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H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• The control system for RO optimization 
uses fuzzy inference system. 

• The Temperature and EC of feedwater 
determine the optimal recovery set- 
point. 

• The control system proposes the 
maximum water RO recovery at a lower 
cost. 

• The control system minimises inorganic 
membrane fouling potential through the 
use of the Ca3(PO4)2 stability index.  
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A B S T R A C T   

A main reverse osmosis (RO) limitation is the operational costs (including energy filtration costs), which are 
significantly affected by energy costs and the expense of membrane maintenance. Both costs are affected by 
influent characteristics, including feedwater temperatures (T), electrical conductivity (EC), and recovery set 
points. A fuzzy logic advanced control system optimizes the RO operational costs considering feedwater EC and T 
as input values, and the RO recovery setpoint as a control action. Verification results show that, once calibrated, 
the simulation of the control system can save more than one million euros per year in large RO facilities 
(>30.000m3⋅day-1). Which represents a reduction of 0.11€⋅m-3 of influent treated water.   

1. Introduction 

Reverse osmosis (RO) is a well-established membrane technology 
used to produce high quality water from a variety of waters with a saline 
nature. Since the 1980s, this technology has been successfully imple-
mented to produce potable water from seawater or brackish waters. 

More recently, it has also been integrated in reclaimed water production 
trains [3,27], mainly for direct or indirect potable reuse or industrial 
applications. In such process, pre-treatment by a first membrane process 
such as microfiltration (MF) or ultrafiltration (UF) is frequently used 
before RO to protect the RO membrane. This combination of two 
membrane processes in series is typically referred to as an Integrated 
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Membrane System (IMS). 
A main limitation for pressured based membrane technologies, 

including RO, is the operational cost resulting from the chemicals con-
sumption and the specific energy consumption (SEC) (kW⋅h-1) 
[21,29,33] required to pressurise the water to drive the water through 
the membrane. For RO, SEC is affected by (1) the characteristics of the 
influent, i.e. the feedwater temperature (T) and the electrical conduc-
tivity (EC) (as a surrogate for salinity), and (2) the operational condi-
tions like the water recovery set point (i.e., the amount of water 
produced per unit of influent treated water) which is a balance in- 
between optimised water production and process limitations such 
membrane fouling [47]. Fouling can be due to microbiological growth 
(biofouling), precipitation of sparingly soluble inorganic salts (scaling), 
particulate and colloidal organic matter (organic fouling). Biofouling 
can be inhibited by intermittent or continuous addition of chlorine- 
based disinfectants such as chloramine, while organic colloidal and 
particulate fouling is mitigated by MF or UF pre-treatment. On the other 
hand, scaling can be controlled through scaling indicators like Langelier 
Saturationi Index (LSI) or Calcium phosphate stability index (SIp) [13]. 
In water reclamation schemes involving IMS, scaling due to inorganic 
salts is a major limitation for high water recovery; strategies to over-
come scaling mitigation involve lowering the pH by dosing hydrochloric 
or sulfuric acid, antiscalant, or operation at lower recovery [13]. Anti-
scalant and acid dosages are assessed based on the feedwater composi-
tion and the calculation of the saturation indexes for inorganic salts at 
the design recovery rate [5,13]. Raffin et al. [33] and Greenberg et al. 
[19] showed a significant reduction in operating costs by utilising an 
effective antiscalant to control inorganic scaling at neutral pH. That 
said, although antiscalant supplier software shows that it is possible to 
control the inorganic salts precipitation lowering the pH, these strate-
gies are costly and injection of those compounds should be automati-
cally controlled. 

A review of various RO-based water reclamation full-scale plants 
located around the world reveals high heterogeneity of EC and total 
dissolved salts (TDS) feedwaters. EC and TDS concentration increase the 
filtration resistance on RO membranes and can lead the process to a non- 
optimal operational condition. However operational conditions (i.e., 
recovery set points) are not regulated in any of the reviewed studies 
except for that of the Torreele facility [41] which operated with a system 
recovery between 75 and 80% (Table 1). 

Van Houtte and Verbauwhede [41] reported a real-time optimisation 
strategy of Torreele facility (Belgium) that allowed for significant 
operational cost savings. The strategy was made up of two components: 
(1) the automatic control of the recovery set point by setting up a 
relationship between the feedwater conductivity and the RO recovery 
and (2) the discontinuous use of chloramination according to the T of the 
feedwater. Such control strategy allowed the system recovery to be 
increased, based on the conductivity monitoring and did not require any 
additional chemicals, thus allowing a net decrease of energy consump-
tion per cubic meter of produced water without increasing the risk of 
fouling. Although details of the recovery control strategy are not given 
in the paper, it is assumed that an empirical relationship between EC and 
recovery was used to minimise energy requirements. 

Raffin et al. [35] sought to optimise the operational conditions of 
IMS used in wastewater reclamation. A Box-Behnken approach was used 
to optimise MF flux backwash frequency, chloramine dose and dosing 

point, together with RO flux, recovery, pH and antiscalant dose, using an 
experimental plan combined with statistical analysis to define the 
optimal operating conditions required to minimise membrane fouling. 
While the study was comprehensive in how it looked at the effect of 
combining membrane fouling parameters, the work did not focus on 
how these process conditions were affected by fluctuating influent water 
quality and how data can be used in real time. 

Daigger et al. [11] reported data of first years of operation of the 
MBR/RO water reclamation train at Gippsland Water in South Eastern 
Australia. The implemented an online conductivity and TOC removal 
monitoring system, supplemented by periodic confirmation of effluent 
quality through laboratory analysis. Robustness and resilience of the 
process and high-quality reclaimed water with occasional deviations 
from the 90th percentile values were achieved. The need to continuously 
monitor analytical systems was raised; However, this study recom-
mended not monitoring all the constituents because it would imply 
excessive analytical costs. 

For this reason, even though this can represent an increased water 
monitoring cost, the most common operational strategies for RO plants 
are to reduce the SEC by adjusting the recovery set point according to 
the characteristics of the influent water. Nevertheless, the SEC is not the 
only limiting factor for RO, preventive actions such as pH regulation or 
scaling prevention in order to maintain RO membranes in good condi-
tion and increase membrane lifetimes, also increase the overall cost of 
this technology. In a similar context, Ahmed et al. [1] analysed de-
velopments in the optimization of RO configurations from the perspec-
tive of energy consumption for desalination processes. The authors 
remark on the importance of the system's configuration and the opti-
mization of the pre- and post-treatments, integrating RO with other 
processes. 

Therefore, control of fouling and energy optimisation are directly 
related each other and crucial parameters for operational cost optimi-
sation. As can be seen, online monitoring of EC and feedwater param-
eters can reduce RO operational costs and likewise fouling control can 
increase membrane lifetimes which equates to lower maintenance costs. 
However, literature reviewed has showed that no studies have been 
considered chemicals dosage, recovery percentage, energy cost and 
membrane life time all together for RO optimisation. 

Regarding optimisation strategies, fuzzy logic is an evolution from 
binary logic and was presented by Zadeh [49] for the first time and has 
been well described in a number of books [37]. Fuzzy logic systems 
consider the entire range of responses between true and false generating 
a gradual response. Moreover, the variable categories can be codified 
and combined using linguistic levels (low, medium, high, etc.). Each 
category has a numerical interval. These characteristics make fuzzy logic 
systems suitable for application in many different contexts [7,9,15,39]. 
RO is a complex, but quite well-known, system. Thus, an advanced 
control system based on fuzzy logic appears to be a simple and robust 
way to generate operational rules for RO optimization. 

The main objective of this work is to develop an advanced fuzzy 
control system for RO optimization and to illustrate its usefulness in 
reducing operational costs in water reclamation facilities. Taking into 
account the EC and T of the feedwater, together with operational costs, 
including energy and chemicals, the aim is to propose the maximum 
water recovery at a lower cost and minimise inorganic membrane 
fouling potential through the use of the Ca3(PO4)2 stability index. The 

Table 1 
RO plants.  

Name and location EC (μS⋅cm− 2) TDS (mg⋅L− 1) T (ºC) Recovery References 

X  Min Max X  Min Max X  Min Max 

Torreele (Belgium) 1161 442 1442 581 216 723 15.3 9.8 22.3 75–80% [41] 
Sulaibiya (Kuwait) 2550 – 5700 1280 – 3014 – – – Fixed [17] 
Ulu Pandan (Singapore) – 800 2000 – 500 1200 – – – Fixed [45] 
León (Spain) 2338 2065 2542 – – – – – – Fixed [29]  
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control system rules are first developed using the historical water quality 
data from industrial pilot plant (3.5 m3⋅day-1) operating with real urban 
wastewater. Then, tested and verified with a different data set profile. 

2. Materials and methods 

To develop the advanced control system, typical urban wastewater 
quality profiles were used to determine the feedwater EC and T varia-
tions. Then, DOW Filmtec's reverse osmosis system analysis (ROSA) 
software (from [13]) was used to simulate the RO performance under 
different operational conditions of feedwater EC and T. The RO opera-
tional conditions were then converted to RO operational rules for pro-
cess optimization. These rules were subsequently codified using fuzzy 
logic to develop a control system to adjust the RO recovery. Finally, 
operational rules were verified using long-term EC and T data profiles. A 
comparison of the process recovery, total water cost and fouling po-
tential (in this case with the Ca3(PO4)2 stability index) was carried out 
by the advanced control system and the current practice open loop 
control (at constant water recovery). 

2.1. Case study 

Part of this study was carried out in an industrial-scale pilot plant 
treating real urban wastewater. The plant features a bioreactor (2.43 
m3) designed to eliminate organic matter and nutrients (nitrogen and 
phosphorus) using a submerged membrane bioreactor (MBR) system 
followed by RO treatment (Fig. 1). The plant is located at the Quart 
waste water treatment plant (WWTP) (Girona, NE Spain) to treat real 
domestic wastewater. Further details about the pilot plant can be found 
in [31]. The plant was operated for 6 months period in order to obtain 
the data for this study. 

2.2. Water characterization 

The wastewater quality, characterized by parameters like EC and T, 
fluctuates due to daily and seasonal variations. Thus, to identify the 
range of EC and T values, two different data sets were considered. 

The first data set used was a 24 h profile where hourly samples were 
taken with an autosampler from the primary effluent of the industrial 
pilot plant. The sampling campaign was carried out during dry weather 
flow to avoid the dilution of the influent with rainwater due to a 

combined sewage system. Samples were filtered through a 1.2 μm mi-
crofiber filter and a 0.45 μm nylon membrane filter before analysis. 
Samples were then analysed for EC, dissolved organic carbon (TOC; 
Shimadzu TOC-VCSH analyzer), ammonium (BÚCHI B-324 distiller, 
Titrino 719S Methrohm), total Kjeldahl nitrogen (BÚCHI B-324 distiller, 
Titrino 719S Methrohm), nitrite (NO2

- - N) and nitrate (NO3
- - N). Major 

cations (Ca2+, Mg2+, Na+, K+) and anions (Cl-, SO4
2-, P – PO4

3-) were 
analysed using ion chromatography (Metrohm 761-Compact; APHA 
standard method 4110B). 

As EC is based on the presence of ions, it is commonly used as a 
surrogate parameter for the concentration for dissolved minerals in 
water, commonly termed as total dissolved salts (TDS) [43]. In this 
work, a correlation in-between EC and total ions, cations and alkalinity 
(HCO3

-) was set. Also, feedwater EC measured in the first dataset was 
divided into three ranges: low, medium and high EC. Medium EC was 
defined as the arithmetic average (x− ) of the results from hourly analysis 
over the 24-hour period. The low and high feedwater EC profiles were 
defined as the x− EC +/- the SD over the 24-hour period, respectively 
(Table 2). These EC ranges were used in the ROSA software to find by 
simulation the most adequate operational conditions. 

The second data set corresponds to a one year of daily EC and T 
values (one value per day), based on real EC and T values from the pilot 
plant operation and the typical variability of EC and T considering the 
effects of the local meteorology. This second data set was created to test 
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Fig. 1. Industrial-scale pilot plant process diagram.  

Table 2 
EC ranges for the first data set used in the ROSA simulations.  

Parameter Low EC 
EC < 1198 
(μS⋅cm-2) 

Average EC 
1198 < EC < 1344 
(μS⋅cm-2) 

High EC 
EC > 1344 
(μS⋅cm-2) 

Units 

EC  978 1343 1674 μS⋅cm-2 

pH  7.4 7 8 – 
Ca2

+ 59 69.5 86 mg⋅L-1 

Mg2
+ 7.8 16.5 16.3 mg⋅L-1 

Na+ 115.8 159 169 mg⋅L-1 

K+ 13.5 20 33.3 mg⋅L-1 

NH4
+ 32 – 57 mg⋅L-1 

Alk  240 182 583 mg⋅L-1 

Cl-  192.4 254.6 228.2 mg⋅L-1 

NO3
- - N  1 28 – mg⋅L-1 

SO4
2-  18 18 18 mg⋅L-1 

PO4
3- - P  1 7.4 9.5 mg⋅L-1  
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and verify the advanced control system under all different possible 
scenarios and seasonal variations, i.e., from low EC with low T (due to 
the dilution effect during wet period) to high EC with high T (dry 
period). The complete first and second data set are provided in the 
supplementary information (SI). 

2.3. Reverse osmosis simulation analysis 

ROSA (from [13]) is one of the typical softwares used by process 
engineers to design RO plants and predict performance under changing 
conditions to operate sustainably at the lowest water costs. ROSA soft-
ware was used to simulate the effect of EC and T feedwater variations, 
both of which directly impact energy demand and chemical pre- 
treatment dosage. 

For the simulation, the 24-h profile (first data set) was chosen to 
obtain an indication of the daily variability of the ionic constituents 
rather than an average concentration over a 24-h period. Simulations 
were performed under different conditions, i.e. covering the three 
different EC ranges (low, medium and high) with two ranges of tem-
perature (low and high) at three different recovery rates 75%, 77.5% 
and 80% (low, medium and high). 

To understand the behaviour that can be expected in real facilities, a 
virtual RO plant with a two-stage design was assumed to be operating 
with a recovery range between 75% and 80%, with a train producing 
5000 m3⋅day-1. The configuration consisted of 28 pressure vessels (PVs) 
in the first stage, followed by 12 PVs in the second stage, each with seven 
Filmtec BW 30-400 membrane elements. The system was designed to 
operate at an average permeate flux of 20 L⋅m-2⋅h-1 (LMH) and average 
pH of 7.3 for the simulations. Moreover, inorganic fouling was 
controlled using the calcium carbonate scale and through the Langelier 
Saturation Index (LSI) (LSI < 1) and the calcium phosphate (Ca3(PO4)2) 
stability index (SIp) (SIp < 0)(Kubo et al. [25]. 

The LSI control was done adjusting the pH considering the water 
temperature. At higher water T more chemical volume need to be added 
to lower the pH. Also, water pH has a direct impact on the SIp which can 
be regulated adding more chemicals or limiting the recovery (calcula-
tions in SI). 

These indices provide an indication of the potential for scaling 
considering the concentrations of calcium and phosphate along with 
feedwater pH and T. The ionic constituents, which are typically affected 
by the secondary treatment process, namely NH4

+, HCO3
- and PO4

3-, 
were obtained from samples following the MBR treatment process from 
the pilot plant. 

Output data obtained from the software simulations for each of the 
process conditions enabled to compose a matrix with the operational 
cost for each combination of EC, T and recovery. 

2.4. Operational cost estimation 

The total water cost (Costtotal) is considered in this work as the sum of 
the cost of electrical energy (Costenergy) for pumping the feed and for the 
high-pressure pump, together with the cost of the RO pre-treatment 
chemicals to control inorganic fouling (Costpt). The cost of the 
biofouling control, which is typically carried out using chloramines, was 
not included, nor was the cost of concentrate disposal. 

The Costenergy (Eq. (1)) is estimated as the SEC of the pump (SECpump) 
(Eq. (2)) multiplied by the cost of the energy during the studied period. 
In this case, the cost of the energy was fixed at 0.10€⋅KWh-1 as a mean 
value between the off-peak and peak periods. 

Costenerg = SECpump*cost of the energy (1)  

SECpump = SECf + SECHP (2)  

where the SECpump (in €⋅m-3) is a specific value for each system and can 
be calculated as the sum of the feed pump SEC (SECf) (Eq. (3)) and the 

high-pressure pump SEC (SECHP) (Eq. (4)), both in €⋅m-3. 

SECf =
Qf *1000*9.81*Pf *10.197

3600000*Eff f *Qp
(3)  

SECHP =
Qf *1000*9.81*

(
PHP − Pf

)
*10.197

3600000*Eff HP*Qp
(4)  

Were: 
Qf = Feed flow (Qp ⋅ Y-1) 
Y = Recovery as a decimal 
Qp = Permeate flow [m3⋅h-1] 
Pf = Feed water pressure (2.1 bar) 
Efff = Feed pump efficiency (80%) 
PHP = Membrane feed pressure [bar] (determinate from ROSA) 
EffHP = High-pressure pump efficiency (80%) 
The pre-treatment cost (Costpt) (Eq. (5)) (in €⋅m-3) includes the cost 

of dosing the acid (Costacid) and the cost of the antiscalant (Costas). 

Costpt = Costacid +Costas (5) 

Costacid (Eq. (6)) (in €⋅m-3) includes the volume of acid required for a 
specific recovery and the acid costs, which can vary depending on the 
acid. Like the Costacid, the Costas (Eq. (7)) (in €⋅m-3) includes the volume 
needed for a specific recovery and the cost of the product. 

Costacid =
1000

γ
*

Doseacid

1000
*Cost of the acid (6)  

Costas =
1000

γ
*
Doseas

1000
*Cost of the antiscalant (7)  

Were: 
γ = Recovery [decimal] 
Doseacid = [mg⋅L-1] 
Acid Cost = [€⋅L-1] 
Doseas = [mg⋅L-1] 
Antiscalant Cost = [€⋅g-1] 
Doseacid is determined by the ROSA software and, the cost of the acid 

corresponds to sulfuric acid cost for influent water litter, which in this 
case was 0.00019 €⋅L-1. The Doseas is typically obtained from the anti-
scalant supplier software and the cost of the antiscalant was considered 
to be 0.00388 €⋅g-1. 

Finally, the Costtotal (in €⋅m-3) of the RO was calculated using the 
Costenergy and the Costpt (Eq. (8)). 

Costtotal = Costenerg +Costpt (8) 

Note that the cost of chemicals required to control the inorganic 
fouling was estimated from the cost of sulfuric acid (H2SO4, 98% con-
centration) required to obtain an LSI just below 1 (0.85-1), i.e., to 
control calcium carbonate precipitation and continuously antiscalant 
dosage at 2 mg⋅L-1. The estimation of pre-treatment chemicals in the 
considered cost was thus based on acidification since the use of pro-
prietary antiscalants is very specific to the chemical manufacturer. 
Basing the scaling fouling control on acidification allows the general-
ization of the contributing cost of pre-treatment under different oper-
ating conditions. Costs associated with routine clean-in-place (CIP) 
operations or membrane replacement were not included as these are 
very case specific in terms of feedwater quality and process conditions. 
Cost associated to brine disposal were not considered since changes in 
recovery will not change the mass of contaminants discharged into the 
natural environment. 

2.5. Advanced fuzzy logic control system 

The advanced fuzzy logic control system for RO optimisation was 
developed based on feedforward (FF) control loop. The system describes 
the relations between the feedwater EC and T to propose the maximum 
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recovery keeping SIp < 0 and LSI < 1 while utilising the minimum en-
ergy and chemical cost. These relations were obtained from the ROSA 
simulations and posterior cost estimations (Fig. 2). 

The operational rules for the fuzzy control system were developed by 
using the Matlab® Fuzzy Logic Designer Tool. In this case, two input 
variables (EC and T) were inferred through a Mamdani inference to 
generate one output variable (water recovery). Both input variables had 
three categories each (Low, Medium, High). The output variable was 
divided in five categories (Very Low, Low, Medium, High, Very High). 
The operational rules were inferred based on the ROSA simulation re-
sults, which used the first data set as input data. 

The second data set (one-year profile of EC and T) was used to test 
and verify the advanced fuzzy logic control system, since the proposed 
water recovery (on a daily basis) was compared with the current practice 
open loop (i.e., a constant water recovery) and the corresponding water 
savings obtained. 

2.6. Implementation requirements 

Based on the pilot plant operation, some challenges have to be faced 
for a real facility before the control system implementation. First of all, a 
preliminary study from influent water needs to be done in order to adjust 
the range of the operational rules. Afterwards, the control system re-
quires an online T and EC sensor at the inlet as measured variables. In 
order to modify the recovery set-point, different possibilities are avail-
able, a variable frequency drive pump could be an option or a set of 
electric valves (usually installed in this systems). 

EC sensor is a very common measure in RO facilities usually used to 
monitor the membrane status. On the other hand, temperature sensor is 
less common because the water T is not always monitored. The control 
algorithm must be installed in the local server of the facility aiming to 
have access to the data required for optimization. 

3. Results 

This section first illustrates the simulations carried out to analyse 
different operational conditions with the ROSA and the operational rules 
obtained for RO optimization. Furthermore, the simulation results of the 
fuzzy logic control system using one-year EC and T profile data are 
presented and, finally, the total operational cost comparison between 
the constant vs control system recoveries is provided. 

The simulations performed with ROSA covered a number of different 
operational conditions consistent with the water profiles including three 
different EC and recovery scenarios with 18 different T (Table 3). 

The resulting 162 simulations show the behaviour of the SIP, 
providing a clear relation between this index and EC, T and recovery, in 
order to detect in which situation, the calcium phosphate would pre-
cipitate on the membrane (SIP > 0). 

Depending on the RO system recovery, at Low EC, the Ca3(PO4)2 
precipitates between 24 and 26 ◦C (Fig. 3a); at Medium EC, Ca3(PO4)2 
between 23.5 and 25.5 ◦C (Fig. 3b), while at High EC, Ca3(PO4)2 pre-
cipitates between 24.5 and 27 ◦C (Fig. 3c). 

The control of the SIP has an impact on the water cost since the 
precipitation of Ca3(PO4)2 onto the membrane surface reduces its 

efficiency, thus a higher pressure is needed to produce the same amount 
of water. This precipitation can be controlled by adding chemicals or 
adjusting the membrane recovery. Chemicals addition to keep the SIp <

0 increases the cost of chemicals and water production. 
The simulations outputs for each of the process conditions enabled to 

compose a matrix with the relations among the SIp and the operational 
cost (related to SIp) for each combination of EC, T and recovery. Addi-
tionally, these relations are the basis for the advanced fuzzy logic control 
system and the optimization rules for RO optimization. 

3.1. Design of the advanced fuzzy logic control system 

This section presents the advanced fuzzy logic control system for the 
optimization of any RO system, based on EC and T, and proposes the 
maximum recovery at minimum cost avoiding the Ca3(PO4)2 
precipitation. 

The advanced fuzzy logic control system regulates the RO water 
recovery as a function of the feedwater EC and T as input variables. 
These input variables were divided into three qualitative categories for 
membership functions: two trapezoidal (including the Low and High 
range of values) and one triangular category (Medium range of values) 
each (Fig. 4a, Fig. 4b). The output variable has five different categories 
for membership functions: two trapezoidal (Very Low and Very High) 
and three triangular (Low, Medium, High) (Fig. 4c). All categories are 
created considering the minimum and maximum values of each variable 
and divided according expert knowledge. The limits of the categories 
were based on the analysis of the simulation results (Table 4), providing 
a 50% overlap between the two consecutive qualitative ranges for all 
input and output variables. 

The operational rules for RO optimization are obtained based on the 
simulations and the expert knowledge. The rules combine the qualita-
tive categories for EC, T with RO recovery categories to propose new 
recovery set point. The Mamdani inference process [23] determines the 
category or combination of categories for input values and enables a 
proper recovery response to be generated according to the operational 
rules. As an example, in the “Low EC” and “Low Temperature” scenario, 
the system proposes a “Very High Recovery” value (Table 5). 

When applying these rules, it is apparent that there is a gradient 
between the best (Low EC and T) and the worst scenarios (High EC and 
T). According to this, the algorithm can propose a range of RO recoveries 
from the lowest to the highest value (Fig. 5). 

3.2. Verification of the advanced fuzzy logic control system 

The advanced fuzzy logic control system was tested and verified by 

Sensors
T and EC

Controller
Fuzzy control system

Actuator
Pump variable
frequency drive

Process
RO
filtration

ROSA
Relation between
influent and
recovery

Operational
rules

% (Recovery)

Action control

Feed water
historical data

+/- (rpm)

Manipulated variable

Feed water

Fig. 2. Control system loop scheme.  

Table 3 
Operational conditions simulated.   

Low Medium High 

EC (μS⋅cm-2) <1198 [1198, 1344] >1344 
T (◦C) [13,17]* – [23,27]* 
Recovery (%) 75 77.5 80  

* 0.5 ◦C intervals. 
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using the one-year T and EC water profiles to observe the response of the 
system in all operational conditions. Fig. 6a illustrates the T profile, with 
low T in winter season and high T in summer, while Fig. 6b shows the EC 
variability between wet or dry periods. 

The advanced control system applied over this T and EC water profile 
proposes a recovery rate varying between 71% and 83%. The results of 
the control system are compared to the results of an open loop control 
system, with a constant recovery rate of 80%. For a large part of the year 
(days 1 to 40 and 130 to 365) the proposed recovery by the advanced 
control system is lower than 80% because T or EC fluctuate between 
medium and high categories (Fig. 6a, Fig. 6b). On the other hand, the 
proposed recovery rate can be higher than 80% (day 45-120) (Fig. 6c). 
Besides, since the operational rules seek to maintain SIp < 0, it is 
important to highlight the differences on this index between working at 
variable or constant recovery rates. At a constant recovery rate, SIp 
reaches values over 0 during summer (high T and high EC), while at a 
variable recovery rate this value is always under 0 (Fig. 6d), thus 
avoiding Ca3(PO4)2 membrane precipitation risk. 

Fig. 3. Calcium phosphate stability index (SIp): a) Low EC scenario; b) Medium EC scenario; c) High EC scenario.  

Fig. 4. Fuzzy categories for the input variables: a) Electrical Conductivity (EC) and b) Temperature; and fuzzy categories for the output variable: c) RO Recovery.  

Table 4 
Limits of membership fuzzy categories.   

Very Low Low Medium High Very High 

EC (μS⋅cm-2) – < 1270 [1168, 
1374] 

> 1270 – 

Temperature 
(◦C) 

– < 20 [14,26] > 20 – 

Recovery (%) [70,74.5] [72,77] [74.5,79.5] [77,82] [79.5,85]  

Table 5 
Relation between EC, T and Recovery.    

Temperature (◦C) 

Categories Low < 20 Medium 
[14,26] 

High > 20 

EC (μS⋅cm- 

2) 
Low < 1270 Very High High Medium 
Medium 
[1168,1374] 

High Medium Low 

High > 1270 Medium Low Very Low  
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3.3. Total water cost comparisons 

The cost of the chemicals is linked to the SIp value obtained from the 
ROSA software. When SIp increases, usually at high recovery rate, ROSA 
proposes a chemical dosage increase to minimise potential inorganic 
fouling. This cost is therefore directly related to the EC and T of influent. 
To avoid membrane fouling, higher EC and T values require more 
chemicals for the same recovery set point. When working at a variable 
recovery rate, the total chemical cost can be reduced by decreasing the 
recovery maintaining SIp < 0 (Fig. 7a). 

The energy costs fluctuate based on the feedwater EC, T and the 
recovery applied. Higher costs can be seen during dry periods with 
higher T and EC (days 150-160 Fig. 7b). On the other hand, periods with 
low T and EC values with higher recovery proposals coincide with lower 
energy costs (days 90-120 Fig. 7b). 

When comparing the energy cost for the regulated and constant re-
covery rate alternatives (Fig. 7b), a different behaviour, compared with 
the chemical costs, becomes apparent. The energy cost is related more to 
the demand of pumping energy and the amount of influent treated 
water. If the proposed variable recovery rate is lower than the constant 
recovery for almost 75% of the year, then the cost of treated water at a 
variable recovery rate is equal or very slightly higher compared to the 
energy cost at the constant recovery rate (Fig. 7b). 

In terms of the total water cost (chemicals cost plus energy cost), the 
variable recovery operation presents a lower total cost for a large part of 
the summer (day 120-210) and winter (day 0-30 and 300-360). In 
autumn (day 210-300), the total cost of operating at a variable recovery 
rate is only slightly higher than at the constant recovery rate, while in 
spring (day 30-120) the variable recovery operational costs are equal to 
or higher than constant recovery (Fig. 7c). Moreover, the differences for 
daily costs and accumulated savings demonstrate that, globally, the total 
costs of working at the variable recovery rate are slightly lower than at 
fixed recovery. In fact, when working at variable recovery, 0.11€⋅m-3 

can be saved by the end of a year (Fig. 7d). 
The control system simulations were done according to the studied 

plant's characteristics, but it can easily be adjusted for other plants. 
Using historical data, new ranges of influent EC and T can be defined and 
recovery ranges can also be modified according to the requirements of 
the facility in question. 

The input EC and T were used for the control system to produce the 
highest recovery rate at the lowest cost. This combination seems to be 
more robust than just adjusting the recovery according to the influent EC 
(i.e., the Torreele facility) due to consider the effect of T on the water 
solubility. Furthermore, other parameters can be easily incorporated 
into the model based on expert rules, like biofouling that can also affect 
the membrane filtration. 

On the other hand, the results of the verification should be done in a 
real facility for a long-term period to assess the savings in practice. 
Furthermore, if, for example, the control system was applied to the RO 
plant in Ulu Pandan (Singapore), which treats 30,000 m3⋅day-1, the 
potential cost reduction could result in a savings of 1,095,000€ per year. 
In another instance, if this control strategy was employed in the RO plant 
in León (Spain) which treats 50.000 m3⋅day-1, this could potentially 
represent a savings of 1,898,000€ in one year. 

4. Conclusions 

The production of high-quality water through RO process entails 
high operational costs related to energy demand and chemical con-
sumption. An advanced fuzzy logic control system based on easy-to- 
measure control parameters like T and EC can optimise the process. 
Combining ROSA simulations with expert knowledge enabled to develop 
operational rules which, when integrated in an advanced fuzzy control 
system, enable to minimise energy and chemicals cost while increasing 
membrane life time. 

Continued daily savings are not always possible due to the risk of 

Fig. 5. Recovery response according to EC and T.  

Fig. 6. One-year water profile: a) Water T profile; b) Water EC profile; c) 
Variable and constant recovery; d) SIp evolution for variable and con-
stant recovery. 
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membrane fouling. However, the total cost for water reclamation can be 
reduced by more than 0.1€/m3 in a long-term (one year) operation. 
Considering influent water volume by large facilities (more than 30,000 
m3 day-1) savings can be more than 1 milion euros per year. Moreover, 
the ranges of recovery rates, EC, and T, are easily customized to each 
plant under study, which makes this control system very adaptable to 
other facilities. 
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