
Computers & Graphics 102 (2022) 175–186

V

s
R
e
b
t
c

i
c
p
t
c
i
d
a
r

i

h
0

Contents lists available at ScienceDirect

Computers & Graphics

journal homepage: www.elsevier.com/locate/cag

Special Section on CEIG 2021

Feature-based clustered geometry for interpolated Ray-casting
Francisco González García1, Ignacio Martin, Gustavo Patow ∗
iRVIG - Universitat de Girona, Spain

a r t i c l e i n f o

Article history:
Received 14 July 2021
Received in revised form 29 August 2021
Accepted 30 August 2021
Available online 3 September 2021

Keywords:
Accelerated Rendering
Geometry clustering
Ray Casting

a b s t r a c t

Acceleration techniques for Rendering in general, and Ray-Casting in particular, have been the subject
of much research in Computer Graphics. Most efforts have been focused on new data structures for
efficient ray/scene traversal and intersection. In this paper, we propose an acceleration technique
that approximates rendering and that is built around a new feature-based clustering approach. The
technique starts preprocessing the scene by grouping elements according to their features using
a set of channels based on an information theory-based approach. Then, at run-time, a rendering
strategy uses that clustering information to reconstruct the final image, by deciding which areas could
take advantage of the coherence in the features and thus, could be interpolated; and which areas
require more involved calculations. This process starts with a low-resolution render that is iteratively
refined up to the desired resolution by reusing previously computed pixels. Our experimental results
show a significant speedup of an order of magnitude, depending on the complexity of the per-
pixel calculations, the screen size of the objects, and the number of clusters. Rendering quality and
speed directly depend on the number of clusters and the number of steps performed during the
reconstruction procedure, and both can easily be set by the user. Our findings show that feature-based
clustering can significantly impact rendering speed if samples are chosen to enable interpolation of
smooth regions. Our technique, thus, accelerates a range of popular and costly techniques, ranging
from texture mapping up to complex ambient occlusion, soft and hard shadow calculations, and it can
even be used in conjunction with more traditional acceleration methods.

© 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The problem of efficient image generation has been a corner-
tone of research since the earliest days in Computer Graphics [1].
ay Tracing is one of the most popular techniques when gen-
rality, quality and ease of implementation comes into account,
eing able to handle most optical effects [2]. Thus, it is logical
hat most efforts have been devoted to increase the speed of these
alculations [3–6].
However, besides tracing the rays themselves, complex shad-

ng operations (e.g., complex brdfs, sub-surface scattering, etc.)
an be expensive to compute, considerably hindering rendering
erformance. As a consequence, sometimes rough approxima-
ions, simplified calculations or other trade-offs are used to ac-
elerate computations [7,8]. A promising avenue for optimization
s to exploit different kinds of coherence inherent to the ren-
ered scenes [9–11], but the complexity of these CPU-oriented
pproaches has precluded their use in modern hardware-based
ay tracing approaches.

∗ Corresponding author.
E-mail addresses: gonzalezgarciafran@gmail.com (F.G. García),

gnacio.martin@udg.edu (I. Martin), gustavo.patow@udg.edu (G. Patow).
1 Currently at Pixar Animation Studios.
ttps://doi.org/10.1016/j.cag.2021.08.019
097-8493/© 2021 The Author(s). Published by Elsevier Ltd. This is an open access a
In this paper our aim is to investigate ways to exploit the co-
herence, when projected into screen space, of the low-variability
regions in the scene. First, a pre-processing stage uses infor-
mation theory-based tools to define a channel for each fea-
ture, allowing to cluster the scene geometry according to them
(e.g. visibility, orientation, or texturing). Then, the runtime step
approximately computes a series of passes with increasing reso-
lution images up to the final resolution. At each pass, samples of
the same cluster (similar samples) are reused in order to obtain,
wherever possible, an interpolated value for the new samples. If
not possible, for instance at cluster boundaries, the samples are
evaluated in the current pass and reused in future passes. One
of the main benefits of the proposed technique is its ability to
increase rendering performance by reusing previous calculations,
whenever possible, done in lower resolution passes to generate
the final image. We also introduce an automatic control of the
number of passes such that performance has a lower bound in
the performance of traditional Ray Casting, resulting in a win-
win situation. From the point of view of quality, the user is able
to have a fine-grained control of the final rendering by selecting
the channels involved in the clustering stage and controlling their
thresholds. Finally, memory usage requirements are of the same
level as traditional Ray Casting techniques. This paper presents a

novel technique that provides a number of contributions:

rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.cag.2021.08.019
http://www.elsevier.com/locate/cag
http://www.elsevier.com/locate/cag
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cag.2021.08.019&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:gonzalezgarciafran@gmail.com
mailto:ignacio.martin@udg.edu
mailto:gustavo.patow@udg.edu
https://doi.org/10.1016/j.cag.2021.08.019
http://creativecommons.org/licenses/by/4.0/

F.G. García, I. Martin and G. Patow Computers & Graphics 102 (2022) 175–186

m
t
c
f
p
c
a
m
s
i
s
t
a
e
a

Fig. 1. Our system first performs a feature-based clustering of the object (left) and then reconstructs the final image by an approximate interpolated approach
(right). Quality is comparable with the same model rendered by using Ray-casting (middle), observe the texture details, shadow boundaries and correct visibility.
Our technique can render the scene up to 12 times faster than Ray-casting.
• A mesh-clustering framework based on tools from Informa-
tion Theory to exploit feature similarity. In particular, we
define clustering criteria based on geometry visibility, orien-
tation, texture stretching and other user-definable parame-
ters, decoupling them from the actual rendering process.
• A simple to implement, multi-pass progressive rendering

strategy based on the reuse and interpolation of previously-
computed results to reconstruct the final image.
• A controlling mechanism to guarantee traditional

Ray-casting as a lower bound to the rendering speed.
• Our technique can accommodate both static and animated

scenes as well.

As limitations of our technique, the pre-processing requires
knowing in advance the properties of the scene to be rendered,
and the interpolating nature of the algorithm prevents extremely
high-frequency objects, such as the hairball, to take advantage
of this technique, forcing the system to resort to traditional
pixel-by-pixel rendering.

2. Previous work

The technique we present in this paper is related to different
areas in the Computer Graphics literature. Here we are going to
review only the most relevant related works, providing pointers
for further reading when possible. For a general discussion of
the developments in Computer Graphics about continuity and
interpolation techniques, please refer to the survey by Gonzalez
and Patow [12].

Acceleration structures for ray tracing. State of the art Ray Tracing
ethods rely on acceleration structures. We can classify these

echniques as inter- and intra-frame techniques. Inter-frame ac-
eleration techniques try to use information from previous frames
or the current one. Data reprojection [13,14] exploits the tem-
oral coherence by caching the expensive intermediate shading
alculations performed at each frame. However, these methods
re unable to avoid unexpected performance drops in fast move-
ents or drastic view changes, because of the cache misses and
hading recomputations in the new view. On the other hand,
ntra-frame techniques usually rely on acceleration structures to
peed up the traversal of primary and secondary rays. While
his problem has been well studied for CPUs [3], only a few
pproaches provided GPU-efficient dynamic ray-traversal accel-
ration data structures [4–6]. These object-space data structures
re seamlessly compatible with our scheme.
176
Image-space techniques. These techniques can separate algorith-
mic and scene complexities, avoiding wasted computations on
off-screen portions of the scene. Szirmay-Kalos et al. [11] intro-
duced an image-based structure to avoid complex ray-traversal
evaluations, by looking up an approximated result from an en-
vironment map. More recently, Novák et al. [8] suggested to
accelerate Ray Tracing by converting complex meshes into a
set of rasterized height fields intersected by simple ray march-
ing, relying on replacing many ray traversals of complex dense
geometries. On the contrary, our acceleration strategy proves
effective for all kinds of scenes. Yang et al. [15] proposed ac-
celerating rendering by using a subsampled image and using an
edge-preserving upsampling approach to obtain the final resolu-
tion, requiring to process the scene twice. For Ray Tracing this
requirement would decrease the possible gain when upsampling
the shading evaluations. Our approach reuses samples, effectively
computing only the ones in the final image, thus processing the
scene once.

Sample re-utilization. Our approach belongs to the family of meth-
ods that reuse and interpolate samples at homogeneous regions.
Akimoto et al. [9] proposed a method that exploits the similarity
between adjacent pixels to reduce the number of evaluations.
Although they use a similar sampling pattern to ours, their proce-
dure requires several verifications at run-time, which introduces
a considerable overhead compared to our simple cluster ID verifi-
cations. Moreover, they use pixel intensities to determine similar-
ity between samples, resulting in texture interpolation problems.
Instead, our technique smoothly interpolates texture coordinates
allowing high frequency texture details. Bala et al. [10] proposed
a CPU-based system that uses per-surface interpolants to approx-
imate and accelerate radiance computations. They decouple the
acceleration of visibility and shading operations by exploiting
temporal coherence and interpolating radiance samples. A hier-
archical data structure called linetrees is used at run-time, being
its maintenance one of the main drawbacks of this technique,
as it is complex and costly. In contrast, our technique can be
easily adapted by both CPU and GPU ray-tracers, without needing
such structure, as our interpolation decision is extremely fast and
simple (a simple cluster ID check). Adamson et al. [16] presented
an acceleration method for intersectable models exploiting spa-
tial coherence by adjusting the sampling resolution, but it lacks
support for popular techniques such as shadows and ambient
occlusion, which involve the computation of secondary rays.
Moreover, as they shift the ray-scene intersections computations

F.G. García, I. Martin and G. Patow Computers & Graphics 102 (2022) 175–186

M
p
t
r
o
e
b
d
i
a
l
p
G
t
a
i
b
i
f
s
C
t
i
a
m
i

M
s
a
m
i
t
c
o
t
i
o
c
c

I
b
t

Fig. 2. Iterative clustering: first, visibility, then, orientation, and finally, texture stretching channels. The pink lines represent the boundaries of the multi-chart
parameterization used.
to the CPU, GPU-based ray-tracers performance may drop due
to data transfer operations. A more recent approach by Bitterli
et al. [17] reuses samples from neighboring pixels and/or frames
to improve quality for real-time ray-tracing with dynamic direct
lighting. Crespo et al. [18] generate a data structure in which
global illumination is piecewise approximated with polynomials,
which, ultimately, in screen space becomes interpolation, which
is related to the technique presented in this paper.

Recently, Bako et al. [19] took a deep learning approach for
onte Carlo-rendered images using a denoising technique that
roduces high-quality results suitable for film production, by
raining a convolutional neural network to learn the complex
elationship between noisy and reference data across a large set
f frames with varying distributed effects from movies. Chaitanya
t al. [20] introduced a variant of deep convolutional networks
etter suited to the kind of noise present in Monte Carlo ren-
ering, allowing for much larger pixel neighborhoods to be taken
nto account, and at the same time improving execution speed by
n order of magnitude. Vogels et al. [21,22] introduced a modu-
ar architecture based on kernel-predicting neural networks that
erforms multi-scale, temporal denoising of rendered sequences.
harbi et al. [23] presented a splatting approach that works with
he samples directly, and is trained using deep learning. This
llows to handle in an appropriate way various components of the
llumination, such as specular reflection, indirect lighting, motion
lur, and depth of field more effectively. We recommend the
nterested reader to refer to the survey by Zwicker et al. [24]
or an in depth review of the advances up to 2015 in adaptive
ampling and the associated reconstruction techniques for Monte
arlo-based rendering. Although our technique can be considered
o be somewhat related with denoising techniques, its purpose
s completely different: here we do not want to remove noisy
rtifacts produced by stochastic sampling the scene, but to opti-
ize the number of samples needed to generate a quality image,

nterpolating the rest.

esh clustering. Mesh clustering techniques, also known as mesh
egmentation, group triangles by their similarity and are char-
cterized by both, their objective (surface-type or part-type seg-
entation) and approach (region growing, hierarchical clustering,

terative clustering, etc.) used to segment the mesh. One impor-
ant aspect in all mesh segmentations methods is the similarity
riteria used to group triangles, which is usually based on a set
f attributes (curvature, geodesic distances, parameterization dis-
ortion, etc.) obtained from the mesh [25–31]. Here, our interest
s on clustering but from the homogeneity while rendering point
f view. Thus, although our work might be related to other mesh
lustering approaches, the techniques and metrics involved are
ompletely different.

nformation theory. The concepts of information theory have
een previously applied in many areas of Computer Graphics, in-
roducing measures and relationships with important properties
177
for different scenarios such as radiosity, shape descriptors, and
viewpoint selection [32,33]. To the best of our knowledge, our
approach is the first to combine information theoretic measures
to define a cluster-based acceleration data structure suited for
Ray Tracing. Here we have chosen this approach for its large
success in many similarity-detection problems, such as viewpoint
selection [32], selection of automatic transfer functions [33],
facade element recognition [34] and mesh saliency [35]. For a
more detailed information on mesh segmentation techniques and
information-theoretic tools in Computer Graphics, we refer the
interested reader to the excellent survey of Shamir [36] or the
book from Sbert et al. [37].

3. Clustering

At the heart of our technique lies a pre-processing stage, which
has the objective of grouping the input geometry according to
a user-defined set of features. Its input consists of a triangle
soup with connectivity information (i.e., we do not require any
special structuring). For each triangle we may have any number
of associated attributes (e.g., color, normal, etc.).

We first define a number of information theoretic channels,
each one representing a user-defined feature. See Section 3.1.
For each channel, the algorithm uses a clustering strategy to
group triangles into homogeneous clusters of similar elements.
Observe that this ‘‘homogeneity’’ is only with respect to a given
feature/channel, and that the resulting triangle groups might
not be homogeneous with respect to a different feature. See
Section 3.2.

Then, the algorithm performs an iterative hierarchical process-
ing over the mesh, progressively obtaining finer clusters after
each step: the clusters generated at the previous step with re-
spect to a channel/feature are fed as independent meshes to the
clustering algorithm for the next channel/feature (See Fig. 2). See
Algorithm 1. It is easy to realize that, after each iteration, the
input geometry is partitioned into a finer set of clusters, and
each cluster is, at most, as large as the input. Each iteration
operates over smaller sets of triangles, resulting in a reduced cost
and faster pre-processing computations. Finally, as the resulting
clusters present jaggy edges, we apply a boundary-smoothing
algorithm respecting the criteria, improving rendering at shorter
distances. See Section 3.3.

3.1. Information theoretic channels

As mentioned above, our clustering strategy consists of de-
tecting homogeneous areas with respect to some user-defined
criteria. In order to evaluate the similarity among triangles, we
use information theoretic tools. Let X be a discrete random vari-
able with probability distribution {p(x)}, where p(x) = Pr{X = x}
(also denoted by p(X)) and x ∈ X . Let Y be another random
variable with its respective probability distributions. Let p(y|x) =

F.G. García, I. Martin and G. Patow Computers & Graphics 102 (2022) 175–186

c
f

e
r

t

3

t
w
t
i
t
p
p
a

3

o
i
C
o
t
m
s
i
o

3

t

Algorithm 1: Clustering algorithm.
Input: Scene_mesh
lusters := [mesh]
or each channel ch in channels do do

newClusters := []
for each cluster cl in clusters do

ch.init(cl)
ch.cluster()
ch.smoothBoundaries()
newClusters+ = ch.getClusters()

end
clusters := newClusters

nd
eturn clusters

Pr[Y = y|X = x] be the conditional probability of y given x. The
conditional entropy can be thought of in terms of an information
channel X → Y [37]. The basic elements of this channel are:

• An input distribution p(X), which represents the probability
of selecting each element in X , which also can be considered
as the importance given to each x.
• Transition probability matrix p(Y |X). Conditional probabili-

ties fulfill
∑

y∈Y p(y|x) = 1, representing the probability of
an element from Y once a given one from X has happened.
• The output distribution p(Y), given by

p(y) =
∑
x∈X

p(x)p(y|x) (1)

represents the average probability of each element in Y .

In some cases, it could be more practical to compute Y → X
and then invert the channel to get X → Y . This can be easily done
with the help of Bayes’ theorem: p(x, y) = p(x)p(x|y) = p(y)p(y|x).
We classify channels that require an inversion as indirect channels,
while the ones that do not as direct channels. The mutual infor-
mation I(X; Y) between two random variables X and Y is defined
by I(X; Y) = H(X)−H(X |Y) = H(Y)−H(Y |X), being H and H(X |Y)
the entropy and conditional entropy, respectively.

Finally, the Jensen–Shannon (JS) divergence is defined as:

JS(π1, . . . , πn; p1, . . . , pn) = H

(
n∑

i=1

πipi

)
−

n∑
i=1

πiH(pi)

with pi as the probability distributions defined with normalized
weights πi, i ∈ [1, n]. We use this divergence as a measure
of the similarity between the triangles to cluster in a specific
information theoretic channel. For practical reasons, we introduce
the following shorthand notation for the case of two probability
distributions a and b and an output variable Y :

JS(Y |a, b) = JS(π1 = p(a), π2 = p(b); p(Y |a), p(Y |b))

Once the information channel is computed, we cluster the
mesh according to the Jensen–Shannon divergence, placing the
triangles with a similarity below a user-defined threshold Th in
the same cluster. See following sections.

Throughout this paper, we have chosen three different fea-
tures to be used to extract similarity information to speed up the
rendering performance: visibility, orientation and texture stretch-
ing. We believe that those features are important, but at the same
time, they can be considered as an example on how the proposed
approach could very well fit other user-defined properties.

In the case of the orientation and stretching channels (direct
channels), X will represent the triangles of a model. Otherwise,
in the case of the visibility channel (indirect channel), X will
represent a set of viewpoints.
178
3.1.1. Visibility channel
For visibility, we define an information channel between the

set of input viewpoints V and the set of output mesh polygons T ,
as V → T . Then, we invert it (T → V) as it is simpler to compute
the visibility from every viewpoint using rasterization than doing
so from each triangle. This example of an indirect channel is called
the viewpoint channel and was introduced in [32]. Conceptually,
the channel expresses, for any given triangle tj, how all view-
points vi see it. The probability for each viewpoint is p(vi) = 1/N ,
with N the number of viewpoints, all having the same ‘‘prefer-
ence’’. We define the occlusion ratio as OR(tj, vi) = avi (tj)/uvi (tj),
where avi (tj) is the projected area (in pixels) of triangle tj at
viewpoint vi, and uvi (tj) is the same projected area without taking
into account occlusions. Observe that OR(tj, vi) <= 1, with the
equality meaning that tj is fully visible from all vi, and 0 that it is
fully occluded. We define the normalized transition probability
matrix p(T |V) as p(tj|vi) = OR(tj, vi)/

∑
t OR(t, vi). The output

distribution p(tj), is computed as p(tj) =
∑

vi∈V
p(vi)p(tj|vi), which

represents the average occluded area of tj. This definition differs
from previous ones in that the probability is independent of the
model triangulation. To the best of our knowledge, this is the
first time this is proposed. Also, note that we do not consider
orientation in this channel as we do it on a separate channel. This
allows us to have a finer degree of control over the clustering
process. To accelerate computations, we have implemented this
channel entirely on the GPU, being an order of magnitude faster
than previous approaches [32].

3.1.2. Orientation channel
This direct channel accounts for strong differences in the poly-

gon dihedral angles (orientations), like sharp edges or strong
curvatures. It goes from the 3D triangles t ∈ T to the triangles
themselves (T → T). Here the input probabilities p(t) are set to
the constant value 1/M , with M the total number of triangles to
be processed, p(ti|tj) = (1−n(ti)·n(tj))/

∑
t (1−n(ti)·n(t)), with n(t)

he normal of triangle t , and wep(tj) is computed using Eq. (1).

.1.3. Texture stretching channel
This direct channel is designed to account for stretching in

he textures applied to objects, which should be preserved if
e are going to do an interpolated up-sampling process of the
exture coordinates (see Fig. 12). Conceptually, given a triangle ti
n 3D space, it focuses on its stretching with respect to all other
riangles tj in T . It is a channel T → T . Again, we set p(ij) = 1/M ,
(tj|ti) = (1−|S(ti)−S(tj)|)/

∑
t (1−|S(ti)−S(t)|) and we compute

(tj) using Eq. (1), and normalized. Here, S(t) is the stretching of
given triangle t calculated as described by Degener et al. [38].

.1.4. Other possible channels
Although we have not implemented them, it is easy to think

f other clustering criteria. Our previous channels already took
nto account visibility, orientation and texture stretching effects.
omplementary channels could be reflections, refractions and
ther optical effects. However, we do not expect these channels
o introduce large changes with respect to our current imple-
entation. For instance, soft shadows or ambient occlusion are
omewhat already included in the visibility channel, as the qual-
ty of our results shows. For instance, Fig. 1 contains both, relying
nly on the above defined channels.

.2. Clustering a single channel

In general, each cluster represents an homogeneous and con-
inuous area in the model, and a cluster boundary reflects an

F.G. García, I. Martin and G. Patow Computers & Graphics 102 (2022) 175–186

a
c
t
c
a
u
a
(

3

t
c
c
t
w
p

W

brupt change in any relevant feature (e.g., visibility). For any
hannel, the clustering process follows four basic steps. First,
he seeds of the initial clusters are selected. Second, a parallel
lustering approach grows those clusters trying to make them
s large as possible. Third, a sequential stage assigns possible
nclustered triangles to one of the existing clusters and finally,
merging step group small clusters to avoid over clusterization

see Section 3.2.4).

.2.1. Clustering initialization
Initializing a cluster means computing all the elements of

he information channel, as previously described. This implies
omputing the probabilities p(x), p(y) and p(Y |X). Also, some
hannel evaluations can be the result of a possible noisy evalua-
ion, like visibility: here, measuring means rendering the triangles
ith OpenGL, which provides a good but not exact estimate. To
revent future problems, we denoise it by replacing the value for

each probability p(Y |ti) by the average of the probability over the
immediate similar triangle neighbors, i.e.,

p(Y |ti)← ∥SN(ti)∥−1
∑

j∈SN(ti)

p(Y |tj)

here the neighbors SN(ti) are those that are similar enough:

JS(Y |ti, tj) ≤ Th

where Th is a threshold specifically set for this channel.

3.2.2. Selecting seeds
To select the seeds of our clusters, we start by adding the most

representative triangle, that is the triangle with the minimum
I(x, y) value. Then, while we are not set and there are candidate
triangles, we select the triangle M with the maximum difference
with respect to all other seeds,

M = maxt∈T
∑

s∈seeds

JS(Y |t, s)

such that, for every already selected seed s, M verifies that it is
different enough from s, i.e., JS(Y |M, s) > Th, adding M to the set.
When there is no such M , we stop the selection process.

Actually, for large meshes, this can be a bottleneck: we need
to compare all the triangles between themselves. We decided to
do a GPU-based implementation that distributes the calculation
of the needed JS divergences of a given seed with respect to all
the other triangles in parallel. Observe this is done lazily, only for
the requested seeds.

3.2.3. Parallel and sequential clustering
We implemented two clustering strategies that we apply se-

quentially, both based on the same basic ideas. First, we grow the
clusters from the seeds in parallel. A triangle can be in a given
cluster if its Jensen–Shannon divergence with respect to the seed
is smaller than the user-provided threshold Th. The seeds grow in
a greedy way, trying to grab one ring of triangles at each iteration.
When finished, there might be small groups of triangles that were
not added to any cluster, mainly because another cluster ‘‘barred’’
the ‘‘right’’ one to grow in their direction. Then, the sequential
clustering selects a new seed, growing the cluster until no more
triangles can be added. This process is iterated until no unclus-
tered triangles remain. This may result in some small clusters,
which may slow down the runtime rendering stage, so we correct
this in the following step. Fig. 3 shows the effect of selecting
different thresholds, which results in somewhat different clusters
being built: first of all, a tight threshold produces a set of seeds
that is a subset of the set produced by a more relaxed one. Second,
because the clustering process itself will stop growing sooner if

the threshold is tighter.

179
Fig. 3. Results on the clustering when varying the threshold Th. In this case the
Visibility Channel was used to cluster the triangles.

Fig. 4. Around the boundary between two clusters, Ci and Cj , we define a band
from vertex Vi to vertex Ve ., which will be used to redistribute triangles to get
a smoother boundary to improve interpolation possibilities. See Fig. 5.

3.2.4. Merging clusters
As mentioned, sometimes small clusters can be created. To

avoid over clustering the model, we merge those small clusters
with other neighboring clusters. A cluster is selected for merging
if it has a number of triangles smaller than a given fraction of
the input triangles. The cluster chosen to merge the small cluster
with is the one whose seed has the smallest JS divergence with
the small cluster seed. That is, we merge small clusters with the
most similar neighboring cluster.

3.3. Smoothing

The resulting clusters can have rough boundaries, which can
result in a poor interpolation at certain views. See Fig. 5, left
column. Observe that, in the boundary regions, there are triangles
that could have been clustered with the seeds of both clusters
sharing the boundary, and that were assigned to one given cluster
just because the growing process made this cluster to ‘‘arrive
first’’. We call the set of all these triangles the boundary band. Ac-
tually, defining the band this way can produce too broad bands, so
we restricted the definition to those triangles that were clustered
with a seed but that are more similar (in the Jensen–Shannon
sense) to the other seed. See Fig. 4. The actual boundary between
two given neighbor clusters actually can be any line inside (and
along) the band. To compute this smooth new boundary, we
follow a procedure inspired in the work by Sander et al. [25].

First, we generate the actual band, initialized with all the
edges of the current boundary. Then, we identify all triangles
that could have been more likely clustered with the seed at the
other side of the boundary. Once identified, we add all their edges
whose incident triangles are completely inside one of the clusters

F.G. García, I. Martin and G. Patow Computers & Graphics 102 (2022) 175–186

s
t
A
s
t
g

3

f
t
g
u
o
p
a
c
i
k
w
m
t
F

3

s
c
s
t
I
w
a
s
p

b
J
t
r
s
b

a
m

d
w
I
t
m
M

4

f
f
e
c
f
w
c
r
s
i
f
w
p
(

p
p
h
a
p

Fig. 5. Clusters before and after smoothing. See Fig. 4.

we are considering. This last condition was introduced to avoid
problems by accidentally modifying other clusters.

Once all edges have been selected, we simply compute the
hortest path through the band from the starting boundary vertex
o the end vertex. In our implementation, we use the well known
∗ algorithm. Once the new boundary has been computed, we
imply reallocate the triangles to their new clusters. As a posi-
ive side-effect of this reordering, the resulting clusters have, in
eneral, better shapes. See Fig. 5.

.4. Animated scenes

We account for animated scenes by repeating the clustering
or each keyframe of the model animations. Basically, an anima-
ion consists of a series of keyframes which are interpolated to
et the final postures of the characters for in between frames. We
se these keyframes to iteratively perform the clustering for each
ne. Starting from the initial keyframe, we repeat the clustering
ipeline for each successive keyframe, every iteration working
fter the result of the previous one. This way, we ensure having a
onsistent model which can be reused for every frame of the an-
mation. Observe that our current implementation only takes the
eyframes, not any interpolated position for the computations,
hich might result in some situations where visibility problems
ight occur. In such cases, simply taking further frames in be-

ween for the calculations would suffice to solve this problem. In
ig. 6 we can see the result applied to the Panda model.

.5. Threshold selection

Although the only parameters that the user is expected to
elect are the channel thresholds, selecting a good threshold
an be challenging for an inexperienced user. In addition, the
election of a given threshold can also produce different results
hat could positively or negatively impact the rendering, later on.
n Fig. 3 we can see the effect of selecting different thresholds,
hich results in somewhat different clusters being built: first of
ll, a tight threshold produces a set of seeds that is a subset of the
et produced by a more relaxed threshold. Second, the clustering
rocess itself will stop growing sooner if the threshold is tighter.
To provide an intuitive interface, we use the upper and lower

ounds to the JS divergence, which can be demonstrated to be
S ∈ [0, 1] [39]. This way, the user can have a simple slider
o control the clustering by setting any value between Th = 0,
esulting in a cluster for each triangle; and Th = 1, resulting in a
ingle cluster for the whole model. This way, threshold selection
ecomes a simple and easily configurable task.
180
4. Rendering by upsampling

Here we focus on the rendering stage, which consists of a
multi-pass approximate strategy that progressively computes the
final image from the information gathered at previous passes.
Based on this information, the runtime shaders decide whether
to reuse the previously computed values and interpolate a new
value from them, or simply to perform a full computation to guar-
antee the final image quality. For each sample, the information
we need to store is its position, texture coordinates, cluster ID,
normal, and some extra information depending on the chosen
channels. In our case, we add the ratio of occluded samples for
soft shadowing and ambient occlusion. All this information is
stored in a buffer we call the I-Buffer (I from interpolation).

The first pass has no previous reference image, so all samples
must be fully evaluated, as shown in Fig. 7-left. Then, from our
sampling pattern, the coincident samples at the new resolution
can be directly copied, as shown in Fig. 7-middle with the samples
marked as ‘‘R’’ (for Re-used). On the other hand, if the cluster
IDs of the previous samples are equal, new samples in-between
can be interpolated (marked with ‘‘I’’ in the figure). If they are
different, they need a full evaluation (marked with ‘‘E’’). The
arrows in the image show which previous samples are used for
each new sample. Fig. 7-right shows the third pass in the process.

The key to our up-sampling algorithm is that the samples
evaluated at each pass are the same, and thus could be reused at
following passes. This, together with the reconstructing pattern
we use, means that each pass should have a size of (2N − 1) ×
(2M−1) if the previous one was N×M . However, we can render
ny resolution by just starting from correctly chosen N and M , at
ost discarding a thin border of unused pixels at the end.
To efficiently implement this technique in a GPU-based ren-

erer, and to avoid incoherent memory accesses, each pass should
ork on a different target image, effectively resulting in an

-Buffer pyramid. This way, considerable speedup is obtained
hanks to the increased coherent access patterns to access to GPU
emory. Note that memory requirements are the same as for Mip
apping, about one-third of the final image size.

.1. Hard shadows, textures and higher-frequency signals

The described interpolation scheme provides good results
or low-frequency signals in a natural way. However, higher-
requency signals, like hard shadows or textures, require some
xtra work. To avoid missing details, we add an extra shadow
heck at the pixel program together with the cluster ID veri-
ication. For a single light, a simple boolean suffices to know
hether a sample is illuminated or not, and from there the
heck for the shadow boundary is immediate. More lights would
equire multiple booleans, but they can be ‘‘compacted’’ in a
ingle integer value, thus requiring a single equality verification
n the shader. The results can be seen in Fig. 11. Other high
requency signals, such as textures, can be guaranteed in a similar
ay, as long as their frequency is not as high as to require a
er-pixel evaluation, which would render our technique useless
e.g., hair, grass, fibers).

Here we should mention that the geometry itself may pose
roblems when large triangles are used. In this case, our ap-
roach has been to simply tessellate these polygons until they
ad a ratio of polygon area to on-screen-projected area below
user-provided threshold, which prevented our system to have
roblems in these situations.

F.G. García, I. Martin and G. Patow Computers & Graphics 102 (2022) 175–186

2
s
c
r

4

n
a
o
a
a
t
b
b
b
o
p
e
d
e
w
n

5

a
t
s
r

Fig. 6. To take into account animations (c), we iteratively refine the clustering for the different model keyframes (a and b).
Fig. 7. We apply a rendering pattern for each of the three passes, starting at a
× 2-pixel image. Re-used (R), interpolated (I) and evaluated (E) samples in the
uccessive passes. Blue and green regions represent two different, neighboring
lusters. (For interpretation of the references to color in this figure legend, the
eader is referred to the web version of this article.)

.2. Automatic pass-controlling mechanism

One of the main issues that affect the performance is the
umber of passes (see Section 5). Optimizing it is a complex task,
s it strongly depends on the scene itself, the distance from the
bserver, the complexity of the shading, among other factors. To
void cumbersome manual trial and error tests, we introduce an
utomatic controlling mechanism that selects a number of passes
rying to guarantee user-defined upper and a lower framerate
ounds. If the current average framerate is smaller than the lower
ound, the number of passes is increased. If it is above the upper
ound, the number of passes is reduced. In practice, we have
bserved that, for medium and far distances, more than 5 passes
rovide too blurry results and some noticeable ‘‘swimmering’’
ffects, so we kept it to be 4 at most. Observe that this approach
oes not strictly guarantee the framerate: if the user selects an
xtremely complex shading plus real-time bounds, the system
ill increase the number of passes up to the maximum allowed,
ever achieving the required bound.

. Results

We integrated Aila and Laine’s [40] GPU ray tracer into our
pplication. For each triangle, we store the cluster ID as new
exture coordinate for the model in addition of the existing ones,
moothly integrating this information to be used in runtime. All
enderings in the paper are 1025 × 1025 pixels, and preprocess-
ing times (i.e., clustering) range from 2 up to 5 min for all our
models in our unoptimized code.

In Fig. 1 we can appreciate how our technique is able to recon-
struct complex images involving complex features like visibility,
illumination, and textures. The results are clearly comparable to
those of traditional Ray-casting, at a fraction of the computa-
tional cost (see below). Also, our technique can handle soft and
hard shadows (Figs. 11 and 10). textures (Fig. 12), hard shadow
boundaries (Fig. 11), and even animation (Fig. 6).
181
Fig. 8. Image quality depending on the number of clusters. Top: our clustering,
Bottom: renders showing details (inset) and error values (bottom, in false color).
(For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

As can be seen in Figs. 8 and 9, the two main factors that
affect quality and performance are the number of clusters and,
more significantly, the number of passes. In Fig. 8 we can see
that the more clusters, the higher quality the final image will
have. Textures and their mapping/stretching are well preserved
(insets), but a correct visibility interpolation requires more clus-
ters in this case, as can be seen in the error values shown at
the bottom (colder colors mean lower error, while warmer areas
mean higher error with respect to the ground truth render). In ad-
dition, in both cases frame-rates are similar: the model with 110
clusters requires 427.4 msec to be rendered (thresholds: Visibility
= 0.54, Orientation = 0.3, Stretching = 0.1), while the one with
181 clusters requires 500.81 msec (thresholds: Visibility = 0.48,
Orientation = 0.02, Stretching = 0.1). In any case, our experience
shows that the more channels are added to the preprocessing, the

F.G. García, I. Martin and G. Patow Computers & Graphics 102 (2022) 175–186

a

Fig. 9. Quality depending on the number of passes. Top row, from left to right: Ray-Casting reference and 2, 3 and 4 passes respectively. Bottom row: the clusters
and the respective error images, computed with the L2 metric, which show the increased error with the number of passes. The insets show details of the texturing
nd soft shadows. Timings are shown in Fig. 15.
Fig. 10. Quality depending on the observer distance. Timings in Fig. 13.
182
Fig. 11. Hard shadow boundary preservation. Left-center: Render with no extra
boundary check. Right-center: Render with boundary preservation.

more relaxed the thresholds can be, still obtaining good quality
results. On the other hand, in Fig. 9 we can see the dependence of
the quality on the number of passes. It is important to remember
this algorithm approximates the evaluation of some pixels by a
much simpler interpolation scheme. By definition, this replace-
ment must degrade the quality of the image, and the more pixels
are interpolated instead of being computed, the worse the quality.
Thus, as expected, we can see that the more passes, the more
approximated the rendering, but the faster the model can be
rendered (see below). This is only noticeable in the zoomed views

F.G. García, I. Martin and G. Patow Computers & Graphics 102 (2022) 175–186

r
p
m
h
s
l
t

i
c
n
t
l
A
c
l
c
a
t
u
a
l

p
t
m
I
0
p
d
6

e
a
t
i
b
f
d
p

Table 1
Table showing the differences between the cost of evaluated and interpolated
pixels for Ray-Casting and our technique for several models shown in the
paper.
Models Method Evaluation Interpolation

Dancing Kids Ray Casting 21.7969 0
our 22.3699 0.0142

Fertility Ray Casting 20.85121 0
our 24.6957 0.0140

Chinese Vase Ray Casting 6.3608 0
our 6.4115 0.0184

(top row), which show a good quality for the textures but some
artifacts in the shadow details, which is reflected in the error
map (bottom insets). Also, observe that the lowest error areas
concentrate around boundaries and initial samples, and that these
samples are more separated as we increase the number of passes.

In Fig. 10 we can see the dependency of the quality with
espect to the distance to the observer: for a fixed number of
asses, at short distances, more samples are evaluated over the
odel projection, resulting in a better quality affecting mainly the
igh-frequency shadows. However, as the model size on screen is
maller, the overall perceived quality is not reduced, even when
ess samples are needed. Also, it is important to notice that the
exture signal is correctly preserved at any distance.

In Fig. 12 we can appreciate that our technique is fully compat-
ble with the use of textures, as we use it to interpolate texture
oordinates and not the textures themselves. As texture coordi-
ates (lower insets) have a lower frequency than the textures
hemselves, their interpolation results in high quality interpo-
ated renderings (upper insets), even with high frequency details.
ll the models used in the paper has been textured using multi-
hart parameterizations. When texture coordinates are interpo-
ated with our technique, it may happen that, for some convex
harts, we could obtain interpolated points that fall outside. To
void such situations we have used padding, but in extreme cases
he technique described by González and Patow [41] could be
sed to sample the correct texture coordinates avoiding possible
rtifacts, i.e., color from outside the charts or from other charts
eaking into the atlas.

As one would expect, the time needed to interpolate a single
ixel is several orders of magnitude smaller than the time needed
o fully evaluate it. To asses this claim we have rendered several
odels from a range of different viewing angles and distances.

n our case, the model shown in Fig. 1 shows an average cost of
.0142 ms for interpolated pixels vs 21.7969 ms for evaluated
ixels. The Chinese Vase shown in Fig. 12 presents a similar
ifference, being 0.0184 ms the average cost of interpolation and
.4115 ms the average cost of evaluation.
In Table 1 we can see a comparison of the times needed to

valuate and to interpolate a single pixel (in ms), averaged over
number of viewing angles and distance ranges. As we can see,

he evaluation cost is several orders of magnitude slower than
nterpolation. In Fig. 13 we can see a graph showing the relation
etween the rendering time and the distance to the observer
or the Fertility model (25K triangles). Observe that, at large
istances, our pass-controlling mechanism guarantees at least the
erformance of Ray Casting.
Rendering with Ray-casting is, in general, O = n2E, with n the

side of an n × n image and E the cost of evaluating an average
sample. Our technique changes this to be O = nE+n2I , where we
assume that the cost of reused samples (R) is roughly equal to the
cost of the interpolated ones (I). The reason of this behavior is that
cluster boundaries represent a 1D space embedded in the screen

2D space (actually, they are embedded in the 2D projection of the

183
3D object space), so they grow linearly while screen resolution
grows quadratically. This can be appreciated in Fig. 15. Of course,
as every pixel must have a value in the end, the interpolated
(or reused) samples also need to be considered, resulting in an
asymptotic quadratic behavior. However, the multiplicative con-
stant of interpolated samples can be orders of magnitude smaller
than the one for evaluated samples. As a result, the more complex
the computation to perform, the better for our algorithm. Of
course, this difference is completely dependent on the specific
elements involved in computing a particular sample. If the exact
evaluation of a sample is very cheap, then probably plain Ray-
casting is a better option. However, in the case of a GPU-based
implementation, as in our case, there are additional overheads in-
troduced by the device. On one side, there is a constant overhead
produced by the multiple kernel calls, although we found this to
be negligible for our scenes. On the other, as threads in a GPU are
executed in scheduling units called warps that execute in SIMD,
there is an overhead that we can easily identify with the control
divergence between evaluated and interpolated paths. As we have
seen, evaluation is the dominant part of the computations, and
the control divergence overhead can be associated to the samples
that need to be evaluated (even if only one sample in a warp
needs evaluation, this cost will drive the warp’s total cost), thus
resulting in an effective behavior of O = nE ′ + n2I , with E ′ =
E + W , and W is the overhead introduced by the divergence
between the threads. Fig. 14 illustrates the costs of each term
for a number of scenes and averaged over a number of different
viewpoints, ranging from close to far distances. It is important
to remark that this extra W cost does not change the overall
behavior of the system, as Fig. 15 shows. In addition and to aim
for fair comparisons, throughout all the paper our figures and data
do not include background computations, which could bias the
results.

This is the reason of our pass-controlling mechanism, ex-
plained before. On the other hand, if too many passes are selected,
the constant C can grow large enough to remove any advantage
obtained with our reusing mechanism. Fig. 15 we can see the
behavior for a fixed medium-distance view, different resolutions
and different number of passes.

6. Discussion and future work

We found that feature coherence at the low-variability regions
in a scene, when projected in screen space, can be exploited to
drastically accelerate Ray-casting-based rendering. Our findings
show a dramatic acceleration in rendering speed of up to an order
of magnitude, and with a quality similar to that of Ray-casting.
We identify regions that share a common set of user-defined fea-
tures (defined in a broad sense), and this allows us to compute the
final image in a more efficient way than traditional approaches
that usually compute each pixel from scratch. Our multi-pass
acceleration technique approximates rendering samples at one
pass by reusing values obtained at previous passes. One important
feature of this technique is that it is completely independent of,
and can be used in combination with any existing acceleration
technique. Also, our technique is pixel-bound, which makes it
independent of the tessellation of a given model. A conceptually
similar screen-space strategy can be found in other works [9,10,
16]. However, here we explore a new path by letting the user
define clustering features with a completely general framework,
incorporating even complex properties such as visibility, which
has never been unified before with other features, as we do here.

Finally, it is worthwhile commenting that one could directly
store, for each sample, the normals, a measure of texture stretch-
ing, and even visibility, although the latter would be more expen-
sive to store. Then, instead of the cluster ID, one would need to

F.G. García, I. Martin and G. Patow Computers & Graphics 102 (2022) 175–186

a

d
d
d
s
i
s
q

b

Fig. 12. Correct texture rendering. Left: clusters, Middle: Ray-casting, Right: Our technique. The lower insets show the smooth interpolation of the texture coordinates.
Fig. 13. Graph showing the relation between rendering time (in ms) and
distance to the observer (in arbitrary units), for the model in Fig. 10.

Fig. 14. Graph comparing the mean rendering time (in ms) between Ray Casting
nd our technique for several views and models.

efine and set up new heuristics for the interpolation, probably
ifferent for each channel. Instead, a single cluster ID, as we
o here, quickly answers the similarity question between two
amples avoiding the need for new heuristics and a possible
ncrease in memory requirements (e.g., visibility). In our case, two
amples are similar if they have the same cluster ID, which is a
uite simple comparison to do.
A drawback of our technique is that the clustering has to

e done in a pre-processing stage, which requires knowing in
184
Fig. 15. Graph showing the relation between rendering time (in ms) and the
number of passes for different resolutions, for the model in Fig. 9.

advance, if not all, most of the properties of our scene. Fu-
ture studies should explore whether this stage can be further
parallelized in order to perform this in real-time. As our im-
plementation uses a reduced-cost, lazy-evaluation approach, we
foresee this as a feasible objective. On the other hand, other more
standard propagation algorithms (such as Markov Random Fields
while modeling the mesh as a graph) and/or clustering algorithms
(k-means) would have been valid options for the clustering stage.
Further testing and side-by-side comparisons would be needed
to select the best among these options. Also, we use a simple
linear interpolation scheme in our implementation, but more
advanced forms of interpolation (bicubic as opposed to bilinear)
are likely to improve results. It is quite obvious that higher-
order schemes would provide smoother results, with the risk of
introducing some kind of artifacts, such as banding. Again, an
in-depth analysis comparing performance and quality is left as
future work.

As can be seen throughout the paper, we have mostly applied
the presented technique to single objects. General 3D scenes such
as an office or a classroom would follow the same processing,
clustering and rendering of the geometry, but some changes
would be required in the computation of the Visibitily Channel
(see Section 3.1.1): Instead of generating samples on an enclosing
sphere as we currently do, we would require to uniformly sample
the whole 3D scene, discarding all the samples that are inside an
object or outside of the enclosing room. This situation is the same
when considering specular reflections, but in this case reflections
would require a more dense sampling scheme near the surfaces
of the object. If no self-reflections are considered, the method
presented so far can be used without changes. However, inter-
reflections from the specular object itself may require computing

F.G. García, I. Martin and G. Patow Computers & Graphics 102 (2022) 175–186

s
r
o
i
h
c
s
w
q
g
a

p
t
I
b
p
r
a

C

g
v
t
i
C
e

D

c
t

A

R
S

R

hort rays that might intersect the object surface again, thus
equiring the same uniform space sampling strategy as for an
ffice. However, these cases pose more complex problems, as
n a bounding sphere the distance to the object is more or less
omogeneous, while in a generic space-sampling scheme, there
ould be plenty of specific cases which should be carefully con-
idered. We leave research for these kinds of cases for future
ork. Following the same reasoning, this technique can deal
uite positively with global illumination effects, which are, in
eneral, of low frequency. However, high frequency effects such
s caustics remain as an avenue for further research.
Feature-based coherence exploitation is a powerful and

romising avenue for rendering acceleration, and information
heoretic tools appear as an excellent path to unleash this power.
t is clear that techniques like the one presented here actually
enefit from evaluation complexity: the more complex the com-
utations performed for each pixel, the larger the acceleration
atio. We think that these techniques will increase in relevance
s shaders continue to grow in complexity and size.

RediT authorship contribution statement

Francisco González García: Methodology, Software, Investi-
ation, Conceptualization, Writing – original draft, Writing – re-
iew & editing. Ignacio Martin: Software, Visualization, Concep-
ualization, Writing – original draft, Writing – review & edit-
ng. Gustavo Patow: Formal analysis, Investigation, Supervision,
onceptualization, Writing – original draft, Writing – review &
diting.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared
o influence the work reported in this paper.

cknowledgments

This work was partially funded by the TIN2017-88515-C2-2-
grant from Ministerio de Ciencia, Innovación y Universidades,
pain.

eferences

[1] Foley JD, van Dam A, Feiner SK, Hughes JF, Phillips R. Introduction to
computer graphics. Addison-Wesley; 1993.

[2] Pharr M, Humphreys G. Physically based rendering: from theory to im-
plementation. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.;
2004.

[3] Wald I, Mark WR, Günther J, Boulos S, Ize T, Hunt W, et al. State of the art
in ray tracing animated scenes. In: Schmalstieg D, Bittner J, editors. STAR
proceedings of eurographics 2007. The Eurographics Association; 2007, p.
89–116.

[4] Zhou K, Hou Q, Wang R, Guo B. Real-time KD-tree construction on graphics
hardware. ACM Trans Graph 2008;27(5):126:1–126:11.

[5] Lauterbach C, Garland M, Sengupta S, Luebke D, Manocha D. Fast BVH
construction on GPUs. Comput Graph Forum 2009;28(2):375–84.

[6] Garanzha K, Pantaleoni J, McAllister D. Simpler and faster HLBVH with
work queues. In: Proceedings of the ACM SIGGRAPH symposium on high
performance graphics. New York, NY, USA: ACM; 2011, p. 59–64.

[7] Sitthi-Amorn P, Modly N, Weimer W, Lawrence J. Genetic programming
for shader simplification. ACM Trans Graph 2011;30(6):152:1–152:12.

[8] Novák J, Dachsbacher C. Rasterized bounding volume hierarchies. Comput
Graph Forum 2012;31(2pt2):403–12.

[9] Akimoto T, Mase K, Suenaga Y. Pixel-selected ray tracing. IEEE Comput
Graph Appl 1991;11:14–22.

[10] Bala K, Dorsey J, Teller S. Radiance interpolants for accelerated
bounded-error ray tracing. ACM Trans Graph 1999;18(3):213–56.

[11] Szirmay-Kalos L, Aszódi B, Lazányi I, Premecz M. Approximate ray-
tracing on the GPU with distance impostors. Comput Graph Forum
2005;24(3):695–704.
185
[12] Gonzalez F, Patow G. Continuity and interpolation techniques for computer
graphics. Comput Graph Forum 2016;35(1):309–22. http://dx.doi.org/10.
1111/cgf.12727.

[13] Nehab D, Sander PV, Lawrence J, Tatarchuk N, Isidoro JR. Accelerating real-
time shading with reverse reprojection caching. In: Proceedings of the
22nd ACM SIGGRAPH/EUROGRAPHICS symposium on graphics hardware.
Aire-la-Ville, Switzerland, Switzerland: Eurographics Association; 2007, p.
25–35.

[14] Sitthi-amorn P, Lawrence J, Yang L, Sander PV, Nehab D, Xi J. Auto-
mated reprojection-based pixel shader optimization. ACM Trans Graph
2008;27(5):127:1–127:11.

[15] Yang L, Sander PV, Lawrence J. Geometry-aware framebuffer level of detail.
Comput Graph Forum 2008;27(4):1183–8.

[16] Adamson A, Alexa M, Nealen A. Adaptive sampling of intersectable models
exploiting image and object-space coherence. In: Proceedings of the 2005
symposium on interactive 3D graphics and games. New York, NY, USA:
ACM; 2005, p. 171–8.

[17] Bitterli B, Wyman C, Pharr M, Shirley P, Lefohn A, Jarosz W. Spatiotemporal
reservoir resampling for real-time ray tracing with dynamic direct lighting.
ACM Trans Graph 2020;39(4). http://dx.doi.org/10.1145/3386569.3392481.

[18] Crespo M, Jarabo A, noz AM. Primary-space adaptive control variates using
piecewise-polynomial approximations. ACM Trans Graph 2021;40(3):1–15.
http://dx.doi.org/10.1145/3450627.

[19] Bako S, Vogels T, McWilliams B, Meyer M, Novák J, Harvill A, et
al. Kernel-predicting convolutional networks for denoising Monte Carlo
renderings. In: Proceedings of SIGGRAPH 2017. ACM Trans Graph
2017;36(4):97:1–97:14. http://dx.doi.org/10.1145/3072959.3073708.

[20] Chaitanya CRA, Kaplanyan AS, Schied C, Salvi M, Lefohn A,
Nowrouzezahrai D, et al. Interactive reconstruction of Monte Carlo
image sequences using a recurrent denoising autoencoder. ACM Trans
Graph 2017;36(4):98:1–98:12. http://dx.doi.org/10.1145/3072959.3073601,
URL: http://doi.acm.org/10.1145/3072959.3073601.

[21] Vogels T. Denoising Monte Carlo renderings with convolutional neural
networks (Master’s thesis), Switzerland: ETH Zurich; 2016.

[22] Vogels T, Rousselle F, McWilliams B, Röthlin G, Harvill A, Adler D, et al.
Denoising with kernel prediction and asymmetric loss functions. In: Pro-
ceedings of SIGGRAPH 2018. ACM Trans Graph 2018;37(4):124:1–124:15.
http://dx.doi.org/10.1145/3197517.3201388.

[23] Gharbi M, Li T-M, Aittala M, Lehtinen J, Durand F. Sample-based Monte
Carlo denoising using a kernel-splatting network. ACM Trans Graph
2019;38(4):125:1–125:12. http://dx.doi.org/10.1145/3306346.3322954,
URL: http://doi.acm.org/10.1145/3306346.3322954.

[24] Zwicker M, Jarosz W, Lehtinen J, Moon B, Ramamoorthi R, Rousselle F,
et al. Recent advances in adaptive sampling and reconstruction for Monte
Carlo rendering. In: Computer graphics forum (proceedings of eurographics
- state of the art reports), vol. 24. (2):2015, p. 667–81. http://dx.doi.org/
10.1111/cgf.12592.

[25] Sander PV, Snyder J, Gortler SJ, Hoppe H. Texture mapping progressive
meshes. In: Proceedings of the 28th annual conference on computer
graphics and interactive techniques. New York, NY, USA: ACM; 2001, p.
409–16.

[26] Sander P, Wood Z, Gortler S, Snyder J, Hoppe H. Multi-chart geometry
images. In: Proceedings of the 2003 eurographics/acm SIGGRAPH sym-
posium on geometry processing. Aire-la-Ville, Switzerland, Switzerland:
Eurographics Association; 2003, p. 146–55.

[27] Katz S, Tal A. Hierarchical mesh decomposition using fuzzy clustering
and cuts. ACM Trans Graph 2003;22(3):954–61. http://dx.doi.org/10.1145/
882262.882369, URL: http://doi.acm.org/10.1145/882262.882369.

[28] Günther J, Friedrich H, Wald I, Seidel H-P, Slusallek P. Ray tracing
animated scenes using motion decomposition. Comput Graph Forum
2006;25(3):517–25, (Proceedings of Eurographics).

[29] Chen X, Golovinskiy A, Funkhouser T. A benchmark for 3D mesh
segmentation. ACM Trans Graph (Proc. SIGGRAPH) 2009;28(3).

[30] Kalogerakis E, Hertzmann A, Singh K. Learning 3D mesh segmentation and
labeling. ACM Trans Graph 2010;29(3).

[31] Lucquin V, Deguy S, Boubekeur T. SeamCut: Interactive mesh segmenta-
tion for parameterization. In: SIGGRAPH Asia 2017 technical briefs. New
York, NY, USA: ACM; 2017, p. 25:1–4. http://dx.doi.org/10.1145/3145749.
3149435, URL: http://doi.acm.org/10.1145/3145749.3149435.

[32] Feixas M, Sbert M, González F. A unified information-theoretic framework
for viewpoint selection and mesh saliency. ACM Trans Appl Percept
2009;6(1):1:1–23.

[33] Ruiz M, Bardera A, Boada I, Viola I. Automatic transfer functions
based on informational divergence. IEEE Trans Vis Comput Graphics
2011;17(12):1932–41.

[34] Müller P, Zeng G, Wonka P, Van Gool L. Image-based procedural mod-
eling of facades. ACM Trans Graph 2007;26(3). http://dx.doi.org/10.1145/
1276377.1276484, URL: http://doi.acm.org/10.1145/1276377.1276484.

http://refhub.elsevier.com/S0097-8493(21)00183-7/sb1
http://refhub.elsevier.com/S0097-8493(21)00183-7/sb1
http://refhub.elsevier.com/S0097-8493(21)00183-7/sb1
http://refhub.elsevier.com/S0097-8493(21)00183-7/sb2
http://refhub.elsevier.com/S0097-8493(21)00183-7/sb2
http://refhub.elsevier.com/S0097-8493(21)00183-7/sb2
http://refhub.elsevier.com/S0097-8493(21)00183-7/sb2
http://refhub.elsevier.com/S0097-8493(21)00183-7/sb2
http://refhub.elsevier.com/S0097-8493(21)00183-7/sb3
http://refhub.elsevier.com/S0097-8493(21)00183-7/sb3
http://refhub.elsevier.com/S0097-8493(21)00183-7/sb3
http://refhub.elsevier.com/S0097-8493(21)00183-7/sb3
http://refhub.elsevier.com/S0097-8493(21)00183-7/sb3
http://refhub.elsevier.com/S0097-8493(21)00183-7/sb3
http://refhub.elsevier.com/S0097-8493(21)00183-7/sb3
http://refhub.elsevier.com/S0097-8493(21)00183-7/sb4
http://refhub.elsevier.com/S0097-8493(21)00183-7/sb4
http://refhub.elsevier.com/S0097-8493(21)00183-7/sb4
http://refhub.elsevier.com/S0097-8493(21)00183-7/sb5
http://refhub.elsevier.com/S0097-8493(21)00183-7/sb5
http://refhub.elsevier.com/S0097-8493(21)00183-7/sb5
http://refhub.elsevier.com/S0097-8493(21)00183-7/sb6
http://refhub.elsevier.com/S0097-8493(21)00183-7/sb6
http://refhub.elsevier.com/S0097-8493(21)00183-7/sb6
http://refhub.elsevier.com/S0097-8493(21)00183-7/sb6
http://refhub.elsevier.com/S0097-8493(21)00183-7/sb6
http://refhub.elsevier.com/S0097-8493(21)00183-7/sb7
http://refhub.elsevier.com/S0097-8493(21)00183-7/sb7
http://refhub.elsevier.com/S0097-8493(21)00183-7/sb7
http://refhub.elsevier.com/S0097-8493(21)00183-7/sb8
http://refhub.elsevier.com/S0097-8493(21)00183-7/sb8
http://refhub.elsevier.com/S0097-8493(21)00183-7/sb8
http://refhub.elsevier.com/S0097-8493(21)00183-7/sb9
http://refhub.elsevier.com/S0097-8493(21)00183-7/sb9
http://refhub.elsevier.com/S0097-8493(21)00183-7/sb9
http://refhub.elsevier.com/S0097-8493(21)00183-7/sb10
http://refhub.elsevier.com/S0097-8493(21)00183-7/sb10
http://refhub.elsevier.com/S0097-8493(21)00183-7/sb10
http://refhub.elsevier.com/S0097-8493(21)00183-7/sb11
http://refhub.elsevier.com/S0097-8493(21)00183-7/sb11
http://refhub.elsevier.com/S0097-8493(21)00183-7/sb11
http://refhub.elsevier.com/S0097-8493(21)00183-7/sb11
http://refhub.elsevier.com/S0097-8493(21)00183-7/sb11
http://dx.doi.org/10.1111/cgf.12727
http://dx.doi.org/10.1111/cgf.12727
http://dx.doi.org/10.1111/cgf.12727
http://refhub.elsevier.com/S0097-8493(21)00183-7/sb13
http://refhub.elsevier.com/S0097-8493(21)00183-7/sb13
http://refhub.elsevier.com/S0097-8493(21)00183-7/sb13
http://refhub.elsevier.com/S0097-8493(21)00183-7/sb13
http://refhub.elsevier.com/S0097-8493(21)00183-7/sb13
http://refhub.elsevier.com/S0097-8493(21)00183-7/sb13
http://refhub.elsevier.com/S0097-8493(21)00183-7/sb13
http://refhub.elsevier.com/S0097-8493(21)00183-7/sb13
http://refhub.elsevier.com/S0097-8493(21)00183-7/sb13
http://refhub.elsevier.com/S0097-8493(21)00183-7/sb14
http://refhub.elsevier.com/S0097-8493(21)00183-7/sb14
http://refhub.elsevier.com/S0097-8493(21)00183-7/sb14
http://refhub.elsevier.com/S0097-8493(21)00183-7/sb14
http://refhub.elsevier.com/S0097-8493(21)00183-7/sb14
http://refhub.elsevier.com/S0097-8493(21)00183-7/sb15
http://refhub.elsevier.com/S0097-8493(21)00183-7/sb15
http://refhub.elsevier.com/S0097-8493(21)00183-7/sb15
http://refhub.elsevier.com/S0097-8493(21)00183-7/sb16
http://refhub.elsevier.com/S0097-8493(21)00183-7/sb16
http://refhub.elsevier.com/S0097-8493(21)00183-7/sb16
http://refhub.elsevier.com/S0097-8493(21)00183-7/sb16
http://refhub.elsevier.com/S0097-8493(21)00183-7/sb16
http://refhub.elsevier.com/S0097-8493(21)00183-7/sb16
http://refhub.elsevier.com/S0097-8493(21)00183-7/sb16
http://dx.doi.org/10.1145/3386569.3392481
http://dx.doi.org/10.1145/3450627
http://dx.doi.org/10.1145/3072959.3073708
http://dx.doi.org/10.1145/3072959.3073601
http://doi.acm.org/10.1145/3072959.3073601
http://refhub.elsevier.com/S0097-8493(21)00183-7/sb21
http://refhub.elsevier.com/S0097-8493(21)00183-7/sb21
http://refhub.elsevier.com/S0097-8493(21)00183-7/sb21
http://dx.doi.org/10.1145/3197517.3201388
http://dx.doi.org/10.1145/3306346.3322954
http://doi.acm.org/10.1145/3306346.3322954
http://dx.doi.org/10.1111/cgf.12592
http://dx.doi.org/10.1111/cgf.12592
http://dx.doi.org/10.1111/cgf.12592
http://refhub.elsevier.com/S0097-8493(21)00183-7/sb25
http://refhub.elsevier.com/S0097-8493(21)00183-7/sb25
http://refhub.elsevier.com/S0097-8493(21)00183-7/sb25
http://refhub.elsevier.com/S0097-8493(21)00183-7/sb25
http://refhub.elsevier.com/S0097-8493(21)00183-7/sb25
http://refhub.elsevier.com/S0097-8493(21)00183-7/sb25
http://refhub.elsevier.com/S0097-8493(21)00183-7/sb25
http://refhub.elsevier.com/S0097-8493(21)00183-7/sb26
http://refhub.elsevier.com/S0097-8493(21)00183-7/sb26
http://refhub.elsevier.com/S0097-8493(21)00183-7/sb26
http://refhub.elsevier.com/S0097-8493(21)00183-7/sb26
http://refhub.elsevier.com/S0097-8493(21)00183-7/sb26
http://refhub.elsevier.com/S0097-8493(21)00183-7/sb26
http://refhub.elsevier.com/S0097-8493(21)00183-7/sb26
http://dx.doi.org/10.1145/882262.882369
http://dx.doi.org/10.1145/882262.882369
http://dx.doi.org/10.1145/882262.882369
http://doi.acm.org/10.1145/882262.882369
http://refhub.elsevier.com/S0097-8493(21)00183-7/sb28
http://refhub.elsevier.com/S0097-8493(21)00183-7/sb28
http://refhub.elsevier.com/S0097-8493(21)00183-7/sb28
http://refhub.elsevier.com/S0097-8493(21)00183-7/sb28
http://refhub.elsevier.com/S0097-8493(21)00183-7/sb28
http://refhub.elsevier.com/S0097-8493(21)00183-7/sb29
http://refhub.elsevier.com/S0097-8493(21)00183-7/sb29
http://refhub.elsevier.com/S0097-8493(21)00183-7/sb29
http://refhub.elsevier.com/S0097-8493(21)00183-7/sb30
http://refhub.elsevier.com/S0097-8493(21)00183-7/sb30
http://refhub.elsevier.com/S0097-8493(21)00183-7/sb30
http://dx.doi.org/10.1145/3145749.3149435
http://dx.doi.org/10.1145/3145749.3149435
http://dx.doi.org/10.1145/3145749.3149435
http://doi.acm.org/10.1145/3145749.3149435
http://refhub.elsevier.com/S0097-8493(21)00183-7/sb32
http://refhub.elsevier.com/S0097-8493(21)00183-7/sb32
http://refhub.elsevier.com/S0097-8493(21)00183-7/sb32
http://refhub.elsevier.com/S0097-8493(21)00183-7/sb32
http://refhub.elsevier.com/S0097-8493(21)00183-7/sb32
http://refhub.elsevier.com/S0097-8493(21)00183-7/sb33
http://refhub.elsevier.com/S0097-8493(21)00183-7/sb33
http://refhub.elsevier.com/S0097-8493(21)00183-7/sb33
http://refhub.elsevier.com/S0097-8493(21)00183-7/sb33
http://refhub.elsevier.com/S0097-8493(21)00183-7/sb33
http://dx.doi.org/10.1145/1276377.1276484
http://dx.doi.org/10.1145/1276377.1276484
http://dx.doi.org/10.1145/1276377.1276484
http://doi.acm.org/10.1145/1276377.1276484

F.G. García, I. Martin and G. Patow Computers & Graphics 102 (2022) 175–186
[35] Limper M, Kuijper A, Fellner D. Mesh saliency analysis via local curvature
entropy. In: Proceedings of the 37th annual conference of the european
association for computer graphics: short papers. Goslar Germany, Ger-
many: Eurographics Association; 2016, p. 13–6. http://dx.doi.org/10.2312/
egsh.20161003.

[36] Shamir A. A survey on mesh segmentation techniques. Comput Graph
Forum 2008;27(6):1539–56.

[37] Sbert M, Feixas M, Rigau J, Chover M, Viola I. Information theory tools
for computer graphics. Synthesis lectures on computer graphics and
animation, Morgan and Claypool Publishers Colorado; 2009.
186
[38] Degener P, Meseth J, Klein R. An adaptable surface parameterization
method. In: Proceedings of the 12th international meshing roundtable.
2003, p. 201–13.

[39] Lin J. Divergence measures based on the Shannon entropy. IEEE Trans Inf
Theory 1991;37(1):145–51.

[40] Aila T, Laine S. Understanding the efficiency of ray traversal on GPUs. In:
Proceedings of the conference on high performance graphics 2009. New
York, NY, USA: ACM; 2009, p. 145–9.

[41] González F, Patow G. Continuity mapping for multi-chart textures. ACM
Trans Graph 2009;28(5):109:1–8.

http://dx.doi.org/10.2312/egsh.20161003
http://dx.doi.org/10.2312/egsh.20161003
http://dx.doi.org/10.2312/egsh.20161003
http://refhub.elsevier.com/S0097-8493(21)00183-7/sb36
http://refhub.elsevier.com/S0097-8493(21)00183-7/sb36
http://refhub.elsevier.com/S0097-8493(21)00183-7/sb36
http://refhub.elsevier.com/S0097-8493(21)00183-7/sb37
http://refhub.elsevier.com/S0097-8493(21)00183-7/sb37
http://refhub.elsevier.com/S0097-8493(21)00183-7/sb37
http://refhub.elsevier.com/S0097-8493(21)00183-7/sb37
http://refhub.elsevier.com/S0097-8493(21)00183-7/sb37
http://refhub.elsevier.com/S0097-8493(21)00183-7/sb39
http://refhub.elsevier.com/S0097-8493(21)00183-7/sb39
http://refhub.elsevier.com/S0097-8493(21)00183-7/sb39
http://refhub.elsevier.com/S0097-8493(21)00183-7/sb40
http://refhub.elsevier.com/S0097-8493(21)00183-7/sb40
http://refhub.elsevier.com/S0097-8493(21)00183-7/sb40
http://refhub.elsevier.com/S0097-8493(21)00183-7/sb40
http://refhub.elsevier.com/S0097-8493(21)00183-7/sb40
http://refhub.elsevier.com/S0097-8493(21)00183-7/sb41
http://refhub.elsevier.com/S0097-8493(21)00183-7/sb41
http://refhub.elsevier.com/S0097-8493(21)00183-7/sb41

	Feature-based clustered geometry for interpolated Ray-casting
	Introduction
	Previous work
	Clustering
	Information theoretic channels
	Visibility channel
	Orientation channel
	Texture stretching channel
	Other possible channels

	Clustering a single channel
	Clustering initialization
	Selecting seeds
	Parallel and sequential clustering
	Merging clusters

	Smoothing
	Animated scenes
	Threshold selection

	Rendering by upsampling
	Hard shadows, textures and higher-frequency signals
	Automatic pass-controlling mechanism

	Results
	Discussion and future work
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References

