors have been capable to cap-
ture the increasing severity of changes.
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On the other hand, another key aspect of this analysis that provides
useful information is the slope. The fact that sensors PZT1 and PZT3
present a higher slope indicates that these sensors were subjected to
a more severe changes compared to sensors PZT2 and PZT4, which
correlates with the experimental results. In addition to this, sensor
PZT4 presents a positive slope even though it has an abnormally low
RMSD value at damage state 5. This result confirms the robustness
of this method to assess the variations despite the presence of anoma-
lous data points.

Internal sensors present a similar behaviour to the previous. More-
over, we noted previously that the potential of this method relies on
the fact that single outlying values do not drastically change the con-
clusions. This can be seen studying sensor PZT8, which presents a pos-
itive slope even though the RMSD value for state 4 does not follow the
expected trend. Concerning the rest of sensors, all of them point to the
same outcomes as we did before.

Another interesting variable of this figure is the slope. As it can be
examined, the highest slope corresponds to the sensor that was sub-
jected to the most severe changes (sensor PZT7), which correlates well
with the experimental results. In addition, the slope for sensor PZT6 is
higher than for the other two sensors, which again points to the fact
that the most severe changes were surrounding the right side of the
array.

In conclusion, it has been proved that both the RMSD index and the
slope‐based RMSD are useful tools to assess the changes experienced
by the beam. All sensors presented robust indicators that pointed
towards the same result, capturing the progressive changes experi-
enced by the specimen. In addition to this, the value of the slopes also
gathered meaningful information on the severity of the changes
around each sensor.



Fig. 19. Boxplots for groups (a) 1, (b) 2 and (c) 3 – Specimen A.

Table 5
Analysis of deviance – Groups of sensors of specimen A.

p-value

Group 1 Group 2 Group 3

Damage 6.81e−9 4.54e−7 2e−16
Frequency 0.6470 0.12328 2e−16
Damage:Frequency 0.9972 0.9888 0.94439

Table 6
Damage states pairwise comparison – Groups of sensors of specimen A.

Damage states p-value

Group 1 Group 2 Group 3

1–2 0.217236 0.251627 7.64e−11
1–3 0.004039 0.007276 4.78e−13
1–4 6.12e−07 1.55e−05 <2e−16
1–5 1.18e−07 2.39e−06 <2e−16
2–3 0.147943 0.251627 0.34094
2–4 0.000116 0.003608 0.01128
2–5 2.39e−05 0.000673 4.99e−09
3–4 0.029211 0.182479 0.09634
3–5 0.008810 0.056902 4.46e−07
4–5 0.607605 0.561941 0.00141
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4.2.3. Application of LMM
In this section we will try to answer the same questions that were

exposed in the analysis for the previous beam. That is, we will first
investigate up to which extent the variation in the RMSD index is
due to the loss of structural integrity in the beam. Once this question
14
has been answered, we will analyze how different each of the individ-
ual damage states are from each other. This will help us understand if
this methodology has been able to capture the progression of the dam-
age in the beam. This analysis will be conducted examining the influ-
ence of the type of sensor and the frequency of excitation on the
damage detection performance.

This analysis will be carried out using a linear mixed effects model,
which was explained in detail in previous sections. In this case, we will
work with 4 damage states (2 to 5) since damage state 1 will be used as
a baseline for comparison.

We will follow a similar structure as in the previous beam. We will
firstly focus on studying the potential influence of the damage state on
the RMSD using all the sensors. Once this has been performed, three
more analyzes will be carried out, one for each group of sensors: Group
1, which includes sensors PZT1 and PZT2, the larger surface‐bonded
sensors, group 2 including sensors PZT3 and PZT4, the smaller
surface‐bonded sensors, and group 3 including sensors PZT6, PZT7,
PZT8 and PZT9, which are all embedded sensors of the same type.
The objective of performing this analysis split by group is to study
how the type and condition of a sensor affects its damage sensitivity.
Finally, another analysis will be performed focused on the frequencies,
in order to understand which frequencies have more influence on the
RMSD or help differentiate between damage states better.

As in the previous analysis performed on beam A, firstly, the condi-
tions presented at the end of Section 3 should be checked. Although
not shown here all the procedure again, data do not satisfy all the con-
ditions and we will work with the log‐transform of the RMSD indices,
which meets suitably the needed requirements. The model will be the
same of Eq. (9).



Table 7
Analysis of deviance – Embedded sensors of specimen A.

p-value

PZT6 PZT7 PZT8 PZT9

Damage 4.634e−12 2.180e−6 1.839e−8 8.567e−14

Fig. 20. Boxplots for (a) PZT6, (b) PZT7, (c) PZT8 and (d) PZT9 – Specimen A.

Table 8
Damage states pairwise comparison – Embedded sensors of specimen A.

Damage states p-value

PZT6 PZT7 PZT8 PZT9

1–2 0.001438 0.213493 2.17e−6 9.06e−10
1–3 0.000236 0.158923 2.67e−8 6.52e−10
1–4 4.12e−8 0.000903 2.74e−5 1.03e−11
1–5 2.25e−12 2.31e−6 3.32e−7 6.22e−14
2–3 0.477581 0.634747 0.5321 0.855980
2–4 0.001499 0.062018 1 0.175416
2–5 4.12e−8 0.000255 1 0.000676
3–4 0.006976 0.158923 0.0872 0.175416
3–5 2.32e−7 0.000903 1 0.000950
4–5 0.001438 0.158923 0.5321 0.082212
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The analysis of variance (ANOVA) using the F‐test performed for
model objects produced by LMM gives the results shown in Table 12.

By following the same reasoning used for beam A, three important
conclusions can be extracted from this analysis. First, it proves that the
15
damage state has a significant influence on the RMSD, since the p‐
value for this variable is significantly smaller than 0.05. This is an
important conclusion since it has led us to prove that, among all vari-
ables, the damage state influences the RMSD significantly, and there-



Table 9
Subfrequency intervals pairwise comparison – Group 3 of sensors of specimen A.

Intervals p-value Intervals p-value Intervals p-value

1–2 0.594938 2–7 2.76e−10 4–8 0.004035
1–3 0.991201 2–8 1.25e−12 4–9 1.48e−05
1–4 0.084888 2–9 < 2e−16 5–6 0.495074
1–5 0.428159 3–4 0.991201 5–7 0.009263
1–6 0.001783 3–5 0.991201 5–8 0.000278
1–7 2.69e−06 3–6 0.106100 5–9 5.17e−07
1–8 2.25e−08 3–7 0.000787 6–7 0.934839
1–9 1.14e−11 3–8 1.34e−05 6–8 0.144079
2–3 0.028402 3–9 1.45e−08 6–9 0.002006
2–4 0.000170 4–5 0.991201 7–8 0.991201
2–5 0.002639 4–6 0.991201 7–9 0.188935
2–6 7.56e−07 4–7 0.085189 8–9 0.991201

Table 10
Analysis of deviance – Group 3 of sensors of specimen A.

p-value

Frequency intervals 1 to 5 Frequency intervals 6 to 9

Damage 1.209e−12 4.686e−14
Frequency 0.0001833 0.001062
Damage:Frequency 0.9804853 0.982260

Table 11
Damage states pairwise comparison – Group 3 of sensors of specimen A.

Damage states p-value

Frequency intervals 1 to 5 Frequency intervals 6 to 9

1–2 3.28e−5 3.98e−6
1–3 1.22e−5 6.12e−8
1–4 2.53e−6 3.59e−12
1–5 8.44e−14 2.13e−13
2–3 1 0.520295
2–4 1 0.002232
2–5 4.99e−5 0.000189
3–4 1 0.036480
3–5 0.000123 0.005175
4–5 0.000450 0.520295

Fig. 21. Experimental layout for the PZT sensors – Specimen B.

Fig. 22. Experimental load vs microstrain – Specimen B.
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fore it is reasonable to use this damage metric to assess the structural
condition of the beam. In the same way, this analysis also proves that
the frequency interval has a significant influence on the RMSD. Finally,
from this analysis we can also conclude that there is no significant
interaction between the damage state and the frequency.

This overall analysis allows us to perform a second analysis where
we test how different each damage state is from the rest (Table 13). As
in previous analyses, p‐values lower than 0.05 mean the model has
successfully identified between each pair of damage states. Results
show the model has identified the difference between states 2–3,
16
2–4, 2–5 and 3–5 with a significant confidence. However, the model
has failed to distinguish between damage states 3–4 and 4–5. How-
ever, for the successful cases, the performance has been worse than
for the previous beam (where there was a significant difference
between every pair of damage states). This has been attributed to
two factors: first, it is important to remember that the baseline for
the calculation of the RMSD is the signal at loading state 1, and not
loading state 0 as it was in the first beam. This could have led to the
loss of some important information, since the impedance signals are
not being compared to the healthy state anymore. Second, since the
failure mode was not the expected one, some of the PZT sensors did
not provide as much significant information as in the previous beam.
This is because they were further away from the damaged area and
therefore could not capture its progression as accurately.

Once this overall analysis has been carried out we proceed to per-
form the same analysis but this time focusing on each group of sensors.
We will follow the same structure as in the previous analysis and will
work with the log(RMSD) value.

Table 14 shows the results from the variance analysis. As it can be
observed, the p‐value is much lower than 0.05 for both the damage
state variable and for the frequency variable, meaning that both of
them have a significant influence on the RMSD for the three groups
of sensors. Moreover,

the fact that the damage state affects the damage index signifi-
cantly means that Group 3 of sensors has been able to capture the pres-
ence of damage. This analysis allows us to perform a second analysis
where we test how different each damage state is from the rest.

Fig. 24 presents the boxplots for each damage state and group of
sensors. As it can be observed, especially for groups 1 and 2, there is
a subtle change between some pairs of damage states. However, since
some damage states present a high variance, this difference is not clear
for all pairs. For group 3 there appears to be a more noticeable change



Fig. 23. Slope-based RMSD values – Specimen B.
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Table 12
Analysis of deviance – Specimen B.

Damage state Frequency Damage state:frequency

p-value 2.2e−16 2.596e−6 0.9998343

Table 13
Damage states pairwise com-
parison – Specimen B.

Damage stages p-value

2–3 5.56e−09
2–4 3.11e−13
2–5 <2e−16
3–4 0.14179
3–5 0.00177
4–5 0.14179

Table 14
Analysis of deviance – Groups of sensors of specimen B.

p-value

Group 1 Group 2 Group 3

Damage 2.236e−06 3.208e−05 <2e−16
Frequency 2.868e−11 0.0001464 3.61e−10
Damage:Frequency 0.6389 0.9998788 0.84311

Table 15
Damage states pairwise comparison – Groups of sensors of specimen B.

Damage stages p-value

Group 1 Group 2 Group 3

2–3 0.000287 0.001745 1.01e−06
2–4 1.35e−05 5.79e−05 4.11e−09
2–5 7.55e−06 0.000245 < 2e−16
3–4 0.569810 0.622633 0.218153
3–5 0.568954 0.923506 1.08e−05
4–5 0.802810 0.923506 0.000812
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when we move from one damage state to another. However, we do not
have enough information to assess how different the damage states are
based solely on this figure. The pairwise analysis will help us under-
Fig. 24. Boxplots for groups (a) 1,
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stand which pairs of damage states are significantly different from
each other.

Table 15 shows the results from the pairwise analysis. As it can be
noticed, this first and second group of sensors fail to detect a signifi-
cant difference between the last steps of the damage scenarios (3 to
5). The only damage step that has showed a significant difference from
the rest has been damage step 2 but, even in this case, group 2 leads to
worse results than group 1. In general, both, groups 1 and 2, do not
show a good performance in detecting the propagation of the damage.
Sensors of Group 3 are able to distinguish between almost every pair of
damage states. Only for pair 3–4 the p‐value is higher than 0.05. On
top of this, the performance of sensors of Group 3 alone has been bet-
ter than in the overall analysis with all the sensors. This can be attrib-
uted to the fact that, since Groups 1 and 2 of sensors are unable to
differentiate the last damage steps, mixing their data with that of
Group 3 adds noise to these last damage steps, making it harder to tell
them apart. As a conclusion, it can be stated that the sensors of Group
3 have shown the best performance amongst all groups at detecting the
presence and propagation of the damage. In addition, we can infer that
(b) 2 and (c) 3 – Specimen B.



Table 17
Damage states pairwise comparison – Embedded sensors of specimen B.

Damage states p-value

PZT6 PZT7 PZT8 PZT9

2–3 0.8978 0.000457 0.02394 5.5e−7
2–4 0.0587 6.35e−5 0.08015 1.91e−7
2–5 0.0142 7.21e−9 0.00461 6.52e−10
3–4 0.1544 0.336346 0.93045 0.57582
3–5 0.0474 0.000143 0.93045 0.00634
4–5 0.8978 0.000864 0.55996 0.01657

Fig. 25. Boxplots for (a) PZT6, (b) PZT7, (c) PZT8 and (d) PZT9 – Specimen B.

Table 16
Analysis of deviance – Embedded sensors of specimen B.

p-value

PZT6 PZT7 PZT8 PZT9

Damage 0.006236 2.179e−8 0.004751 9.842e−10
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this group of sensors is the one that contributes the most to the sensi-
tivity to damage of the complete array of 8 sensors.

According to the previous results, the study was focused subse-
quently on sensors belonging to group 3. Tables 16 and 17 and
19
Fig. 25 show the p‐value for the damage from the variance analysis,
the boxplots and the damage states pairwise comparison, respectively.
For this specimen, even although an unexpected failure by rupture of
FRP occurred, a large crack on the right of sensor PZT7 overlapping
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with the closest debonded area to the midspan was identified after fail-
ure. This might be an indication that the loss of adherence around the
area surrounding sensor PZT7 was near as Fig. 25 and Table 17 show.

For this specimen, a final analysis focused on the dependence on
the sub‐frequency intervals was also carried out for group 3 of sensors.
However, for simplicity, the results are not presented here since the
conclusions are the same than for specimen A, the frequencies did
not play a major role in the damage detection capability of Group 3
of sensors.

5. Conclusions

This paper develops a procedure for damage identification of struc-
tural concrete members rehabilitated by NSM FRP systems. The proce-
dure is based on the implementation of linear mixed methods in
combination with EMI results captured from piezoelectric sensors
bonded on the analyzed beam. The performance evaluation of the pro-
posed approach has been made with two experimental tests on con-
crete beams strengthened with NSM‐FRP.

Once their assumptions have been checked, LMMs, as an approach
for spatial linear model selection applicable to classified spatial data,
allow to incorporate the spatial information provided by the different
sensors into a data model and a classification rule specification, from
which an analysis of the data is performed. It makes them compare
favourably against other selection approaches.

With the proposed methodology, various problems to be solved in
the application of EMI technique to achieve the ultimate goal of locat-
ing and identifying damage have been addressed in a fast and reliable
way. These problems include the use of an efficient statistical metrics
sensitive enough to damage, the importance or not of selecting a suit-
able frequency range and the need to filter the random or uncontrol-
lable phenomena typical from experimental tests. One of the trends
of this study is that LMMs, whose use is increasing everyday in other
areas, has allowed to address for the first time all these aspects in a
direct way. Moreover, another topic to be covered in the future, the
compensation of environmental factors such as temperature variations,
might also be dealt with this methodology.
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