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ABSTRACT Closure and seal inspection is one of the key steps in quality control of pizza packages. This
is generally carried out by human operators that are not able to inspect all the packages due to cadence
restrictions. To overcome this limitation, a computer vision system that automatically performs 100% inline
seal and closure inspection is proposed. In this paper, after evaluating pizza package features, the manual
quality control procedure, and the packaging machines of a real industrial scenario, a detailed description
of hardware and software components of the proposed system as well as the main design decisions are
presented. Focusing on the hardware, line-scan technology and hyperspectral imaging has been considered
to ensure that all relevant information can be acquired independently of the pizza brand, topping, and film
features. Focusing on the software, this applies a three-phases strategy that, first, applies a set of basic
rejection controls; second, identifies the sealing region; and third, prepares the data for prediction through the
classification of the pizzas using a deep learning network. This network is one of the software key elements
and has been selected after comparing the commercial off-the-shelf (pretrained-dl-classifier-resnet50 from
MVTec Halcon) and the custom-developed (ResNet18) architectures designed to automate the accept/reject
classification of pizza packages. To train the networks, a classification of pizza package defects, focusing on
sealing and closure, and an image-based method able to automatically detect them have been proposed. The
system has been tested in laboratory and in real industrial conditions comparing it with the manual scenario
and considering three pizza brands with two toppings per brand. From the evaluation, it has been seen that
ResNet18 achieves the best results withmean, maximum, andminimum precision values of 99.87%, 99.95%,
and 99.74%, respectively.Moreover, our system achieves twice the throughput rate with respect to themanual
scenario, with the guarantee that all pizzas are evaluated, which is not possible in the manual scenario due to
operator fatigue. The proposed solution can be easily adapted to similar contexts, even considering packages
with other shapes.

INDEX TERMS Convolutional neural networks, artificial intelligence classifier, machine vision, food
processing industry, image processing, industry automation, pizza packaging, seal inspection.

I. INTRODUCTION
Computer vision systems and image processing techniques
have become powerful tools in the food industry. They
have been successfully adopted for the quality analysis of
meat, fish, pizza, cheese, and bread and for the inspection
and grading of fruits and vegetables, among others [1]–[8].
Their capability to replace tedious and subjective human
procedures with automatic ones has provided many
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economic and safety benefits [9], [10]. On the one hand,
human presence and human errors have been reduced; on
the other hand, efficiency and stability of the processes
have increased by promoting faster and more economical
inspection. Recently, these systems have been improved
with the integration of methods from the field of artificial
intelligence, such as deep-learning techniques, that enhance
the accuracy and precision of the processes [11]–[15].
In quality control, all these technologies have been combined
to automatically classify or detect and discard defective
products [16]–[21].
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Focusing on applied industrial computer vision systems,
two main components have to be considered, the hard-
ware which includes illumination system, image acquisi-
tion devices or computing elements, and the software which
is generally composed of modules that integrate different
image processing algorithms as well as deep-learning tech-
niques to determine whether the processed product has to
be accepted or rejected [22], [23]. Obviously, all these com-
ponents are specifically designed to meet the restrictions
imposed by the features of the product and the quality
requirements [24]–[26]. Moreover, in real scenarios, an extra
effort is required to properly synchronize all software compo-
nents with the industrial hardware to accept or reject products
in real time [27]–[29]. In this paper, we have focused on the
quality control of pizza packages.

Computer vision techniques have been previously used
in pizza production to inspect different pizza components
such as the base, the sauce, or the topping [30]–[32].
Du and Sun [33] developed a pizza base shape inspection
system that uses image processing techniques to extract the
edge of the pizza base through the Fourier analysis of the
radius function of the segmented base. This analysis was then
used to classify the shapes as acceptable or not by using
Support VectorMachines (SVM). Based on color features and
SVM, the same authors [34] proposed a method to classify
pizzas into five different classes (even spread, acceptable
overwipe, reject overwipe, acceptable underwipe, and reject
underwipe) with an accuracy of more than 95%. A similar
strategy was used in [35] to classify the pizza topping by
analyzing different color spaces and using SVM. Many stud-
ies have shown that convolutional neural networks methods
perform better than SVM-based methods in similar applica-
tions [36], [37]. A convolutional neural network (CNN) is a
type of deep neural network designed to process grid pattern
data, such as images, and automatically and adaptively learn
spatial hierarchies of features. A CNN has a multilayer struc-
ture where the first two type of layers, the convolution and
pooling layers, perform feature extraction, and the third one,
the fully connected layer, maps the extracted features into a
final output. Since one layer feeds the next with its output,
the extracted features can hierarchically and progressively
becomemore complex. Although different CNN solutions are
available for industrial applications, its use becomes complex
since a training process with specific training datasets is
required [38]–[43].

In our case, we focus on the quality control of pizza pack-
ages which requires: a serigraphy test to check the correct
position of the printings; a traceability test to check the good
visibility of date and lot number; and a closure and seal test
to ensure the product preservation. This last test is the more
complex and the one we have centered [44]. Our aim has been
the development of a CNN-based approach to automatically
control closure and seal of pizza packages. To reach this
objective three main issues that need to be faced.
• First, focusing on seal and closure, there is no classifi-
cation of pizza package features that determines when

a package should be accepted or rejected. Generally, the
quality control is performed by human inspection and an
analysis of this human procedure has to be carried out to
automatically reproduce it and define a suitable training
dataset.

• Second, pizza packages have different features depend-
ing on the brands and a proper solution should support all
of them. Since all information is obtained from product
images, the proposed image acquisition system has to
ensure that features can be detected regardless of the
brand.

• Third, the desired solution has to support real-time
inspection of all pizzas on the manufacturing line to
guarantee that only valid pizzas reach the end of the
supply chain. Therefore, all synchronization issues must
be solved to obtain an efficient performance in real
scenarios while satisfying time restrictions.

The aim of this paper is to present the solutions that have
been proposed to solve each of the aforementioned issues,
leading to a computer vision system that efficiently replaces
the current manual quality control procedure of a real com-
pany. The main contributions of the paper and the related
technical challenges can be summarized as follows:

1) A classification of pizza package defects, focusing on
seal and closure, with an image-based method able to
automatically detect them. To tackle this problem it has
been necessary to identify and classify the features that
can be considered defects and evaluate the capabilities
of the different camera systems to detect these features
independently of the package characteristics;

2) A computer vision system able to automatically per-
form 100% inline inspection of pizza packages while
satisfying production cadence. Different configurations
have been considered to obtain the one that satisfies
the client demands ensuring that all the pizzas are
processed by the system. Such a process has been done,
first, experimentally in the laboratory and then, in the
real scenario;

3) The validation of the proposed solution in a real sce-
nario taking into account different solutions for the
CNN implementation as well as a comparison of the
proposal with the traditional quality control method
considering different datasets. From a technical point
of view, it has been necessary to implement a software
solution capable to fit different CNN architectures to
properly evaluate them. The test in a real scenario
ensures a complete test coverage and also an accurate
solution for each use case, but makes the implementa-
tion more complex.

Note that the issues presented are common to products
with similar packaging. Therefore, although our study will
be centered on pizzas, the proposed solution can be easily
extended to other products.

In Table 1, our proposal is compared with some of the
systems previously described considering: the target where
the quality control approach is applied; the classification

167268 VOLUME 9, 2021



N. Banús et al.: Deep-Learning Based Solution to Automatically Control Closure and Seal of Pizza Packages

TABLE 1. Comparison of some state-of-the-art methods, including our proposal in the last column. The abbreviations correspondence is Clus for
clustering; N − N for nearest-neighbor; SVM for support vector machine; RBF for radial basis function; MLP for multi-layer perception; ANN for artificial
neural network; CNN for convolutional neural network; Pre for pre-trained with ImageNet; DA for data augmentation; L − 1 − O for leave-1-out; CV for
cross-validation; F for fold; B for images with constant background; ∗ for candidate defects by a traditional image processing method based on candidate
defective regions; Mono for monochrome; and IRAS for infrared image acquisition system selected by hyperspectral imaging system study.

accuracy obtained; themethod applied; the extracted features;
the input data required by the method; the datasets used
for training, testing, and validation, and whether or not data
augmentation has been applied; and the scenario in which the
method has been tested.

Besides this introduction, the paper has been structured as
follows. In Section 2, the key elements of the real industrial
scenario related to the proposed computer vision system are
described. In Section 3, the hardware components of the
proposed computer vision system are presented with special
attention to the image acquisition system. Then, in Section 4,
a detailed description of the software components of the
system is given focusing on the considered CNN architec-
tures and the used image processing techniques. Results and
Discussion are given in Section 5, where the experiments
designed to compare the two CNN architecture alternatives,
the manual and automatic performance, and the correctness
of the proposed solution are presented. Finally, Conclusions
and Future work are given in Section 6.

II. THE REAL INDUSTRIAL SCENARIO
To design a computer vision system to automatically perform
the quality control of seal and closure of pizza packages, it is
necessary to evaluate the real industrial scenario focusing on:
the pizza packages considering different brands and toppings
in order to identify the key features; how operators proceed
to accept or reject a pizza package in order to reproduce and

enhance this procedure; and the machines involved in the
packaging process in order to determine the computer vision
system location.

A. FEATURES OF PIZZA PACKAGES
The visual attributes of pizza packages has been done consid-
ering samples of three brands and six toppings (margherita,
ham and cheese, mediterranean, kebab, chicken, and capric-
ciosa) provided by our industrial partner. As it can be
observed in Figure 1(a-c), the size, shape, and distribution
of opaque and transparent areas of the package depend on
the brand, as well as the color and density of the film. Note
that Brand1 has a uniform sealing with constant film density
and transparency, Brand2 has a dark zone with a dark color
printed, and Brand3 has a film with non-constant density
and non-transparent sealing. It can also be noted that all
packages have common features such as the diameter, which
is approximately 30cm; the shape, which is never completely
round; and the width of the sealing, which is not constant for
all parts of the pizza. Focusing on the sealing, it can be seen
that some parts are common to all brands. These has been
labeled as follows (see Figure 1(d)): the single sealing (SS) is
the region that covers the main part of the pizza sealing; the
opening sealing (OS) is the part that allows the consumer to
easily open the package; the double sealing (DS) is the part
that connects the SS to the OS. There is also the easy-opening
region (EOR), composed of the OS and DS regions, and
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FIGURE 1. (a-c) Packages from Brand1, Brand2, and Brand3, respectively, and (d) parts of pizza package, where SZ is
the search zone, OS is the opening sealing, EOR is the easy-opening region, DS is the double sealing, SS is the single
sealing, and DZ is the dark zone (only for Brand2).

which is different for all brands analyzed, and the dark
zone (DZ), that is the part of the package with a dark color
printed, and which only appears in some brands such as
Brand2 (see Figure 1(b)).

B. PIZZA PACKAGING QUALITY CONTROL
The quality control in pizza packaging considers three tests:
a serigraphy test that checks the correct position of the print-
ings; a traceability test that checks the good visibility of the
expiration date and the lot number; and a closing and sealing
test that checks the package closure and seal. The package is
accepted when all the tests are passed. Our interest has been
focused on the most challenging one, the closing and sealing
test [44].

After examining the manual procedure and images
of the products (acquired with the system described
in Section III-A), it has been found that: (i) the area to be
inspected is similar for all pizza brands and corresponds to
an area between 3 and 8mm wide placed about 3mm from
the package boundary; and (ii) besides the failure in the
serigraphy or traceability tests, a pizza is rejected if at least
one of the following conditions is given:

(i) empty package, without pizza (see Figure 2(a));
(ii) deformed pizza with bumps or scratches

(see Figure 2(b,c));
(iii) overlapping pizzas, i.e., when two whole pizzas

appear in a single image and cannot be analyzed (see
Figure 2(d)). This case is denoted as double;

(iv) pizza without attached film (see Figure 2(e,f)); and
(v) large bubbles or large food ingredients in the pizza

sealing that pass through it (see Figure 2(g-r)).

On the other hand, there are other conditions that are not
reason of rejection such as:

(i) the marks of the machine that joins the film with the
product (see Figure 3(a-e));

(ii) the humidity generated by the temperature of the
pizza at sealing time (see Figure 3(f));

(iii) the fingerprints that can appear when the product is
touched with gloves by the staff (see Figure 3(g,h));

(iv) some flour over the package (see Figure 3(i)); and
(v) small bubbles or small food ingredients in the pizza

sealing that do not pass through it (see Figure 3(j-o)).

FIGURE 2. Examples of images (or parts of images) corresponding to
cases that have to be rejected: (a) empty pizza; (b-c) deformed pizza
packages; (d) double, when two whole overlapping pizzas appear in a
single image; (e-f) no film attached; (g-r) large bubbles or large food
ingredients in the pizza sealing that pass through the sealing.

To better illustrate these cases, parts of scanned images
and the real product are shown in Figure 4 for several
situations. Some of the cases, such as Figure 3(a-i) and
Figure 4 (VI.a / VI.b) and (VII.a / VII.b), are better perceived
by a computer than by a human operator. In addition, two new
cases, denoted cut and double cut, and which appear when the
system acquires only a part of one or two pizzas, are identified
(see Figure 5(a-c)).
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FIGURE 3. Parts of images corresponding to some of the situations that
do not imply pizza rejection: (a-e) marks of the machine that joins the film
with the product; (f) humidity generated by the temperature of the pizza;
(g-h) bold traces; (i) flour on the package; (j-o) small bubbles or small
food ingredients in the pizza sealing that do not pass through the sealing.

C. PACKAGING MACHINES
Since images of the products are the key of the quality
control process it is necessary to determine the best position
and composition of its image acquisition system. To define
the location, it is necessary to identify the packaging phase
machines. These are the thermoforming packaging machine,
which provides the lower part of the packages; the tray
sealer machine, which seals the upper film; and the cutting
machine, which cuts the packages according to the needs of
the brand [45]. To meet the requirements of the industrial
partner, the image acquisition system has to be installed in
the clean room, just after the tray sealer and the cutting
machines, and before other control processes. To determine
the components of the machine vision system, the following
considerations have been taken into account:
• Pizzas are transported on a conveyor belt at 1.0m/s.
No restriction on position or orientation are imposed
which may lead to overlapping between products.

• Images must be acquired and processed in less than
300ms to satisfy production cadence requirements.

• The inline inspection system has to process the whole
upper surface of the pizza package and hence a
high-speed system that provides high-resolution images
is required [27]–[29].

With all these information in mind, we propose a computer
vision system composed of hardware and software compo-
nents presented in next sections.

FIGURE 4. Pairs of images where the first (a) corresponds to the
processed image and the second (b) to the real image.

FIGURE 5. Examples of image acquisition inconsistencies: (a) single
pizza with a part of the package cropped; (b-c) two overlapping pizzas
with a part of the package cropped.

III. COMPUTER VISION SYSTEM HARDWARE
To describe the hardware of the proposed computer vision
system, first we will present the image acquisition system and
then a global view of all the system configuration.

A. IMAGE ACQUISITION SYSTEM
The analysis of the real scenario imposed a set of restric-
tion that can be satisfied with line scan technology [46].
This acquires two-dimensional images line by line while,
in our case, the pizza package moves perpendicular to the
fixed camera. Moreover, to ensure that all relevant informa-
tion is always extracted from the acquired images, regard-
less of brands and toppings, hyperspectral imaging has also
been considered. Hyperspectral imaging integrates conven-
tional imaging and spectroscopy to simultaneously obtain
spatial and spectral information about an object. The data
obtained is generally arranged as a three-dimensional cube,
called a hypercube, with two spatial dimensions and one
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FIGURE 6. (a) Lens details of the image acquisition system; (b) modulation technique with the filter applied to support the processing of
all brands; and (c) main hardware components of the proposed system to control pizza packaging, and some views of the real scenario.

spectral dimension. This hypercube corresponds to a stack
of images of samples where images are acquired at a reg-
ular interval in a wavelength region [47]. As a result, and
compared with traditional machine vision technology, the
hyperspectral image contains a large amount of information
which provides a more reliable object characterization. How-
ever, since hyperspectral images of full wavelength regions
have excessive and redundant information, a selection pro-
cess is applied to select the relevant wavelengths. Note that a
hyperspectral imaging system can be developed by attaching
a tunable filter with a monochrome camera [48].

In our system, it has been installed a line scanmonochrome
CMOS 4K camera with a standard GigE Vision interface [49]
(80Mb/s) and TurboDrive technology [50]. To determine
the proper wavelengths and remove all other unnecessary
wavelength radiations [51], different tests were carried out in
our laboratory with the different pizza brands and toppings.
Of the possible wavelengths, ranging from 400nm to 1100nm,
the selected one was of 850nm. In this study, the appropriate
illumination system was also determined, obtaining a final

camera configuration that works with a 35−30mm F4M36×
1 lens, a modular focus, adaptors and an Infrared Bandpass
Filter 850nm and a linear IR 850 led light with a diffusion
filter positioned behind the product that acts as a backlight.
The details of the camera lens are given in Figure 6(a), where
the speed, noise, and depth of field determine the acceptance
limit values of exposure, gain, and aperture.

Moreover, to better inspect closure aspects such as closure
dimensions, sealing features, and liner integrity for all brands
and toppings with minimal time and without quality loss,
a pixel binning process is applied to reduce the acquired
images of 4096 pixels (4K) of 7.04µm × 7.04µm pixel size
to 2048 pixels (2K). To support the different features of the
film packages, three acquisitions with different exposures
are made for each acquisition line. In addition, to support
the non-uniform density of the film and the non-transparent
colors of the sealing, a technique based on pulse-width-
modulation with a filter is applied to the light to obtain
a range of intensity values instead of an on/off behavior
(see Figure 6(b)).
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FIGURE 7. (a) Details of the communication between the components of the proposed system, and (b) physical and logical synchronization of
the main components of the system.

B. GLOBAL SYSTEM CONFIGURATION
The machine vision system not only involves the described
image acquisition system, but also different hardware com-
ponents as illustrated in Figure 6(c), where a global view
of the proposed system is presented. The system keeps the
camera fixed while the pizza package is moved through a
conveyor belt. A servo connected to a Programmable Logic
Controller (PLC) controls the speed of the conveyor belt that
transports pizzas from the entrance to the exit. The servo
with the photocell information of the pizza entrance controls
the position of the products and when the rejection system
has to act. An encoder returns feedback about the pizza
position which, together with the feedback of the photocell,
triggers the line scan monochrome camera. The acquired
image is processed by the software and is accepted or rejected
as appropriate. To obtain high-quality images, an extremely
uniform motion is required, which becomes a critical factor
in the design. To do this, a synchronization has been carried
out using an encoder in order to avoid image distortions.

Details of how all components are communicated are pre-
sented in Figure 7(a). The controller I/O is wired to a photo-
cell, to the light, to the industrial PC I/O, and to the camera,
and the encoder is wired to the camera. The industrial PC
and the PLC communicate via Transmission Control Proto-
col/Internet Protocol. GigE Vision is used to communicate
the camera with the PC, and real-time Ethernet is used to
communicate the PLC and the Servo Driver. In addition,
a detailed illustration of the physical and logical synchroniza-
tion between the main components of the system is provided
in Figure 7(b). It can be observed that the servo controls
the position while the light remains constant. The photocell
is active for a period of 240ns, that is when the acquisi-
tion process starts using the encoder information. Note that
for each encoder pulse there are three camera triggers with

different exposure times (9000 lines for 3000 encoder pulses).
Once the images are obtained, time restrictions impose the
process and, once the result is known, the reject system
acts accordingly. If the product reaches the rejection system
position without a known result, it is rejected.

IV. COMPUTER VISION SYSTEM SOFTWARE
All the hardware components that compose the machine
vision system are controlled by a vision control software that
processes the pizza images and determines how the compo-
nents have to proceed to reject or accept the products. In the
real scenario, this software is a custom-developed software
created in our company for managing the different industrial
vision systems that coexist in an industry [52].

Besides image processing strategies, a key component of
the computer vision software is the applied CNN architecture.
To select it, off-the-shelf and custom-developed architectures
have been considered. Due to the importance of this selection,
previous to the description of the software, we are going to
present them.

A. CNN DESIGN ALTERNATIVES
To set the parameters of CNN-based solutions a computa-
tionally intensive training process is required. However, using
transfer learning such a cost can be reduced since less labeled
images and resources are needed [53]. In our case, to carry out
the training, a dataset with 4558 images of 224× 224 pixels
with sealing information in their center has been collected
and labelled. Then, the two following alternatives have been
considered to design the CNN:
• The commercial off-the-shelf pretrained-dl-classifier-
resnet50.hdl provided by MVTec Halcon [38]. This net-
work has been trained using pictures from industrial
applications and, using the transfer learning technique,
it can be retrained for a new specific task with potentially
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FIGURE 8. Main steps of the three-phase software designed to automatically evaluate seal and closure of pizza packages. Representative images that
illustrate the main actions carried out are also presented for each phase.

and completely different classes. To apply it, the indica-
tions of Halcon were followed [54], [55] converting the
collected images to three channels and real number as
pixel format. Since the network imposes requirements
on the images regarding image dimensions, gray value
range and type, we retain the features of the images used
by Halcon to pre-train the network.

• The custom-developed ResNet18 with 18 layers. The
ResNet’s deep-learning architecture was proposed by
He et al. [56] and is characterized by the residual block
and skip connections between blocks. This architecture
alleviates the problem of gradient disappearance caused
by increasing the network depth, and also improves
accuracy by adding considerable depth. The model will
be evaluated with pre-training in ImageNet [57]. This
will be done using the Python programming language1

1https://www.python.org

by means of the PyTorch2 and FastAI3 optimized ten-
sor libraries for deep learning, and considering a vari-
able learning rate by using the optimizer based on the
Adam’s algorithm [58], [59]. The loss function used
combines a Sigmoid layer and the Binary Cross-Entropy
Loss BCELoss) into a single class.4 A two-step training
will be carried out: the first two epochs will run with
frozen layers, while the next ones will run after the layers
have been unfrozen. In this case, the collected images
will be normalized without extra pre-processing.

B. SOFTWARE DESCRIPTION
The proposed software has been designed with the produc-
tion cadence as the main limiting factor to be addressed.
As illustrated in Figure 8, the software applies the three
phases described in the next.

2https://pytorch.org
3https://docs.fast.ai
4https://pytorch.org/docs/stable/generated/torch.nn.BCEWithLogitsLoss.

html
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1) PHASE 1: GENERAL REJECTION CONTROLS
This phase performs a set of controls to prevent some cases
from entering the CNN. These controls are:

• The correct acquisition control, which analyzes whether
pizzas are correctly displayed in the captured image
by applying image thresholding and detecting whether
there are foreground pixels in the top or bottom rows of
the image. In this case, pizzas are not analyzed and are
accepted by the system although they could be rejected.
Our industrial partner suggested acting in this way as
the rejection of these cases could dramatically increase
the rejection rate. This first control detects the cut and
double cut cases shown in Figure 5.

• The basic rejection control, which detects and rejects
empty packages and some pizzas with out attached film
(see Figure 2(a) and 2(f)). Thresholding is used to detect
the pizza in order to compute its area in pixels.

After these two initial controls, an image enhancement step
is applied to remove undesired vertical white or black lines
and balance the gray level of the sealing zone, discarding
light areas of the pizza and achieving a constant gray level.
The image obtained is examined by the pizza package control,
which checks the area of the pizza package to detect whether
or not it is correct within a minimum and maximum accep-
tance range. Deformed pizzas, overlapping pizzas (double)
and some pizzas with out attached film are rejected (see
Figures 2(b-e)).

2) PHASE 2: IDENTIFICATION OF SEALING REGIONS
This phase identifies the single sealing, the opening
sealing, the double sealing, and the dark zone regions
(see Figure 1(d)). To proceed, some geometry information
about the packaging is required, particularly a shape model
and an input region, which are the same for all the brands.
The regions are detected as follows:

• The single sealing is obtained from the contour of the
area of the pizza package, which has been previously
computed, by applyingmorphological erosion technique
and considering the common parameters of the packages
such as the sealing position and the sealing area. In addi-
tion, a search zone for the origin of the opening sealing
coordinate system is also detected.

• To detect the opening sealing region, the transformation
matrix that locates the origin of the shape model in the
previously defined search zone is computed. This matrix
is used to identify the opening sealing by transforming
the input region, which is defined in the same coordinate
system as the shape model.

• Once the single sealing and the opening sealing
have been identified, the double sealing is auto-
matically obtained using interpolation and union
operations.

• To detect the dark zone only present in some brands
such as Brand2, different machine vision techniques
can be applied [60]. In our implementation, a mirroring

projection of the single sealing region is used to deter-
mine the search area of the dark zone.

3) PHASE 3: PREPARING DATA FOR PREDICTION
The preparation of the input data for the model depends on
the selected CNN solution. In the case of a commercial off-
the-shelf CNN, it is necessary to reduce the number of input
images to improve the CNN performance in inference time.
For this reason, a strategy has been devised to automatically
select defects in the image that can lead to rejection. This
strategy requires the following processes.
• Accurate identification of sealing regions. Depending
on the position of the pizza during transportation, the
backlight creates some shadows on the image that lead
to an enlargement of the sealing contour. Moreover, the
double sealing does not have the same shape and does
not end in the same position for all brands. To accurately
detect the sealing region, a set of cutting lines drawn
from the center of the pizza to the boundary of the pack-
age are defined covering the single and double sealing
regions. Two of these lines have to be in the boundary of
both regions (one for each side of the package). To obtain
these boundary lines, a rough segmentation of double
sealing regions is first obtained using thresholding tech-
niques. Then, to determine the exact position of the
boundary lines, a binary search is performed, always
taking two lines, one to the left and one to the right
of the identified boundary, and evaluating the midline
between them. The search, performed on both sides of
the package, is repeated until a given angle precision
is achieved. Each line is evaluated pixel-by-pixel from
the outside to the inside of the package, considering
the limits and tolerances defined a priori, as shown in
Figure 9. In the case of single sealing lines (first five
columns of Figure 9), the last white pixel outside the
pizza background, the first black pixel considered as
the sealing reference point (the first internal pixel of
the sealing), and the first black pixel considered as the
end of the sealing width (the second internal pixel after
the first black pixel previously determined) are identi-
fied to determine the sealing movement to be applied.
In the case of double sealing lines (the last two columns
of Figure 9), a similar procedure is applied, but consid-
ering the two sealing lines. Once the sealing pixels are
detected for each line, the preliminary detection regions
obtained in the previous step are transformed to fit these
new accurate points by applying scales, translations,
morphological operators, and unions to each of the seg-
ments of the cutting lines taking the center of the pizza
as a reference.

• Candidate defects detection. Candidate defects can be
detected using thresholding, as they are darker than
the correct sealing. They are pre-processed to gener-
ate a 224 × 224 pixel image with the defect at its
center and the characteristics for the commercial off-
the-shelf CNN previously described. These images are
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FIGURE 9. Different cases that can appear in the process of accurate
identification of sealing regions, where B is the background, M is the
maximum sealing width; W is the sealing width, less than M; A is a black
or white∗ pixel, where the distance in pixels between the first black pixel
and the last black pixel is less than N ; N is the acceptable distance
between pixels to be considered in a single line; white∗ is a white or gray
pixel with an intensity lower than that of the black pixels in the sealing;
C represents more than 18 consecutive black pixels (shadow case); BS is
the beginning of the sealing; ES is the end of the sealing; and DS is the
double sealing (a line to skip).

entered on the commercial off-the-shelf CNN, which
classifies the pizza as rejected or not. In addition,
to avoid processing all the regions detected as can-
didate defects, different filters are applied to directly
discard those that do not have the possibility of being
defects according to relevant features of shape and color.
For instance, morphological operators such as opening,
closing, dilation, erosion and fill up, intersections and
unions, and area and color attributes via thresholding are
used to identify relevant features and detect small bub-
bles, small food ingredients (see Figure 3(j-o)) or flour
(see Figure 3(i)). By studying the shape of the candidate
defects’ boundaries, different marks (see Figure 3(a-e))
can also be discarded, such as sealing lines entering the
inspection regions and small candidate defects. More
complex candidate defects are analyzed using some con-
trast enhancement and partial derivatives of the Gaussian
smoothing kernel [61]. In this way, the number of images
to be classified is reduced and time restrictions can be
satisfied.

For the custom-developed CNN, it is only necessary to
create a set of 64 images with 224x224 normalized pixels.
These images will represent all parts of the sealing region in
a mosaic mode.

V. RESULTS AND DISCUSSION
In this section, the different experiments that have been car-
ried out to evaluate the proposed solution are presented. First,
the commercial off-the-shelf and the custom-developed CNN
performance will be compared in order to select the best
architecture. Second, the selected solution will be compared
with the manual procedure. Finally, the correctness of the
automatic solution will be evaluated.

TABLE 2. Formulas of statistical features extracted from the confusion
matrix where nTP , nFP , nTN and nFN represent the number of true
positives, false positives, true negatives and false negatives, respectively.

A. COMPARING DIFFERENT CNN ARCHITECTURES
1) SETUP
An industrial computer with 64GB of RAM, 9-core pro-
cessor, and two GPU NVIDIA GeForce GTX 1080 Ti has
been used for the training and the inference process. A set
of 80% (3647 images) of the original dataset was used for
the training, 10% (455 images) for the validation, and 10%
(456 images) for the testing. To evaluate the performance of
the classifiers, standard measures derived from the confusion
matrix will be computed (see Table 2), including accuracy
(the ratio of correct predictions to the total number of pre-
dictions), precision (the ratio of correct positive predictions
to the total number of positive predictions), recall (the ratio
of predicted positives to the total number of positive labels),
and F-score (the harmonic mean of precision and recall). The
training processes have been repeated five times and only the
best results will be shown. The hyperparameters that need to
be configured for the commercial off-the-shelf CNN solution
before starting the training were set, as indicated by Hal-
con [62], with the following values: batch size to 64, epochs
to 50, initial learning rate to 0.001, learning step per epoch
to 2, learning step ratio to 0.9, and momentum to 0.8. For the
custom-developed CNN solution, the hyperparameters were
set with the following values: batch size of 64, epochs to 50,
initial learning rate to 0.001, first and second momentum to
0.09 and 0.999, respectively, epsilon to 1e−05, and weight
decay to 0.01. The number of trainable parameters involved
in the training process for the custom-developed CNN is
11689512 and, in the case of commercial off-the-shelf CNN,
there is no information about it. To avoid the overfitting risk,
image processing methods were used by means of rotations
and horizontal and vertical mirror displacements to achieve
data augmentation when training the images, in order to
obtain more strength and generalization.

2) SETTING THE NUMBER OF CLASSES AND CNN
SELECTION
The design of the network requires determining the num-
ber of classes of the classifier. Two cases were consid-
ered: the classification of pizzas in two classes (accepted,
with 3441 images; and rejected, with 1117 images) and
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TABLE 3. Precision (P), recall (R), accuracy (A), and F-score (F) for the commercial off-the-shelf and custom-developed CNNs considering classifications
into two classes (accepted and rejected) and five classes (accepted, rejected, machine marks, shadows, and small defects).

in five classes (accepted, with 1883 images; rejected, with
1117 images; pizzas with machine marks, with 714 images;
pizzas with shadows due to humidity, fingerprints, or flour,
with 94 images; and pizzas with small defects due to small
bubbles or small food ingredients, with 954 images). To deter-
mine the best option, the commercial off-the-shelf CNN has
first been tested considering two and five classes. The results
obtained are shown in Table 3 and Table 4. For the commer-
cial off-the-shelf CNN, the best results are obtained with the
two-classes classification, with precision, recall, accuracy,
and F-score values of 98.3%, 98.3%, 98.7%, and 98.3%,
respectively. Second, the custom-developed solution has been
tested with the two-classes classification, obtaining in this
case precision, recall, accuracy, and F-score values of 98.6%,
99.1%, 99.1%, and 98.9%, respectively. Since these results
are better than those of the commercial off-the-shelf CNN,
this solution will be the one installed in the real scenario. Note
that the custom-developed solution has a simpler structure
with fewer layers and will consequently be faster than the
commercial off-the-shelf solution (see Table 5).
Figure 10 shows the heat maps of some candidate images

corresponding to accept and reject cases for the commercial
off-the-shelf CNN.Note that the features for the classification
of the sealing defects are obtained mainly from the center of
the candidate defect images.

B. COMPARING THE AUTOMATIC SOLUTION WITH THE
MANUAL PROCEDURE
To compare the manual and the automatic quality control of
pizza packages, two scenarios were considered. The manual
scenario, the actual real manual control, has two operators
placed at the exit belts, outside the clean room, evaluating
the pizzas. They had a white background with white light
and they took pizzas from the belt one by one. Pizzas were
transported at 0.5m/s. The operators were unable to check
all pizzas due to fatigue. The automatic scenario had the pro-
posed solution, with the custom-developed CNN, installed in
the clean room after the tray sealer and the cutting machines
(see Figure 6(c)). The system examined the pizzas transported
on a conveyor belt at 1.0m/s. Non-rejected pizzas were trans-
ported out of the clean room with two exit conveyor belts.

For comparison purposes, the production department of
our industrial partner collected reject data for one month

FIGURE 10. Heatmaps of candidate defect images for the commercial
off-the-shelf CNN corresponding to (a) accept and (b) reject cases.

FIGURE 11. Automatic and manual rejection percentage (%) and their
difference for different toppings of different brands.

considering the manual and automatic scenarios. The latter
was supervised by two operators who checked the correctness
of automatic rejections and acceptances carried out by the
system. In Figure 11, the actual rejection percentage of
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TABLE 4. Confusion matrices for the commercial off-the-shelf CNN for the two and five classes classification and for the custom-developed CNN for the
two classes classification. The columns represent for each class the instances with its ground truth label and the rows the instances predicted to belong
to this class.

TABLE 5. The execution and training runtimes for the commercial off-the-shelf and the custom-developed CNNs.

TABLE 6. Results in % of automatically rejected, accepted, and analyzed pizzas for mediterranean and chicken of Brand1, in bold. For each case the
results of manual supervision are presented in italics.

each scenario is presented considering margherita, ham and
cheese, and mediterranean for Brand1 and Brand2, and kebab
for Brand3. The difference between both scenarios is also
presented. It can be observed that in the case of margherita
(Brand1 and Brand2), with a low rejection rate (0.03% for
Brand1 and 0.14% for Brand2 in the manual case), the per-
centage of manual rejection is higher than the automatic one
(0.02% for Brand1 and 0.04% for Brand2 in the automatic
case). This is because operators rejected pizzas with small
bubbles or small food ingredients in the pizza sealing that
did not pass through the sealing (see Figure 3(j-o)), whereas
the automatic system accepted them. In the case of ham and
cheese and mediterranean for Brand1 and Brand2, and kebab
for Brand3, there was an opposite behavior as the automatic
system detected more cases than the manual one (0.75% and
1.00% for ham and cheese and mediterranean of Brand1,
respectively, in the automatic case, and 0.41% and 0.11%
in the manual case; 0.59% and 1.40% for ham and cheese
and mediterranean of Brand2, respectively, in automatic case,
and 0.05% and 0.37% in the manual case; 2.01% for kebab
of Brand3 in the automatic case, and 0.69% in the manual
case). When analyzing these results, it was noticed that the

number of manual rejections was influenced by the number
of accumulated rejections. It was observed that, when there
were few rejections, operators tended to be more sensitive
to rejecting pizzas that should have been accepted. On the
contrary, when the number of rejections was higher, they
tended to accept pizzas that they should have rejected. In the
case of the automatic scenario, there was a constant behavior
since the system did not take into account previous cases and,
therefore, a more objective criterion was achieved.

C. CORRECTNESS OF THE AUTOMATIC SYSTEM
The supervision of the automatic system allows us to evaluate
its correctness. Tables 6 and 7 present the results for the
mediterranean and chicken pizzas of Brand1 and Brand2, and
Table 8 presents those of the kebab and capricciosa pizzas
of Brand3. The number of rejected, accepted, analyzed, and
total pizzas for each case evaluated is presented in bold in
the row labeled as Automatically. In addition, for each cate-
gory, the classification after manual supervision of the auto-
matic results is presented showing the number of correctly
acceptedpizzas, false negatives (non-rejected pizzas that have
to be rejected), correctly rejected pizzas, false positives
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TABLE 7. Results in % of automatically rejected, accepted, and analyzed pizzas for mediterranean and chicken of Brand2, in bold. For each case the
results of manual supervision are presented in italics.

TABLE 8. Results in % of automatically rejected, accepted, and analyzed pizzas for kebab and capricciosa of Brand3, in bold. For each case the results of
manual supervision are presented in italics.

(rejected pizzas that have to be accepted), and non-analyzed
pizzas. For all the cases presented, automatic rejection ranges
from 0.86% to 2.93% of the total production. A similar
behavior is obtained in the other cases not included in these
tables, where, for Brand1 and Brand2, the automatic rejection
ranges from 0.0% to 1.8, and for Brand3, from 0.0% to 3.0%.
When the system obtains rejection values higher than those
presented, this indicates that the sealing system is not working
properly and an alarm is triggered. Possible causes of this
abnormal behavior could be that the machine that joins the
film with the product is not clean or that it is necessary to
replace parts due to wear, or that temperature and/or pressure
are not properly adjusted (see Figure 3 (a-e) and (j)). Another
cause could be that the distance between pizzas on the con-
veyor belt is not adequate (see Figure 2(d) and Figure 3).
Focusing on false positives, they range from 0.02% to

0.25% of the total production, reaching the maximum values
in Brand3, which has a film without constant density and
without transparent sealing, unlike Brand1, which has a trans-
parent and constant package, and Brand2, which only has a
small dark-printed color zone in the package.
In the case of false negatives, the obtained values are

between 0.0% and 0.08% of the total production, and the
values of the non-analyzed pizzas are between 0.0% and
0.25%. These false negatives, corresponding to pizzas
rejected in the manual inspection but accepted by the auto-
matic one, were reexamined by the system and were rejected.
This is due to the fact that these pizzas failed in the correct

acquisition control since they were not displayed correctly
in the processed image and were accepted by default by the
system (see Figure 5).
The number of non-analyzed pizzas was strongly related

to conflict situations of the conveyor belt caused by sub-
sequent machines in the production line. False negatives
are due to belt overload, which may generate images with
a double cut or a cut. False positives are generated when
the distance between pizzas is not adequate and the piz-
zas reach the rejection system before the system has pro-
cessed the image. These pizzas are automatically rejected
even though they could have been accepted. This situ-
ation leads to an increase in false negatives and false
positives.
Considering all the data as a whole and the analyzed totals,

the maximum and minimum precision values obtained are
99.95% and 99.74%, respectively, and the mean is 99.87%,
with 99.9% for Brand1, 99.95% for Brand2, and 99.77%
for Brand3. Our industrial partner considered that the values
obtained were very satisfactory.

VI. CONCLUSION AND FUTURE WORK
A key process in industrial pizza production is the packag-
ing control, which checks the sealing, among other verifica-
tions, to ensure that the package closure is correct. By using
computer vision techniques and deep-learning strategies,
a system that automatically controls the closure and sealing of
pizza packages has been proposed. A comparison process has
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been carried out to select the CNN architecture that best fits
our scenario. A custom-developed ResNet18 CNN has been
found to perform better than a commercial off-the-shelf solu-
tion. The system performs 100% inline inspection of pizzas
and supports different pizza brands and toppings while sat-
isfying the production cadence. Moreover, it adapts to films
with different densities and serigraphies. To test the system,
pizzas of different brands and toppings have been considered,
obtaining very promising results with false positives ranging
from 0.02% to 0.25% and false negatives between 0.0%
and 0.08%. Furthermore, the system not only inspects all
the pizzas, but also doubles the speed of the conveyor belts
when compared tomanual inspection. Our futureworkwill be
centered on the extension of the system to support packages
of different shapes and materials leading to a more general
solution. Moreover, since a key element of our proposal is
the number images acquired by the computer vision system
and two main components of this system are the cameras and
the lights, which are in continuous evolution, our interest is
focused on the evaluation of the capabilities of these new
technologies to exploit and integrate them into our solution
to obtain more general and efficient proposals able to detect
as many features as possible. Finally, we want to expand our
work by considering other networks to automatically adapt to
new scenarios while reducing the degree of user interaction.
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