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Abstract: We study mechanisms that operate in interdependent values envi-
ronments. We show that when defined on knit and strict environments, only
constant mechanisms can be ex post incentive compatible. Knitness is also nec-
essary for this result to hold for mechanisms with two alternatives in the range.
For partially knit and strict environments, we prove that ex post incentive com-
patibility extends to groups, and that strategy-proofness implies strong group
strategy-proofness in the special case of private values. The results extend to
mechanisms operating on non-strict domains under an additional requirement of
respectfulness. We discuss examples of environments where our theorems apply.
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1 Introduction

A major concern when designing economic mechanisms is to provide agents with incentives
to reveal their true characteristics. Setting aside some obviously unsatisfactory solutions, it
is well understood that attaining this objective is not always possible. Moreover, when it is,
a conflict often arises between the mechanisms’incentive compatibility and other desirable
properties. These generic statements hold for different formulations of the mechanism de-
sign problem, and for various concepts of equilibrium. Hence, a mechanism can only meet
attractive lists of desiderata if the class of problems to be dealt with is somewhat constrained.
In social choice theory, where mechanisms are defined as functions whose domains are

subsets of preference profiles, these constraints on the relevant situations to be considered are
called domain restrictions, in contrast to the notion of universal domain that was the basis of
fundamental theorems like Arrow’s or Gibbard and Satterthwaite’s. The term is not always
explicitly used in the larger literature on mechanism design, where assumptions on what
economic situations lie within the scope of each model are usually predicated directly on the
structure of the set of alternatives, or on the types of agents. At any rate, we think it is
interesting to explore the consequences of the modeler’s choice of a domain for a mechanism
upon the properties that one may expect it to satisfy.
Our purpose in the present paper is to study such consequences under two different sorts

of domains for mechanisms operating in general situations, including those where the agent’s
values are interdependent. Our choice of domains results from an attempt to capture, in a
unifying spirit, essential features of different models that can be found in the literature and
lead to similar results in spite of their diverse premises.
Before we elaborate on our present endeavor, it will be useful to refer to our previous

and parallel work regarding mechanism design in private values environments (Barberà,
Berga, and Moreno, 2016). There, we identified numerous models and domains under which
strategy-proofness was compatible with other desirable properties. Yet, we also observed
that, under specific circumstances, one may define mechanisms that are not only individually
strategy-proof but also (weakly) group strategy-proof. Then, we studied the characteristics
of domains that are common to those models leading to negative results, and also those of
domains admitting non-trivial group strategy-proof mechanisms in a diversity of setups.
In the same unifying spirit as in that earlier work, we consider here the general case

where agent’s types may be interdependent, while still keeping an eye on the particular case
of private values. Our starting point toward a general model starts from the observation that,
in contexts where values are interdependent, the incentives provided by a mechanism not only
depend on the type profiles in its domain, but also on the properties of the preference function
associating a profile of agent’s preferences to each one of types. We define an environment as
a pair formed by the set of admissible type profiles and an associated preference function, and
argue that what matters to determine the properties of mechanisms defined on a given family
of types depends on that family and also on those preference profiles that are induced for
each profile of types through the associated preference function. Restrictions on preference
domains are a particular case of our general framework for the case of private values.
Within this larger context we shift our attention to the notions of ex post individual and

group incentive compatibility, which are natural counterparts, in the case of interdependent
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values, to our previous focus on individual and group strategy proofness.
Ex post incentive compatibility is an attractive and well-studied requirement guarantee-

ing truthful revelation of types to be a Nash equilibrium in all the games that result from
any specification of possible type profiles.1 This equilibrium concept guarantees belief-free
implementation (often called "robust implementation"), and it is equivalent to it for so-
cial choice functions (Corollary 1 in Bergemann and Morris, 2005). For private values, ex
post incentive compatibility is equivalent to strategy-proofness. We also introduce a second
concept, that of ex post group incentive compatibility, under which truthful revelation is
required to be a strong Nash equilibrium, in order to capture additional features related
to the possibility of coordinated action by several individuals. These are our main target
properties, and the only ones we need to obtain our main results for environment where the
preferences of agents are always strict.
We look for characteristics of domains leading to the same strong impossibility result

that appears in different strands of the literature, whereby essentially only constant mecha-
nisms can be ex post incentive compatible (see for example, Austen-Smith and Feddersen,
2006, Che, Kim, and Kojima, 2015, Dasgupta and Maskin, 2000, Jehiel, Meyer-Ter-Vehn,
Moldovanu, and Zame, 2006).2 After careful examination of different models that reach the
same conclusion from different starting points, we propose a condition on environments that
we call knitness. Our first result proves that only constant mechanisms can be ex post incen-
tive compatible in environments where the preferences of agents are strict. If agents may be
indifferent among several alternatives, we need to use an additional condition on mechanisms
that we call respectfulness (see Theorem 1 and Corollary 1). This condition, when applied
to private values is a relative of non-bossiness (Satterthwaite and Sonnenschein, 1981), but
less demanding than this or other similar ones analyzed in Thomson (2016). It essentially
rules out manipulations by one agent that could affect others while not gaining anything in
exchange, thus opening the way to bribes.
Then, in an exercise that parallels our previous work for the case of private values,

we define a notion of ex post group incentive compatibility and discuss its connection with
standard (individual) ex post incentive compatibility. We do that for environments satisfying
a second condition that we call partial knitness that applies to interdependent values and
show that respectful ex post incentive compatible mechanisms defined on partially knit
environments also satisfy the stronger version of this condition for groups (see Theorem 4
and Corollary 2). Also observe that in private values this result admits a second reading that
is that strategy-proofness is equivalent to strong group strategy-proofness (see Corollary 3).
Both knitness and partial knitness are rather abstract conditions and their use requires

justification. A major argument showing the importance of knitness is that, as we prove in
Theorem 2, it is not only a suffi cient but actually a necessary condition on environments

1The study of incentive compatibility in Bayesian terms was started by d’Aspremont and Gérard-Varet
(1979), and Arrow (1979), and its appropriate formulation and results depend on the information that
will be available to the agents at the time where the analysis is carried out. The case of interdependent
values was first studied by D’Aspremont, Crémer, and Gérard-Varet (1990). The notion of ex post incentive
compatibility corresponds to the time where agents have received all possible information, and can be defined
without attributing cardinal utility to agents, as it does not require Bayesian updating. See Jackson (2003).

2We devote special attention to Che, Kim, and Kojima (2015) and to Austen-Smith and Feddersen (2006)
that inspired us for the applications in Section 6.
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to precipitate the negative result that, for mechanisms with binary ranges, only constant
ones can be ex post incentive compatible and respectful. In Theorem 3 we show that suffi -
cient violations of knitness allow for non-constant mechanisms to satisfy the same incentives
property if the range’s size is larger than two. As for partial knitness, it is a condition in a
similar vein but weaker than knitness, that can be satisfied by both private and interdepen-
dent values environments (see Pourpouneh, Ramezanianz, and Sen, 2019 and our examples
in Subsection 6.2. See Propositions 2, 3, 4 for private values environment in Subsection 6.1).
This contrasts with knitness, which cannot be satisfied in the case of private values (see
Proposition 1).
After this introduction, the paper proceeds as follows. In Section 2 we present the gen-

eral framework, define the properties of mechanisms and the conditions on environments
that we propose and shall concentrate on. Section 3 contains the impossibility result and
the necessity of knitness for the result to hold for binary range mechanisms. In addition,
we also discuss some necessary characteristics of domains for the existence of non-constant
ex post incentive compatible mechanisms with larger ranges. Section 4 presents a suffi cient
condition on environments to get the equivalence between ex post individual and group in-
centive compatibility. While in Section 5 we provide a discussion of our two conditions on
environments, Section 6 provides examples of applications and ties them in with our general
framework and main results. Some comments about further research are presented in Section
7. Finally, Appendix A presents the proofs of the results related to the applications, and Ap-
pendices B and C are mainly devoted to throw light on our two conditions on environments.
In the former, we provide examples that illustrate their characteristics, clarify their role in
different results and show the possibility of finding ex post incentive compatible mechanisms
with range larger than two. Appendix C illustrates how partial knitness, but not knitness,
is satisfied for the domain of strict single-peaked preferences with three alternatives.

2 The model

Let N = {1, 2, ..., n} be a finite set of agents with n > 2 and A be a set of alternatives.
Let R̃ be the set of all complete, reflexive, and transitive binary relations on A and

Ri ⊆ R̃ be the set of those preferences that are allowed for individual i. While Ri ∈ R̃
denotes agent i’s preferences, let Pi and Ii be the strict and the indifference part of Ri,
respectively. For any B ⊆ A, x ∈ B, and Ri ∈ R̃, UB(Ri, x) = {y ∈ B : yRix} is the (weak)
upper contour set of Ri at x in B and UB(Ri, x) = {y ∈ B : yPix} is the strict upper contour
set of Ri at x in B.
Consider the following relationship between preferences.

Definition 1 We say that R′i ∈ R̃ is an x-monotonic transform in B of Ri ∈ R̃ if
UB(R′i, x) ⊆ UB(Ri, x) and UB(R′i, x) ⊆ UB(Ri, x).

In words, R′i is an x-monotonic transform in B of Ri if there exists a subset of x’s
indifference class in B of Ri containing x, such that the relative position of its elements has
weakly improved when going from Ri to R′i. A special class of monotonic transforms that
are easy to identify are those where two preference relations have exactly the same weak
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and also the same strict upper contour sets for a given alternative x. Then we say that they
are reshuffl ings of each other, and each of the two preferences are, in particular, monotonic
transforms of the other.
Elements R = (R1, ..., Rn) in ×i∈NRi are called preference profiles.
Each agent i ∈ N is endowed with a type θi belonging to a set Θi. Each θi includes all

the information in the hands of i. We denote by Θ = ×i∈NΘi the set of type profiles. A type
profile is an n-tuple θ = (θ1, ..., θn) ∈ Θ that we will write as θ = (θC , θN\C) when we want
to stress the role of coalition C in N .
Once type profiles are fully determined, so are agents’preferences. We formalize this

dependence through the notion of a preference function.

Definition 2 Let Θ be a set of type profiles. A preference function R on Θ, R : Θ →
×i∈NRi, assigns a preferences profile R(θ) to each type profile θ ∈ Θ.

We call R(θ) = (R1(θ), ..., Rn(θ)) the preference profile induced by the type profile θ
while Ri(θ) ∈ Ri stands for the induced preferences of agent i at θ. As usual Pi(θ) and Ii(θ)
denote the strict and the indifference part of Ri(θ), respectively. Notice that Ri may be
different for each agent (for example, in economies with private goods when individuals are
selfish). Moreover, the domain of the preference function R is a Cartesian product including
all possible type profiles, but its range may be a non-Cartesian strict subset of ×i∈NRi.
An environment is a pair (Θ,R) formed by a set of type profiles and a preference function.

Following standard use, private values environments are those where each agent’s component
of the preference function only depends on her type. That is, Ri(θ) = Ri(θi, θ

′
N\{i}) for each

agent i ∈ N , θ ∈ Θ, and θ′N\{i} ∈ ×j∈N\{i}Θj. Otherwise, we are in interdependent values
environments. In private values environments, abusing notation, we will write Ri(θi) instead
of Ri(θ).
Elements in the range of a preference function may be restricted to satisfy further condi-

tions. In particular, an environment (Θ,R) is strict if for any θ ∈ Θ and any agent i ∈ N ,
Ri(θ) ∈ Ri is a strict preference (that is, when the preferences of all agents under all type
profiles are strict).
Our results refer to direct mechanisms. In fact, the properties we discuss are best analyzed

with reference to the direct mechanism associated to any general one that might be described
in terms of different message spaces and outcome functions.
A direct mechanism (on Θ) is a function f : Θ → A. From now on, we drop the term

"direct" and the reference to the set of type profiles and simply talk about mechanisms,
without danger of ambiguity.
Notice that, by letting Θ be the domain of f , we implicitly assume that all type profiles

within this set are considered to be feasible by the designer. We say that a mechanism f
has full range if the range of f is A.

2.1 Properties of mechanisms

We now define properties of the mechanisms. We first look at incentives.
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Definition 3 Let (Θ,R) be an environment. We say that an agent i ∈ N can ex post
profitably deviate under mechanism f at θ ∈ Θ if there exists θ′i ∈ Θi such that
f(θ′i, θN\{i})Pi(θ)f(θ). A mechanism f is ex post incentive compatible in (Θ,R) if no
agent can ex post profitably deviate at any type profile.3

Therefore, the play where all agents reveal their true type must be a Nash equilibrium
of the revelation game induced by the environment (Θ,R).
In addition to individuals, coalitions of agents may also jointly deviate if they find it

profitable. This leads us to propose the following definition.

Definition 4 Let (Θ,R) be an environment. We say that a coalition C ⊆ N can ex post
profitably deviate under mechanism f at θ ∈ Θ if there exists θ′C ∈ ×i∈CΘi such that
for all agent i ∈ C, f(θ′C , θN\C)Ri(θ)f(θ) and for some j ∈ C, f(θ′C , θN\C)Pj(θ)f(θ). A
mechanism f is ex post group incentive compatible in (Θ,R) if no coalition of agents
can ex post profitably deviate at any type profile.4

Notice that we allow for some agents to participate in the profitable deviation without
strictly gaining from it and also for others to gain without changing their types. That
facilitates the deviation by groups.
Remark that ex post individual and group incentive compatibility are purely ordinal.

Since we concentrate on these properties, our whole framework is expressed in ordinal terms.
The next property is of a different nature. It essentially demands that for some specific

changes in type profiles, no agent should affect the outcome (for her and for others) unless
she changes her level of satisfaction.

Definition 5 Let (Θ,R) be an environment. A mechanism f is (outcome) respectful in
(Θ,R) if

f(θ)Ii(θ)f(θ′i, θN\{i}) implies f(θ) = f(θ′i, θN\{i}),

for each i ∈ N , θ ∈ Θ, and θ′i ∈ Θi such that Ri(θ′i, θN\{i}) is a f(θ)-monotonic transform of
Ri(θ).5

For short, we call this condition respectfulness. Admittedly, this is a technical property,
similar to those imposed in the literature when dealing with environments where agents’
preferences allow for non-degenerate indifference classes (see Thomson, 2016). Relative to
other technical conditions of the same sort, ours is among the weakest, because it only
applies to some limited changes in type profiles. More importantly, it has no bite for strict
environments which encompass some interesting cases (for example, in public good economies
where agents’preferences are strict).
The following effi ciency-related conditions will be used in our discussion of results.

3This property is called uniform incentive compatibility by Holmstrom and Myerson (1983). See also
Bergemann and Morris (2005).

4Che, Kim, and Kojima (2015) consider group manipulations using the concept of first order stochastical
dominance.

5Respectfulness is an analogous condition to the one we use in Barberà, Berga, and Moreno (2016)
but requiring here invariance in outcomes instead of indifferences in outcomes. Examples of mechanisms
satisfying respectfulness are provided in Section 6.
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Definition 6 Let (Θ,R) be an environment. A mechanism f is Pareto effi cient on its
range in (Θ,R) if for all θ ∈ Θ, there is no alternative x in the range of f such that
xRi(θ)f(θ) for all i ∈ N and xPj(θ)f(θ) for some j ∈ N .

Notice that this is a relative notion of Pareto effi ciency, whose significance is limited in the
case where the range of a mechanism never contains certain outcomes that could eventually
dominate those in a restricted range. Hence the need to single out those mechanisms that
have full range and then satisfy the normatively attractive condition of Pareto effi ciency.

Definition 7 Let (Θ,R) be an environment. A mechanism f is Pareto effi cient in (Θ,R)
if the mechanism is Pareto effi cient on its range in (Θ,R) and f has full range.

Notice that ex post group incentive compatibility implies Pareto effi ciency on the range,
since otherwise the grand coalition could profitably deviate. But it does not immediately
imply Pareto effi ciency, unless accompanied by an argument or an assumption regarding the
mechanism’s range.
From now on we can omit reference to the environments on properties of f when no

confusion arises.

2.2 Conditions on environments

Until now, we have concentrated on the mechanisms. We now turn attention to introduce
two conditions of environments that we call knit and partially knit and how they relate
to each other. The consequences of defining mechanisms on environments that satisfy these
conditions are discussed in Sections 3 and 4, while in Section 5 we discuss about their nature.
Both of them require a form of connectedness, given a preference function, between

certain pairs of elements in the environment each one formed by a type profile and its
induced preference profile. Specifically, for each of these pairs to be connected there must
exist a third element that can be reached from each of the original two through "appropriate"
sequences of elements, also in the environment.
Here are the sequences of types and preference profiles that are involved in the definition

of our restrictions on environments.
All of their elements will be related to each other so that each one differs from its

predecessor and its follower in the type of only one individual.
Let S =

{
θSi(S,1), ..., θ

S
i(S,tS)

}
be a sequence of individual types of length tS, such that for

each h ∈ {1, ..., tS}, θSi(S,h) ∈ Θi(S,h). Agents may appear in that sequence several times or
not at all. I(S) = {i(S, 1), ..., i(S, tS)} is the sequence of agents whose types appear in S
and i(S, h) is the agent in position h in S.

Given θ ∈ Θ and S =
{
θSi(S,1), ..., θ

S
i(S,tS)

}
, we consider the sequence of type profiles

mh(θ, S) that results from changing one at a time the types of agents according to S, starting
from θ. Formally, mh(θ, S) ∈ Θ is defined recursively so that m0(θ, S) = θ and for each

h ∈ {1, ..., tS}, mh(θ, S) =
((
mh−1(θ, S)

)
N\i(S,h) , θ

S
i(S,h)

)
.
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Let θ ∈ Θ, and S =
{
θSi(S,1), ..., θ

S
i(S,tS)

}
. We call the sequence of type profiles

{
mh(θ, S)

}tS
h=0

the passage from θ to θ′ through S if mtS(θ, S) = θ′ for θ′ ∈ Θ. More informally, we say
that θ leads to θ′ through S.
Notice that a given passage from θ to θ′ through S induces a corresponding sequence of

preference profiles, Rh(θ, S) = (Rh1(θ, S), ..., Rhn(θ, S)) ∈ ×i∈NRi for h ∈ {0, 1, ..., tS} where
for each agent i ∈ N , we define Rhi (θ, S) ≡ Ri

(
mh(θ, S)

)
∈ Ri, that is, as the ith component

of the preference function at the type profile mh(θ, S).
We can now establish a condition (Definition 8) on the connection between sequences of

changes in type profiles and the changes in preference profiles that they induce by means of
the preference function.
Before that, remark that all along the paper, when we refer to Definitions 8 to 11 and

make no reference to B, we implicitly assume that B = A. We only use the reference to a
strict subset B in A in Subsection 3.1.

Definition 8 Let B ⊆ A, x ∈ B, and θ, θ′ ∈ Θ. We will say that the passage from θ to θ′

through S is x-satisfactory in B if for each h ∈ {1, ..., tS}, Rhi(S,h) (θ, S) is an x-monotonic
transform in B of Rh−1i(S,h) (θ, S).

We say that x is the reference alternative when going from θ to θ′.6

Armed with our previous definitions we now say when two pairs, each of them formed by
an alternative and a type profile, are pairwise knit. Whether they are or not will depend on
how the preference function determines what sequences are satisfactory.

Definition 9 Let B ⊆ A and (Θ,R) be the environment. Two pairs formed by an alternative
and a type profile each, (x, θ) and (z, θ̃), are pairwise knit in B and (Θ,R) if (x, θ),
(z, θ̃) ∈ B ×Θ, θ 6= θ̃, and there exist θ′ ∈ Θ and sequences of types S and S̃, such that the
passage from θ to θ′ through S is x-satisfactory in B and the passage from θ̃ to θ′ through S̃
is z-satisfactory in B.

We shall now define knit environments. This condition requires that any two pairs formed
by an alternative and a type profile must be pairwise knit.

Definition 10 Let B ⊆ A. We say that an environment (Θ,R) is knit in B if any two
pairs (x, θ), (z, θ̃) ∈ B ×Θ, θ 6= θ̃, x 6= z are pairwise knit in B and (Θ,R).

Our next definition refers to a condition on environments that is weaker than knitness,
because not all pairs in them need to be pairwise knit. Given any profile θ and any alternative
x, partial knitness only requires a comparison between x and those alternatives z that belong
to its upper contour set of x for two or more agents and are in the strict upper contour set for
at least one agent. Specifically, the relevant pairs to be pairwise connected will be determined
by the following two sets of agents: for any θ ∈ Θ and x, z ∈ B, let C(θ, z, x) = {i ∈ N :
zRi(θ)x} and C(θ, z, x) = {j ∈ N : zPj(θ)x}.

6The precise order of agents I(S) may be crucial in the case of interdependent values. By contrast, in
the case of private values the order of individuals in S could be changed and the new sequence would still
serve the same purpose.
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Definition 11 Let B ⊆ A. We say that an environment (Θ,R) is partially knit in B if
any two pairs formed by an alternative and a type profile each, (x, θ), (z, θ̃) ∈ A×Θ, θ 6= θ̃,
such that C(θ, z, x) 6= ∅, #C(θ, z, x) ≥ 2, and θ̃j = θj for any j ∈ N\C(θ, z, x) are pairwise
knit in B in (Θ,R).

We end this subsection with Example 1 which is an adaptation of Example 1 in Berge-
mann and Morris (2005). It illustrates how the distinction between satisfactory and non-
satisfactory passages arises in an interdependent values environment and has an impact on
whether or not an environment is knit.

Example 1 Let N = {1, 2} and A = {a, b, c}. Each agent i has two possible types:
Θi = {θi, θi}. The preference function R is defined in Table 1. We write, in each cell,
the preferences of both agents for a given type profile represented by an ordered list from
better to worse, with parenthesis in case of indifferences. Observe that agent 2’s preferences
over b and c depend on agent 1’s type: bP2(θ1, θ2)c while cP2(θ1, θ2)b, that is, we are in an
interdependent values environment.

R θ2 θ2

θ1
R1(θ1, θ2) R2(θ1, θ2)
acb b(ac)

R1(θ1, θ2) R2(θ1, θ2)
bca a(bc)

θ1
R1(θ1, θ2) R2(θ1, θ2)
c(ab) c(ab)

R1(θ1, θ2) R2(θ1, θ2)
c(ab) c(ab)

Table 1. Preference function for Example 1.

Notice that the range of R is not a Cartesian product, since R1 = {acb, bca, c(ab)} and
R2 = {b(ac)), a(bc), c(ab)} but the preferences profile (acb, a(bc)) is not in the range of the
preference function R.
Let x = a, θ = (θ1, θ2), θ

′ = (θ1, θ2), and S =
{
θ2, θ1, θ2

}
be a sequence of individual types.

Note that, I(S) = {2, 1, 2} and tS = 3. The passage from θ to θ′ through S is a-satisfactory
as proven in Remark 4 in Appendix B. Let x = a, θ = (θ1, θ2), θ

′ = (θ1, θ2), and S =
{
θ1, θ2

}
be a sequence of individual types. Note that, I(S) = {1, 2} and tS = 2. The passage from θ
to θ′ through S is not a-satisfactory as proven in Remark 4 in Appendix B.
In Remark 5 in Appendix B we show that the environment in this example is knit.

3 An impossibility result

We now present our first result and discuss its consequences. The result in Theorem 1 states
that if the environment is knit only constant mechanisms can be ex post incentive compatible
and respectful.

Theorem 1 Let (Θ,R) be any knit environment and f : Θ→ A be any mechanism. If f is
ex post incentive compatible and respectful, then f is constant.
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Proof of Theorem 1. Let (Θ,R) be a knit environment and let f be an ex post incentive
compatible and respectful mechanism. Assume, by contradiction, that f is not constant.
Then, there will be x, z ∈ A, x 6= z such that x = f(θ) and z = f(θ̃) for some θ and
θ̃ in Θ. Since (Θ,R) is knit, the two pairs formed by an alternative and a type profile,
(x, θ) and (z, θ̃) ∈ A × Θ, are pairwise knit. Thus, there exist θ′ ∈ Θ and two sequences
S = {θSi(S,1), ..., θSi(S,tS)}, S̃ = {θ̃S̃

i(S̃,1)
, ..., θ̃S̃

i(S̃,t
S̃
)
} such that the passage from θ to θ′ through S

is x-satisfactory and the passage from θ̃ to θ′ through S̃ is z-satisfactory.
Now, we will show the following:
(a) for each h ∈ {1, ..., tS}, f(mh(θ, S)) = x, and
(b) for each h ∈ {1, ..., tS̃}, f(mh(θ̃, S̃)) = z.
Statements in (a) and (b) yield to a contradiction. By definition of the sequences S and S̃,
we know that mtS(θ, S) = mt

S̃(θ̃, S̃) = θ′. However, f(θ′) = f(mtS(θ, S)) = x by (a) while
f(θ′) = f(mt

S̃(θ̃, S̃)) = z by (b).
We prove (a) in steps, from h = 1 to h = tS. The proof of (b) is identical and omitted.
Step 1. Let h = 1. By Definition 8, R1i(S,1)(θ, S) is an x-monotonic transform ofR0i(S,1)(θ, S) =

Ri(S,1)(θ). (1)

Observe that f(m1(θ, S)) ∈ U
(
R1i(S,1)(θ, S), x

)
. (2)

(otherwise, if f(m1(θ, S)) /∈ U
(
R1i(S,1)(θ, S), x

)
, we would get a contradiction to ex post in-

centive compatibility since i(S, 1) would ex post profitably deviate under f at (θSi(S,1), (m
0(θ, S))N\{i(S,1)})

via θi(S,1)).

By (1) and (2) we have that f(m1(θ, S)) ∈ U
(
R0i(S,1)(θ, S), x

)
. (3)

By ex post incentive compatibility of f , f(m1(θ, S)) /∈ U
(
R0i(S,1)(θ, S), x

)
. (4)

(otherwise, if f(m1(θ, S)) ∈ U
(
R0i(S,1)(θ, S), x

)
, f(m1(θ, S))P 0i(S,1)(θ)x contradicting ex post

incentive compatibility since i(S, 1) would ex post profitably deviate under f at θ via θSi(S,1)).
Thus, by (3) and (4) we have that f(m1(θ, S)) is indifferent to x according to preference
R0i(S,1)(θ, S) (that is, f(m1(θ, S))I0i(S,1)(θ, S)x). (5)
Then, by respectfulness, we get that f(m1(θ, S)) = f(m0(θ, S)) = f(θ) = x which ends the
proof of (a) for h = 1.
Step h ∈ {2, ..., tS}. By repeating the same argument than in Step 1 on the recursive fact
that f(mh−1(θ, S)) = x, we obtain that f(mh(θ, S)) = f(mh−1(θ, S)) = x.

Since respectfulness does not have bite for strict environments the following Corollary 1
results straightforwardly by applying the first part in each step of the proof of Theorem 1
where respectfulness is not used.

Corollary 1 Let (Θ,R) be any strict knit environment and f : Θ→ A be any mechanism.
If f is ex post incentive compatible, then f is constant.

Let us discuss the content of Theorem 1 and how it fits in the literature. A first observa-
tion is that knitness is a suffi cient condition for the result to hold. In Subsection 3.1 below
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we present the partial results we have about the necessity of knitness for the impossibility
result to hold.
Our impossibility result extends and unifies several ones proving that only constant func-

tions can be ex post incentive compatible under different conditions, in the case of inter-
dependent values. This first and very negative result is strongly reminiscent of previous
ones obtained in different contexts. The conclusion of Theorem 1 is in the same vein than
the one that Jehiel, Meyer-Ter-Vehn, Moldovanu, and Zame (2006) obtain under completely
different premises. These authors focus on environments where preference profiles will be
represented by n-tuples of money-separable utility functions, and where the preference func-
tion is smooth, among other assumptions, while our restrictions apply to environments that
do not have such characteristics. Other papers arrive at the same conclusion than Theorem
1 in the context of more specific models. These include the models considered by Che, Kim,
and Kojima (2015) for a house allocation problem7 without transfers (see their Theorem
1), Austen-Smith and Feddersen (2006) for the voting in the deliberative jury problem (see
their Theorem and Corollary), Dasgupta and Maskin (2000) in auctions (see their Example
4), and see also Examples 2 and 4 in our Subsection 6.2 below. Each of the previous papers
that came to the same conclusion used assumptions that were specific to a given application,
including those on the domain of definition of the mechanisms under scrutiny. Our condition
of knitness is based in a careful analysis of the reasoning underlying the different and hard
to compare papers that arrived that common conclusion. As a result, it may lose the flavor
that its counterparts did have in each specific application, since it emerges from a theoretical
effort to distill the essential aspects of each one without the pretense of bringing all of them
together. But, as a proof of its significance, we also submit another partial but important
consequence of imposing knitness as a property of environments. We prove that is not only
a suffi cient condition to precipitate the negative results that we have found scattered in the
literature, but also a necessary one, when only two alternatives are in the range of a mecha-
nism. Hence, one can see that it is not only a theoretical construct, but definitely an exact
identification of what it takes to obtain the result at hand in this specific but important
case. This statement will be proved in the next section as Theorem 2.
Since the results and the proofs in Che, Kim, and Kojima (2015) hold strong similarities

with ours, when applied to their specific context it is worthwhile to point at their parallels
and their differences. A major similarity is that both, their paper and ours, use of a technique
that was introduced by Gibbard when proving his celebrated impossibility theorem which
consists in passing from one profile of characteristics to another by successive changes in
those of one agent at a time. Assumption 3 in Che, Kim, and Kojima (2015) allows these
authors to select appropriately connected sequences of that sort. Yet notice that, since a
change in the type of a single agent can induce changes in the preferences of others, the
sequences of preference profiles that are naturally associated to the sequences of types may
involve preference changes in more than one agent at each step. Hence, their environments
satisfy our notion of knitness in a specific form, since our definition of knitness does not
require the pair of type profiles to be directly connected. On the other hand, when changing
the type of one single agent we do not impose invariance of this agent’s preferences as Che,

7A house allocation problem considers a set of individuals that must be assigned a maximum of one house
each, out of a set of houses.
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Kim, and Kojima (2015) do: we admit that they may change in a monotonic manner. In
spite of this analogy in the technique of proof, and of the fact that our formal setting refers
to a more general and abstract family of environments, our paper differs from Che, Kim, and
Kojima (2015)’s in that they use different assumptions. Their Assumptions 2 and 4 require
a richness of type profiles, that we do not demand, which yields richness in preferences
profiles. In addition, their Theorems 1 and 2 invoke the Pareto condition: in Theorem 1
the requirement is explicit, while in Theorem 2 it is a combined consequence of ex post
group incentive compatibility and the richness domain condition in Assumption 2. All these
conditions allow to reduce the set of environments to consider to be considered to those
where as two agents-two objects’problem is to be solved. In this reduced problem, their
Assumption 3 implies that such environments are knit (see Example 4 for an application).
Also, in this reduced problem, a weaker version of respectfulness holds, although it is not
imposed, where the monotonic transform is that agent’s ordinal preferences are the same and
strict for the agent changing her type. Thus, the only way an agent is indifferent between
two alternatives is when she gets the same, and therefore, the other agent too.
Two final remarks are in order. Observe that there is no contradiction between our result

in Theorem 1 that only constant mechanisms are strategy-proof and that of the Gibbard-
Satterthwaite theorem which also admits dictatorship, since the universal set of preferences
where the latter applies is not knit, as shown in Proposition 1, and thus Theorem 1 does not
apply.
Notice also that, since we work with single valued direct mechanisms, our environments

are separable in the sense of Bergemann and Morris (2005), and their Corollary 1 applies: no
mechanism is interim incentive compatible unless it is ex post incentive compatible. Because
of that, Theorem 1 and Corollary 1 have direct implications on the weaker interim notion,
with no need to be explicit about agents’beliefs.

3.1 The tightness of the impossibility result

Is it possible to relax the knitness requirement and still obtain the conclusion that ex post
incentive compatible and respectful mechanisms must be constant? If we restrict ourselves
to binary mechanisms, then we can provide a definite and negative answer to that question.
In that case, knitness in any two-elements’set, is a necessary and suffi cient condition for
the constancy of ex post incentive compatible and respectful mechanisms and therefore our
Theorem 1 is tight.
Theorem 2 states that for any environment that is not knit in some pair of alternatives,

one can find binary and thus not constant mechanisms with this limited range and satisfy
the rest of properties.

Theorem 2 An environment (Θ,R) admits a binary ex post incentive compatible and re-
spectful mechanism with range B = {x, z} ⊆ A if and only if it is not knit in B.

Before proving Theorem 2, it is convenient to remark the relationship between knitness
(in A) and knitness in B, for any B $ A.
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Remark 1 If an environment (Θ,R) is knit then it is knit in B for all B $ A. The proof
is straightforward by definition, by the fact that an x-monotonic transform in A is also an
x-monotonic transform in B for any B $ A, x ∈ B. The converse result does not hold as
Example 7, Appendix B shows: the second environment that we define is knit for any two-
elements set B $ A but it is not knit. In this second environment, there is no binary ex post
incentive compatible mechanism. In the first environment in Example 7 there exist binary ex
post incentive compatible mechanism. As shown in the following theorem, the reason is that
the first environment is not knit for some two-elements set B $ A.

In the light of this remark, in Theorem 1 we only impose knitness in A because it implies
knitness in B for any B $ A.
Proof of Theorem 2. Let us prove, by construction, that if an environment (Θ,R) is not
knit in B = {x, z} ⊆ A, then there exist a binary ex post incentive compatible and respectful
mechanism on (Θ,R) with range B. By not knitness in B, there are two pairs formed by an
alternative and a type profile each, (x, θ), (z, θ̃) ∈ B × Θ, θ 6= θ̃, x 6= z such that there do
not exist θ′ ∈ Θ, S, S̃ where the passage from θ to θ′ through S is x-satisfactory in B and
the passage from θ̃ to θ′ through S̃ is z-satisfactory in B.

Before defining the desired mechanism, let us first propose the following partition of Θ:
Θ1 = {θ ∈ Θ : there is S such that the passage from θ to θ through S is x-satisfactory in
B}, Θ2 = {θ ∈ Θ : there is S̃ such that the passage from θ̃ to θ through S̃ is z-satisfactory
in B}, Θ3 = Θ\ (Θ1 ∪Θ2). Note that since the environment is not knit in B, Θ1 ∩Θ2 = ∅.8

We now define a mechanism f as follows: f(θ̂) = x if θ̂ ∈ Θ1 ∪Θ3 and f(θ̂) = z, otherwise.
Let us first check, by contradiction, that f is ex post incentive compatible.
Suppose that there exist θ ∈ Θ, agent i ∈ N , θ′i ∈ Θ such that f(θ′i, θN\{i})Pi(θ)f(θ).
Case 1. f(θ) = x and f(θ′i, θN\{i}) = z. Thus, by definition of f , either (1) θ ∈ Θ1 or (2)
θ ∈ Θ\ (Θ1 ∪Θ2). However, (θ′i, θN\{i}) ∈ Θ2.
Observe that Ri(θ) is such that zPi(θ)x and Ri(θ′i, θN\{i}) can be any preference. That is,
either zRi(θ′i, θN\{i})x, xRi(θ

′
i, θN\{i})z, or xIi(θ

′
i, θN\{i})z holds. For the three cases, observe

that the passage from θ to (θ′i, θN\{i}) through S
′ = {θ′i} where I(S ′) = (i) is x-satisfactory

in B. Also, the passage from (θ′i, θN\{i}) to θ through Ŝ where I(Ŝ) = (i) is z-satisfactory in
B.
Since (θ′i, θN\{i}) ∈ Θ2, we have that the passage from θ̃ to (θ′i, θN\{i}) through S̃ is z-
satisfactory in B and therefore the passage from θ̃ to θ through S̃ ∪ Ŝ is z-satisfactory in B.
Therefore θ ∈ Θ2 which is a contradiction to the assumption that θ ∈ Θ1 ∪Θ3.
Case 2. f(θ′i, θN\{i}) = x and f(θ) = z. Thus, by definition of f , either (1) (θ′i, θN\{i}) ∈ Θ1

or (2) (θ′i, θN\{i}) ∈ Θ\ (Θ1 ∪Θ2). However, θ ∈ Θ2.
Observe that Ri(θ) is such that xPi(θ)z and Ri(θ′i, θN\{i}) can be any preference. That is,
either zRi(θ′i, θN\{i})x, xRi(θ

′
i, θN\{i})z, or xIi(θ

′
i, θN\{i})z holds. For the three cases, observe

that the passage from θ to (θ′i, θN\{i}) through S
′ = {θ′i} where I(S ′) = (i) is z-satisfactory

in B. Also, the passage from (θ′i, θN\{i}) to θ through Ŝ where I(Ŝ) = (i) is a x-satisfactory
in B.

8The partition of Θ is simpler but it coincides with the one used in Barberà, Berga, and Moreno (2019).
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Since θ ∈ Θ2, we have that the passage from θ̃ to θ through S̃ is z-satisfactory in B and
therefore the passage from θ̃ to (θ′i, θN\{i}) through S̃ ∪ S ′ is z-satisfactory in B. Therefore,
(θ′i, θN\{i}) ∈ Θ2 which is a contradiction to the assumption that (θ′i, θN\{i}) ∈ Θ1 ∪Θ3.

Now, we show that f is respectful.
By contradiction suppose that there exist θ ∈ Θ, agent i ∈ N , θ′i ∈ Θ such that f(θ′i, θN\{i})Ii(θ)f(θ),
f(θ′i, θN\{i}) 6= f(θ), and Ri(θ′i, θN\{i}) is a f(θ)-monotonic transform of Ri(θ).
First, assume that f(θ) = a and f(θ′i, θN\{i}) = b. Thus, by definition of f , either (1) θ ∈ Θ1

or (2) θ ∈ Θ\ (Θ1 ∪Θ2). However, (θ′i, θN\{i}) ∈ Θ2.
Observe that Ri(θ) is such that bIi(θ)a and Ri(θ′i, θN\{i}) can be any preference. That is,
either bRi(θ′i, θN\{i})a, aRi(θ

′
i, θN\{i})b, or aIi(θ

′
i, θN\{i})b holds. For the three cases, observe

that the passage from θ to (θ′i, θN\{i}) through S
′ = {θ′i} where I(S ′) = (i) is a-satisfactory.

Also, the passage from (θ′i, θN\{i}) to θ through Ŝ where I(Ŝ) = (i) is a b-satisfactory.
Repeating the same argument as in Cases 1 and 2 above we get the desired contradiction.
An identical argument as above holds if f(θ′i, θN\{i}) = a and f(θ) = b.

To prove the second part of our result, let f be a binary ex post incentive compatible and
respectful mechanism with range B = {x, z} and suppose that the environment (Θ,R) is
knit in B = {x, z}. We will obtain a contradiction.
By definition of f , x = f(θ) and z = f(θ̃) for some θ and θ̃ in Θ. Since (Θ,R) is knit in
B, the two pairs formed by an alternative and a type profile, (x, θ) and (z, θ̃) ∈ B × Θ,
are pairwise knit in B. Thus, there exist θ′ ∈ Θ and two sequences S = {θSi(S,1), ..., θSi(S,tS)},
S̃ = {θ̃S̃

i(S̃,1)
, ..., θ̃S̃

i(S̃,t
S̃
)
} such that the passage from θ to θ′ through S is x-satisfactory in B

and the passage from θ̃ to θ′ through S̃ is z-satisfactory in B.
Although these sequences are not necessarily the same than the ones we used in the proof
of Theorem 1, from this point on, we can use the same reasoning as there, and show that
(a) for each h ∈ {1, ..., tS}, f(mh(θ, S)) = x, and
(b) for each h ∈ {1, ..., tS̃}, f(mh(θ̃, S̃)) = z,
leading to a contradiction. Two comments are relevant. First, that in each step h the out-
come is either x or z. Second, we use the arguments we have already used in the proof of
Theorem 1 taking into account that we must replace the (strict) upper set by the (strict)
upper set in B, respectively. This would complete the proof for the present theorem.

Theorem 2 extends the result in Barberà, Berga, and Moreno (2019) to the case of
binary mechanisms and any set of alternatives and offers a simpler proof of it. This result
is important on its own, since there are important problems where it is enough to choose
among two alternatives and already leads us to several conclusions. But it also supports the
idea that the requirement of knitness is significant to obtain the negative results whose deep
causes we are trying to understand. Clearly it is in the case of binary choice mechanisms,
since then it is not only suffi cient but also necessary. This necessity does not hold in general,
when considering mechanisms with a larger range. But even then we can prove that a
suffi ciently large number of violations of knitness are needed for the existence of ex post
incentive compatible and respectful mechanisms of a given range size. This number is a
function of the size of the mechanism’s range and the specific alternatives it contains, as
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stated by Theorem 3.

Theorem 3 An environment (Θ,R) admits an ex post incentive compatible and respectful
mechanism with range B = {x1, ..., xk} where xl 6= xm for all l,m ∈ {1, ..., k}, only if there
exist k pairs (θ1, x1), (θ2, x2), ..., (θk, xk) such that for all l,m ∈ {1, ..., k}, (θl, xl) and
(θk, xk) are not pairwise knit in B.

Proof of Theorem 3. Take an ex post incentive compatible and respectful mechanism of
range k, k higher than 2. Then, there exist at least one group of k pairs (θ1, x1), (θ2, x2),...,
(θk, xk) where the mechanism associates xt to θt for each t ∈ {1, ...k}. Take any group of such
k pairs. We now show that any two pairs in this group are not pairwise knit. Suppose, by
contradiction that for some l,m ∈ {1, ..., k}, (θl, xl), (θm, xm) are pairwise knit. Proceeding
exactly as in the proof of Theorem 1 we get a contradiction to the fact that the mechanism
is ex post incentive compatible and respectful. Repeating the same argument for any group
of such k pairs we obtain the desired conclusion.

Example 7 in Appendix B proves that the conditions of Theorem 3 are necessary but not
suffi cient. The example provides an environment satisfying them that may sometimes not
allow escaping the constancy conclusion, while allowing it in other cases.
Hence, we believe that the study of knit environments is justified as part of a search for

conditions that may allow for satisfactory ex post incentive compatible mechanisms. Yet, we
must admit that although violation of knitness may open the door to more flexible binary
mechanisms, this does not mean that all mechanisms that may emerge need to be attractive.
In the first environment defined in Example 7 (Appendix B) knitness in B is violated only
for B being a particular pair of alternatives, and the unique ex post incentive compatible
mechanism is a dictator. But our Example 3 in Subsection 6.2.1, inspired in our reading
of the work by Austen-Smith and Feddersen (2006), suggests that some specific non-knit
environments may allow for the existence of attractive voting by quota mechanisms.

4 Equivalence between ex post individual and group
incentive compatibility

Since the 1980’s the literature on interdependent value environments has obtained positive
and negative results regarding the possibility of designing ex post incentive compatible mech-
anisms. Most papers are mainly motivated by or applied to auctions. A number of authors
have shown that ex post incentive compatibility and effi ciency are compatible when signals
are one-dimensional and a single-crossing property is satisfied: see Crémer and McLean
(1985), Maskin (1992), Ausubel (1997), Dasgupta and Maskin (2000), Jehiel and Moldovanu
(2001), Bergemann and Välimäki (2002), Perry and Reny (2002), for example. When it
comes to situations where types are multi-dimensional, the general wisdom is that nega-
tive results prevail. Under additional assumptions, no mechanism or only constant ones
are implementable: see for example Maskin (1992), Dasgupta and Maskin (2000), Jehiel
and Moldovanu (2001), and Jehiel, Meyer-Ter-Vehn, Moldovanu, and Zame (2006). Dizdar
and Moldovanu (2016) study a two-sided matching model with a finite number of agents,
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two-sided incomplete information, interdependent values, and multi-dimensional attributes
and show that premuneration values corresponding to uniform, fixed-proportion sharing are
essentially the only incentive compatible and effi cient ones in their setting.
All of these papers refer to the individual notion of ex post incentive compatibility. With

the notable exception of Che, Kim, and Kojima (2015), who consider group manipulations
using first-order stochastic dominance, most of the literature stops short of analyzing the
consequences of allowing for strategic deviations by groups. In this paper we introduce
and study the more demanding condition of ex post group incentive compatibility, and
show that respectful and ex post incentive compatible mechanisms defined on partially knit
environments satisfy the stronger version of incentive compatibility for groups, as well. We
discuss the consequences of this equivalence after presenting this result formally.

Theorem 4 Let (Θ,R) be any partially knit environment and f be any respectful mechanism
in (Θ,R). Then, f is ex post incentive compatible in (Θ,R) if and only if f is ex post group
incentive compatible in (Θ,R).

Part of the proof of Theorem 4 follows an identical reasoning used in the proof of Theorem
1. We write down the first part of the proof, which is the one that differs, and specify from
where on the argument is the same.

Proof of Theorem 4. Let (Θ,R) be a partially knit environment and let f be a respectful
mechanism. By definition, ex post group incentive compatibility implies ex post incentive
compatibility. To prove the converse, suppose, by contradiction, that there exist θ ∈ Θ,
C ⊆ N , #C ≥ 2, θ̃C ∈ ×i∈CΘi such that for any agent i ∈ C, f(θ̃C , θN\C)Ri(θ)f(θ) and
f(θ̃C , θN\C)Pj(θ)f(θ) for some agent j ∈ C. Let z = f(θ̃C , θN\C) and x = f(θ). Note that
(i) z 6= x, (ii) C(θ, z, x) 6= ∅, #C(θ, z, x) ≥ 2 since C ⊆ C(θ, z, x), and (iii) θ̃j = θj for any
j ∈ N\C(θ, z, x) again since C ⊆ C(θ, z, x).
Since (Θ, R) is partially knit and conditions in Definition 11 are satisfied, (x, θ) and (z, θ̃) are
pairwise knit. Thus, there exist θ′ ∈ Θ and two sequences of types S = {θSi(S,1), ..., θSi(S,tS)},
S̃ = {θ̃S̃

i(S̃,1)
, ..., θ̃S̃

i(S̃,t
S̃
)
} such that the passage from θ to θ′ through S is x-satisfactory and

the passage from θ̃ to θ′ through S̃ is z-satisfactory.
Although these sequences are not necessarily the same than the ones we used in the proof
of Theorem 1, from this point on, we can use the same reasoning as there, and show that
(a) for each h ∈ {1, ..., tS}, f(mh(θ, S)) = x, and
(b) for each h ∈ {1, ..., tS̃}, f(mh(θ̃, S̃)) = z,
again leading to a contradiction. Adding the arguments we have already used in the proof
of Theorem 1 we would complete the one for the present theorem.

Theorem 4 restricts attention to mechanisms that are respectful, but the latter require-
ment does not have bite when the environment is strict. Corollary 2 holds straightforwardly.

Corollary 2 Let (Θ,R) be any partially knit strict environment and f be any mechanism.
Then, f is ex post incentive compatible in (Θ,R) if and only if f is ex post group incentive
compatible in (Θ,R).
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Let us discuss the content and implications of Theorem 4. Partial knitness is only suf-
ficient but not necessary for all respectful and ex post incentive compatible mechanisms to
also be ex post group incentive compatible (see Example 6 in Appendix B). Corollary 2
reaches the same conclusion for strict environments without need to invoke respectfulness.
The study of necessity is left for further research.
Theorem 4 applies to the case of interdependent and private values. This equivalence

result when defined in partially knit environments is a result in the same line of those that we
had proven only for the case of private values in Barberà, Berga, and Moreno (2010, 2016),
showing the often ignored connection between individual and group strategic considerations.
Notice that the equivalence will hold for all mechanisms defined on such environments,
whether or not they are satisfactory from other points of view like Pareto effi ciency. There-
fore, more ambitious conclusions regarding the possibility to define satisfactory mechanisms
within this class needs further analysis, and examples of partially knit environments satis-
fying further properties. Our search across the literature did not produce as many positive
results for genuinely interdependent values contexts as it did for the case of private values
(to which Theorem 4 also apply) but the examples we found come from different fields and
in a variety of models. Some definitely exist in interdependent values, like Pourpouneh,
Ramezanianz, and Sen, (2020)9, along with Examples 3 and 5 in Section 5 below (inspired
by Austen-Smith and Feddersen, 2006 and Che, Kim, and Kojima, 2015, respectively), and
also examples in the particular case of private values like the ones studied in Propositions 2,
3, 4.
A first implication of ex post group incentive compatibility is Pareto effi ciency on the

mechanism’s range. Admittedly, this is a limited result since it depends on the set of alter-
natives selected by the mechanism. Hence, the implications that having a good performance
regarding incentives may be compatible with Pareto effi ciency is an invitation to investigate
those cases where this may be a promising possibility. The compatibility between incentives
and Pareto effi ciency does not always hold: see Theorem 1 in Che, Kim, and Kojima (2015),
and for the case of ordinal preferences see Yamashita and Zhu (2021), among others. In the
literature there are different papers where non-trivial mechanisms that are ex post incentive
compatible and Pareto effi cient do exist in the case of interdependent values environments.
For frameworks where signals are one-dimensional and a single-crossing property is satisfied,
ex post incentive compatibility and effi ciency are compatible as mentioned at the beginning
of this section.10

Still, the equivalence between individual and group ex post incentive compatibility may
hold in rather vacuous ways, because there are cases where the only ex post incentive com-
patible rules lack any interest. But there are other cases where there is a real possibility of
making these desiderata compatible in non-trivial ways and thus Theorem 4 opens the door
to the existence of full range ex post incentive compatible (and respectful) mechanisms that
are ex post group incentive compatible, hence, also Pareto effi cient. As evidence of this, in

9They show that ex post incentive compatible and ex post stable rules exist in the marriage problem with
specific interdependent preferences. A proof that this environment is partially knit is available upon request.
10A pioneering paper by Shenker (1993) investigated the connections between individual and group

strategy-proof non-bossy social choice rules in economic environments. For a recent reference on effi ciency
in general environments, see Copic (2017).
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each one of the environments in private values mentioned in Subsection 6.1 we refer to a
well-known full range mechanism that is ex post group incentive compatible (and respect-
ful). One of them is the family of generalized median voter rules defined on the set of all
strict single-peaked preferences (see Moulin, 1980 and our Proposition 3). Another case is
provided by the serial dictatorship mechanisms for house allocation problems (see Hylland
and Zeckhauser, 1979, Svensson, 1999 and our Proposition 4). A third example is given by
veto rules or serial dictators in cases where only two alternatives are at stake and agent’s
preferences are strict (see Barberà, Berga, and Moreno, 2012a, Manjunath, 2012, Larsson
and Svensson, 2006; and Proposition 2 below for two alternatives). A fourth example is
the class of peak rules defined by Saporiti (2009) for single-crossing preferences with three
alternatives at stake (see Grandmont, 1978 and our Proposition 5).
Also remark that for the case where the mechanism has more than two alternatives on the

range, only dictatorship is ex post incentive compatible on the universal set of preferences,
by the Gibbard-Satterthwaite theorem (see Gibbard, 1973 and Satterthwaite, 1975). This is
an example in which our Theorem 4 also applies, since the universal set of strict preferences
is partially knit (see Proposition 2) and dictatorships are ex post group incentive compatible,
but we use it here as a warning sign that the implications of Theorem 4, as already explained
may or may not be of interest depending on the environments.
An additional implication of ex post group incentive compatibility is that in private values

where environments are partially knit, the result in Theorem 4 admits a second reading. This
is because ex post incentive compatibility then becomes equivalent to strategy-proofness,
since each agent i’s preferences depend on θ only through θi. For the same reason, ex
post group incentive compatibility becomes equivalent to strong group strategy-proofness.11

These remarks lead us to the following corollary.

Corollary 3 Let (Θ,R) be any partially knit environment in private values and let f be
any respectful mechanism in (Θ,R). Then, f is strategy-proof in (Θ,R) if and only if f is
strongly group strategy-proof in (Θ,R).

This result that applies to private values provides a complementary view of our unifying
results in Barberà, Berga, and Moreno (2010, 2016), because partial knitness is not the same
domain condition that those that we invoked there, nor is the proof of equivalence the same.

5 A discussion about our conditions on environment

Justifying the use of our conditions on environments is clearly needed, since they are certainly
involved and abstract. Section 3 already provides results in support of the use of the condition
of knitness as one that allows for a neat distinction between environments where ex post

11We say that a mechanism f is weakly group manipulable at θ ∈ Θ if there exist a coalition C ⊆ N and
θ′C ∈ ×i∈CΘi (θ′i 6= θi for any i ∈ C) such that f(θ′C , θ−C)Ri(θi)f(θ) for all i ∈ C and f(θ′C , θ−C)Pj(θj)f(θ)
for some j ∈ C. A mechanism f is strongly group strategy-proof in an environment (Θ, R) if f is not weakly
group manipulable at any θ ∈ Θ. When the condition is imposed only on singleton coalitions C = {i} , we
say that f is strategy-proof (also called dominant strategy incentive compatible). In words, strategy-proofnes
requires that all agents prefer truthtelling at a given type profile θ, whatever all the other agents report.
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incentive compatible mechanisms must be constant and others where they can be binary.
And, moreover, we have proven that the use of knitness may be a partial guide in search of
non-constant mechanisms with range larger than two and holding this property.
We gather below a number of reasons why we came up with knitness and partial knitness,

and consider their consequences worth exploring.
Let us first remark that we propose these conditions within a specific framework because

the passage from private to interdependent values requires fine adjustments in language and
focus. We begin with a very general setting describing choice problems with interdependent
values, define preference functions as a mapping from the set of type profiles into the set
of preference profiles and environments as pairs formed by a set of type profiles and a
preference function. Our conditions are not defined on the domains of mechanisms, which
are typically profiles of types, but on environments, in order to stress that the decisive role
of the connection between types and preferences via the preference function. Noticing the
need to depart from simple restrictions on the domain of types on which mechanisms are
defined is part of our modelling contribution.
Our aim is to propose conditions - knitness and partial knitness - that could be applied

to a large variety of environments. there are numerous studies using specific conditions in
environments (both in private and interdependent values settings), and our purpose is to shed
light on the underlying features of the restrictions which contribute to precipitate similar
results in seemingly different settings. We certainly cannot claim that our conditions arise
from a simple idea, like single-peakedness does. But neither does many others proposed
restrictions that have been proved useful to solve different puzzles related to mechanism
design. But we would like to explain the nature of our restrictions and how they arise
gradually and quite naturally after a careful comparison of the different results we try to
approach to each other, and of the techniques that have been used to prove them.
Among the domain restrictions that are proposed in the literature, some are based on

whether or not admissible elements in it satisfy a priori determined properties. For example,
satisfactory mechanisms may be obtained when preferences are restricted to be separable
but not if they must operate over a larger set. And the presumption is that “large enough”
domains may lead to impossibilities, while “small enough” ones may admit satisfactory
rules. This is not the spirit of the restrictions on environments imposed by knitness or
partial knitness. Our conditions are closer to others, like for example, those involving linked
domains (Aswal, Chatterji, and Sen, 2003) or semi-single-peaked domains in (Chatterji,
Sanver and Sen, 2013). They are better interpreted as requiring that the elements of the
environment should be connected to each other, in the sense that one can transform some
of its elements into another by means of gradual intermediate changes into ones that also
belong to the same environment. No specific element is excluded because of its specific form;
much in the same way that single-peakedness does not exclude any specific preferences from
being part of a single-peaked domain, but excludes some combinations of preferences that
would lead to cycles. Likewise, knitness and partial knitness do not limit a priori what type
profiles may be admissible, but are relative to the globality of other type profiles deemed
admissible at the same time.
After presenting and proving our main results (Sections 3 and 4) it becomes apparent

that the technique of our proofs, and those employed by many other authors, requires the
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comparison of outcomes that a mechanism would choose along sequences of elements in
the environment. Our two conditions are similar requirements regarding the possibility to
connect admissible pairs of type profiles through sequences of changes in individual types,
whose properties are defined in reference to certain alternatives and through the use of the
preference function that is relevant in each environment. They do not exclude in principle
any combination of types and preference functions; but once several of such combinations are
declared admissible, the restriction limits the characteristics of other potential candidates to
be added to the environment while respecting the limitations they impose. Thus, it is not
the size of environments, but rather the connections that can be established between the
different pairs of type profiles and alternatives. Yet, knitness and partial knitness differs in
the pairs of elements to be connected. Whether or not an environment falls in one of these
two categories depends on what sequences are considered to be satisfactory, which in turn
is determined by the way how the preference function determines the connection between
types and preferences. As an example showing that our properties are related to even the
most attractive of domain restrictions, in Appendix C we prove that single-peakedness can
be interpreted as a form of partial knitness.

6 Applications

In this section we present examples of environments satisfying our properties and to which
our main results apply. First, we concentrate on well-known frameworks in private values
environments. Then, we present and analyze some interdependent values environments in
voting and in allocation problems, where our theorems have bite. The proofs of all the results
presented in this section are placed in Appendix A.

6.1 Private values environments

In private values environments each individual preferences is obtained through the preference
function from her own type. That is, changes in j’s type do not affect i’s preferences if i 6= j.
In the following Proposition 1 we state that no private values environment can be knit.

Thus, our Theorem 1 has no bite for those environments.

Proposition 1 No private values environment (Θ,R) for which there exist θi, θ̃i ∈ Θi such
that Ri(θi) 6= Ri(θ̃i) for some i ∈ N can be knit.

The intuition behind the proof of Proposition 1 is simple. Take two pairs of preferences
profiles and alternatives such that in one pair, alternative x is strictly preferred to y for
some agent and in the other pair, y is the unique best alternative for the same agent i. Note
that there is no preference relation for agent i that is an x-monotonic transform from her
preference in the first pair and a y-monotonic transform from her preference in the second
pair. This together with the fact that in private values other agents’preferences do not
affect agent i’s preferences implies that the two pairs are not pairwise knit (see Appendix C
for an illustration for the case of single-peaked preferences and three alternatives).
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However, private values environments can violate partial knitness12 or satisfy it as the
ones defined below. Propositions 2, 3, 4, and 5 state that partial knitness is satisfied by
several well-known private values environments. Therefore, the equivalence between ex post
individual and group incentive compatibility holds, equivalently Corollary 3 applies. In each
one of the applications, we will also mention a relevant full range mechanism which turns
out to be Pareto effi cient.
To avoid extra notation at this point, we define each one of the environments with detail

at the beginning of the proof of the corresponding proposition.
These four private values environments have an additional common characteristic: types

and preferences coincide. In particular, for each agent i, Ri(θi) = θi and Θi = Ri. Thus,
each component of the preference function R is the identity and we write the environment
simply as the Cartesian product of individual preferences ×i∈NRi.
We begin by the universal domain of strict preferences.

Proposition 2 The Cartesian product of the set of all strict preferences is partially knit.

In this setting, a dictator13 is ex post incentive compatible and Pareto effi cient since it
has full range. Note that a particular case encompassed in Proposition 2 is the one with two
alternatives at stake.
Another interesting case is provided by the set of strict single-peaked preferences on a

finite set of alternatives. We know that it is not knit by Proposition 1, but as stated in
Proposition 3, it is partially knit.

Proposition 3 The Cartesian product of the set of all strict single-peaked preferences on a
finite set of alternatives is partially knit.

In this setting, observe that there are also Pareto effi cient mechanism: the median rule
for an odd number of agents14 is ex post incentive compatible and Pareto effi cient since it
has full range.
In the house allocation problem, agents’admissible preferences over their individual as-

signment are strict. And, again, they define a partially knit environment, as stated in
Proposition 4.

Proposition 4 The Cartesian product of the set of all preferences in the house allocation
problem is partially knit.15

12The environment (that is, the domain of preferences) in Barberà, Sonnenschein, and Zhou (1991) is not
partially knit since it is well-known that there exist strategy-proof mechanisms that violate (strong) group
strategy-proofness.
13A mechanism f is dictatorial if for every type profile θ, the outcome selected f(θ) is one of the best

alternatives according to her preference Ri(θ).
14A mechanism f is the median rule for an odd number of agents if for every type profile θ, the outcome

selected f(θ) is the median of agent’s best alternatives according to their preferences Ri(θ). See Moulin
(1980) for further details.
15The same result would hold in the one-to-one matching problem where admissible preferences over

individual assignments are strict and different for each agent: those of each woman are defined on all men
and on herself, while those of each man are defined on all women and himself.
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In this setting, a serial dictatorship mechanism is Pareto effi cient since it has full range.
The last example we include is one where there are only three alternatives at stake and the

set of preferences of each agent is any subset of strict ones. Any domain of such preferences
is partially knit.

Proposition 5 The Cartesian product of any subset of individual preferences over A =
{x, y, z} is partially knit.

In this setting, for any strict subset of the universal domain there always exist ex post
incentive compatible and full range mechanism.16 In any case the dictator always does the
job.
We remark that the fact that the equivalence holds in some domain of preference profiles

does not imply its validity in any of its subdomains, nor viceversa. As mentioned in Section
5 this idea applies for any environment and not just for private values ones. For the latter,
when comparing two nested domains of preferences, like the universal domain in Proposition
2 with respect to those considered in Propositions 3, 4, and 5, two things are relevant. First,
if the smaller domain is partially knit, the larger domain may not be if some new preference
profiles are admissible but can not be connected. Second, if the larger domain is partially
knit, that does not imply that the smaller domain is also, because when connecting two
pairs of alternatives and preference profiles belonging to the smaller domain one might need
a preference profile that belongs to the large domain but not to the small one.

6.2 Interdependent values environments

The situations we describe in interdependent and non-private values environments are simple,
as examples must be, but chosen to highlight essential contributions to several fields of
application: voting and house allocation problems. The examples come in pairs, to show that,
with the same sets of type profiles, but depending on the associated preference functions,
one can cross the line between positive and negative results. Examples 2 and 3 refer to
deliberative juries and are inspired in our reading of Austen-Smith and Feddersen (2006) who
build on the classical Condorcet jury problem and add the possibility that agents share (true
or false) information. Our second pair of examples, 4 and 5, refer to house allocation problems
and are this time inspired by the analysis of Che, Kim, and Kojima (2015), regarding the
existence of Pareto effi cient and ex-post incentive compatible mechanisms in that context.
These examples are framed in the language we have developed in our paper, and they

allow us to clarify several of the points we try to make all along. In particular, we can
provide blood and flesh to the general and rather abstract notion of a preference function,
by exhibiting how it is defined to fit the particulars of the case at hand.
There are two important differences between these two applications. First, the fact that

the type space is either discrete or continuous. For example, Hagen (2019) in a private
values setting shows that the necessary and suffi cient condition for the existence of non-
trivial mechanisms that satisfy group strategy-proofness and symmetry is satisfied if the
type set is finite, but not if it is an interval. Second, in the voting application, types are
multi-dimensional while in the house allocation application, types are one-dimensional.
16As an example, see Berga, Moreno, and Nicolò (2021).
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6.2.1 Mechanisms with binary outcome problems with a discrete type space

The two examples in this subsection are motivated by our reading of Austen-Smith and
Feddersen (2006) and this is why we use the language of deliberative juries although the
example can be applied to other cases that fit the structure of the type space we propose.
Example 2 A three-person jury N = {1, 2, 3} must decide over two alternatives:

whether to acquit (A) or to convict (C) a defendant under a given mechanism. The de-
fendant is either guilty (g) or innocent (i). Each juror j gets a signal sj = g or sj = i.
Jurors’s preferences arise from combining the different signals they obtain, according to

their bias in favor of acquittal in view of their observed signals and the true signals of others.
In this example, jurors are either high-biased (h) or low-biased (l). High-biased jurors (h)
prefer to convict if and only if all jurors observe the guilty signal (s = (g, g, g)), whereas
low-biased ones (l) prefer to convict if and only if at least one committee member observed
the guilty signal (s 6= (i, i, i)).
Each juror j’s type is θj= (bj, sj) ∈ Θj = B×S where B = {h, l} and S = {g, i}. A type

profile θ ∈ Θ = (B × S)n. Let CA denote the preference to convict rather than to acquit
and AC be the converse order. The preference function is defined such that for each type
profile θ ∈ Θ and for each juror j ∈ N , Rj(θ) is as follows:

Rj
(
(bj, sj) , θN\{j}

)
=

{
CA if either bj = h and s = (g, g, g) or bj = l and s 6= (i, i, i),
AC, otherwise.

}
The environment (Θ,R) in this example is knit (see Proposition 6). Hence we know by

Theorem 1 that it will be impossible to design non-constant, ex post incentive compatible,
and respectful mechanisms in such framework.

Proposition 6 The environment (Θ,R) in Example 2 is knit.

We provide the reader with some hints on the techniques that we use to check for our
restrictions on environments in this example and subsequent ones.17

To check knitness for a particular pair of types and alternatives, (A, θ) and (C, θ̃), we
must show that there are passages to a third type profile θ′ which are A-satisfactory from θ
and C-satisfactory from θ̃, respectively.
Consider the following three type profiles, θ = (θ1, θ2, θ3) = ((l, g), (h, g), (l, i)), θ̃ =

(θ̃1, θ̃2, θ̃3) = ((l, g), (h, g), (l, g)) and θ′ = (θ′1, θ
′
2, θ
′
3) = ((l, i), (h, i), (l, i)). The profiles of

preferences they induce are shown in Table 2.

R(θ) = R((l, g), (h, g), (l, i)) R(θ̃) = R((l, g), (h, g), (l, g)) R(θ′) = R((l, i), (h, i), (l, i))
C
A

A
C

C
A

C
A

C
A

C
A

A
C

A
C

A
C

Table 2 : Agents’preferences induced by θ, θ̃, and θ′, respectively.

17The reader that finds the following argument useful to better understand our condition may also find a
similar one regarding partial knitness in the text preceding the proof of Proposition 7 in Appendix B.
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As shown in Table 3, it is possible to sequentially move from θ to θ′ by successively
changing, one by one, the type of the agents as follows. First, agent 1 from (l, g) to (h, i),
then agent 2 from (h, g) to (h, i) and finally agent 1 from (h, i) to (l, i). According to our
notation, S = ((h, i), (h, i), (l, i)) and I(S) = {1, 2, 1}. Likewise, as shown in Table 4, we can
move from θ̃ to θ′ by successively changing, one by one, the type of some agents. First, agent
1, then agent 3 and finally agent 2, all from signal g to i, while their b’s remain fixed. That
is, S̃ = ((l, i), (l, i), (h, i)) and I(S̃) = {1, 3, 2}. In Table 3, alternative A either does not
change its relative position (an A-reshuffl ing), or improves it (an A-monotonic transform).
Similarly, in Table 4, the same requirements are satisfied but this time for alternative C.

R(θ) R1(θ, S) R2(θ, S) R3(θ, S) = R(θ′)
R((l, g), (h, g), (l, i)) R((h, i), (h, g), (l, i)) R((h, i), (h, i), (l, i)) R((l, i), (h, i), (l, i))

C
A

A
C

C
A

A
C

A
C

C
A

A
C

A
C

A
C

A
C

A
C

A
C

Table 3 : Induced agents’preferences given the specified type changes from θ to θ′.

R(θ̃) R1(θ̃, S̃) R2(θ̃, S̃) R3(θ̃, S̃) = R(θ′)
R((l, g), (h, g), (l, g)) R((l, i), (h, g), (l, g)) R((l, i), (h, g), (l, i)) R((l, i), (h, i), (l, i))

C
A

C
A

C
A

C
A

A
C

C
A

C
A

A
C

C
A

A
C

A
C

A
C

Table 4 : Induced agents’preferences given the specified type changes from θ̃ to θ′.

Example 3 Consider the framework of Example 2 and change the jurors’attitude to convict
versus acquit as follows. Each juror may now be either unswerving or median. Unswerving
jurors (u) prefer to convict if and only if they have observed the guilty sign and at least
another juror has also observed such a signal. Median jurors (m) again prefer to convict
under the same circumstances but also if the other two jurors observe the guilty signal.
For instance, if juror 1 is unswerving she will prefer to convict if either (g, g, g), (g, g, i),

or (g, i, g) but if juror 2 is unswerving she will convict if either (g, g, g), (g, g, i), or (i, g, g)).
Yet being median is the same for both agents, they will prefer to convict if either (g, g, g),
(g, g, i), (g, i, g), or (i, g, g).
Each juror j’s type is θj= (bj, sj) ∈ Θj = B × S where B = {u,m} and S = {g, i}. A

type profile θ ∈ Θ = (B × S)n. The preference function is defined such that for each type
profile θ and for each juror j ∈ N , Rj(θ) is as follows:

Rj
(
(bj, sj) , θN\{j}

)
=


CA if either bj = u, sj = g and sl = g for some l 6= j,

or bj = m and # {l ∈ N : sl = g} ≥ 2, and
AC otherwise.


This environment (Θ,R) is partially knit (see Proposition 7) but not knit.
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Proposition 7 The environment (Θ,R) in Example 3 is partially knit.

To show that it is not knit, we present a family of mechanisms, the quota rules, that
are non-constant, respectful, and ex post incentive compatible in (Θ,R) which is stated in
Remark 2.
Let q ∈ {1, 2, 3}. A voting by quota q mechanism, f , chooses C for a type profile θ if

and only if at least q agents have induced preferences from θ such that C is preferred to A.18

Formally, for each type profile θ = (b, s) ∈ Θ,

f(θ) = C if and only if # {i ∈ N : Ri(θ) = CA} ≥ q.

Remark 2 A voting by quota q mechanism is non-constant, ex post incentive compatible,
and respectful in the environment (Θ,R) in Example 3.

Now, Theorem 4 will ensure that these and other mechanisms that we may know to be
ex post incentive compatible for our example will also be ex post group incentive compatible
(therefore, Pareto effi cient on the range) since the environment is partially knit. Thus, Pareto
effi ciency is satisfied in this example because the mechanism has full range.

6.2.2 Mechanisms with binary outcome problems with a continuous type space

The two examples in this subsection are motivated by our reading of Che, Kim, and Kojima
(2015) and this is why we use the language of house allocation problems although the example
can be applied to other cases that fit the structure of the type space we propose.
Example 4 Let N = {1, 2} be a set of agents, O = {a, c} be a set of objects. Each
agent must be assigned one and only one object. Thus, the set of alternatives is A = {x =
(a, c), z = (c, a)}, where the first component refers to the object that agent 1 gets. There is
no money in this economy.
The type θi ∈ Θi of each agent i is given by a signal θi in Θi = [0, 1]. Each individual

i ∈ N is endowed with a given auxiliary function gi : Θ → R strictly increasing in both
signals. The preference function R is such that for each agent i ∈ N and for each type profile
θ ∈ Θ = [0, 1]× [0, 1], Ri(θ) is as follows: x is at least as good as z if and only if gi(θ) ≥ 0.
The environment in Example 4 is knit (see Proposition 8). Therefore by Theorem 1 only

constant mechanisms can be ex post incentive compatible and respectful in this context.

Proposition 8 The environment (Θ,R) in Example 4 is knit.

Example 5 We consider the framework of Example 4, except that we change agents’
preference functions to be induced by g1(θ) = min

(
median

{
1
4
, θ1, θ1, θ2

})
− 1

4
and g2(θ) =

min
(
median

{
1
4
, θ2, θ2, θ1

})
− 1

4
, respectively. That is, for each agent i ∈ N and for each

type profile θ ∈ Θ, Ri(θ) is as follows: x is at least as good as z if and only if gi(θ) ≥ 0.
The main but significant difference between this example and the preceding one is that

now the functions gi are just weakly increasing.
Like in Example 3 above, the environment in this example is partially knit (see Propo-

sition 9) but not knit.

18See Austen-Smith and Feddersen (2006) and Barberà and Jackson (2004) for papers where these rules
are analyzed.
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Proposition 9 The environment (Θ,R) in Example 5 is partially knit.

To prove non-knitness, we consider the veto mechanisms defined below. Before introduc-
ing them we need the following definition: consider a partition of the type (signal) space and
a useful graphical representation of it which is similar to the one defined in Che, Kim, and
Kojima (2015).
Let {Sac, Sca, Saa, Scc, S0} be the partition of Θ where:

S0 is the set of type profiles for which both agents are indifferent between a and c,
Sac is the set of type profiles for which agent 1 prefers a to c, agent 2 prefers c to a, and the
preferences are strict for at least one agent,
Sca is equally defined after changing the roles of c and a,
Saa is the set of type profiles for which both agents prefer a to c, and
Scc is equally defined after changing the roles of c and a.
In terms of alternatives, when the type profiles are in Sac both agents prefer x to z, when

they are in Sca both prefer z to x, in Saa, 1 prefers x over z and 2 prefers z over x, in Scc, 1
prefers z over x and 2 prefers x over z, and in S0 both are indifferent between x and z.
Figure 1 provides a generic representation of these sets whose frontiers correspond to the

pairs of signals leading to agents’ indifference curves over alternatives: {θ ∈ Θ = [0, 1] ×
[0, 1] : xIi(θ)y}. Since we have assumed that gi is strictly increasing in both types, agents’
indifference curves are strictly decreasing. In this figure we represent a situation where all
the elements in the partition of Θ are non-empty and moreover the two agents’indifference
curves have an interior intersection.19

Now we say that a mechanism fveto x is a veto rule for x if for any type profile the outcome
is agent 1’s best alternative when it is unique, and it is agent 2’s best alternative otherwise.
Formally, for θ ∈ Θ = [0, 1]× [0, 1],

fveto x(θ) =

{
x = (a, c) if θ ∈ Sca, and

z = (c, a) if θ ∈ Saa ∪ Sac ∪ Scc ∪ S0
}
.

19In general, some elements in the partition could be empty and the intersection of the two curves may
no be interior. Moreover, although in all pictures corresponding to this example the indifference curves only
intersect once, our formal arguments apply to the multiple intersection case.
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In view of Theorem 1 the existence of these non-constant, ex post incentive compatible,
and respectful mechanisms implies that the environment is no longer knit. In Remark 3 we
show that veto rules satisfy the three properties.

Remark 3 fveto,x is non-constant, ex post incentive compatible, and respectful in the envi-
ronment (Θ,R) in Example 5.

Now, Theorem 4 will ensure that these and other mechanisms that we may know to be
ex post incentive compatible for our example will also be ex post group incentive compatible
(therefore, Pareto effi cient on the range) since the environment is partially knit. Thus, Pareto
effi ciency is obtained in the example since the mechanism has full range.

7 Further comments

We have approached issues about the design of ex post incentive compatibility in a purely
ordinal framework, and this makes it diffi cult to compare our results with the conclusions
of other works, like those on auction design where money metrics play an important role.
Yet we hope that our methodological proposals and our emphasis on the role of domain
restrictions may be useful and inspire some further research.
In particular, having proved that when the preferences of agents are strict, non-constant

ex post incentive compatible mechanisms on binary ranges may be designed if and only if
they operate on environments that are not knit, we would like to pursue two lines of study
that are only suggested but not fully solved in the present work.
One is to follow after Theorem 2 and to study relaxations of knitness that would be suffi -

cient to allow for mechanisms to satisfy this requirement on incentives for larger and eventu-
ally full ranges. Another is to continue our search for conditions under which our Theorem
4, about domains allowing for ex post group incentive compatibility, could be finessed to
guarantee the existence of attractive full range mechanisms, accommodating incentive com-
patibility and effi ciency properties simultaneously. Progress in these two directions might
approach the conclusions we have gotten in our Theorems 1 and 4.
Finally, we mention another line of research that we would find useful, not only for our

present purposes but also for the general treatment of mechanism design problems. To
keep looking for relaxations of technical properties that most papers need when allowing
for indifferences in the preferences of agents, starting with the original condition of non-
bossiness. Our condition of respectfulness, although less demanding than other requirements
in the same vein, it is still an obstacle for the full generality of our results, although these
become transparent and conclusive in the case of strict domains.
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Appendix A. Proofs of the results in the Applications’
section

Private values
Proof of Proposition 1. Let i ∈ N and θi, θ̃i ∈ Θi, θi 6= θ̃i be such that Ri(θi) 6= Ri(θ̃i).
That is, Ri(θi, θN\{i}) 6= Ri(θ̃i, θN\{i}) for all θN\{i} ∈ ×j∈N\{i}Θj since (Θ,R) is a private
values environment. Then, there will be a pair of alternatives, say x and z, such that xPi(θi)z
and zRi(θ̃i)x (otherwise, for θi, θ̃i ∈ Θi, Ri(θi) = Ri(θ̃i)). To show that the environment
(Θ,R) is not knit, we prove that the two pairs (x, (θi, θN\{i})), (z, (θ̃i, θN\{i})), whatever
θN\{i}, are not pairwise knit. That is, there does not exist any θ′, S, and S̃ such that the
passage from θ to θ′ through S be x-satisfactory and the passage from θ̃ to θ′ through S̃ be
z-satisfactory. We prove it by contradiction. Suppose otherwise that there exist θ∗, S∗, S̃∗,

such that the passages
{
mh(θ, S∗)

}tS∗
h=0

and
{
mh(θ, S̃∗)

}t
S̃∗

h=0
from θ to θ∗ through S∗ and θ̃

to θ∗ through S̃∗ are x and z-satisfactory, respectively.
Since we are in a private values environment, changes in the type of agent j never affect
the induced preferences of other agents, in particular never affect i’s induced preferences if
j 6= i. Moreover, we know that xPi(θi, θN\{i})z and zRi(θ̃i, θN\{i})x. These two observations
imply that agent i must belong to I(S∗) ∪ I(S̃∗). That is, i will appear in at least one of
these two sequences.
We concentrate on the steps of the passage where agent i changes her type and we show
that there is no θ∗ compatible with x-satisfactory and z-satisfactory passages from θ to θ∗

and from θ̃ to θ∗.
Without loss of generality, by the remark just after Definition 8, we can assume that all
types of agent i in S∗ and S̃∗ appear in the first positions in these sequences. Let’s define
IS∗,i ≡ {h ∈ {1, 2, ..., iS∗} : i(S∗, h) = i} and IS̃∗,i =

{
h ∈

{
1, 2, ..., iS̃∗

}
: i(S̃∗, h) = i

}
.

Take 1 ∈ IS∗,i. Since R1i (θ, S∗) is an x-monotonic transform of Ri(θi, θN\{i}), we have that
xPi(m

1
i (θ, S

∗))z. By repeating the same argument for each h ∈ IS∗,i we finally obtain that
xPi(m

iS∗
i (θ, S∗))z where miS∗

i (θ, S∗) = θ∗i .
Now, take 1 ∈ IS̃∗,i. Since R1i (θ̃∗, S̃∗) is a z-monotonic transform of Ri(θ̃∗i , , θN\{i}), we have

that zRi(m1
i (θ̃
∗, S̃∗))x. By repeating the same argument for each h ∈ IS̃∗,i we finally obtain

that zRi(m
i
S̃∗
i (θ, S̃∗))z where m

i
S̃∗
i (θ, S̃∗) = θ∗i .

As mentioned above, changes in types of agents different from i will not change agent i’s
preferences. Thus, we have obtained the desired contradiction. On the one hand that
xPi(θ

∗)z and on the other hand, that zRi(θ∗)x.

For the private values environments in Propositions 2, 3, 4, and 5, the following two
relevant observations hold and are used in their proofs: types are preferences in these cases,
that is, θi = Ri ∈ Ri = Θi for each i ∈ N . Moreover, changes in j’s preferences do not affect
i’s preferences if i 6= j.

Proof of Proposition 2. Let U denote the universal set of strict preferences. Thus,
Ri = U . To prove partial knitness, take any (x,R), (z, R̃) ∈ A× Un such that C(R, z, x) =
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C(R, z, x) 6= ∅, #C(R, z, x) ≥ 2, and R̃j = Rj for all j ∈ N\C(R, z, x). Without loss of
generality, let C(R, z, x) = {1, 2, ..., c} where c also denotes its cardinality. Now, we must
show that (x,R), (z, R̃) are pairwise knit. To do that, we construct S, S̃ and R′ satisfying
the condition in pairwise knitness.
For each Ri ∈ U , let us denote by Rzi the preference obtained by lifting z to the first position
and keep the relative position of all other alternatives.
Now, start from R and define S = {Rz1, Rz2, ..., Rzc} where tS = c. Note that for each
h ∈ {1, ..., c}, Rhj (R, S) = Rh−1j (R, S) for all j ∈ N\i(S, h) and Rhi(S,h)(R, S) = Rzi(S,h) ∈ U .
That is, for all i, Rhi (R, S) is an x-reshuffl ing of i’s previous preferences Rh−1i (R, S). Then,
R′ = Rc(R, S) = (RzC(R,z,x), RN\C(R,z,x)) ∈ Un.
Now, start from R̃ and define S̃ =

{
R̃z1, R̃

z
2, ..., R̃

z
c , R

z
1, R

z
2, ..., R

z
c

}
where tS̃ = 2c. For each

h ∈ {1, ..., c}, Rhj (R̃, S̃) = Rh−1j (R̃, S̃) for all j ∈ N\i(S̃, h) and Rh
i(S̃,h)

(R̃, S̃) = R̃z
i(S̃,h)

. That

is, for all i, Rhi (R̃, S̃) is a z-monotonic transform or a z-reshuffl ing (if z was already the
top or does not change preferences) of i’s previous preferences Rh−1i (R̃, S̃). Moreover, for
h ∈ {c + 1, ..., 2c}, Rhj (R̃, S̃) = Rh−1j (R̃, S̃) for all j ∈ N\i(S̃, h) and Rh

i(S̃,h)
(R̃, S̃) = Rz

i(S̃,h)
,

which for each agent is a z-reshuffl ing of her previous preferences R̃zi . Then, R
′ = R2c(R̃, S̃) =

(RzC(R,z,x), RN\C(R,z,x)).

Proof of Proposition 3. Let A be a finite and ordered set of alternatives in R, the real
line. For all i ∈ N , let Ri = S be the set of strict single-peaked preferences on A according
to the established real numbers order. We introduce some notation: given Rj ∈ S, p(Rj)
denotes the peak, that is, the best alternative, of Rj in A. Let L(Ri, x) = {y ∈ A : xPiy} be
the strict lower contour set of Ri at x. Given Rj ∈ S and x ∈ A, define r(Rj, x) as the first
alternative in L(Rj, x) in the opposite side of alternative x with respect to p(Rj).
To prove partial knitness, take any (x,R), (z, R̃) ∈ A×Sn such thatC(R, z, x) = C(R, z, x) 6=
∅, #C(R, z, x) ≥ 2, and R̃j = Rj for all j ∈ N\C(R, z, x) and show that (x,R), (z, R̃) are
pairwise knit. Without loss of generality, let x < z, which implies that p(Rj) > x. Also
without loss of generality, let C(R, z, x) = {1, 2, ..., c} where c denotes its cardinality. Now
define I(S) = I(S̃) = C(R, z, x) = {1, 2, ..., c} and construct for each agent j ∈ {1, 2, ..., c},
R′j depending on the cases below.
Take any j ∈ C(R, z, x) and consider the following cases.
Case 1. R̃j is such that xP̃jz. Take R′j ∈ S such that p(R′j) ∈ [x, z), r(Rj, x) = z, and
zP ′jy for all y < x. Notice that such R′j exists, and the two following set inclusions hold:

L(Rj, x) ⊆ L(R′j, x), L(R̃j, z) ⊆ L(R′j, z). Thus, R
′
j is both an x-monotonic transform of Rj

and a z-monotonic transform of R̃j (observe that with strict preferences, the above inclusion
of strict lower contour sets is equivalent to Definition 1).
Case 2. R̃j is such that zP̃jx. Consider several subcases.
Case 2.1. L(Rj, x) ⊆ L(R̃j, x). Let R′j = R̃j and observe that R′j is an x-monotonic trans-

form of Rj (obviously, R′j is a z-monotonic transform of R̃j since R′j = R̃j).

Case 2.2. L(R̃j, x) $ L(Rj, x). We distinguish additional subcases which require different
definitions of R′j.
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Case 2.2.1 . L(R̃j, x) $ L(Rj, x) and L(R̃j, z) ⊆ L(Rj, z). Let R′j = Rj and observe that R′j
is an x-monotonic transform of Rj (obviously since R′j = Rj) and R′j is also a z-monotonic

transform of R̃j.
Case 2.2.2 . L(R̃j, x) $ L(Rj, x) and L(Rj, z) $ L(R̃j, z). This implies that either (a)
p(Rj), p(R̃j) ∈ (x, z) or else (b) p(Rj), p(R̃j) > z.

If (a) holds, then let R′j be such that p(R
′
j) ∈

[
min{p(Rj), p(R̃j)},max{p(Rj), p(R̃j)}

]
,

r(R′j, x) = r(Rj, x) and r(R′j, z) ≥ r(R̃j, z). By definition of single-peakedness, such prefer-
ences R′j exists.

If (b) holds, then let R′j be such that p(R
′
j) ∈

[
z,min{p(Rj), p(R̃j)}

]
, r(R′j, x) ≤ r(Rj, x)

and r(R′j, z) ≤ r(R̃j, z). By definition of single-peakedness, such preferences R′j exists.
Then, observe that R′j defined in (a) and (b) is both an x-monotonic transform of Rj and a

z-monotonic transform of R̃j since L(Rj, x) ⊆ L(R′j, x) and L(R̃j, z) ⊆ L(R′j, z) hold.

Case 2.2.3 : L(R̃j, x) $ L(Rj, x) and z ∈
(

min{p(Rj), p(R̃j)},max{p(Rj), p(R̃j)}
)
. Assume

that p(Rj) < z < p(R̃j), otherwise, a similar argument would work.

This implies that either (a) r(Rj, x) ∈
(
z, p(R̃j)

]
or (b) r(Rj, x) ∈

(
p(R̃j), r(R̃j, x)

)
holds.

If (a) holds, then let R′j be such that p(R
′
j) ∈ [z, r(Rj, x)), r(R′j, x) ≤ r(Rj, x) and r(R′j, z) ≤

r(R̃j, z). By definition of single-peakedness, such preferences R′j exists.

If (b) holds, then letR′j be such that p(R
′
j) ∈

[
z,min{r(Rj, x), r(R̃j, z)}

)
, r(R′j, x) ≤ r(Rj, x)

and r(R′j, z) ≤ r(R̃j, z).
Then, observe that R′j in (a) and (b) is both an x-monotonic transform of Rj and a z-

monotonic transform of R̃j since L(Rj, x) ⊆ L(R′j, x) and L(R̃j, z) ⊆ L(R′j, z) hold.
Finally, for each j ∈ C(R, z, x) we repeat the same argument.

Proof of Proposition 4. The proof follows the same argument as the one in Proposi-
tion 2, given that agents have all possible strict preferences over individual assignments
and preferences are selfish. As in Barberà, Berga, and Moreno (2016), just note that al-
though preferences over individual assignments are strict, preferences over alternatives allow
for indifferences, by selfishness: all alternatives with the same individual assignment are
indifferent for such individual agent. Thus, in the case of the house allocation problem
C(R, z, x) ⊇ C(R, z, x) holds and Rzi are the preferences obtained by lifting z and also all
alternatives with the same individual assignment zi to the first position and keep the relative
position of all other alternatives.

Proof of Proposition 5. Let A = {x, y, z} be the set of alternatives. Let L̃ be the
set of all strict preferences on A and for each agent i ∈ N , let Di⊆L̃ be the set of
i’s preferences. It is worth noting that for each i ∈ N and each pair of alternatives
a, b ∈ A there exist at most three individual preferences in Di such that aPib, two of
them with b as the worst alternative and another one with b in the middle position. To
show that ×i∈NDi is partially knit, take any pair (x,R), (z, R̃) ∈ A × (×i∈NDi) such that
C(R, z, x) = C(R, z, x) 6= ∅, #C(R, z, x) ≥ 2, and R̃j = Rj for all j ∈ N\C(R, z, x)
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and show that (x,R), (z, R̃) are pairwise knit. Let S(R) and S̃(R) be the partition of
C(R, z, x) such that S(R) =

{
i ∈ C(R, z, x) : x is bottom according to Ri

}
and S̃(R) ={

i ∈ C(R, z, x) : x is second according to Ri
}
(well-defined by the note above).

Let R′i = R̃i for each i ∈ S(R), let S = S(R), and observe that for each i ∈ S(R) and each
possible R̃i, R′i = R̃i is an x-monotonic transform of Ri since x is bottom of Ri.
Let R′i = Ri for each i ∈ S̃(R), let S̃ = S̃(R), and observe that for each i ∈ S̃(R) and each
possible R̃i, R′i = Ri is an z-monotonic transform of R̃i since z is top of Ri.

Mechanisms with binary outcome problems with a discrete type
space
Proposition 6 The environment (Θ,R) in Example 2 is knit.

Proof of Proposition 6. To prove knitness we just need to combine the following two
results.
(1) Consider a pair formed by (A, θ) for any θ ∈ Θ where θj = (bj, sj) for each j ∈ N . Let
θ′ ∈ Θ be such that θ′1 = (l, i) and θ′j = (h, i) for any j ∈ N\{1}. We now define the sequence
S to sequentially go from type profile θ to type profile θ′ by successively changing the type
of the agents in S while preserving A-satisfactoriness. First change, one by one and in any
order, agents’signals from sj 6= i to i. By definition of l and h, in each of the above changes,
the induced preferences of the agent changing her type is an A-monotonic transform of her
previous preferences (sometimes an A-reshuffl ing).
Observe that by definition of the preference functions, the following condition is satisfied: if
ŝj = i for all j ∈ N , all jurors prefer A to C for any b̂j ∈ B.
We now change, one by one and in any order, each agent’s bj 6= h from bj to h for any
j ∈ N\{1} and from b1 6= l to l in the case of agent 1. By the observation made just above,
in each of these changes, the induced preferences of each agent is the same and therefore
they are an A-reshuffl ing of their previous preferences. Then, we have defined S such that θ
leads to θ′ through S and the passage from θ to θ′ is A-satisfactory.
(2) Consider a pair (C, θ) for any θ ∈ Θ where θj = (bj, sj) for each j ∈ N . We now define
the sequence S to go from type profile θ to θ′ above by successively changing the type of
the agents in S while preserving C-satisfactoriness. First change, one by one and in any
order, agents from sj 6= g to g. By definition of l and h, in each of the above changes,
the induced preferences of the agent changing her type is a C-monotonic transform of her
previous preferences (sometimes a C-reshuffl ing).
Observe that by definition of the preference function, the following property is satisfied: if
ŝj = g for all j ∈ N , all jurors prefer C to A for any b̂j ∈ B.
We now change one by one, and in any order, each agent’s bj 6= h from bj to h for any
j ∈ N\{1} and from b1 6= l to l in the case of agent 1. By the observation made just above,
in each of these steps, the preferences of the agents stay the same and therefore they are a
C-reshuffl ing of their previous ones. After that, we change the signal of the agent 1 from g
to i. This implies that the preferences of agent 1 remain identical, but those of all others go
from C preferred to A, to A preferred to C, given that bj = h for any j ∈ N\{1}. Finally,
we change the type of the rest of the agents one by one from g to i. In each one of these
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steps the preferences of the agent that moves is still A preferred to C. The passage from θ
to θ′ is C-satisfactory by construction.

Before engaging in the proof that the environment in Example 3 is partially knit (see
Proposition 7), we develop the argument for a particular example as mentioned in Footnote
14.
Consider a particular pair of types and alternatives, (A, θ) and (C, θ̃) where θ = ((u, g), (u, i),

(m, g)) and θ̃ = ((m, i), (u, i), (u, g)). Let θ′ = ((m, i), (u, i), (m, g)). The profiles of prefer-
ences they induce are shown in Table 5.

R(θ) = R((u, g), (u, i), (m, g)) R(θ̃) = R((m, i), (u, i), (u, g)) R(θ′) = R((m, i), (u, i), (m, g))
C
A

A
C

C
A

A
C

A
C

A
C

A
C

A
C

A
C

Table 5 : Agents’preferences induced by θ, θ̃, and θ′, respectively.

We can check that C(θ, C,A) = C(θ, C,A) = {1, 3} and θ̃2 = θ2 (that is, requirements in
Definition 11 are satisfied). As shown in Table 6 below, it is possible to move from θ to θ′ by
successively changing, one by one, the type of the agents. In this case, agent 1 from (u, g)
to (m, i). According to our notation, I(S) = {1}. Likewise, as shown in Table 7 below, we
can move from θ̃ to θ′ by successively changing, one by one, the type of some agents. In this
case, agent 3 from (u, g) to (m, g), that is, I(S̃) = {3}. In Table 6, note that the preferences
R1(θ

′) of agent 1 are an A-monotonic transform of her previous ones, which also involve a
change of those for agent 3. Similarly, notice that the preferences R3(θ

′) of 3 in Table 7 are
a C-reshuffl ing of her previous ones.

R(θ) = R, ((ug), (u, i), (m, g)) R(θ′) = R((m, i), (u, i), (m, g))
C
A

A
C

C
A

A
C

A
C

A
C

Table 6 : Induced agents’preferences given the specified type changes from θ to θ′.

R(θ̃) = R((m, i), (u, i), (u, g)) R(θ′) = R((m, i), (u, i), (m, g))
A
C

A
C

A
C

A
C

A
C

A
C

Table 7 : Induced agents’preferences given the specified type changes from θ̃ to θ′.

In Tables 6 and 7, we have illustrated the idea of partial knitness for two given type
profiles. We now show that any relevant pair of type profiles are connected through two
appropriate sequences.

Proposition 7 The environment (Θ,R) in Example 3 is partially knit.
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Proof of Proposition 7. Take two pairs (A, θ), (C, θ̃) ∈ A × Θ such that C(θ, C,A) =

C(θ, C,A) 6= ∅, #C(θ, C,A) ≥ 2, and for j ∈ N\C(θ, C,A), θ̃j = θj. By definition, for all
j ∈ N , θj = (bj, sj) and θ̃j = (̃bj, s̃j). We have to show that there exist θ′ ∈ Θ and sequences
of types S and S̃ such that θ leads to θ′ through S, θ̃ leads to θ′ through S̃, and the passages
from θ and θ̃ to θ′ are, respectively, A and C-satisfactory.
Let θ′ ∈ Θ be such that θ′j = (bj, g) for any j ∈ C(θ, C,A) and θ′j = θj for any j ∈
N\C(θ, C,A). Define the sequence S = {(bk, g)}, where k ∈ C(θ, C,A) and sk = i. Note
that I(S) is either a singleton or empty. If the latter, let θ′ be θ.
By definition of the preference function in the example, if some agent j prefers C to A, the
signal profile must be such that at most one agent k has signal i: sk = i. Thus, S is well-
defined. Moreover, bk = m since for unswerving jurors to have C over A their signal must
be g. And by definition of m increasing the support for g implies that preferences remain C
over A for agent k (i.e. and A-reshuffl ing) and will be C over A for the other agents.
Therefore, we have defined S to go from θ to θ′ through S and the passage is A-satisfactory.
We now go from θ̃ to θ′ by successively changing the type of the agents in C(θ, C,A), one
by one in any order, from to s̃j 6= g to g. This set of agents are those in I(S̃).
By definition of the preference function, if one agent changes her signal by increasing the
support for a guilty verdict, then each agents’induced preferences remain either the same
as before or change in favor of C. Thus, in each one of the above changes, the induced
preferences of the agent changing her type is a C-monotonic transform of her previous ones
(sometimes a C-reshuffl ing).
Now, take any two pairs (C, θ), (A, θ̃) ∈ A × Θ such that C(θ, A, C) = C(θ, A,C) 6= ∅,
#C(θ, A, C) ≥ 2, and for j ∈ N\C(θ, A, C), θ̃j = θj, a similar argument would work but
defining θ′ ∈ Θ to be such that θ′j = (bj, i) for any j ∈ C(θ, A, C) and θ′j = θj for any
j ∈ N\C(θ, A, C). Define the sequence S = {(bk, i)}, where k ∈ C(θ, A, C) and sk = g.
Note that I(S) is either a singleton or empty. If the latter, let θ′ be θ.
Again, by definition of the preference function in the example, if some agent j prefers A to
C, the signal profile must be such that only one single agent, or at most two, have signal g.
In the latter case, none of the two are agent j, and both have preferences C over A. Thus, S
is well-defined. Moreover, by definition of m and u increasing if the single agent with signal
g says i, that preferences of this agent and those of all other agents will be A over C.
Therefore, we have defined S to go from θ to θ′ through S and the passage is A-satisfactory.
We now sequentially go from θ̃ to θ′ by successively changing the type of the agents in
C(θ, A, C), one by one in any order, from to s̃j 6= i to i. This set of agents are those in I(S̃).
By definition of agents’preference function, if one agent changes her signal by increasing
the support for verdict of innocence, then each agents’induced preferences remain either the
same as before or change in favor of A. Thus, in each one of the above changes, the induced
preferences of the agent changing her type is a A-monotonic transform of her previous ones
(sometimes a A-reshuffl ing).

Remark 2 A voting by quota q mechanism is non-constant, ex post incentive compatible,
and respectful in the environment in Example 3.

Proof of Remark 2. In Table 8 below we describe all possible results of voting by quota
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for different values of q in Example 3. We have four matrices, one for each type of agent
3. In the rows of each matrix we write the four types of agent 1 and in the columns the
four types of agent 2. In each cell, we write each agent’s best alternative according to their
preferences at a given type profile, followed by the outcome of a quota mechanism. When
two outcomes appear in a cell, the one in the left stands for the outcome of voting by quota
3 and the right one is the outcome for both quota 1 and 2, which in this example are always
the same.
Given Table 8, it is easy to check that these rules are ex post incentive compatible. In
addition, they also satisfy anonymity. Note that respectfulness is trivially satisfied in these
environments where preferences are strict and alternatives have no private component.

θ3 = (m, i) θ2 = (m, i) θ2 = (m, g) θ2 = (u, i) θ2 = (u, g)

θ1 = (m, i) AAA A AAA A AAA A AAA A
θ1 = (m, g) AAA A CCC C AAA A CCC C
θ1 = (u, i) AAA A AAA A AAA A AAA A
θ1 = (u, g) AAA A CCC C AAA A CCC C
θ3 = (u, i) θ2 = (m, i) θ2 = (m, g) θ2 = (u, i) θ2 = (u, g)

θ1 = (m, i) AAA A AAA A AAA A AAA A
θ1 = (m, g) AAA A CCA A/C AAA A CCA A/C
θ1 = (u, i) AAA A AAA A AAA A AAA A
θ1 = (u, g) AAA A CCA A/C AAA A CCA A/C

θ3 = (m, g) θ2 = (m, i) θ2 = (m, g) θ2 = (u, i) θ2 = (u, g)

θ1 = (m, i) AAA A CCC C AAA A CCC C
θ1 = (m, g) CCC C CCC C CAC A/C CCC C
θ1 = (u, i) AAA A ACC A/C AAA A ACC A/C
θ1 = (u, g) CCC C CCC C CAC A/C CCC C
θ3 = (u, g)) θ2 = (m, i) θ2 = (m, g) θ2 = (u, i) θ2 = (u, g)

θ1 = (m, i) AAA A CCC C AAA A CCC C
θ1 = (m, g) CCC C CCC C CAC A/C CCC C
θ1 = (u, i) AAA A ACC A/C AAA A ACC A/C
θ1 = (u, g) CCC C CCC C CAC A/C CCC C

Table 8. Each agent’s best alternative and outcomes of all voting by quota mechanisms.

Mechanisms with binary outcome problems with a continuous type
space

Proposition 8 The environment (Θ,R) in Example 4 is knit.

Proof of Proposition 8. Given any two pairs (x, θ), (z, θ̃) ∈ A×Θ we will show that there
exist θ′, S, S̃ such that θ leads to θ′ through S, θ̃ leads to θ′ through S̃ and the passages
are x and z-satisfactory. We choose θ′ = (1, 1) independently of the two chosen pairs (x, θ),
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(z, θ̃) ∈ A × Θ. In defining the sequence S from θ to θ′ with x as reference alternative, we
distinguish two cases where we will end up analyzing all possible θ ∈ Θ. In particular, we
cover the case where θ and θ̃ are the same.
Case 1. θ ∈ Sca ∪ Saa ∪ S0. First change the type of agent 1 from θ1 6= 1 to 1. Since the
function g1 is strictly increasing in type 1, the preferences of agent 1 induced by this change
are either an x-reshuffl ing or an x-monotonic transform of her original ones. Then change
the type of agent 2 from θ2 to 1. Again, since the function g2 is strictly increasing in type
2, the preferences of agent 2 induced by this change are an x-reshuffl ing of her original ones
(see Picture 2.a in Figure 2).
Case 2. θ ∈ Sac ∪Scc. In this case we may not be able to change types of agents from θi 6= 1
to (1, 1) as directly as above.
Case 2.1. θ is a type profile from which we can reach another one in Saa by letting the type
of the first agent to be 1. Thus, Saa is not empty. We use the same argument as in Case 1:
first change the type of agent 1 from θ1 6= 1 to 1. The preferences of agent 1 induced by this
change are either an x-reshuffl ing or an x-monotonic transform of her original ones. Then
change the type of agent 2 from θ2 to 1. The preferences of agent 2 induced by this change
are an x-reshuffl ing of her original ones.
Case 2.2. θ is a type profile from which we can not reach another one in Saa by letting the
type of the first agent to be 1. If Saa is not empty, the sequence S must start by previous
changes of signals, at most one for each agent, as shown in Picture 2.b in Figure 2, that keep
us within the element of the partition where θ belongs to. The induced preferences resulting
from these previous type changes remain unchanged. Then, apply Case 2.1 when reaching a
type profile satisfying its statement. If Saa is empty, then either S0 is empty or S0 = (1, 1).
First change the type of agent 2 from θ2 6= 1 to 1. The preferences of agent 2 induced by this
change are an x-reshuffl ing. Then change the type of agent 1 from θ1 to 1. The preferences of
agent 1 induced by this change are an x-reshuffl ing of her original preferences if S0 is empty
or an x-monotonic transform if S0 = {(1, 1)}.

To define the sequence S̃ from θ̃ to θ′ with z as reference alternative, we would follow a
parallel construction to Cases 1 and 2 above. The relevant cases would now be Case 3:
θ̃ ∈ Sac ∪ Saa ∪ S0 and Case 4: θ̃ ∈ Sca ∪ Scc where we would consider all possible type
profiles θ̃ ∈ Θ including θ. The proof for the existence of the sequence S̃ would require a
similar argument to those of Cases 1 and 2, respectively, but exchanging the role of agents.
See the graphical representation in Figure 3.

The construction of these passages proves that our environment is knit as we wanted to
show.

Before engaging in the proof that the environment in Example 5 is partially knit, observe
that the changes in the functions gi imply that the sets Sca = {θ ∈ Θ : zP1x and zP2x} and
Sac = {θ ∈ Θ : xP1z and xP2z} are empty, and that S0 is not a singleton. Due to the specific
form of gi the indifference set is L-shaped and thick, as shown in Figure 4.
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Proposition 9 The environment (Θ,R) in Example 5 is partially knit.

Proof of Proposition 9. Remember that type profiles are signal profiles. Thus, we
identify s with θ. Take any two pairs (x, θ), (z, θ̃) ∈ A × Θ such that C(θ, z, x) 6= ∅ and
#C(θ, z, x) ≥ 2. These two conditions on θ imply that we must only consider θ ∈ Sca, i.e.
where agent 1 strictly prefers z to x and agent 2 is indifferent between x and z. Define
θ′ = θ̃.
We have to define S such that θ leads to θ′ = θ̃ through S and the passage is x-satisfactory.
We distinguish two cases. See the graphical representation of both cases in Figure 5.
Case 1. θ̃ ∈ Saa ∪ Sca. Define S = {θ̃1, θ̃2} and I(S) = {1, 2}. Note that if θ̃, θ ∈ Sca the
proof is obvious since we move along the same set Sca and no agent preferences change.
Suppose that θ̃ ∈ Saa. We first increase the signal of agent 1 to θ′1 = θ̃1. The induced
preferences of agent 1 are an x-monotonic transform of her previous ones. Agent 2 turns
to strictly prefer z to x, that is, zR2(θ′1, θ2)x. Decrease or increase now agent 2’s signal to
θ′2 = θ̃2. Note that agent 2’s induced preferences are identical to her previous ones, thus, are
obviously an x-reshuffl ing of them. So we have gone from θ to θ′ through adequate types
changes with respect to x.
Case 2. θ̃ ∈ Scc ∪ Sac. Define S = {θ̃2, θ̃1} and I(S) = {2, 1}. We first decrease the signal
of agent 2 to θ′2 = θ̃2. The induced preferences of agent 2 are an x-monotonic transform of
her previous ones R2(θ) (since zP2(θ)x while xP2(θ1, θ′2)z). Agent 1 turns to have the same
preferences as before, that is, zR1(θ1, θ′2)x. Now, we decrease or increase agent 1’s signal to
θ′1 = θ̃1. Note that agent 1’s induced preferences are either identical to her previous ones
(thus, obviously an x-reshuffl ing of those) or an x-monotonic transform of R1(θ1, θ′2) (since
zP1(θ1, θ

′
2)x while zI1(θ

′)x). So, we have gone from θ to θ′ through adequate changes of
types with reference x.
It remains to consider any two pairs where (z, θ), (x, θ̃) ∈ A×Θ are such that C(θ, x, z) 6= ∅
and #C(θ, x, z) ≥ 2, for which a symmetric and similar argument would work.
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Remark 3 fveto,x is non-constant, ex post incentive compatible, and respectful in the envi-
ronment (Θ, R) in Example 5.

Proof of Remark 3. Observe that, by definition, fveto x is non-constant and no agent can
gain by changing her individual types, since she will either obtain the same or an indifferent
one, when deviating, or else obtain her best outcome through by being truthful. Ex post
group incentive compatibility is straightforward since changing both types it is impossible to
weakly improve both agents, and at least on of them strictly: note that either agent 1 or 2
strictly lose (we need to check 6 cases: θ ∈ Saa and θ′ ∈ Sca or vice versa; θ ∈ Sac and θ′ ∈ Sca
or vice versa; and θ ∈ Scc and θ′ ∈ Sac or vice versa). To show that fveto x is respectful, note
that the only way for agent 1 to remain indifferent according to her initial preferences R1(θ)
and get a different outcome when changing her type is when θ ∈ Sac and θ′1 < 1

4
such that

(θ′1, θ2) ∈ Scc. However, R1(θ′1, θ2) is not an x = fveto x(θ)-monotonic transform of R1(θ).
Similarly, for agent 2, to remain indifferent and get a different outcome when changing her
type θ ∈ S0 and θ2 ≥ 1

4
, θ′2 <

1
4
. However, R2(θ1, θ′2) is not a z = fveto x(θ)-monotonic

transform of R2(θ).

Appendix B. Illustrative examples
In this Appendix we first illustrate the concepts of satisfactoriness and knitness using

Example 1 in Remarks 4 and Remark 5. Then, we use Example 6 to show that partial
knitness is not necessary for the result in Theorem 4 to hold. Finally, we use Example
7 to illustrate that the necessary conditions in Theorem 3 are not suffi cient to escape the
constancy conclusions of Theorem 1.

Remark 4 The first passage defined in Example 1 is a-satisfactory. The second is not.

Proof of Remark 4. Let x = a, θ = (θ1, θ2), θ
′ = (θ1, θ2), and S =

{
θ2, θ1, θ2

}
be a

sequence of individual types. Note that, I(S) = {2, 1, 2} and tS = 3. The passage from θ to
θ′ through S is a-satisfactory. To show it, we have to check that for each h ∈ {1, 2, tS = 3},
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Rhi(S,h) (θ, S) is an a-monotonic transform of Rh−1i(S,h) (θ, S).

For that, observe first thatR0i(S,1) (θ, S) = R2(θ1, θ2), R
1
i(S,1) (θ, S) = R2(θ1, θ2), R

1
i(S,2) (θ, S) =

R1(θ1, θ2), R
2
i(S,2) (θ, S) = R1(θ1, θ2), R2i(S,3) (θ, S) = R2(θ1, θ2), andR3i(S,3) (θ, S) = R2(θ1, θ2).

Then, using the table in Example 1, note that the following three facts hold: R2(θ1, θ2) =
a(bc) is an a-monotonic transform of R2(θ1, θ2) = b(ac) since U(R2(θ1, θ2), a) = {a} ⊆
U(R2(θ1, θ2), a) = {a, b, c} and U(R2(θ1, θ2), a) = ∅ ⊆ U(R2(θ1, θ2), a) = {b}.
Moreover, R1(θ1, θ2) = c(ab) is an a-monotonic transform ofR1(θ1, θ2) = bca since U(R1(θ1, θ2), a) =
{a, b, c} ⊆ U(R1(θ1, θ2), a) = {a, b, c} and U(R1(θ1, θ2), a) = {c} ⊆ U(R1(θ1, θ2), a) = {b, c}.
Finally, R2(θ1, θ2) = c(ab) is an a-reshuffl ing of R2(θ1, θ2) = c(ab) since both preferences
coincide.
Now, let x = a, θ = (θ1, θ2), θ

′ = (θ1, θ2), and S =
{
θ1, θ2

}
be a sequence of individual

types. Note that, I(S) = {1, 2} and tS = 2. The passage from θ to θ′ through S is not
a-satisfactory. To show it, observe that for h = 1, Rhi(S,h) (θ, S) is not an a-monotonic trans-

form of Rh−1i(S,h) (θ, S). By definition, R0i(S,1) (θ, S) = R1(θ) and R1i(S,1) (θ, S) = R1(θ1, θ2).

Moreover, R1(θ1, θ2) = c(ab) is not an a-monotonic transform ofR1(θ) = acb since U(R1(θ1, θ2), a) =
{a, b, c} " U(R1(θ), a) = {a} (in fact, U(R1(θ1, θ2), a) = {c} " U(R1(θ), a) = ∅).

Remark 5 The environment (Θ,R) in Example 1 is knit.

Proof of Remark 5. To check that the environment (Θ,R) is knit forΘ = {(θ1, θ2), (θ1, θ2),
(θ1, θ2), (θ1, θ2)}, we must prove that all pairs of alternatives and types are pairwise knit,
that is, can be connected through satisfactory sequences. To do that, we will show how to
choose the appropriate ones for two specific cases, and then argue that all others can be
reduced essentially to one of the patterns we shall follow.
Case 1. (x, θ) = (a, (θ1, θ2)) and (z, θ̃) = (b, (θ1, θ2)).
Define θ′ = θ̃ = (θ1, θ2), S =

{
θ2, θ1, θ2

}
(thus, I(S) = {2, 1, 2} and tS = 3), S̃ = ∅ (thus,

I(S̃) = ∅ and tS̃ = 0). Note that since θ′ = θ̃, then θ̃ trivially leads to θ′ through S̃ and
this passage from θ̃ to θ′ is b-satisfactory. We need to show that θ leads to θ′ through S
and the passage is a-satisfactory. For that we need to observe using Table 1 that the three
(tS) following facts hold: R2(θ1, θ2) is an a-monotonic transform of R2(θ1, θ2). Moreover,
R1(θ1, θ2) is an a-monotonic transform of R1(θ1, θ2). Finally, R2(θ1, θ2) is an a-reshuffl ing of
R2(θ1, θ2).
Case 2. (x, θ) = (c, (θ1, θ2)) and (z, θ̃) = (a, (θ1, θ2)).
Define θ′ = (θ1, θ2), S =

{
θ1, θ2

}
(thus, I(S) = {1, 2} and tS = 2), S̃ =

{
θ1
}
(thus,

I(S̃) = {1} and tS̃ = 1). As above, first we need to show that θ leads to θ′ through S and
the passage is a-satisfactory. For that we need to observe using Table 1 that the two (tS)
following facts hold: R1(θ1, θ2) is a c-monotonic transform of R1(θ1, θ2). Moreover, R2(θ1, θ2)
is a c-reshuffl ing of R2(θ1, θ2).
Second, we need to show that θ̃ leads to θ′ through S̃ and the passage is a-satisfactory.
For that we need to observe using the table that R1(θ1, θ2) is an a-monotonic transform of
R1(θ1, θ2).
To finish the proof of knitness we should consider all remaining combinations of (x, θ),
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(z, θ̃) ∈ A×Θ. Observe that each one of those cases can be embedded in either Case G1 or
Case G2 below, which generalize Cases 1 and 2, respectively.
Case G1. (x, θ) and (z, θ̃) such that x ∈ {a, b}.
Case G2. (x, θ) and (z, θ̃) such that x = c.
To prove knitness for Case G1, consider θ′ = θ̃, S̃ = ∅, and S will depend on θ and
θ̃. Similarly, to prove knitness for Case G2, consider θ′ = (θ1, θ2), S =

{
θ1, θ2

}
(thus,

I(S) = {1, 2} and tS = 2), and S̃ will depend on θ and θ̃.

Example 6 Consider a private values environment with a finite set of agentsN , six alterna-
tives A = {a1, a2, a3, a4, y, z}, and each agent i has only two strict preferencesRi = {R2, R4}:

R2 R4

a2 a4
y y
a3 a1
a4 a2
z z
a1 a3

To show that the environment ×i∈NRi is not partially knit, take the two pairs (a3, R) and
(y, R̃), where R = (R2)

n and R̃ = (R4)
n (note that C(R, y, a3) = N). These two pairs are

not pairwise knit since there is no agent’s preference R̂ 6= R2 such that R̂ be an a3-monotonic
transform of R2 and no agent’s preference R 6= R4 such that R be an y-monotonic transform
of R4. Thus, we can not construct R′.
However, by Theorem 1 in Barberà, Berga, and Moreno (2010) we know that any strategy-
proof mechanism on ×i∈NRi is strong group strategy-proof since ×i∈NRi satisfies sequential
inclusion (by their Example 3).

In the following example we illustrate that the condition obtained in Proposition 3,
although necessary, is not suffi cient for the existence of ex post incentive compatible and
respectful mechanisms with range of cardinality k ≥ 2. To do that we consider a setting
with three alternatives and define two environments where there exist k pairs, for k ∈ {2, 3},
such that any two pairs are not pairwise knit. For k = 2 in the first environment, we show
that there is an ex post incentive compatible mechanism and respectful binary mechanism for
some pair of alternatives, but in the second environment there is no such binary mechanism.
For k = 3 in the first environment, there is a full range, ex post incentive compatible, and
respectful mechanism, but in the second environment there is no such a mechanism.

Example 7 Let N = {1, 2, 3} and A = {x, y, z}. Each agent i has two possible types:
Θi = {θi, θi}. The preference function R is defined in Table 9. We write, in each cell, the
preferences of the three agents for a given type profile represented by an ordered list from
better to worse.

42



θ3 θ2 θ2

θ1
R1(θ1, θ2, θ3) R2(θ1, θ2, θ3) R3(θ1, θ2, θ3)
xyz xyz xyz

R1(θ1, θ2, θ3) R2(θ1, θ2, θ3) R3(θ1, θ2, θ3)
yxz yzx yxz

θ1
R1(θ1, θ2, θ3) R2(θ1, θ2, θ3) R3(θ1, θ2, θ3)
zxy yxz yxz

R1(θ1, θ2, θ3) R2(θ1, θ2, θ3) R3(θ1, θ2, θ3)
zyx zyx yxz

θ3 θ2 θ2

θ1
R1(θ1, θ2, θ3) R2(θ1, θ2, θ3) R3(θ1, θ2, θ3)
yxz yxz yxz

R1(θ1, θ2, θ3) R2(θ1, θ2, θ3) R3(θ1, θ2, θ3)
yzx yxz yzx

θ1
R1(θ1, θ2, θ3) R2(θ1, θ2, θ3) R3(θ1, θ2, θ3)
zyx xzy yzx

R1(θ1, θ2, θ3) R2(θ1, θ2, θ3) R3(θ1, θ2, θ3)
zyx zyx zyx

Table 9. Preference function for Example 7

We show that the three pairs ((θ1, θ2, θ3), x), ((θ1, θ2, θ3), y), ((θ1, θ2, θ3), z) are such that
any two of them are not pairwise knit. First, observe that there is no x-satisfactory passage
from (θ1, θ2, θ3) to any other type profile and no zsatisfactory passage from (θ1, θ2, θ3) to
any other type profile. Second, there is no y-satisfactory passage from (θ1, θ2, θ3) to neither
(θ1, θ2, θ3) nor (θ1, θ2, θ3). Therefore, we can conclude that no two pairs are pairwise knit.

We now define the following mechanism with full range that is ex post incentive compatible.

f:

θ3
θ2 θ2

θ1 x y
θ1 x z

θ3
θ2 θ2

θ1 y y
θ1 z z

We could easily prove by construction that there is no ex post incentive compatible mecha-
nism with range either {x, y} or {x, z}, which is left to the reader. Therefore, by Theorem
2, any two pairs (θ, a), (θ̃, b), θ, θ̃ ∈ Θ and a 6= b, a, b belonging either to {x, y} or {x, z}
are pairwise knit. However, there is an ex post incentive compatible mechanism with range
{y, z} where agent 1 is a dictator on its range.
We now modify the preference function by just replacing the preferences of the following
agents at two type profiles: R1(θ1, θ2, θ3) = zyx, R1(θ1, θ2, θ3) = zxy and R3(θ1, θ2, θ3) =
yzx.
The three pairs ((θ1, θ2, θ3), x), ((θ1, θ2, θ3), y), ((θ1, θ2, θ3), z) are such that any two of them
are not pairwise knit in this modified environment and the proof is identical to the previous
one.

In this second environment, there is no ex post incentive compatible mechanism of range
neither 3 nor 2. Again, it is left to the reader the impossibility of constructing ex post
incentive compatible mechanism with range two.

It is easy to show that there is no full range mechanism satisfying ex post incentive compat-
ible. The proof is by construction: fix any alternative as outcome at type profile (θ1, θ2, θ3),
then applying ex post incentive compatibility the mechanism must be constant.
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Appendix C. Single-peakedness

Single-peakedness is undoubtedly the best known property of preference profiles, and one
whose use as a domain restriction becomes natural in many applications involving private
values.
Our purpose in this appendix is to prove that the set of all strict single-peaked preferences

over three alternatives relative to a given order of preferences is partially knit, but not knit.
In addition to the intrinsic interest of these facts, we shall discuss why we think that our
proof may help to make our admittedly abstract conditions in a better light.
In our reasoning we shall use the fact that when agents’preferences are single-peaked

relative to some order of the alternatives, for any triple of alternatives there must be one
of them that is never the worst one for any agent. This condition is always necessary for
single-peakedness and it is also suffi cient for the case of three alternatives. This fact was
elaborated upon by Sen and Pattanaik (1969). More recently, Ballester and Haeringer (2011),
for the case of more than three alternatives, provide a general characterization involving an
additional condition.
We first show that the set of all profiles of single-peaked preferences relative to an order

x < y < z is partially knit. To do so, we must prove that for any two pairs (a,R) and
(b, R̃), such that R and R̃ are in the set of admissible profiles, bPia for some agent i, and
a is different than b, there exists some R′ which is also admissible and that is connected to
both R and R̃ through some a-monotonic and b-monotonic transforms, respectively. Take
any i such that bPia and Ri is different to R̃i. If y equals a or b, choose R′ to be such that
bP ′iaP

′
i c. If y is neither a nor b, choose R

′ such that bP ′yP ′a. Since we are in a private values
environment, changes in the preferences of each agent do not affect those of others. And
notice that the corresponding proposed R′ satisfies the monotonicity requirements. That
ends the proof.
At the same time, we can also prove directly that the same set is not knit (which we

know is true by Proposition 1). It suffi ces to show that some pair of preferences, R and R̃
can not be properly connected when associated with alternatives x and y, respectively. This
is the case when R is such that xPiy for some i, and hence yPiz, because y is never worse.
If R̃ has y as its top alternative, (x,R) and (y, R̃) cannot be pairwise knit, because the only
x-monotonic transform of R is xP ′iyP

′
iz and it cannot do the job. And this ends our proof.

We hope that these simple arguments can carry to the reader several points that we
would like to emphasize. One is that checking for the compliance of our conditions need
not always be too complicated. More importantly, that the key difference between the two
situations, one of compliance and the other not, is that the comparison between the pairs that
we use in showing that single-peakedness is not knit is not required under partial knitness.
Thus, in general, what differentiates one condition from the other is that knitness requires
connectedness among the profiles in the set under consideration. Finally, let us mention that
connectedness, the driving idea behind our conditions, is clearly exemplified by our exercise.
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