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ABSTRACT 

Density functional theory calculations were used to systematically explore the effects of 

axial ligation by solvent molecules on the reactivity and selectivity of dirhodium 

tetracarboxylates with diazo compounds in the context of C–H insertion into propane. 

Insertions on three types of diazo compounds—acceptor/acceptor, donor/acceptor, and 

donor/donor—promoted by dirhodium tetraformate were tested with and without axial 

solvent ligation for no surrounding solvent, dichloromethane, isopropanol, and 



acetonitrile. Magnitudes, origins, and consequences of structural and electronic changes 

arising from axial ligation were characterized. The results suggest that axial ligation 

affects barriers for N2 extrusion and C–H insertion, the former to a larger extent. 

 

INTRODUCTION 

Overview and historical context 

Dirhodium tetracarboxylate complexes (Scheme 1, left) are among the most 

commonly used catalysts in organometallic chemistry. These bimetallic complexes have 

a “paddle wheel” (sometimes called “lantern”) structure, containing a Rh–Rh single bond, 

the details of which has been subject to experimental and theoretical interrogations for 

decades.1–8 These complexes—which have applications spanning from catalysis9,10 and 

biology11–13 to supramolecular chemistry14–17—are potent catalysts in organic chemistry 

because of their ability to promote nitrogen extrusion from diazo compounds to generate 

transient rhodium carbene intermediates (Scheme 1, center, L = CR2). These 

intermediates are capable of engaging in a wide range of chemical reactions including (2 

+ 1) cycloadditions (e.g., cyclopropanation, cyclopropenation, insertion into X–H bonds), 

various (n + 1) cycloaddition reactions where n > 2, and a diverse array of ylide 

reactions.18–27 The efficiency and selectivity imparted by dirhodium tetracarboxylate 

catalysts, including enantioselectivity when chiral carboxylate (or related) ligands are 

used, makes them especially useful tools in the construction of complex organic 

molecules.28–30 While one of the two rhodium atoms is involved directly in bond-

making/breaking with substrates,31 the other is crucial for the overall catalytic 

performance of the complex, as it is involved in compensating for electronic alterations 

during a reaction (a phenomenon referred to as the trans effect or trans influence).32,33  



 

Scheme 1. Dirhodium “paddlewheel” complexes have four bridging bidentate bridging 

ligands and two axial sites for additional ligands (L) to bind. 

 

 

Each of the two rhodium atoms in a dirhodium tetracarboxylate is Lewis acidic 

and can complete an octahedral geometry by filling the coordination site along the axis 

of the Rh–Rh bond. In the bioinorganic realm, the availability of these labile axial sites is 

crucial for anti-tumor activity and DNA targeting.34 In heterogenous catalysis, axial 

ligation to dirhodium(II) complexes has been used to immobilize complexes in silica 

(e.g., SBA-15) materials.35,36 Davies et al., for example, used axial coordination of 

pyridine groups from polymeric resins as a means to reuse chiral dirhodium catalysts with 

low to no effect on catalyst activity.37–40 

Most reported X-ray crystal structures of dirhodium complexes contain bound 

axial ligands, usually solvent but sometimes substrates, other ligands, or other complexes 

(i.e., in coordination polymers).41–47 Even though dirhodium complexes have been known 

since the 1960s, it was not until 2002 that an X-ray crystal structure of a dirhodium 

complex without axial ligands was reported.48 The few reported X-ray structures of 

dirhodium carbenes crystallize as coordination polymers: OMe or NMe2 groups present 

in the carbene appendants coordinate to the rhodium not bearing the carbene carbon of 



the next unit.49,50 These complexes require CH2Cl2 and toluene to be stable in crystalline 

form and their unit cells contain highly disordered solvent molecules.49 

In solution, axial solvent coordination to dirhodium complexes is well known,51–

55 and even macroscopically evident due to its effect on the electronic structure of the 

complex. Coordination by solvent molecules is comparatively much weaker than 

carboxylate coordination. Nevertheless, as a result of populating a vacant Rh–Rh * 

orbital upon coordination (by solvent or other ligands), one will observe in color 

changes.56–59 Triple resonance NMR experiments confirmed that axial ligand 

coordination changes the chemical environment at the Rh nuclei, and the donor strength 

of a labile ligand is observed in 103Rh chemical shift “deshielding”.60 Several directions 

have been explored to effect changes on dirhodium complexes by way of axial ligation, 

some of which are summarized below.  

 

Axial Ligands 

Berry’s three-center/four-electron (3c/4e) bonding model in the Rh–Rh–CR2 

fragment (Scheme 1, center, L = CR2) helps rationalize the diverse reactivity of dirhodium 

carbenes.58 As a result of the communication between these three atoms, dirhodium 

carbene reactivity is potentially “tunable” by axial ligation opposite to the Rh–C bond, a 

possibility being actively investigated. For instance, many have designed dirhodium 

complexes with improved catalytic properties54,61–65 by incorporating ligands with 

tethered axial donors (or ligands that shield the Rh core from axial coordination by 

external molecules66). However, this direction is still in its infancy compared to that of 

modifying electronic and steric properties of the bridging ligands.7   



Some have explored N-heterocyclic carbenes (NHCs) as external axial 

coordinating ligands. In one example, Snyder et al. isolated a dirhodium carboxylate 

complex with tetramethylimidazolidene coordinated to the axial position in order to 

obtain a dirhodium carbene structure suitable for X-ray structure characterization.67 No 

significant differences in activity or selectivity were found with and without the NHC, 

which led the authors to conclude that an equilibrium was taking place that furnishes 

dirhodium carbene free of axial ligand as the active catalyst. Subsequently, Gois et al. 

utilized N,N-(2,6-diisopropylphenyl)imidazolidene, a more sterically hindered NHC, and 

obtained dirhodium dicarboxylates with axially coordinated NHCs to showcase different 

reactivity and selectivity.68 These complexes catalyzed C–H insertion reactions of diazo 

compounds at considerably slower rates than the compounds without axial ligation and 

with substantial differences in selectivity. These observations were attributed to a “push-

pull” mechanism, in which an axial NHC causes a weakening of the R–CNHC bond in the 

presence of a bound diazo compound (“pull”), and the NHC weakens the R=Ccarbene partial 

double bond in the dirhodium carbene complex (“push”).68  

Axial complexation of groups that are not as strong -donors as NHCs also have 

been explored. Darko et al., for example, reported a heteroleptic dirhodium complex that 

contained a bridging ligand with a tethered thioether that axially coordinates to rhodium.69 

Beneficial effects on the activity – and especially the selectivity – were observed upon 

using the heteroleptic complex as a catalyst for cyclopropanation. Further studies from 

the same group with mixed oxazolidinate/carboxylate dirhodium complexes confirmed 

the positive effect that the coordination of tethered thioether donors had on the catalytic 

activity of the complexes in Si–H insertion reactions and cyclopropanation reactions.63,64 

The authors argued that the enhanced selectivity they observed was related to an increase 

in the energy of the LUMO of the complex upon coordination of the axial ligand.55  



Coordinating Lewis basic additives may also lead to divergent outcomes. For 

instance, Doyle and coworkers disclosed a dearomatizing formal [3+3]-cycloaddition of 

isoquinolinium/pyridinium methylides and enol diazoacetates whose chemo- and 

enantioselectivity depended on Lewis base additives.70 The main difficulty in this strategy 

is to find a suitable concentration of the additive that favors mono-coordination over di-

coordination, since the latter would render the catalytic system inactive (Scheme 1, center 

and right). Additives such as tetramethyl urea, Hünig’s base, N,N-diethylaniline, 2,4,6-

trimethylpyridine, TfNH2, DMAP, and 2-chloropyridine also have been used to modulate 

the reactivity and selectivity of dirhodium tetracarboxylate complexes through axial 

coordination.71–75  

 

Solvent Effects 

Solvent effects can be crucial in catalysis.76 The effects of axial coordination by 

solvent on Rh-carbene reactivity and selectivity should be considered, since it has been 

shown that reaction outcome can highly depend on the solvent.26,77–79 Weakly Lewis basic 

and non-polar/low-polarity solvents, expected to be poorly coordinating, such as 

dichloromethane or hexane, are generally considered the most efficient reaction media 

for C–H functionalization.29 Still, there are examples reported of C–H insertion80,81 and 

cyclopropanation82 reactions in water, a highly coordinating, polar solvent. Though 

acetonitrile (CH3CN), another Lewis basic solvent, sometimes works poorly in Rh-

catalyzed reactions,83,84 it has been shown to be an effective solvent for others.85 

Predicting an optimal solvent is not always trivial. For example, in a Rh-catalyzed C(sp3)–

H amination, tBuCN was identified as the optimal solvent because the lifetime of 

Rh2(esp)2 was prolonged in tBuCN compared to that in acetonitrile or CH2Cl2.
86  



Computational studies exploring the effects of axial solvent coordination on 

reactivity and selectivity are sparse. Davies and coworkers investigated one case (see 

Figure 6 of their study) of axially coordinated acetone on a dirhodium tetraformate 

catalyzed cyclopropanation of styrene by methyl phenyldiazoacetate, a donor acceptor 

carbene (at the B3LYP/6-311G(2d,2p)[Rh-RSC+4f]//B3LYP/6-31G(d)[Rh-RSC+4f] 

level of theory).87 Their results indicated that acetone coordination slows down the rate 

of nitrogen (N2) extrusion (a barrier increase of 4.7 kcal mol-1) and makes it less 

exothermic (E = -3.1 kcal mol-1) compared to that without acetone coordination (E = 

-9.1 kcal mol-1). This reactivity difference, captured by DFT calculations, better aligns 

with their experimental data.  

Kisan and Sunoj reported a computational study (at the SMD(CHCl3)-

M06/LANL2DZ[6-31G(d,p)]//B3LYP/LANL2DZ[6-31G(d)] level of theory) in which 

axial solvent (CHCl3) coordination was shown to have minimal effects on all reaction 

steps except for the step responsible for the enantioselectivity in an asymmetric N–H 

insertion reaction with cooperative dual catalysts: a chiral SPINOL-phosphoric acid and 

a dirhodium tetracarboxylate.88 In addition, axial coordination of the chiral SPINOL-

phosphoric acid catalyst seemed to selectively stabilize the preferred transition state 

structure (TSS).88 Additionally, with the exception of some experimental-computational 

studies wherein axial ligation is explicitly considered in the computational studies (and 

compared to the non-complexed states),89–91 axial ligation is generally not considered in 

computational modeling of synthetically-relevant reactions (including our own work92,93).  

 

Goals of this work 



If, for the most part, axial solvent ligation is ignored in computational studies of 

dirhodium catalyzed reactions, we ask ‘should it be’? The aim of the present work is to 

systematically evaluate the effects that coordination of single solvent molecules at the 

axial sites of dirhodium complexes has on C–H insertion reactions. Two main questions 

were the focus of our attention: (1) Is there a meaningful difference in reactivity and 

selectivity for such reactions when an implicit molecule is axially coordinated? (2) Is it 

possible to rationally tune reactivity and selectivity by solvent? Our tool of choice for 

answering these questions is density functional theory (DFT), which has been used 

effectively to model related systems on many occasions.94 For more information on 

approaches and caveats for modeling organometallic reactions see our recent review94 

and excellent reviews published by others.95–103 

 

COMPUTATIONAL METHODS 

 DFT calculations were carried out with the Gaussian 09 quantum chemistry 

package.104 Stationary points were classified as either TSSs or minima on the potential 

energy surface (PES) by identification of one imaginary frequency for the former and the 

absence of imaginary frequencies for the latter. To confirm that TSSs are connected to 

particular minima, we employed intrinsic reaction coordinate (IRC calculations).105–107 

For geometry optimizations, we used the B3LYP108 functional with the LANL2DZ[6-

31G(d)] basis set, i.e., the LANL2DZ effective core potential (ECP)109 for Rh and 6-

31G(d) for all other atoms. Implicit solvent was treated with the conductor-like 

polarizable continuum model (CPCM).110–112 Reported energies are from single points 

using CPCM with the M06113 functional with a larger basis set, the SDD114 ECP for Rh 

and the 6-311+G(d,p) basis set for all other atoms. Natural bond orbital (NBO) 

calculations were carried out in Gaussian with Gaussian NBO version 3.1.115–118 



 We and others have shown that the B3LYP functional is a reasonable choice for 

geometry optimizations of relatively small systems involving dirhodium carbenes.95,98,119–

122 In fact this level of theory provides good agreement with experiment for H‡  for N2 

extrusion, the step that contains the turnover-determining transition state,123 for the 

reactions we describe below with the methyl diazoacetate-dirhodium formate adduct: we 

compute a H‡ = 15.1 kcal mol-1 with B3LYP/LANL2DZ[6-31G(d)] versus an 

experimental H‡ of 15.0 kcal mol-1 for dirhodium tetraacetate-catalyzed 

cyclopropanation of ethyl diazoacetetate and styrene,124 which can also be compared with 

H‡ of 13.3 kcal mol-1 for N2 extrusion from diazoketones by Pirrung and coworkers.31 

Additionally, we tested other functionals and ECP basis sets: M06,113 M06L,125 and 

MN15126 functionals with either the LANL2DZ or SDD basis set. Tracking the variation 

of relative electronic energies with respect to level of theory led us to conclude that 

M06/SDD[6-311+G(d,p)], which predicted the N2 extrusion E‡ for the reaction 

mentioned above to be 16.4 kcal mol-1,124 afforded a reasonable compromise of accuracy 

and computational cost (see SI, Figure S3).113 Optimized stationary points using 

dispersion-corrected B3LYP (i.e., B3LYP-D3(BJ))127,128 had little to no effect on the 

relative free energies (see SI, Table S3). As a result of these tests, we utilized the 

M06/SDD[6-311+G(d,p)]//B3LYP/LANL2DZ[6-31G(d)] level of theory throughout this 

study. Similar levels of theory have been employed for DFT investigations of 

synthetically-relevant, Rh-catalyzed C–H insertions.129,130 All computed structures are 

available on the ioChem-BD platform131 and can be accessed via 

https://doi.org/10.19061/iochem-bd-6-111. Energies and lowest vibrational frequencies 

are summarized in the Supporting Information using the files names on the ioChem-BD 

database for ease of access. 

 

https://doi.org/10.19061/iochem-bd-6-111


RESULTS AND DISCUSSION 

Overall Approach 

For simplicity, we selected the C–H insertion of three representative diazo 

compounds 1a-c—one each with acceptor/acceptor (A/A),20,132,133 donor/acceptor 

(D/A),21,22,28,134 and donor/donor (D/D)25,27,135,136 substituents—into propane (2) 

catalyzed by the simplest dirhodium tetracarboxylate, dirhodium tetraformate 

([Rh2(formate)4], 3) (Scheme 2). We explored insertion both into the internal (CH2) and 

terminal (CH3) positions of propane, which lead to insertion products 4 and 5, 

respectively. Our model system closely resembles that employed in the seminal 

computational study of Nakamura and coworkers,137 in which propane and the same 

catalyst model was used. However, they only explored acceptor diazo compounds and 

did not consider the effects axial ligand binding might have on reactivity and selectivity.  

 

Scheme 2. Rh-catalyzed transformation of A/A, D/A, and D/D diazo compounds and 

propane to C–H insertion products. 

 

 

A schematic representation of the generally accepted mechanism for the C–H 

insertion process is shown in Figure 1 (blue inner ring). The reaction starts with 

nucleophilic attack of the diazo compound (1) on dirhodium tetraformate (3) to generate 

an ylide (6). Dirhodium carbene (7) is formed by N2 extrusion from 6. A weakly bound 



complex (8) is then formed, from which the carbene carbon inserts into a C–H bond of 

propane (2). Such C–H insertions are generally concerted, but involve asynchronous 

formation of the new C–H and C–C bonds (with the former leading and the latter 

lagging).137,138 However, Shaw and coworkers have found that donor/donor carbenes can 

undergo two-step, stepwise C–H insertions,139 or exist at the borderlands140 of concerted 

and stepwise.141 Finally, dissociation of product 4 from weakly bound complex 9 

regenerates catalyst 3.  

 

Figure 1. Mechanism postulated for the insertion of a diazo compound into propane 

catalyzed by dirhodium tetraformate (only one formate is shown explicitly). Blue inner 

ring: no axial ligand. Green outer ring: one axial ligand bound. 

 



It is unclear whether axial solvent ligation is relevant at any point in this catalytic 

cycle (Figure 1, outer green circle versus inner blue circle). Solvent coordination may 

occur for some intermediates and not others (e.g., 3 to 3-L equilibria) and when it 

coordinates, it may or may not have a significant effect on structure or reactivity. These 

issues are addressed below. Reactions with and without explicit coordinated solvent 

molecules were first studied in the gas-phase and then in three common solvents using 

the CPCM model: dichloromethane ( = 8.9), isopropanol ( = 19.9) and acetonitrile ( = 

37.5). We selected these solvents because they are commonly used in dirhodium 

catalyzed reactions, and because they provide variety of dielectric constants and donating 

ability. 

Effects of solvent on diazo complexation: HOMO-LUMO modulation 

To investigate the effects afforded by an axial ligand on diazo complexation, we 

assessed the frontier orbitals, the highest occupied molecular orbital (HOMO) and lowest 

unoccupied molecular orbital (LUMO), and their change in energetic splitting upon axial 

ligation. For this section, we narrow our attention on donor-acceptor (D/A) systems, a 

reasonable middle ground in terms of electrophilicity, selectivity, and functional group 

tolerance in the literature, but similar qualitative energetic trends were noted for D/D and 

A/A systems so the conclusions drawn from the D-A systems can reasonably be extended 

to those systems (see SI, Tables S1 and S2).22  

Berry demonstrated that axial ligand coordination raises the energy of the Rh–Rh 

* LUMO, and alters the HOMO-LUMO energy splitting.55,58,59 An examination of the 

frontier orbitals of solvent-unbound [Rh2(formate)4] (3) and solvent-bound compounds 

3-L demonstrates that the LUMO energy increases by 1.3 eV (~ 30 kcal mol-1) from 3 to 

3-ACN. While HOMO energies also increase, they do not increase by as much, and thus 



the net effect is an increase in the HOMO-LUMO gap (by 0.62 eV from 3 to 3-ACN; 

Figure 2). A similar effect is observed for dirhodium carbene structures 7 and 7-L, but 

the magnitudes of the changes are much smaller than those observed with free 

[Rh2(formate)4] (Figure 3). Darko and coworkers computed similar qualitative trends in 

the HOMO-LUMO gap for their tethered, axial thioether-coordinated dirhodium catalysts 

with DFT calculations (M06-2X/def2TZVPP level of theory).63 Increases to LUMO 

energies should lead to greater difficulty in forming 6/6-L. The results of our 

computations support this notion. 

 

 

Figure 2. Frontier molecular orbitals (HOMO and LUMO) and HOMO-LUMO gaps (in 

eV) for 3 and 3-L structures computed at the M06/SDD[6-

311+G(d,p)]//B3LYP/LANL2DZ[6-31G(d)] level of theory. 
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Figure 3. Frontier molecular orbitals (HOMO and LUMO) and HOMO-LUMO gaps (in 

eV) for 7 and 7-L structures computed at the M06/SDD[6-

311+G(d,p)]//B3LYP/LANL2DZ[6-31G(d)] level of theory. 

  

Explicit versus implicit solvent – an acetonitrile case study 

Next, we directed our attention towards whether including an explicit axial ligand 

changes predictions about mechanism and/or energetics compared to using an implicit 

solvent model. Of the three solvents studied, we expect acetonitrile to have the most 

significant effects on reactivity, since it is the strongest -donor,53,55,60 so we focus on it 

here first. 

Four approaches for modeling solvent were compared for the reaction of D/A 

diazo compound 1b and propane to form C–H insertion products (Figure 4): (1) neither 

implicit nor explicit solvent included (“no coord. / gas”), (2) implicit solvent, but no 

explicit solvent included (“no coord. / acetonitrile”), (3) explicit solvent, but no implicit 

solvent included (“acetonitrile / gas”), (4) both implicit and explicit solvent included 

(“acetonitrile / acetonitrile”). Free energy barriers (G‡’s, relative to the minimum 
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immediately preceding the TSS in each case) for carbene formation and C–H insertion at 

both the CH2 (“Internal”) and CH3 (“Terminal”) positions of propane were computed 

using all four approaches. Free energy barriers varied within 3 kcal mol-1 for each 

reaction, a small change, but barriers for N2 extrusion increased upon explicit solvent 

coordination and barriers for C–H insertion decreased upon solvent coordination to a 

lesser degree. In summary, predicted effects are not large, but, if borne out in a flask, 

could alter rates by an order of magnitude or more. 

 

  

Figure 4. Variation of computed free energy barriers (G‡) for N2 extrusion (left), 

insertion at CH2 internal position (center), and insertion at CH3 terminal position (right) 

due to solvent model on donor-acceptor diazo compound (1b). All barriers are relative to 

the preceding minimum to each TSS. 
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Effects of solvent on N2 extrusion barriers 

Once it was clear that axial solvent coordination affected frontier molecular orbital 

energies of diazo complex (Figures 2 and 3) and energetic barriers (Figure 4), we 

proceeded to compare barriers for N2 extrusion in other solvents (Figure 5). Here, all 

solvents are modeled with both implicit solvent and one explicit solvent molecule. 

Independent of carbene type, the barriers for N2 extrusion increase with stronger -donor 

ligands. Of particular note is the absence of a barrier for the D/D system without a 

coordinated solvent – a caution for those modeling N2 extrusion in such systems.  

 

Figure 5. Comparison of the Gibbs free energy barriers of N2 extrusion for 

acceptor/acceptor (A/A), donor/acceptor (D/A) and donor/donor (D/D) diazo compounds 

in gas-phase (No solvent) and dichloromethane (DCM), isopropanol (iPrOH) and 

acetonitrile (ACN) solution. All barriers are relative to the preceding minimum to each 

TSS. 
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 Gas-phase calculations with explicit solvent were used to isolate the effects of 

axial solvent on the N2 extrusion barrier. Our results demonstrate that increasingly Lewis-

basic axial ligands raise the energies of the (1) tetrahedral complex 6/(6-L), (2) the N2 

extrusion TSS, and (3) dirhodium carbene 7/(7-L) relative to the sum of the free energies 

of 1-3 (Figure 6). An increase in N2 extrusion barriers (6/6-L → 7/7-L) is observed for 

more strongly donating axial ligands; a similar qualitative trend is observed when implicit 

and explicit solvent are modeled (SI Figure S1). Why? Structures 6-iPrOH and 6-ACN, 

when optimized in the gas-phase from the endpoints of IRC paths originating from TSSs 

for N2 extrusion, are not bound tetrahedral minima (Rh–C bonds are ~3.8 Å, C–N bonds 

are ~1.3 Å, and natural charges are redistributed); donation from the distal axial ligand 

appears to be sufficient to promote diazo dissociation., which, of course, hinders N2 loss. 

As described by Fürstner and coworkers, Rh d-orbital back-bonding promotes N2 

extrusion and dirhodium carbene formation (Figure 6, inset),45 an orbital interaction that 

is not fully expressed until the diazo carbon binds rhodium. The situation observed for 6-

iPrOH and 6-ACN in the gas-phase is extreme, but a weaker version of the same effect 

is observed with any axial donor. 



 

Figure 6. Formation and decomposition of 6/6-L with and without solvent bound 

computed at the M06/SDD[6-311+G(d,p)]//B3LYP/LANL2DZ[6-31G(d)] level of 

theory for D/A diazo compounds (1b). 

 

Effects of solvent on CH2/CH3 insertion selectivity 

While the overall barriers for C–H insertion did not change much with solvent 

coordination, selectivity can be greatly affected by small changes in relative energies of 

transition states. The order of inherent reactivity for insertion into differently substituted 

alkyl C–H bonds is well-established—primary << secondary < tertiary C–H bonds—so 

we would expect our computed barriers for insertion into the internal position of propane 

to be lower than those for insertion into the terminal position.137,142,143  



Kisan and Sunoj highlighted the effect that axial ligation can have on the 

selectivity of asymmetric N–H insertion reactions catalyzed by dirhodium 

tetracarboxylates with a chiral SPINOL-phosphoric acid bound.88 In a similar manner, we 

can compute free energy differences (G‡) between transition states for insertion into 

internal versus terminal positions of propane. As shown in Figure 7, we computed 

synthetically meaningful differences in insertion barriers (see SI Figure S2 for G‡’s from 

which the G‡ are derived). For A/A carbenes, strongly donating solvents decrease 

selectivity. For D/A and D/D carbenes, however, iso-propanol coordination leads to the 

best selectivity (i.e., the greatest magnitude in G‡). Though we are unaware of 

experimental studies where iso-propanol leads to optimal selectivity, past studies show 

that selectivity can be solvent-dependent.144 Given the magnitude of our predicted effects, 

decomposing their origins with current theoretical methods would not be reliable;77,145 

Nonetheless, Darko and co-workers observed an increase in product yield for Si–H 

insertion reactions when dirhodium catalysts with tethered, axial coordinating ligands 

were used.63 Results in Figure 7 suggest that perhaps tethered, axial coordinating ligands 

might also enhance regioselectivity.  



 

Figure 7. Comparison of the Gibbs free energy barriers difference for insertion of the 

carbene into the CH2 and CH3 of propane for acceptor/acceptor (A-A), donor/acceptor 

(D-A) and donor/donor (D-D) carbenes in gas phase and dichloromethane (DCM), 

isopropanol (iPrOH) and acetonitrile (ACN) solution. 

 

Structural changes upon axial ligand binding 

How strong is the interaction between the axial ligand and the dirhodium 

complex? One classic, although debated,146–148 means of characterizing bond strength is 

to use bond length as a measure for a series of related compounds. For the Rh–L 

interaction, where L is the atom of the axial solvent in contact with Rh, we compared 

d(Rh•••L) to the sum of the van der Waal radii of Rh and the bond atom of L ((rvdW)), 

assuming a covalent interaction exists if d(Rh•••L) < (rvdW) (Scheme 3a).149 We also 

computed Wiberg bond indices (WBIs)150 for gas-phase geometries of 3, 3-L, 6, 6-L, 7, 
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and 7-L. These data are shown in Table 1. For all cases, d(Rh•••L) magnitudes are less 

than (rvdW), however WBIs for Rh–L bonds are low: 0.1-0.4. WBIs are greatest for 

acetonitrile, as expected, but similar for iso-propanol and dicholoromethane. 

 

Scheme 3. a) key parameters collected in Table 1 b) representation of dz
2 orbitals that 

contribute to the donor-acceptor interactions between Rh2X4 fragments that make up the 

Rh-Rh single bond c) orbital representation of donor-acceptor interaction and d) d-

orbitals of Rh-Rh bond. 

 

 



Table 1. Key distances (d(Rh•••Rh) and d(Rh•••L)), pyramidality angles (), Wiberg 

bond indices (WBIs), and global electrophilicity index values () for dirhodium 

complexes with axial ligands: DCM (L = Cl), iPrOH (L = O), and ACN (L = N). All 

complexes bound to diazo substrates are D-A substrates. Distance and orbital energies 

were measured from gas-phase M06/SDD[6-311+G(d,p)]//B3LYP/LANL2DZ[6-

31G(d)] structures. 

Rh2 

Complex 

 

d(Rh•••Rh) 

(Å) 
 

d(Rh•••L) 

(Å) 

Rh-L 

(rvdW) 

(Å)a 

Rh-

Rh 

WBI 

Rh-

L 

WBI 

 (eV) 

3 2.40 88.3 - - 0.89 - 5.23 

3-DCM 2.41 88.1 2.73 3.94 0.84 0.28 4.34 

3-iPrOH 2.42 88.2 2.27 4.26 0.83 0.23 3.59 

3-ACN 2.43 88.2 2.20 4.10 0.81 0.36 2.91 

6 2.43 88.0 - - 0.77 - 3.82 

6-DCM 2.43 87.7 2.84 3.94 0.78 0.23 3.59 

6-iPrOH 2.43 87.7 2.32 4.26 0.81 0.21 2.48 

6-ACN 2.43 87.9 2.23 4.10 0.82 0.37 2.22 

7 2.48 87.9 - - 0.59 - 4.64 

7-DCM 2.49 87.6 3.21 3.94 0.57 0.10 4.68 

7-iPrOH 2.49 87.7 2.51 4.26 0.64 0.14 4.23 

7-ACN 2.49 87.5 2.49 4.10 0.63 0.23 3.84 

 

Changes in Rh–Rh bond distances (d(Rh•••Rh)) are small with solvent 

coordination (Table 1). Pyramidality angle () (Scheme 3a) deviations from 90° are also 

small (Table 1), consistent with conclusions arrived at by Aullón and Alvarez.151 While 

distortions of  might be expected since an axial ligand donates electron density into the 

Rh-Rh * orbital, the bridging ligands, along with other orbital interactions, resist major 

deformation: (1) a 2c-2e- bond between the two dz
2 orbitals of individual Rh2X4 fragments 



and (2) a 1e- donor-acceptor interaction between a dz
2 of one Rh and the empty pz of the 

other Rh (Scheme 3b and 3c).55,151 

While small increases in d(Rh•••Rh) for 3/3-L are accompanied by decreases in 

the Rh-Rh WBI, the Rh-L WBI increases in the series from no solvent to acetonitrile 

(Table 1). For 6/6-L and 7/7-L, changes in d(Rh•••Rh) (at most a 0.1 Å change) and Rh-

Rh WBI are not as large (e.g., WBI = 0.05 for 6-ACN vs. WBI = 0.08 for 3-ACN), 

which suggests that the effects of axial solvent coordination on the Rh-Rh bond are not 

as potent compared to that of 3. We suggest that the strong structural changes observed 

for 3/3-L and diminished structural changes in 6/6-L and 7/7-L might be a result of a 

competition between L and the diazo compound to engage in 3c/4e bonding. Berry 

rationalized minor changes to the Rh-Rh bond distance upon axial complexation of 

increasing sigma-donor capacity in his 3c/4e bond model by observing that axial ligand 

binding mostly impacts the unoccupied LUMO orbital; in other words, the Rh-Rh bond 

length is generally insensitive to axial ligation.58 The results in Table 1 for Rh-Rh 

distances that match crystallographically determined Rh-Rh bond distances (distances fall 

within a narrow window of ranging from 2.35-2.45 Å)2,50,151—and the minor, almost 

negligible, changes in WBIs—support this model.  

Electrophilicity of the dirhodium core can be investigated by computing the global 

electrophilicity index (GEI, , equation 1,66,152–155 wherein  is electronegativity156 and  

is chemical hardness).157 The GEI can be derived from HOMO and LUMO energies with 

equations 2 and 3.  

 =         () 

 = - (EHOMO + ELUMO) / 2    () 

 = ELUMO – EHOMO     () 



 

Computed GEI values for 3/3-L, 6/6-L, and 7/7-L (Table 1, the greater the value 

of , the greater the electrophilicity) suggest that axial ligation generally makes these 

structures less electrophilic and increasingly so from DCM to ACN, as one might expect. 

 

SUMMARY AND OUTLOOK 

In this study, we used DFT calculations to compute energetic barriers for N2 

extrusion and C–H insertion of A/A, D/A, and D/D carbenes with and without axial 

solvent ligation. Our attention centered around two main questions: (1) Is there a 

meaningful difference in reactivity and selectivity for such reactions when an implicit 

molecule is axially coordinated? (2) Is it possible to rationally tune reactivity and 

selectivity by solvent? In short, our study revealed that the answer to questions 1 and 2 

are both “yes”. While the predicted effects are not large, they are not negligible. 

What do our results imply for future computational studies of dirhodium-catalyzed 

reactions, an increasingly important tool in aiding organic synthesis? We conclude that it 

is worth seriously considering axial solvent ligation in such studies. In some cases, the 

changes in relative energies will be small, in which case one can deduce that axial solvent 

might not play an important role; but in some cases, including axial solvent may be 

essential to accurately capture reactivity and selectivity—e.g., in computationally 

modeling stereoselective reactions,158 in which case, accurately predicting G‡ may 

hinge on incorporating axial solvent in one’s model—and missing the opportunity to do 

so due to axial solvent neglect would be an unfortunate oversight. 
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