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Abstract 10 

This article considers current trends in antimicrobial resistance (AMR) research and 11 

knowledge gaps relevant to policymaking in the water sector. Specifically, biological 12 

indicators of AMR (antibiotic-resistant bacteria and their resistance genes) and detection 13 

methods that have been used so far are identified and discussed, as well as the problems 14 

with and solutions to the collection of AMR data, sewage surveillance lessons from the 15 

COVID-19 pandemic, and the financial burden caused by AMR, which could be 16 

synergically used to improve advocacy on AMR issues in the water sector. Finally, this 17 

article proposes solutions to overcoming existing hurdles and shortening the time it will 18 

take to have an impact on policymaking and regulation in the sector.  19 
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1. Introduction 24 

Antimicrobials and, specifically, antibiotics have become one of the main pillars of 25 

modern medicine, saving millions of lives since they were first introduced in the 1940s. 26 

Antibiotics are essential in treating bacterial infections in both humans and animals, but 27 

the emergence of antimicrobial resistance (AMR) has limited their effectiveness (Nathan, 28 

2020). As a result, governments, industry, and scientists are adamant the AMR crisis is 29 

one of the most pressing global threats. Several initiatives are in place to deal with this, 30 

mainly in clinical and environmental settings. In clinical settings, the focus has been on 31 

surveillance, reducing the use of existing drugs, establishing incentives for the discovery 32 

and production of new antibiotics, implementing global guidelines, and, when possible, 33 

local regulations. In environmental settings, the focus has predominantly been on research 34 

initiatives to monitor the presence and impact of antibiotics, decreasing antimicrobial 35 

therapy in agriculture and livestock, determining minimal acceptable thresholds for 36 

antibiotics in treated effluents, and exploring the potential role of wastewater treatment 37 

to reduce antibiotics and AMR determinants in treated water (Hong et al., 2018; Stanton 38 

et al., 2020; Murray et al., 2021). However, the ability to monitor how AMR spreads from 39 

the environment to clinical settings is limited (Hofer, 2019) due to the lack of a single or 40 

set of universal biological indicators that can establish the rate of AMR spread in 41 

environmental settings and their potential risk to human health. The only short-term 42 

solution repeatedly recommended is the precautionary approach (Manaia, 2017).  43 

In this article the precautionary principle has been expanded with the following 44 

objectives: (i) exploring how AMR surveillance has been implemented and data has been 45 

generated in both clinical and water/environmental settings; (ii) discussing how biological 46 

indicators related to AMR have been used in pilot surveillance efforts and how data has 47 

been generated and shared; (iii) reflecting on sewage surveillance lessons from the 48 
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COVID-19 pandemic and how this could help better manage AMR in water; and (iv) 49 

commenting on the financial burden of AMR and how this could be used to drive change 50 

in policymaking. The aim of this article is therefore to highlight current knowledge gaps, 51 

anticipate future trends, and suggest actionable insights to advance AMR regulation in 52 

the water sector. 53 

 54 

2. AMR in the water sector 55 

Antimicrobial resistance is complex to define and quantify. Broadly speaking, AMR is 56 

an intrinsic or acquired ability of microorganisms to resist an antimicrobial. In the latter 57 

case, they can acquire resistance to antimicrobials by either genetic mutation or by 58 

accepting AMR genes from other bacteria. In fact, AMR genes are considered as 59 

environmental pollutants if anthropogenic disturbances increase their prevalence above 60 

the usually occurring background levels (Martinez, 2009). Moreover, bacteria associated 61 

with hospital acquired infections and their ability to resist antibiotic treatment are under 62 

the spotlight in the AMR crisis (Chandler, 2019). AMR extends not only to antibiotics 63 

but to a number of chemical classes, including heavy metals and disinfectants/biocides 64 

(Singer et al., 2016).  65 

The accepted framework for dealing with AMR is the “One Health” approach. 66 

Fundamental to this is interdisciplinary collaboration and communication on health in the 67 

human, animal, and environmental sectors. Areas of action include monitoring targets 68 

known to decrease infectious risk, such as improving sanitation, providing access to clean 69 

water, improving medical care, tackling environmental pollution, and managing the 70 

overuse of antimicrobials in both human healthcare and animal husbandry (Essack, 2018; 71 

Jovanovic et al., 2021).  72 
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As water bodies frequently receive treated and untreated wastewater effluents and 73 

anthropogenic pollution, water is an ideal environment for the acquisition and spread of 74 

AMR. In fact, this impact can be exacerbated in developing countries where the presence 75 

of wastewater treatment is limited or even absent (Pandit and Kumar, 2015; Pandey et al., 76 

2021). Consequently, the “One Water” approach has been suggested to complement the 77 

One Health framework in order to monitor and manage AMR in the water sector. The 78 

One Water approach proposes that drinking and wastewater are interconnected and need 79 

to be managed holistically. Both the One Health and the One Water frameworks guide us 80 

to holistically manage wicked problems – such as global water supply, climate change, 81 

and the AMR crisis – while considering the environment, and human and animal health 82 

(Shafer and Fox, 2016; Hong et al., 2018). Moreover, considering that the United Nations 83 

Sustainable Development Goals (SDGs) will be the point of reference for any strategy or 84 

policy towards a more sustainable future, those goals relating to water and sanitation 85 

should be taken into account in formulating effective policies. The SDGs include eight 86 

targets that address drinking water, sanitation and hygiene services, wastewater treatment, 87 

water quality, water use, water management, transboundary cooperation, water-related 88 

ecosystems, official development assistance and participation of local communities 89 

(WHO-UNICEF, 2021). 90 

 91 

3. Surveillance as a tool for AMR containment 92 

AMR cannot be eradicated either in clinical or environmental settings. The containment 93 

of AMR, however, is possible (Jovanovic et al., 2021), and to achieve this the World 94 

Health Organization (WHO) has highlighted that surveillance of AMR is essential. Data 95 

acquired through surveillance can be used to monitor the development and spread of 96 

AMR, and also to measure the impact of strategies and interventions to mitigate it (Smith 97 
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and Coast, 2002). Although the consensus that resistance development, rather than just 98 

transmission, exists in environmental settings and is vital to AMR containment, this 99 

precautionary topic has been extremely difficult to advocate and gain the attention of 100 

policymakers (Wellcome Trust, 2020). In order to address this, several AMR databases 101 

and data collection initiatives have been revisited to better connect the resulting data, 102 

thereby generating new insights and influencing policymaking. 103 

 104 

4. Databases generated on AMR surveillance 105 

The major surveillance programs targeting AMR at global scale have placed emphasis on 106 

monitoring of clinically relevant pathogens (such initiatives are listed below). 107 

Surveillance of AMR emergence and spread in water/environmental settings has been 108 

more consistently done in research at local level (Rodriguez-Mozaz et al., 2015; Majeed 109 

et al., 2021), regional/continental monitoring campaigns (Cacace et al., 2019; Pärnänen 110 

et al., 2019) or selected countries at global scale (Hendriksen et al., 2019), targeting 111 

particular antimicrobial resistance ‘hotspots’, such as wastewater treatment plants 112 

(Lekunberri et al., 2017), contaminated watersheds (Koczura et al., 2016), 113 

soil/agricultural land (Singer et al., 2016), and seawater ecosystems (Blanco-Picazo et al., 114 

2020). Moreover, there is insufficient or no information from other countries or regions, 115 

especially from low-income and middle-income countries where the AMR surveillance 116 

in water is limited. 117 

The global open-access triple antimicrobial resistance database led by the WHO, the Food 118 

and Agriculture Administration (FAO) and the World Organisation for Animal Health 119 

(OIE) provides access to information on the status of countries’ implementation of the 120 

global action plan and actions to address antimicrobial resistance across all sectors. Data 121 

collection here is based on a country self-assessment questionnaire, the Global Database 122 
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for the Tripartite Antimicrobial Resistance AMR Country Self-assessment Survey 123 

(TrACSS) (https://amrcountryprogress.org/). A second database of interest is the Global 124 

Antimicrobial Resistance Surveillance System (GLASS) 125 

(https://www.who.int/glass/en/), which focuses on eight target pathogens detected in four 126 

human specimen types (blood, urine, stool, and genital swabs) 127 

(https://www.who.int/glass/en/). A third initiative, led by the US based Centre for Disease 128 

Dynamics, Economics & Policy (CDDEP), put together a resistance map using data 129 

collected from North America, more than 30 European countries, and several low and 130 

medium-income countries (https://resistancemap.cddep.org/). This database monitors 131 

resistance of principal pathogens versus various classes of antibiotics. Others include the 132 

US Centers for Disease Control (CDC), which has its own database 133 

(https://arpsp.cdc.gov/profile/geography) that maps various statistics on pathogens per 134 

US state; and the European Centre for Disease Prevention and Control (ECDC), which 135 

has a “surveillance atlas” on a country-by-country basis 136 

(https://www.ecdc.europa.eu/en/antimicrobial-resistance/surveillance-and-disease-137 

data/data-ecdc). The most recent input date in the atlas is 2019. The ECDC is also focused 138 

on producing surveillance reports for the continent. The Sweden based Joint 139 

Programming Initiative on Antimicrobial Resistance (JPIAMR) – an international 140 

collaborative platform engaging 28 nations and the European Commission to curb 141 

antimicrobial resistance (AMR) – has various funding and project consortium initiatives 142 

to fund AMR research globally and has gathered a collection of multipurpose databases 143 

(https://www.jpiamr.eu/).  144 

The recently formed Global AMR R&D Hub is a knowledge center focused on 145 

monitoring R&D and investment initiatives to address challenges and improve 146 

coordination and collaboration in global AMR research development using the One 147 

https://www.who.int/glass/en/
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Health approach. It is a partnership of countries, non-governmental, and 148 

intergovernmental organizations (https://globalamrhub.org/). Other organizations include 149 

PAR, The Foundation to Prevent Antibiotic Resistance (https://parfoundation.org/); the 150 

industry consultancy-led AMR Insights (https://www.amr-insights.eu/); and the STAR-151 

IDAZ International Consortium on Animal Health (https://www.star-idaz.net/). 152 

These various initiatives are encouraging; however, in order to fully extract and utilize 153 

the value and meaning of their data, these databases need to be harmonized so that trends 154 

can be truly observed, actions be taken, and overarching environmental AMR regulations 155 

implemented (Aarestrup and Koopmans, 2016; WHO, 2015). Recently, it has been 156 

suggested that data technologies, such as blockchain, IoT (Internet of Things) and others, 157 

may help to achieve better management and use of AMR data globally (https://www.amr-158 

insights.eu/). For that to occur, however, legal barriers impeding data sharing between 159 

countries and organizations will need to be tackled at governmental levels. 160 

 161 

5. How far advanced are biological indicators for AMR in water? 162 

For implementing impactful surveillance of AMR in environmental settings, a standard 163 

methodology should be selected, as well as a set of relevant biological indicators, to be 164 

able to establish an economically feasible and long-term sustainable monitoring regime. 165 

Although standard culture-based methods used to evaluate microbial safety of drinking 166 

water and wastewater have provided valuable information (Marano et al., 2020), these 167 

methods have limited applicability in AMR surveillance and are biased towards cultivable 168 

organisms. AMR is mostly related to microorganisms harboring antibiotic resistance 169 

genes (ARGs), for which the detection depends almost exclusively on molecular methods 170 

(Gao and Sui, 2020). 171 
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Cutting-edge genomics (e.g., microarray technology) and metagenomics have been 172 

proposed as a possible next step to achieve global monitoring of AMR in 173 

water/environmental settings (Duarte et al., 2020; Hendriksen et al., 2019; Hong et al., 174 

2018). They have been successfully used in sewage surveillance and have proven to be 175 

flexible, scalable, relatively easy to implement and standardize – features that could 176 

potentially benefit also their application in low and medium-income countries (MacLean 177 

and San Millan, 2019). However, these methods are not exempt from disadvantages and 178 

limitations, such as how the complexity in sequence assembly and/or functional genes of 179 

one microorganism cannot be fully linked to its phylogeny (Forbes et al., 2017; Cheng et 180 

al., 2019). The joint use of standard culture-based methods and cutting-edge genomics 181 

can therefore overcome these limitations. Trends observed using these methods need to 182 

be correlated with observations in clinical settings so that insightful correlations can be 183 

established between the emergence of antibiotic-resistant pathogens and ARGs 184 

encountered in the environment.  185 

Such evidence is essential to persuade both the public and policymakers of the urgent 186 

need to act on AMR (Jovanovic et al., 2021). Specific examples that establish how the 187 

spread of ARGs occurred from water/environmental sources to impact on clinical settings 188 

are starting to emerge. These include the mobility of blaCTX-M (gene encoding resistance 189 

for β-lactamases responsible for inactivating third generation cephalosporins) (Cantón, 190 

2009; Jovanovic et al., 2021), mcr-1 (resistance to colistin or polymyxins), blaNDM-1 191 

(resistance to a large range of β-lactamases, including carbapenems) (Jovanovic et al., 192 

2021). The risk of the spread of ARGs from antibiotic-resistant bacteria to final 193 

consumers has recently been established in animal farming settings (Van Gompel et al., 194 

2020).  195 
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Recommended approaches to determine biological indicators for AMR surveillance in 196 

water include monitoring resistance in: (i) microorganisms watched by official lists 197 

(WHO, UNESP, USCDC, ECDC, etc.) (Jovanovic et al., 2021); (ii) faecal and other 198 

benchmark microbial indicators (such as bacteriophages) routinely monitored in drinking 199 

and wastewater facilities (Larsson et al., 2018); (iii) clinical relevant antibiotic-resistant 200 

bacteria; and (iv) the general presence of ARGs in the target water setting, also known as 201 

evaluation of the environmental ‘resistome’.  202 

While the correlations between the presence of these AMR ‘precautionary microbial 203 

indicators’ and the risk they may pose of migrating from water to a clinical setting are 204 

established, the precautionary approach can further inform improving water safety. In 205 

established high risk environments for AMR spread, such as effluents of hospital and 206 

antibiotic production facilities, wastewater treatment facilities need to be upgraded to 207 

reduce pollution and to more effectively remove not only antibiotics and antimicrobials 208 

but also AMR indicators such as resistant bacteria and ARGs (Hong et al., 2018). These 209 

changes, however, are only likely to occur with enforcement of stronger water 210 

regulations. Compliance here will depend upon the development and availability of fit-211 

for-purpose and economically viable water treatment technologies (de Almeida Kumlien 212 

et al., 2021). An important case-study to help advance AMR regulations in water can be 213 

drawn from the latest pandemic, our views on which are discussed below. 214 

 215 

6. Lessons from the COVID-19 pandemic 216 

The COVID-19 pandemic has quickly advanced our knowledge and practice of sewage 217 

surveillance and epidemiology of SARS-CoV-2 studies in water, which has extensively 218 

benefited from wastewater-based epidemiology. This latter is a relatively new approach 219 

that has the potential to provide comprehensive health information using community-220 
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derived wastewater (Sims and Kasprzyk-Hordern, 2020). In fact, the European 221 

Commission has recently proposed recommendations for a common approach to establish 222 

a systematic surveillance of SARS-CoV-2 and its variants in wastewaters in the EU 223 

(European Commission, 2021), which would undoubtedly help to identify health-related 224 

relevant parameters to be regularly monitored in wastewaters. These initiatives represent 225 

an opportunity to implement their recommendations and advance AMR surveillance 226 

(Wilson et al., 2020).  227 

Even though a conclusive quantitative microbial risk assessment (QMRA) to influence 228 

policymaking on AMR in water is needed given the threat AMR poses to public health, 229 

the case for using the precautionary approach should be considered, particularly when 230 

data is still not conclusive. Risks that cannot be calculated can be predicted, or at least 231 

estimated, by deploying data analytics, scientific leadership, and knowledge and, within 232 

local financial and technical limits, be corroborated on a pilot scale through multinational 233 

projects. This, however, needs to happen through parallel taskforces that also focus on 234 

driving changes in current water legislation.  235 

Established networks and projects rapidly pivoted during the years 2020 and 2021, such 236 

as the Dutch led ‘Sewers for COVID’ (https://devpost.com/software/sewers4covid) and 237 

the Spanish ‘SARSAIGUA’ (https://sarsaigua.icra.cat/), and can be aligned with existing 238 

AMR surveillance initiatives to speed up AMR surveillance and containment in the 239 

environment (Singer et al., 2016). Using the precautionary approach, existing strategies 240 

to determine AMR precautionary indicators, even though not definitive, could be used to 241 

pilot more significant AMR surveillance schemes in water. One concrete way to drive 242 

that change is to add such indicators to watchlists and, with more aggressive advocacy by 243 

the right actors, to water regulations. Here, the ideal target monitoring sites would be 244 
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hospital and antibiotic facilities wastewaters, potentially regulated through changes in 245 

overarching and enforcing law, such as the Water Framework Directive in Europe. 246 

The question that should be asked at this point is: how can actionable insights be created 247 

to influence policymaking with the data available now? For a vital issue such as AMR, 248 

advocacy on the theme is both relevant and recommended. The important action is to 249 

determine who are the actors at community, research, policymaking, and water utility 250 

levels that need to be involved, both in arguing for the AMR cause and in driving change. 251 

A way to bring these actor together is through smart specialization clusters, a 252 

collaboration strategy mediated by governmental funding schemes, well known to speed 253 

up innovation in the water sector (de Almeida Kumlien et al., 2019, 2018). Figure 1 254 

illustrates a systematic process to develop policies that can address public health problems 255 

such as AMR. 256 

 257 

7. Driving change in policymaking of AMR in water 258 

Similarly to the dispersion of data collected in various AMR surveillance efforts, the 259 

current and future costs of the AMR crisis to countries are still only estimates. Apart from 260 

realizing robust QMRA data, a fundamental factor to drive change in AMR policymaking 261 

in water is by clearly demonstrating the financial losses caused by this crisis (Roope et 262 

al., 2019). Although data here is still approximate, estimates show a difficult scenario on 263 

the horizon for global economies. Recent estimates put the AMR cost globally at US$100 264 

trillion through loss of productivity. In the USA, (data from 2019) more than 2.8 million 265 

multidrug-resistant bacterial infections occur annually, with an estimated 35,000 deaths 266 

and a US$20 billion health-care burden (Strathdee et al., 2020). In Europe, the annual 267 

economic cost associated with the treatment of antibiotic-resistant infections has been 268 

estimated to be around €1500 million. This figure includes the economic impact 269 
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associated with the number of days of lost productivity, estimated to be approximately 270 

€450 million each year (Roca et al., 2015). AMR affects national budgets, mortality, and 271 

related disability-adjusted life-years (DALYs). In the EU and European Economic Area 272 

(EEA) its impact has been comparable to the combined effects of tuberculosis, influenza, 273 

and HIV (Cassini et al., 2019). 274 

Progress has been made in establishing methodologies to determine AMR costs. A 275 

comprehensive framework for categorization of AMR costs, which evaluates human, 276 

animal, and environmental factors, and its effects up through societal levels is “The 277 

Global Antimicrobial Resistance Platform for ONE-Burden Estimates (GAP-ON€)”. This 278 

initiative, funded under the JPIAMR, considers local direct and indirect epidemiological 279 

costs and data, and is adaptable for a broad range of etiological pathogens and geographic 280 

locations (Morel et al., 2020).  281 

Recommendations by the WHO, or, in the absence of a central government that regulates 282 

AMR stewardship, by other organizations which act locally, have shown slow progress. 283 

Currently, only 5% of countries have a multisectoral AMR action plan that has been 284 

implemented with identified funding sources and monitoring processes in place (O’Neill, 285 

2016). Compliance, even when it is attained in some countries, might not be possible to 286 

achieve due to lack of financial and human resources (Chandler, 2019; Roope et al., 287 

2019). The cost of implementing AMR governance is considerable, and most likely 288 

unaffordable for developing nations. The cost of remediating the AMR crisis, however, 289 

will be much higher.  290 

The WHO has recently highlighted the need to develop new AMR regulations with global 291 

reach (Hoffman et al., 2015). This could be achieved by revising the International Health 292 

Regulations (IHR), developing a new treaty on pandemics, or a separate agreement on 293 
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AMR. Regardless of the path of action chosen, we need to seize chances to achieve new 294 

regulations for AMR now.  295 

Given this, scientific leadership is essential to advise policymakers on which are the best 296 

control points and methodologies for implementing regulation of AMR in the water 297 

sector. Among them, the following should be taken into consideration: (i) precautionary 298 

indicators to achieve more effective surveillance of AMR in water/environmental 299 

settings; (ii) harmonization and better accessibility of methodologies to detect AMR and 300 

data generated; (iii) reflecting on lessons learnt from the pandemics, especially regarding 301 

sewage surveillance schemes; and (iv) making the case on the financial impact of the 302 

AMR crisis.  303 

These points need to be advocated, aligned, and incorporated in a centralized enforcing 304 

AMR regulation, pivoted by the right leadership (being at WHO or UN level), and only 305 

achievable with stronger collaboration between AMR stakeholders, at 306 

community/country, research, industry, water utility and policymaking levels. 307 

  308 

8. Conclusions 309 

• Polluted aquatic environments (e.g., wastewaters) present a potentially high risk 310 

of the spread of AMR affecting public health and thus should be carefully 311 

monitored. 312 

• Scientific leadership needs to work with policymakers to advocate for immediate 313 

water regulation based on precautionary microbial indicators and methodologies 314 

to detect and evaluate the potential impact of AMR on human health. 315 

• Harmonization of detection methodologies and indicators through the combined 316 

participation of research institutions worldwide is crucial to reach these goals. 317 
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• The generation of new data, improvements in existing data communication, 318 

accessibility, and harmonization between global AMR databases will help 319 

generate insights into the impact of AMR from the water environment on human 320 

health. 321 

• Lessons on sewage surveillance learnt from the COVID-19 pandemic and the 322 

estimated financial impact of the AMR crisis can help drive better advocacy for 323 

new regulations in water. 324 
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Figure 1. A proposed framework to identify the different actions and steps in the policy process. This figure has been adapted from the CDC's 
Policy Analytical Framework (https://www.cdc.gov/). 
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