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A B S T R A C T

Expressions for the energy release rate and compliance are defined for some asymmetric beam
like specimens. The expressions are derived taking into account the Timoshenko beam theory
with elastic foundation. The energy release rate is expressed by the applied loads or by a
combination of loads and rotation angles, the latter allows to characterize bonded interfaces
without taking into account the elastic foundation properties. The condition of stability under
displacement controlled test is analysed for typical specimens. The results presented are useful
for the characterization of fracture toughness of bimaterial interfaces.

. Introduction

Stacking layers of different materials allows the definition of shells with tailored properties. This strategy of design is very
ommon in different fields, from packaging, housing, electronics to aeronautics. For example, in aeronautics joining metallic (usually
luminium) and composite layers is usual to improve fatigue and impact response of airplane fuselages [1]. One of the most common
orm of degradation of these structures is the debonding or delamination of the different layers. Fracture mechanics is the common
echnique for evaluating the growth of these cracks and the critical fracture energy (𝐺𝐶 ) the most important material property
equired to apply fracture mechanics. Therefore the definition of standard methods to characterize 𝐺𝐶 is a need for the safe design
f these structures.

To characterize the fracture toughness of composite materials ASTM standards [2–4] can be followed. The scope of these
tandards only covers symmetric specimens: i.e. the crack defines a symmetric plane and the delamination occurs between the
ame material. Similar standards are defined to characterize the fracture properties of bonded joints [5]. Analysis through beam
heories with or without elastic foundations have been extensively studied for mode I, [6–12] mode II [13–17] and mixed mode
racture [18–23].

The determination of the fracture toughness in interfaces that joins different materials is of great interest because they are more
rone to delaminate [24–29]. The objective of this paper is to present the solution of a beam like geometry of bimaterial interfaces
onsidering the Timoshenko beam theory with an elastic foundation. The results presented allow the characterization of fracture
roperties of bimaterial interfaces subjected to pure mechanical loads. The same model that Williams [10] presented for mode I
elamination of symmetric laminates is here extended to mixed mode loading for some particular types of asymmetric laminates.

. Governing equations based on Timoshenko beam theory and elastic foundations

The geometry of the problem considered is sketched in Fig. 1. The upper 𝑈 and bottom 𝐵 arm are made of different material
nd are partially debonded. At the debonded part of the crack tip (at a coordinate 𝑥 = 0−) a set of applied loads are known: 𝐹𝑈 ,
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Fig. 1. Beams with applied loads and differential equilibrium of the bonded upper beam.

𝐵 , 𝑀𝐴𝑈 , 𝑀𝐴𝐵 , 𝑁𝐴𝑈 and 𝑁𝐴𝐵 that drive the crack growth. In the bonded part the loads can be splitted in 𝑁𝑖, 𝑉𝑖 and 𝑀𝑖 for 𝑖 = 𝑈
and 𝐵. The global equilibrium equations are:

𝑁𝑈 +𝑁𝐵 = 𝑁𝐴𝑈 +𝑁𝐴𝐵 , 𝑉𝑈 + 𝑉𝐵 = 𝐹𝐵 − 𝐹𝑈 and

𝑀𝑈 +𝑀𝐵 +𝑁𝑈
ℎ𝑈+ℎ𝐵

2 = 𝑀𝐴𝐵 −𝑀𝐴𝑈 + (𝐹𝐵 − 𝐹𝑈 )𝑥 +𝑁𝐴𝑈
ℎ𝑈+ℎ𝐵

2

(1)

he differential equilibrium equations of the upper arm can be expressed as (see Fig. 1)
𝑑𝑁𝑈
𝑑𝑥 = 𝜏 , 𝑑𝑉𝑈

𝑑𝑥 = 𝜎 and 𝑉𝑈 = 𝑑𝑀𝑈
𝑑𝑥 + ℎ𝑈

2
𝑑𝑁𝑈
𝑑𝑥 − 𝑑𝑀𝐶

𝑑𝑥
(2)

All the equations of the present paper are normalized with respect to the specimen width.
In the bonded region the stresses at the interface are governed by the elastic foundation constitutive equations:

𝜏 = 𝐶𝐼𝐼𝑤𝐼𝐼 , 𝜎 = 𝐶𝐼𝑤𝐼 and 𝑑𝑀𝐶
𝑑𝑥 = 𝐶𝜙𝜙𝑈𝐵 (3)

where 𝑤𝐼𝐼 and 𝑤𝐼 are the sliding and opening of the interface and 𝜙𝑈𝐵 the difference of rotation between upper and bottom arm
efined as:

𝑤𝐼𝐼 = 𝑢𝑈 − 𝑢𝐵 − ℎ𝑈
2 𝜙𝑈 − ℎ𝐵

2 𝜙𝐵 , 𝑤𝐼 = 𝑤𝑈 −𝑤𝐵 and 𝜙𝑈𝐵 = 𝜙𝑈 − 𝜙𝐵 (4)

The stiffness 𝐶𝐼𝐼 depends on the shear modulus of the arms and 𝐶𝐼 on the out-of-plane stiffness. It is usually considered that
alf of each beam contributes to the stiffness (i.e. for the sliding: 2𝐺𝑖∕ℎ𝑖) and the interface behaves like springs in series. Then, for
simple case of two homogeneous arms 𝑈 and 𝐵 it is possible to write:

𝐶𝐼𝐼 = 2𝑘𝐼𝐼
(

ℎ𝑈
𝐺𝑈

+ ℎ𝐵
𝐺𝐵

)−1

𝐶𝐼 = 2𝑘𝐼
(

ℎ𝑈
𝐸𝑈𝑇

+ ℎ𝐵
𝐸𝐵𝑇

)−1

𝐶𝜙 = 𝑘𝜙
2

(

1
ℎ𝑈𝐺𝑈

+ 1
ℎ𝐵𝐺𝐵

)−1

(5)

where 𝐺𝑖 and 𝐸𝑖𝑇 are the shear and out-of-plane modulus of each beam, respectively. 𝑘𝐼 and 𝑘𝐼𝐼 are fitting parameters usually taken
as 1 or fitted by numerical models. The bending stiffness 𝐶𝜙 has a more complex interpretation, as argued by Olsson [30] the effect
of the bending stiffness is redundant with the consideration of Timoshenko beam theory because it is similar to the shear stiffness
of the beam. The constant 𝑘𝜙 in Eq. (5) is usually defined as 5/6. Following the work of Williams [10], which is the foundation of
the standardized method to characterize the DCB specimen, here the problem is solved by considering 𝐶𝜙.

According to Timoshenko beam theory the constitutive equations that defines the relation between the loads (𝑁𝑖, 𝑀𝑖 and 𝑉𝑖)
and the kinematics (𝑢𝑖, 𝜙𝑖 and 𝑤𝑖) of each arm (𝑖 = 𝑈 and 𝐵) reads:

⎡

⎢

⎢

⎣

𝑑𝑢𝑖
𝑑𝑥
𝑑𝜙𝑖
𝑑𝑥

⎤

⎥

⎥

⎦

=
[

𝑎𝑖 𝑏𝑖
𝑏𝑖 𝑑𝑖

]

[

𝑁𝑖

𝑀𝑖

]

and 𝑑𝑤𝑖
𝑑𝑥 + 𝜙𝑖 = 𝑘𝑖𝑉𝑖 (6)

where 𝑘𝑖 is the shear compliance of each arm, defined as 𝑘𝑖 = (𝑘𝑠𝐺𝑖ℎ𝑖)−1, where 𝑘𝑠 is a factor usually considered as 5∕6.
From the defined hypothesis, constitutive and equilibrium equations, it is possible to obtain the following differential equations

with respect to variables 𝑤𝐼 and 𝑤𝐼𝐼 as defined in Appendix:

𝑑4𝑤𝐼

𝑑𝑥4
−
(

𝛽0𝐶𝐼 − 𝛽1𝐶𝜙
) 𝑑2𝑤𝐼

𝑑𝑥2
− 𝛽1𝐶𝐼

(

1 + 𝐶𝜙𝛽0
)

𝑤𝐼 + 𝛼1𝐶𝐼𝐼
𝑑𝑤𝐼𝐼
𝑑𝑥

= 0 (7a)

𝑑3𝑤𝐼𝐼

𝑑𝑥3
− 𝐶𝐼𝐼

(

𝛼2 − 𝛼1
ℎ𝑈
2

)

𝑑𝑤𝐼𝐼
𝑑𝑥

− 𝛼1

(

𝐶𝐼
(

1 + 𝐶𝜙𝛽0
)

𝑤𝐼 − 𝐶𝜙
𝑑2𝑤𝐼

𝑑𝑥2

)

= 0 (7b)

It is important to note that both variables are coupled by the parameter 𝛼1. Bennati et al. [26], Liu et al. [27] and Qiao and
Wang [31] presented the solution of this equations for 𝐶 = 0.
2

𝜙
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At this point it is of interest to define some constants that will be used throughout the paper:

𝛼1 = 𝑏𝑈 + 𝑏𝐵 − 𝑑𝑈 ℎ𝑈−𝑑𝐵ℎ𝐵
2

𝛼2 = 𝑎𝑈 + 𝑎𝐵 + 𝑏𝐵ℎ𝐵 + ℎ𝑈
𝑏𝐵−𝑏𝑈

2 + 𝑑𝐵ℎ𝐵
ℎ𝐵+ℎ𝑈

4

𝛼3 = 2𝑏𝐵 + ℎ𝐵𝑑𝐵
𝛽0 = 𝑘𝑈 + 𝑘𝐵
𝛽1 = −(𝑑𝑈 + 𝑑𝐵)

𝛽2 = −
(

𝑏𝑈 + 𝑏𝐵 + 𝑑𝐵
ℎ𝑈+ℎ𝐵

2

)

(8)

The loads at the upper arm can be computed by means of Eq. (2):

𝑁𝑈 = 𝐶𝐼𝐼 ∫ 𝑤𝐼𝐼𝑑𝑥 (9a)

𝑉𝑈 = 𝐶𝐼 ∫ 𝑤𝐼𝑑𝑥 (9b)

𝑀𝑈 = ∫
(

𝑉𝑈 + 𝐶𝜙𝜙𝑈𝐵
)

𝑑𝑥 −
ℎ𝑈
2

𝑁𝑈 (9c)

where from Eq. (A.3):

𝜙𝑈𝐵 = 𝛽0𝑉𝑈 −
𝑑𝑤𝐼
𝑑𝑥

− 𝑘𝐵(𝐹𝐵 − 𝐹𝑈 ) (10)

At some distance from the crack front (at large values of x) the following conditions can be considered: 𝑑𝑤𝐼∕𝑑𝑥 = 𝑑𝑤𝐼𝐼∕𝑑𝑥 =
𝜙𝑈𝐵∕𝑑𝑥 = 0. Taking into account the constitutive and equilibrium Eqs. (A.1), (A.3) and (A.8) the following loads at upper arm are
btained:

𝑉 𝑅
𝑈 =

𝑘𝐵
𝛽0

(𝐹𝐵 − 𝐹𝑈 ) +
𝜙𝑅
𝑈𝐵
𝛽0

(11a)
[

𝑀𝑅
𝑈

𝑁𝑅
𝑈

]

=

[

𝛽1 𝛽2
𝛼1 𝛼2

]−1 [ −𝑑𝐵
(

𝐹𝐵 − 𝐹𝑈
)

𝑥 − 𝑑𝜙𝑅
𝑈𝐵

𝛼3
2

(

𝐹𝐵 − 𝐹𝑈
)

𝑥 + 𝑑𝑤𝑅
𝐼𝐼

]

(11b)

here 𝜙𝑅
𝑈𝐵 is the difference of rotation angle between upper and bottom arms, 𝑑𝜙𝑅

𝑈𝐵 and 𝑑𝑤𝑅
𝐼𝐼 are defined by Eqs. (A.2) and (A.9)

of Appendix.

3. The mixed mode energy release rate of asymmetric beams

The determination of the fracture toughness of symmetric specimens is well defined and standardized. In this case a symmetric
loading results in pure mode I and antisymmetric loading in pure mode II. For asymmetric specimens there are several ways to
determine the mixed mode, it is worth highlighting the following two methods:

• Local partition
The local solution is defined by solving the complete stress field of the problem. Some solutions are presented by several
authors in [24,32–37]. Davidson et al. [35] presented a fitting equation for wide applicability. The local solution is the correct
solution of linear elastic fracture mechanics.

• Williams partition
According to Williams [38] the pure mode II is defined by loading cases that produce the same curvature of both arms at the
crack tip (𝑥 = 0):

𝑑𝜙𝑈
𝑑𝑥

=
𝑑𝜙𝐵
𝑑𝑥

This allows the decomposition of general case by considering orthogonality of partitioning. This condition is equivalent to
define pure mode I as the obtained by a standard DCB specimen.

There are several other partition methods, see for example [28,39–44], a critical comparison of these methods can be found
in Maimíet al. [45]. In general, the different ways to determine the mode mixity lead to different results when the specimen is
asymmetric. A question arises of which is the correct way to determine the mode I or mode II contributions in the energy release
rate for asymmetric specimens.

Of special interest are the experimental tests performed by Kinloch et al. [46] and Ducept et al. [47]. These authors characterized
an interface following the standard methods with symmetric specimens and latter compared the results with asymmetric specimens
defined by means of different arm thickness. The results of both tests seem contradictory because according to Kinloch et al. [46]
the Williams method is more appropriate while for Ducept et al. [47] the local method leads to the correct decomposition. As
3
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Fig. 2. (a) Mixed mode of beam like specimens of the same material and different arm thickness, (b) geometry with loadings and (c) shear stress at the bonded
interface.

noted by several authors [36,47–49] the size of the K-dominant zone is very small in beam-like geometries, usually smaller than the
failure process zone. Numerical results presented by Conroy et al. [50] and Maimíet al. [45] confirm with asymmetric specimens and
cohesive models that for brittle interfaces which develop a very small failure process zone, the local method is appropriate, on the
other case for very tough interfaces, with large failure process zone, the Williams [38] method results in the correct decomposition.
These two partition methods seem to be the two extreme cases, whereas in the intermediate cases the actual mixed mode is at some
point between these two limiting theories.

In Fig. 2.a the partition of energy release rate according to local (for isotropic materials), Williams and Timoshenko beam (without
elastic foundation) for a specimen with the same material at bottom and upper arms but with different thickness is shown. The
loading case considered is a symmetric bending as shown in Fig. 2.b. It must be pointed out, that Timoshenko differs significantly
from the local method in the case of stiff interfaces, if the elastic foundation is taken into account the Timoshenko can be very
close to the local method if the appropriate interface stiffness is used. This is proven by the results presented by Bennati et al. [26]
with 𝑘𝐼 = 3.45 and 𝑘𝐼𝐼 = 8.1 and by Valvo [28] with 𝑘𝐼 = 𝑘𝐼𝐼 = 5, both cases with 𝐶𝜙 = 0 where results of mixed mode are quite
similar to the local solution. For symmetric specimens (ℎ𝑈 = ℎ𝐵) all partition criteria deal with pure mode I loading. In Fig. 2.c
the elastic shear stress at the interface for ℎ𝑈 ≠ ℎ𝐵 is sketched, at crack tip the shear stress is not null and produces a mixed
mode loading as predicted by local (and Timoshenko) theories. On the other hand, by taking into account the global equilibrium
∫ 𝜏𝑑𝑥 = 0, then at some distance the shear stress changes its sign and tends to zero afterwards, if the cohesive non linear zone is
large enough the shear stresses are watered down and crack grows in pure mode I according to Williams (or global) partition. This
example intuitively explains the dependence of the mixed mode on the length of the cohesive zone that in turns depends on the
fracture toughness [45,46,50].

Taking into account the differential equation (7) it can be easily observed that both equations are coupled by means of the
parameter 𝛼1. If 𝛼1 ≠ 0 it is possible to determine a set of loadings that produce 𝑤𝐼𝐼 = 0 at crack tip (𝑥 = 0) but not along the
interface, then pure mode I will be obtained only for very brittle interfaces. The same can be argued with a pure mode II loading.
On the other hand, if 𝛼1 = 0 both equations are uncoupled, and a symmetric loading cause 𝑤𝐼𝐼 = 0 across all the interface length
and pure mode I is guaranteed independently of the cohesive zone length.

Since the mixed mode of the general case (𝛼1 ≠ 0) depends on the fracture toughness which is the material property that can
be measured, the mode mixity of these specimens cannot be predicted in advance and has to be recalculated a posteriori by some
method. It can be done by reproducing the test with numerical methods [45] or by applying the semi-analytical method proposed by
Conroy et al. [50] that depends on an estimate of the cohesive zone length. If possible, the optimum solution is to design specimens
in which 𝛼1 = 0 [45,51,52], then:

𝑑𝑈ℎ𝑈 − 2𝑏𝑈 = 𝑑𝐵ℎ𝐵 + 2𝑏𝐵 (12)

in this case, the two governing Eqs. (7) are uncoupled and it is possible to find a load case that produce 𝑤𝐼 = 0 for all 𝑥, that will
result in pure mode II and a load case that produce 𝑤𝐼𝐼 = 0 for all 𝑥 that will result in pure mode I.

4. General solution of the uncoupled case

If the parameter 𝛼1 = 0, the governing Eqs. (7) can be simplified as:

𝑑4𝑤𝐼 − 2𝑐
𝑑2𝑤𝐼 + 𝑐2𝑤 = 0 (13a)
4

𝑑𝑥4 2 𝑑𝑥2 0 𝐼
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𝑑2𝑤𝐼𝐼

𝑑𝑥2
− 𝐶𝐼𝐼𝛼2𝑤𝐼𝐼 +

𝛼3
2

(

𝐹𝐵 − 𝐹𝑈
)

= 0 (13b)

here

2𝑐2 = 𝛽0𝐶𝐼 − 𝛽1𝐶𝜙 and 𝑐20 = −𝛽1𝐶𝐼
(

1 + 𝐶𝜙𝛽0
)

(14)

ince they are uncoupled, the linear differential equations can be solved independently to get 𝑤𝐼 (𝑥) and 𝑤𝐼𝐼 (𝑥).

.1. Crack sliding: 𝑤𝐼𝐼

The solution of Eq. (13b) is

𝑤𝐼𝐼 = 𝑤𝑅
𝐼𝐼 +

(

𝑤𝐼𝐼0 −𝑤𝑅
𝐼𝐼
)

exp
(

−𝑥
√

𝐶𝐼𝐼𝛼2
)

(15)

where 𝑤𝑅
𝐼𝐼 = 𝛼3

(

𝐹𝐵 − 𝐹𝑈
)

∕
(

2𝛼2𝐶𝐼𝐼
)

. The normal load is defined by means of Eq. (9a) with an integration constant defined by the
boundary condition expressed by Eq. (11b). 𝑤𝐼𝐼0 can be determined by considering that 𝑁𝑈 = 𝑁𝐴𝑈 at 𝑥 = 0:

𝑤𝐼𝐼0 =
𝛼3
2
𝛥𝐼𝐼

(

𝑀∗
𝐼𝐼 + 𝛥𝐼𝐼

(

𝐹𝐵 − 𝐹𝑈
))

(16)

here

𝑀∗
𝐼𝐼 = 𝑀𝐴𝐵 −𝑀𝐴𝑈 +

2
(

𝑎∗𝐵𝑁𝐴𝐵−𝑎∗𝑈𝑁𝐴𝑈

)

𝛼3
and 𝛥𝐼𝐼 =

(

𝛼2𝐶𝐼𝐼
)−1∕2 (17)

where 𝑎∗𝐵 = 𝑎𝐵 + ℎ𝐵
2 𝑏𝐵 and 𝑎∗𝑈 = 𝑎𝑈 − ℎ𝑈

2 𝑏𝑈

.2. Crack opening: 𝑤𝐼

The solution of Eq. (13a) depends on the roots of the characteristic polynomial: 𝜉2 − 2𝑐2𝜉 + 𝑐20 = 0, according to:

𝑐2 > 𝑐0, 𝜉21,2 = 𝑐2 ±
√

𝑐22 − 𝑐20 𝑤𝐼 = 𝑤𝐼0𝜉2+𝑤𝐼1
𝜉2−𝜉1

𝑒−𝑥𝜉1 − 𝑤𝐼0𝜉1+𝑤𝐼1
𝜉2−𝜉1

𝑒−𝑥𝜉2

𝑐2 < 𝑐0, 2𝜉21,2 = 𝑐0 ± 𝑐2 𝑤𝐼 = 𝑒−𝑥𝜉1
(

𝑤𝐼0 cos(𝜉2𝑥) +
𝑤𝐼0𝜉1+𝑤𝐼1

𝜉2
sin(𝜉2𝑥)

)

𝑐2 = 𝑐0, 𝜉2 = 𝑐0 = 𝑐2 𝑤𝐼 = 𝑒−𝑥𝜉 (𝑤𝐼0 + (𝑤𝐼0𝜉 +𝑤𝐼1)𝑥)

The shear (𝑉𝑈 ) and moment (𝑀𝑈 ) at the upper arm can be determined by means of Eqs. (9a) and (9c). At large 𝑥 it is necessary
o enforce the limit solution expressed by Eq. (11). From this it is also possible to define:

𝜙𝑅
𝑈𝐵 = 𝜅𝑅

𝑈𝐵(𝐹𝐵 − 𝐹𝑈 ) where 𝜅𝑅
𝑈𝐵 = 𝑑𝑈 𝑘𝐵−𝑘𝑈 𝑑𝐵

𝛽1(1+𝛽0𝐶𝜙)
(18)

The shear and moment at 𝑥 = 0 are defined by the boundary conditions 𝐹𝑈 and 𝑀𝐴𝑈 . This allows to define the constants 𝑤𝐼0
and 𝑤𝐼1, which represent the crack opening and its derivative with respect to 𝑥 at crack tip, and the angle 𝜙𝑈𝐵0 defined by means
of Eq. (10).

𝑤𝐼0 =
𝛽1

𝑐0−𝛽1𝐶𝜙

(

− 𝑐0
√

2
√

𝑐0+𝑐2
𝛽1𝐶𝐼

𝐹 ∗
𝐼 +𝑀∗

𝐼

)

𝑤𝐼1 =
𝛽1

𝑐0−𝛽1𝐶𝜙

(

𝑐0
𝑐0+𝐶𝐼 𝛽0
𝛽1𝐶𝐼

𝐹 ∗
𝐼 −

√

2
√

𝑐0 + 𝑐2𝑀∗
𝐼

)

𝜙𝑈𝐵0 =
𝛽1

𝑐0−𝛽1𝐶𝜙

(

𝐹 ∗
𝐼 +

√

2
√

𝑐0 + 𝑐2𝑀∗
𝐼

)

+ 𝜙𝑅
𝑈𝐵

(19)

here

𝑀∗
𝐼 = 1

𝛽1

(

𝑑𝑈𝑀𝐴𝑈 + 𝑑𝐵𝑀𝐴𝐵 − 𝑏𝑈𝑁𝐴𝑈 + 𝑏𝐵𝑁𝐴𝐵
)

𝐹 ∗
𝐼 =

(

𝑑𝐵−𝑘𝐵𝐶𝜙𝛽1
)

𝐹𝐵+
(

𝑑𝑈−𝑘𝑈𝐶𝜙𝛽1
)

𝐹𝑈
𝛽1(1+𝛽0𝐶𝜙)

(20)

4.3. Energy release rate

The energy release rate in mode I and mode II can be determined by means of the expressions:

𝐺𝐼 = 1
2
(

𝐶𝐼𝑤
2
𝐼0 + 𝐶𝜙𝜙

2
𝑈𝐵0

)

(21a)

𝐺𝐼𝐼 = 1
2
𝐶𝐼𝐼𝑤

2
𝐼𝐼0 (21b)

The total energy release rate: 𝐺 = 𝐺 + 𝐺 .
5

𝐼 𝐼𝐼
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Fig. 3. Beams with applied loads and differential equilibrium of the bonded upper beam.

.4. Displacements

The displacements can be determined by means of Eq. (6) taking into account the loads of Eq. (9) (see Fig. 3):

𝑢𝑈 = ∫ (𝑎𝑈𝑁𝑈 + 𝑏𝑈𝑀𝑈 )𝑑𝑥 ≈ 𝑈𝑈0 + 𝑈𝑈1𝑥 + 𝑈𝑈2𝑥
2 (22a)

𝜙𝑈 = ∫ (𝑏𝑈𝑁𝑈 + 𝑑𝑈𝑀𝑈 )𝑑𝑥 ≈ 𝛷𝑈0 +𝛷𝑈1𝑥 +𝛷𝑈2𝑥
2 (22b)

𝑤𝑈 = ∫ (𝑘𝑈𝑉𝑈 − 𝜙𝑈 )𝑑𝑥 ≈ 𝑊𝑈0 +𝑊𝑈1𝑥 +𝑊𝑈2𝑥
2 +𝑊𝑈3𝑥

3 (22c)

or large enough values of 𝑥 a polynomial approximation allows to describe the displacements (when a term related to exp(−𝜉𝑖𝑥) is
egligible). By means of Eq. (9) and the solution of 𝑤𝐼 and 𝑤𝐼𝐼 it is possible to determine the parameters:

𝑈𝑈0 =
−𝑎∗𝑈 𝛼3

2𝛼2
√

𝐶𝐼𝐼 𝛼2
𝑀∗

𝐼𝐼 +
𝑏𝑈

𝑐0−𝐶𝜙𝛽1
𝐹 ∗
𝐼 + 𝑏𝑈

√

2
√

𝑐0+𝑐2
𝑐0−𝐶𝜙𝛽1

𝑀∗
𝐼

𝑈𝑈1 = − 𝑏𝑈
𝛽1
𝑑𝜙𝑅

𝑈𝐵 +
𝑎∗𝑈
𝛼2

𝑑𝑤𝑅
𝐼𝐼

𝑈𝑈2 = − 1
2

(

𝑏𝑈 𝑑𝐵
𝛽1

−
𝑎∗𝑈 𝛼3
2𝛼2

)

(𝐹𝐵 − 𝐹𝑈 )

𝛷𝑈0 =
𝛼23

4𝛼2
√

𝐶𝐼𝐼 𝛼2
𝑀∗

𝐼𝐼 +
𝑑𝑈

𝑐0−𝐶𝜙𝛽1
𝐹 ∗
𝐼 + 𝑑𝑈

√

2
√

𝑐0+𝑐2
𝑐0−𝐶𝜙𝛽1

𝑀∗
𝐼

𝛷𝑈1 = − 𝑑𝑈
𝛽1

𝑑𝜙𝑅
𝑈𝐵 − 𝛼3

2𝛼2
𝑑𝑤𝑅

𝐼𝐼

𝛷𝑈2 = − 1
2

(

𝑑𝑈 𝑑𝐵
𝛽1

+
𝛼23
4𝛼2

)

(𝐹𝐵 − 𝐹𝑈 )

𝑊𝑈0 =
𝛼23

4𝐶𝐼𝐼 𝛼22
𝑀∗

𝐼𝐼 +
√

2
√

𝑐0+𝑐2
(

𝑑𝑈−𝑘𝑈𝐶𝜙𝛽1
)

𝑐0(𝑐0−𝐶𝜙𝛽1)
𝐹 ∗ + 𝑑𝑈 𝑐0+𝐶𝐼 (𝑑𝑈 𝑘𝐵−𝑑𝐵𝑘𝑈 )

𝑐0(𝑐0−𝐶𝜙𝛽1)
𝑀∗

𝑊𝑈1 =
𝑘𝑈
𝛽0

(

𝜙𝑅
𝑈𝐵 + 𝑘𝐵(𝐹𝐵 − 𝐹𝑈 )

)

−𝛷𝑈0

𝑊𝑈2 = −𝛷𝑈1
2

𝑊𝑈3 = −𝛷𝑈2
3

The vertical displacement of the bonded beam is equal to the displacement of the upper beam 𝑤𝑇 = 𝑤𝑈 , the rotation can be
efined as: 𝜙𝑇 = 𝜙𝑈 − 𝜙𝑅

𝑈𝐵𝑘𝑈∕𝛽0.

.5. Stability of the test under displacement control

In a test with a dominant mode II component it is common to have an unstable crack propagation even under displacement
ontrol. The definition of an appropriate initial notch length is important to avoid this undesirable response.

Most of the tests used to determine the fracture toughness are performed by applying a single controlled displacement (𝑢) and
he corresponding load is recorded (𝐹 ), both related to the specimen compliance as: 𝑢 = 𝐶(𝑎)𝐹 , where 𝑎 is the crack length. Taking
nto account the only source of work in the system is due to 𝑢, the total ERR can be defined as:

𝐺 = 𝑢2 𝑑𝐶 (23)
6

2𝐶2 𝑑𝑎
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Fig. 4. Specimen under bending loads and DCB specimen.

the crack will increase if the fracture mechanics is fulfilled: 𝐺 = 𝐺𝐶 , being 𝐺𝐶 the critical fracture energy of the interface. The
stability under displacement controlled test can be defined by the derivative of Eq. (23) [53,54]: 𝑑𝐺∕𝑑𝑎 < 𝑑𝐺𝐶∕𝑑𝑎 ≈ 0. This results
into the condition

𝐶 𝑑2𝐶
𝑑𝑎2

< 2
(𝑑𝐶
𝑑𝑎

)2
(24)

A first approximation of the compliance that results from Euler beam theory without foundation stiffness is of the form:

𝐶 ≈ 𝐶𝑎𝑎
3 + 𝐶𝐿𝐿

3 (25)

where 𝐿 is the specimen length and 𝑎 the crack length. Then the stability under displacement control is obtained if the following
condition holds:

𝑎
𝐿

>
(

𝐶𝐿
2𝐶𝑎

)
1
3

(26)

It must be pointed out that Eq. (26) is usually a conservative limit since the foundation stiffness and the formation of a cohesive
one tends to decrease the initial stable notch length [55,56].

. Solution of the uncoupled case for typical specimens

In this section the energy release rate and compliance functions for some typical loading cases are presented and discussed for
ncoupled specimens (𝛼1 = 0).

.1. Specimens under bending loads

In Fig. 4, a specimen with applied bending loads is shown, the crack growth is governed by two independent applied bending
oments: 𝑀𝐴𝑈 and 𝑀𝐴𝐵 . The mode I and mode II ERR is defined by Eq. (21) as:

𝐺𝐼 = (𝑑𝑈𝑀𝐴𝑈+𝑑𝐵𝑀𝐴𝐵)2
2(𝑑𝑈+𝑑𝐵 )

and 𝐺𝐼𝐼 =
𝛼23
8𝛼2

(

𝑀𝐴𝐵 −𝑀𝐴𝑈
)2 (27)

where 𝑑𝑈𝑀𝐴𝑈 + 𝑑𝐵𝑀𝐴𝐵 ≥ 0 to avoid contact between the arms.
The application of bending loads have some special advantages against the typical application of forces; the ERR does not depend

on the crack length, as a consequence Eqs. (27) are valid for large displacements and if the ratio of applied loads is constant the mixed
mode ERR is also constant, the crack grows in self-similar regime and the response is also valid for large cohesive zones. Furthermore
the shear and out-of-plane elastic properties do not influence the ERR. In spite of the previously mentioned advantages the apparatus
required to apply moments is more complex that the ones that apply forces and it is not widely used yet [57,58]. Finally, the pure
mode I is obtained when the moments at both arms are equal 𝑀𝐴𝑈 = 𝑀𝐴𝐵 , and pure mode II when 𝑑𝑈𝑀𝐴𝑈 + 𝑑𝐵𝑀𝐴𝐵 = 0 if the
condition 𝛼1 = 0 holds.

5.2. Double Cantilever Beam (DCB)

For the DCB specimen the applied load 𝐹 produces at crack tip: 𝐹𝑈 = 𝐹𝐵 = 𝐹 and 𝑀𝐴𝑈 = 𝑀𝐴𝐵 = 𝐹𝑎. According to Eq. (16)
𝑤𝐼𝐼0 = 0 and a DCB specimen produces pure mode I loading. The displacement at applied loads can be determined as:

𝑢𝐷𝐶𝐵 =
𝑑𝑈 + 𝑑𝐵

3
𝐹𝑎3 + 𝛽0𝐹𝑎 + 𝜙𝑈𝐵0𝑎 +𝑤𝐼0

Taking into account equation (19) it is possible to define the compliance as:

𝐶𝐷𝐶𝐵 =
𝑢𝐷𝐶𝐵
𝐹

=
𝑑𝑈 + 𝑑𝐵

3
(

𝑎3 + 3𝛥𝐼𝑎
2 + 3𝛥2

𝐼𝐿𝑎 + 𝛥3
𝐼𝐶

)

(28)

where

𝛥 =
√

2
√

𝑐0+𝑐2 , 𝛥2 = 2 − 𝛽0 and 𝛥3 = −3𝑐0 𝛥 (29)
7

𝐼 𝑐0−𝛽1𝐶𝜙 𝐼𝐿 𝑐0−𝛽1𝐶𝜙 𝛽1 𝐼𝐶 𝛽1𝐶𝐼
𝐼
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Fig. 5. Relation between the angles of the beam.

The energy release rate can be determined by means of Eq. (21a) or by the compliance method:

𝐺𝐼 =
𝑑𝑈 + 𝑑𝐵

2
𝐹 2(𝑎2 + 2𝛥𝐼𝑎 + 𝛥2

𝐼𝐿) (30)

The term 𝛥𝐼 is the most important and it is quite common to simplify expressions (28) and (30) as:

𝐶𝐷𝐶𝐵 ≈
𝑑𝑈 + 𝑑𝐵

3
(

𝑎 + 𝛥𝐼
)3 (31a)

𝐺𝐼 ≈
𝑑𝑈 + 𝑑𝐵

2
(𝑎 + 𝛥𝐼 )2𝐹 2 (31b)

If 𝐶𝜙 = 0 the following equality holds: 𝛥𝐼 = 𝛥2
𝐼𝐿 and the ERR of Eq. (31) is exact, not the compliance because 𝛥𝐼 ≠ 𝛥𝐼𝐶 .

The same solution presented here has been published for symmetric laminates in Kanninen [6] and Williams [10]. For the case of
𝐶𝜙 = 0 the results are equivalent to the solution presented by Kondo [12] and if 𝛽0 = 0 (Euler beam) by Kanninen [59] and Ozdil
nd Carlsson [9].

For orthotropic monomaterial joints, with principal material directions oriented in the crack direction, the parameter 𝛥𝐼 results

𝛥𝐼 = ℎ
√

𝐸
18𝑘𝑠𝐺

√

√

√

√

√

√

√

√

√

√

√

3 −

𝐸𝐸𝑇 𝑘𝐼
𝑘𝜙+𝑘𝑠
𝑘𝑠

+ 3(𝑘𝜙 − 𝑘𝑠)𝐺

(

𝐺𝑘𝜙 + 2
√

𝐸𝐸𝑇 𝑘𝐼
𝑘𝜙+2𝑘𝑠
3𝑘𝑠

)

(

𝐺𝑘𝜙 +
√

𝐸𝐸𝑇 𝑘𝐼
𝑘𝜙+2𝑘𝑠
3𝑘𝑠

)2

here 𝐸 and 𝐸𝑇 are the in-plane and out-of-plane Young’s modulus respectively, and 𝐺 the shear modulus. This result is equal to
the obtained by Williams [10] with 𝑘𝜙 = 𝑘𝑠 and 𝑘𝐼 = 1:

𝛥𝐼 = ℎ
√

𝐸
18𝑘𝑠𝐺

√

√

√

√

√

3 −
2𝐸𝐸𝑇

(

𝑘𝑠𝐺 +
√

𝐸𝐸𝑇

)2

Williams [10] proposed a fitting for 𝛥𝐼 that reproduce a set of numerical results:

𝛥𝐼 = ℎ
√

𝐸
11𝐺

√

√

√

√

√

3 −
2𝐸𝐸𝑇

(

50𝐺∕59 +
√

𝐸𝐸𝑇

)2
(32)

this result is obtained by considering 𝑘𝑠 = 𝑘𝜙 = 11∕18 and 𝑘𝐼 = 0.52.
It must be pointed out that the 𝛥𝐼 , usually used with Eq. (31), is adjusted by means of finite element method to obtain precise

enough results. This procedure is still more complex for specimens considered in this paper where the upper and bottom arms are
of different materials.

By means of Rice [60] and Cherepanov [61] J-integral, Paris and Paris [62] showed that for a symmetric DCB specimen the
following relation holds: 𝐽 = 𝐹𝜙𝑆

𝐷𝐶𝐵 , where 𝜙𝑆
𝐷𝐶𝐵 is the rotated angle at load application point, determined as the derivative of

out-of-plane displacement. By considering the angles shown in Fig. 5: 𝜙𝑆
𝐷𝐶𝐵 = 𝜙𝐷𝐶𝐵 + 𝛥𝜙𝑆

𝐷𝐶𝐵 , where 𝜙𝐷𝐶𝐵 = (𝑑𝑈 + 𝑑𝐵)𝐹𝑎∕2 +𝜙𝑈𝐵0
nd 𝛥𝜙𝑆

𝐷𝐶𝐵 = 𝛽0𝐹 , Eq. (30) can be expressed as:

𝐺𝐼 = 𝐹𝜙𝑆
𝐷𝐶𝐵 (33)

𝑆
𝐷𝐶𝐵 can be measured by the difference of angles of two inclinometers bonded at the load application points of the upper and
ottom beam surfaces. This is a remarkable result because allows the determination of the fracture energy without considering the
lastic properties of the materials, specially those related with the out-of-plane direction.

.3. Fixed mixed mode ratio specimens

Single Cantilever Beam (SCB) and Single Leg Bending (SLB) specimens allow a mixed mode ERR by pulling a single arm as shown
8

n Fig. 6, for symmetric laminates the mixed mode is approximately 𝐺𝐼𝐼∕𝐺 ≈ 3∕7 for large enough crack lengths (𝑎).
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Fig. 6. Single Cantilever Beam (SCB) and Single Leg Bending (SLB) specimens.

5.3.1. Single Cantilever Beam (SCB)
By considering that 𝑀𝐴𝑈 = 𝐹𝑎 and 𝐹𝑈 = 𝐹 as the only applied loads at crack tip, the mode I and II ERR are defined as:

𝐺𝐼 =
𝑑2𝑈

𝑑𝑈 + 𝑑𝐵
𝐹 2

2
(

𝑎2 + 2𝛥𝐼𝑎 + 𝜉𝛥2
𝐼𝐿

)

+ 𝑘𝑈𝐶𝜙𝜅
𝑅
𝑈𝐵

𝐹 2

2
(34a)

𝐺𝐼𝐼 = 𝐹 2
𝛼23
8𝛼2

(

𝑎 + 𝛥𝐼𝐼
)2 (34b)

here 𝜉 = (𝑑𝑈 − 𝛽1𝑘𝑈𝐶𝜙)∕(𝑑𝑈 (1 + 𝛽0𝐶𝜙)).
The displacement at loading point can be computed by the expression: 𝑢𝑆𝐶𝐵 = 𝑑𝑈

3 𝐹𝑎3 + 𝑘𝑈𝐹𝑎 − 𝑤𝑇 − 𝜙𝑇𝐿, where 𝑤𝑇 and 𝜙𝑇
are the displacement and angle of the bonded part defined in Section 4.4. The compliance is defined as:

𝐶𝑆𝐶𝐵 =
𝑑2𝑈

3(𝑑𝑈+𝑑𝐵 )

(

𝑎3 + 3𝛥𝐼𝑎2 + 3𝜉𝛥2
𝐼𝐿𝑎 + 𝜉2𝛥3

𝐼𝐶
)

+

+
𝛼23
12𝛼2

(

𝑎 + 𝛥𝐼𝐼
)3 + 𝑑𝑇

𝐿3

3 + 𝑘𝑇𝐿 + 𝑘𝑈𝐶𝜙𝜅𝑅
𝑈𝐵𝑎 −

𝛼23
12𝛼2

𝛥3
𝐼𝐼

(35)

here

𝑑𝑇 = 𝑑𝑈 𝑑𝐵
𝑑𝑈+𝑑𝐵

−
𝛼23
4𝛼2

and 𝑘𝑇 = 𝑘𝑈 𝑘𝐵
𝑘𝑈+𝑘𝐵

(36)

are the bending and shear compliances of the bonded part of the beam, respectively.
The ERR of the SCB can also be expressed taking into account the rotation of the surface of the beam at applied point according

to the expression:

𝐺 = 𝐹𝜙𝑆
𝑈 −

(

𝑑𝑇
2
𝐿2 + 𝑘𝑆𝐶𝐵

)

𝐹 2 (37)

where 𝜙𝑆
𝑈 = 𝑑𝑈𝐹𝑎2∕2−𝜙𝑇 +𝐹𝑘𝑈 is the rotation angle at the surface where the load is applied as shown in Fig. 6. The only significant

erm in the parenthesis is the term 𝑑𝑇𝐿2. The shear coefficient is defined as

𝑘𝑆𝐶𝐵 = 𝑘𝑇 −
𝜉𝑑𝑈
2𝛽1

(𝑘𝑈 + 𝑘𝑅𝑈𝐵) −
𝛼23𝛥

2
𝐼𝐼

8𝛼2
−

𝐶𝜙

2
(

𝑘𝑅𝑈𝐵
)2

The first two terms are related with the shear stiffness of the beam and the last two to the remaining rotation and shear displacement
𝑤𝑅

𝐼𝐼 and 𝜙𝑅
𝑈𝐵 (see Fig. 3).

The mode I ERR can also be defined taking into account the rotation angles as:

𝐺𝐼 = 𝐹
𝑑𝑈

𝑑𝑈 + 𝑑𝐵

(

𝜙𝑆
𝑈 − 𝜙𝑆

𝐵
)

−

(

𝜉𝑑2𝑈𝛽0
𝛽21

− 𝑘𝑈𝐶𝜙𝜅
𝑅
𝑈𝐵

)

𝐹 2

2
(38)

where 𝜙𝑆
𝐵 = −𝜙𝑈𝐵0−𝜙𝑇 is the rotation angle at the surface of the bottom arm. The mode II ERR can be obtained taking into account

Eqs. (37) and (38): 𝐺𝐼𝐼 = 𝐺 − 𝐺𝐼 .
Neglecting the last term in Eq. (34a) the mixed mode 𝐵 = 𝐺𝐼𝐼∕𝐺 is defined as

𝐵 ≈
𝛼23 (𝑑𝑈+𝑑𝐵 )

𝛼23 (𝑑𝑈+𝑑𝐵 )+4𝛼2𝑑2𝑈𝑅2
𝑎

where 𝑅𝑎 =
√

𝑎2+2𝛥𝐼 𝑎+𝜉𝛥2𝐼𝐿
𝑎+𝛥𝐼𝐼

(39)

where for common specimens 𝑅𝑎 ≈ 1. It must be pointed out that for asymmetric specimens two different mixed mode ratio can be
btained by turning the specimen upside down.

Under displacement control the stability condition is defined by Eq. (24), taking into account that 𝑎3 is the most important term
a simplification of Eq. (26) can be applied result in:

𝑎 >
(

𝑑𝑇
)

1
3

(40)
9

𝐿 2(𝑑𝑈 − 𝑑𝑇 )
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For a specimen with two homogeneous arms of longitudinal Young modulus, 𝐸𝑈 and 𝐸𝐵 that holds the condition 𝐸𝑈ℎ2𝑈 = 𝐸𝐵ℎ2𝐵 ,
the mixed mode and the stability condition can be approximated as:

𝐵 = 𝐺𝐼𝐼
𝐺 ≈ 3

3+4
√

𝐸𝑈 ∕𝐸𝐵
and 𝑎

𝐿 > 0.415
(

7
3+4

√

𝐸𝑈 ∕𝐸𝐵

)
1
3 (41)

.3.2. Single Leg Bending (SLB)
The SLB specimen is shown in Fig. 6, commonly defined with 𝛾 = 1. The mode I and II energy release rate are expressed as:

𝐺𝐼 =
𝑑2𝑈

𝑑𝑈 + 𝑑𝐵
𝛾2𝐹 2

8
(

𝑎2 + 2𝛥𝐼𝑎 + 𝜉𝛥2
𝐼𝐿

)

+ 𝑘𝑈𝐶𝜙𝜅
𝑅
𝑈𝐵

𝛾2𝐹 2

8
(42a)

𝐺𝐼𝐼 = 𝛾2𝐹 2
𝛼23
32𝛼2

(

𝑎 + 𝛥𝐼𝐼
)2 (42b)

The mixed mode is the same as for the SCB specimen and is defined by Eq. (39).
The displacement, taking into account the left part of the specimen, is defined as:

𝑢𝑆𝐿𝐵 =
𝑑𝑈
3

𝛾𝐹
2

𝑎3 + 𝑘𝑈
𝛾𝐹
2

𝑎 −𝑤𝑇 − (𝜙𝑇 + 𝜙𝐹 )𝐿(2 − 𝛾) (43)

where 𝜙𝐹 is the rotation angle at load application point (as defined in Fig. 6). The displacement can also be expressed taking into
account the right part of the beam as:

𝑢𝑆𝐿𝐵 =
(

𝑑𝑇
𝛾3𝐿3

3
+ 𝑘𝑇𝐿𝛾

)

(

1 −
𝛾
2

)

𝐹 + 𝛾𝐿𝜙𝐹 (44)

By solving the previous two equations the displacement and rotation at loading point can be defined, from here the compliance
s:

𝐶𝑆𝐿𝐵 =
𝛾2𝑑2𝑈

12(𝑑𝑈+𝑑𝐵 )

(

𝑎3 + 3𝛥𝐼𝑎2 + 3𝜉𝛥2
𝐼𝐿𝑎 + 𝜉2𝛥3

𝐼𝐶
)

+
𝛾2𝛼23
48𝛼2

(

𝑎 + 𝛥𝐼𝐼
)3

+ 𝑑𝑇
(2−𝛾)2𝛾2

6 𝐿3 + 𝑘𝑇
(2−𝛾)𝛾

2 𝐿 +
𝑘𝑈𝐶𝜙𝜅𝑅𝑈𝐵𝛾

2

4 𝑎 −
𝛾2𝛼23
48𝛼2

𝛥3
𝐼𝐼

(45)

The ERR can also be expressed with respect to some rotation angles defined in Fig. 6:

𝐺 =
(

𝛾
(

𝜙𝑆
𝑈 + 𝜙𝐹

)

− (2 − 𝛾)
(

𝜙𝑆
𝑅 − 𝜙𝐹

)) 𝐹
2

+ 𝑘𝑆𝐿𝐵𝐹
2 (46)

where the term shear term 𝑘𝑆𝐿𝐵 is usually negligible and is defined as:

𝑘𝑆𝐿𝐵 = (1 − 𝛾)𝑘𝑇 +
𝛾2

8

(

𝜉𝑑𝑈
𝛽1

(𝑘𝑈 + 𝑘𝑅𝑈𝐵) +
𝛼23𝛥

2
𝐼𝐼

4𝛼2
+ 𝐶𝜙(𝑘𝑅𝑈𝐵)

2

)

The mode I ERR can be expressed as:

𝐺𝐼 =
𝛾
2
𝐹

𝑑𝑈
𝑑𝑈 + 𝑑𝐵

(

𝜙𝑆
𝑈 − 𝜙𝑆

𝐵
)

−

(

𝜉𝑑2𝑈𝛽0
𝛽21

− 𝑘𝑈𝐶𝜙𝜅
𝑅
𝑈𝐵

)

𝛾2𝐹 2

8
(47)

where 𝜙𝑆
𝐵 is the rotation angle of the bottom arm of the specimen as shown in Fig. 6.

An approximation of the stability condition for the test under displacement control is defined by Eq. (26):

𝑎
𝐿

>
(

(2 − 𝛾)2𝑑𝑇
𝑑𝑈 − 𝑑𝑇

)

1
3

(48)

or two homogeneous materials it is simplified as:

𝑎
𝐿

> 0.523

(

7(2 − 𝛾)2

3 + 4
√

𝐸𝑈∕𝐸𝐵

)
1
3

(49)

5.4. Mode II specimens

End-Loaded Split (ELS) and End-Notched Flexure (ENF) tests shown in Fig. 7 are typical configurations to measure the mode II
fracture energy [14,17], both are standardized for symmetric specimens by ISO [63] and ASTM [4], respectively.
10
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Fig. 7. End-Loaded Split (ELS) and End-Notched Flexure (ENF) tests.

5.4.1. End-Loaded Split (ELS)
By global equilibrium the loads in the bottom arm are defined as: 𝐹𝐵 = 𝐹𝑈 − 𝐹 , 𝑀𝐴𝐵 = 𝑀𝐴𝑈 − 𝐹𝑎 and 𝑁𝐵 = 𝑁𝑈 = 0, since no

shear stress are assumed to be present in the unbonded region. By means of this global conditions of equilibrium and Eqs. (16) and
(21b), the mode II energy release rate can be defined:

𝐺𝐼𝐼 = 𝐹 2

8
𝛼23
𝛼2

(

𝑎 + 𝛥𝐼𝐼
)2 (50)

In ELS and ENF specimens the load is applied in the bottom arm and is transferred to the upper arm by the contact of both arms,
or symmetric laminates the contact load is limited in a narrow region near the applied load, numerical results shows a relatively
mall contribution of friction to energy dissipation [53,64–67]. For asymmetric specimens the contact load is not limited to a small
egion at load line due to the non-proportionality of bending and shear stiffness of both arms. The equilibrium equation of the
nbounded upper arm is defined by considering a null crack opening (𝑤𝐼 = 0), by means of the derivative of Eq. (A.3), introducing
quation (A.1) and taking into account 𝑁𝑈 = 0 and 𝑉𝑈 = 𝑑𝑀𝑈∕𝑑𝑥. The following differential equation is defined:

𝑑2𝑤𝐼

𝑑𝑥2
= 𝛽0

𝑑2𝑀𝑈

𝑑𝑥2
+ 𝛽1𝑀𝑈 − 𝑑𝐵𝐹𝑥 = 0 (51)

where 𝑥 = 0 is the position of the loading point. Note that Eq. (51) is obtained by considering a stiff contact between the arms. The
solution of this differential equation is:

𝑀𝑈 = −𝐹
𝑑𝑈 + 𝑑𝐵

⎡

⎢

⎢

⎢

⎢

⎣

𝑑𝐵𝑥 +
𝐶𝜙𝛽1𝜅𝑅

𝑈𝐵

1 + (1 + 𝐶𝜙𝛽0)−1∕2

√

−𝛽0
𝛽1

sinh
(

𝑥
√

−𝛽1
𝛽0

)

sinh
(

𝑎
√

−𝛽1
𝛽0

)

⎤

⎥

⎥

⎥

⎥

⎦

The condition of 𝑤𝐼1 = 0 for stiff contact (𝐶𝐼 → ∞) at crack tip is imposed. The contact stress in the interface is determined by
the second derivative of the bending moment and is expected to be negative: 𝜎 = 𝑑2𝑀𝑈∕𝑑𝑥2 ≤ 0, this condition holds if 𝜅𝑅

𝑈𝐵 ≤ 0:

𝑘𝐵𝑑𝑈 ≥ 𝑘𝑈𝑑𝐵 (52)

this usually corresponds with the thicker bottom arm.
The specimen compliance can be computed by taking into account the displacement defined in Eq. (22):

𝐶𝐸𝐿𝑆 =
𝛼23
12𝛼2

(

𝑎 + 𝛥𝐼𝐼
)3 + 𝑑𝑇

𝐿3

3
+ 𝑘𝑇𝐿 −

𝛼23
12𝛼2

𝛥3
𝐼𝐼 + 𝐶 (𝑎)

𝐸𝐿𝑆𝑎 − 𝐶 (𝑐)
𝐸𝐿𝑆 (53)

where

𝐶 (𝑎)
𝐸𝐿𝑆 = 𝐶𝜙(𝑘𝑅𝑈𝐵)

2 (1 + 𝐶𝜙𝛽0
)

and 𝐶 (𝑐)
𝐸𝐿𝑆 =

(𝐶𝜙𝑘𝑅𝑈𝐵 )
2𝛽0

1+(1+𝛽0𝐶𝜙)−1∕2

√

−𝛽0
𝛽1

(54)

It must be pointed out that the ERR computed by the compliance method is not exactly the defined by Eq. (50) because there
s a term related with the rotation at crack tip and the stiffness 𝐶𝜙: 𝐺𝐼 = 𝐶 (𝑎)

𝐸𝐿𝑆𝐹
2∕2. This ERR is zero for symmetric laminates and

egligible in practical cases.
The ERR can also be defined by considering the rotation angle at load point as shown in Fig. 7:

𝐺 = 𝜙𝑆
𝑈𝐹 −

(

𝑑𝑇
2
𝐿2 + 𝑘𝐸𝐿𝑆

)

𝐹 2 (55)

where 𝑘𝐸𝐿𝑆 is negligible in practical cases and is expressed as:

𝑘𝐸𝐿𝑆 =
−𝑘𝑈𝑑𝐵

𝛽1
− 𝑘𝑅𝑈𝐵

(

𝑘𝑈
𝛽0

−
𝐶𝜙𝑑𝑈𝛽0

𝛽1

)

−
𝐶 (𝑎)
𝐸𝐿𝑆
2

−
𝛼23𝛥

2
𝐼𝐼

8𝛼2
The required length to obtain a stable test response under controlled displacement can be approximated:

𝑎
𝐿

>

(

2𝛼2𝑑𝑇
𝛼23

)1∕3

For homogeneous material this condition is reduced to: 𝑎∕𝐿 > 0.55.
11
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Fig. 8. Mixed Mode Bending (MMB) test.

5.4.2. End-Notched Flexure (ENF)
The geometry of the ENF specimen is sketched in Fig. 7. The standard specimen is defined with 𝛾 = 1 [4]. Following the same

arguments shown in the previous subsection for the ELS specimen, the ENF energy release rate is:

𝐺𝐼𝐼 =
𝛾2𝐹 2

32
𝛼23
𝛼2

(

𝑎 + 𝛥𝐼𝐼
)2 (56)

To enforce contact between the two arms and minimize the mode I contribution the condition of Eq. (52) holds also for ENF
pecimen.

The compliance of the ENF specimen can be obtained by taking into account equation (22):

𝐶𝐸𝑁𝐹 =
𝛾2𝛼23
48𝛼2

(

𝑎 + 𝛥𝐼𝐼
)3 +

𝑑𝑇 (2 − 𝛾)2𝛾2

6
𝐿3 +

𝑘𝑇 (2 − 𝛾)𝛾
2

𝐿 −
𝛾2𝛼23
48𝛼2

𝛥3
𝐼𝐼 +

𝛾2𝐶 (𝑎)
𝐸𝐿𝑆𝑎
4

(57)

The length 𝛥𝐼𝐼 is defined in Eq. (17), for a laminate with the same material at both arms: 𝛥𝐼𝐼 = ℎ
√

𝐸∕(8𝐺𝑘𝐼𝐼 ). The presented
form of 𝛥𝐼𝐼 is the same obtained by Chatterjee [15] with 𝑘𝐼𝐼 = 7.39 and also by Wang and Qiao [16] with 𝑘𝐼𝐼 = 7.5 who find the
parameter 𝑘𝐼𝐼 by fitting finite element results. On the other hand, this relation differs significantly from the empirical expression
determined by Wang and Williams [13]: 𝛥𝐼𝐼 = 0.43𝛥𝐼 where 𝛥𝐼 is the empirical equation (32) defined by 𝑘𝑠 = 𝑘𝜙 = 11∕18 and
𝑘𝐼 = 0.52. To obtain the same results with the proposed expression than the common definition of Wang and Williams [13] it is
equired to define 𝑘𝐼𝐼 as:

𝑘𝐼𝐼 = 63
8

⎛

⎜

⎜

⎜

⎝

3 −
2𝐸𝐸𝑇

(

50𝐺∕59 +
√

𝐸𝐸𝑇

)2

⎞

⎟

⎟

⎟

⎠

−1

here 𝑘𝐼𝐼 is not constant and it can change between 2.65 to 7.87 by decreasing the shear modulus. This equation depends on the
ut-of-plane modulus (𝐸𝑇 ) contrary to the results of Chatterjee [15] and Wang and Qiao [16], the present solution and also the
umerical results presented by Wang and Williams [13].

As in the previous cases the difficulty to define 𝛥𝐼𝐼 can be overcomed by means of the measurements of the rotation angles
efined in Fig. 7:

𝐺 =
(

𝛾
(

𝜙𝑆
𝑈 + 𝜙𝐹

)

− (2 − 𝛾)
(

𝜙𝑆
𝑅 − 𝜙𝐹

)) 𝐹
2

+ 𝑘𝐸𝑁𝐹𝐹
2 (58)

where

𝑘𝐸𝑁𝐹 = (1 − 𝛾)𝑘𝑇 +
𝛾2

8

(

𝑘𝑇 +
𝑘𝑈𝑑𝐵
𝛽1

+ 𝑘𝑅𝑈𝐵

(

𝑘𝑈
𝛽0

−
𝐶𝜙𝑑𝑈𝛽0

𝛽1

)

+
𝛼23𝛥

2
𝐼𝐼

4𝛼2

)

The ENF specimen is known to be unstable in most of the cases, the condition of stable crack growth is defined as:

𝑎
𝐿

>

(

4𝛼2𝑑𝑇 (2 − 𝛾)2

𝛼23

)
1
3

(59)

For beams with two homogeneous materials it results in 𝑎∕𝐿 > 0.69(2 − 𝛾)1∕3 [53], note that the stability condition does not
depend on the ratio 𝐸𝑈∕𝐸𝐵 .

5.5. Mixed Mode Bending (MMB) test

The mixed mode bending test sketched in Fig. 8 allows the determination of different relation between mode I and mode II by
changing the length ratio 𝑏 [18,19,21–23]. This test is ASTM standardized [3] for symmetric laminates with 𝛾 = 1.
12
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The applied loads at crack tip (see Fig. 1) are 𝑀𝐴𝑈 = 𝐹𝑈𝑎, 𝑀𝐴𝐵𝑈 = 𝐹𝐵𝑎, 𝐹𝑈 = 𝑏𝐹∕(2 − 𝛾) and 𝐹𝐵 = (𝑏 − 𝛾)𝐹∕2. It is of interest
to define

𝑚𝐼 = 1
𝛽1

(

𝑑𝐵
𝑏−𝛾
2 + 𝑑𝑈

𝑏
2−𝛾

)

and 𝑚𝐼𝐼 = 𝑏−𝛾
2 − 𝑏

2−𝛾 (60)

The mode I and II ERR can be expressed as:

𝐺𝐼 =
(𝑑𝑈 + 𝑑𝐵)𝐹 2

2

(

𝑚2
𝐼
(

𝑎2 + 2𝛥𝐼𝑎 + 𝛥2
𝐼𝐿

)

+ 𝛥2
𝜙

)

(61a)

𝐺𝐼𝐼 = 𝐹 2
𝑚2
𝐼𝐼𝛼

2
3

8𝛼2

(

𝑎 + 𝛥𝐼𝐼
)2 (61b)

where

𝛥2
𝜙 =

𝐶𝜙𝑚𝐼𝐼𝜅𝑅
𝑈𝐵

𝑑𝑈 + 𝑑𝐵

(

𝜅𝑅
𝑈𝐵(1 + 𝛽0𝐶𝜙)𝑚𝐼𝐼 +

(

𝛽0 − 𝛽1𝛥
2
𝐼𝐿

)

𝑚𝐼
)

The compliance of the MMB specimen is defined by the expression:

𝐶𝑀𝑀𝐵 =
𝑚2
𝐼𝐼 𝛼

2
3

12𝛼2

(

𝑎 + 𝛥𝐼𝐼
)3 +

𝑚2
𝐼 (𝑑𝑈+𝑑𝐵 )

3

(

𝑎3 + 3𝛥𝐼𝑎2 + 3𝛥2
𝐼𝐿𝑎 + 𝛥3

𝐼𝐶
)

+𝑑𝑇
2𝑚2

𝐼𝐼 (2−𝛾)
2

3 𝐿3 + 𝑘𝑇
2𝑚2

𝐼𝐼 (2−𝛾)
𝛾 𝐿 + (𝑑𝑈 + 𝑑𝐵)𝛥2

𝜙𝑎 + 𝐶 (𝑐)
𝑀𝑀𝐵

(62)

where

𝐶 (𝑐)
𝑀𝑀𝐵 =

𝑚𝐼𝐼𝛥3
𝐼𝐶

3

(

𝑚𝐼𝑑𝐵 +
𝐶𝜙𝜅𝑅

𝑈𝐵𝑏
2 − 𝛾

)

−
𝑚2
𝐼𝐼𝛼

2
3

12𝛼2
𝛥3
𝐼𝐼

To avoid the determination of the foundation properties of the material it is possible to measure the rotation angles of Fig. 8, in
this case the ERR can be expressed as:

𝐺 =

(

𝑏
𝜙𝑆
𝑈 + 𝜙𝐹

2 − 𝛾
− (𝑏 − 𝛾)

𝜙𝑆
𝐵 + 𝜙𝐹

2
− (2 + 𝑏 − 𝛾)

𝜙𝑆
𝑅 − 𝜙𝐹

2

)

𝐹 + 𝑘𝑀𝑀𝐵𝐹
2 (63)

where

𝑘𝑀𝑀𝐵 =
(

2+(2−𝑚𝐼 )(𝑏−𝛾)
2 + 𝑏𝑚𝐼𝐼

2−𝛾 − 𝑚𝐼𝐼𝑑𝑈 (𝑑𝐵𝑚𝐼𝐼+𝛽1𝑚𝐼 )
𝛽21

)

𝑘𝑇 +
𝑚2
𝐼𝐼 𝛼

2
3𝛥

2
𝐼𝐼

8𝛼2

−
𝛽0𝑚2

𝐼
2 + 𝑚2

𝐼𝐼𝑘
𝑅
𝑈𝐵

(

2𝑑𝑈
𝛽1

−
𝑘𝑅𝑈𝐵

(

𝐶2
𝜙𝛽

2
0+5𝐶𝜙𝛽0+4

)

2𝛽0

)

−
𝑚𝐼𝑚𝐼𝐼 (𝑑𝑈 𝑘2𝐵−𝑑𝐵𝑘

2
𝑈 )

𝛽0𝛽1

as in the previous cases the contribution of 𝑘𝑀𝑀𝐵 is insignificant for long specimens. The mode I ERR can be determined as:

𝐺𝐼 = −𝑚𝐼
(

𝜙𝑆
𝑈 − 𝜙𝑆

𝐵
)

𝐹 −
(

𝑚2
𝐼𝛽0 − 𝑚2

𝐼𝐼𝐶𝜙(𝑘𝑅𝑈𝐵)
2(1 + 𝛽0𝐶𝜙)

) 𝐹 2

2
(64)

Neglecting the small term 𝛥𝜙 in 𝐺𝐼 of Eq. (61a) the mixed mode is defined as:

𝐵 ≈
𝑚2
𝐼𝐼 𝛼

2
3

𝑚2
𝐼𝐼 𝛼

2
3+4𝑚

2
𝐼 𝛼2(𝑑𝑈+𝑑𝐵 )𝑅2

𝑎
where 𝑅𝑎 =

√

𝑎2+2𝛥𝐼 𝑎+𝛥2𝐼𝐿
𝑎+𝛥𝐼𝐼

(65)

The mixed mode depends on the length of the arm 𝑏𝐿, it is of special interest to know the value of 𝑏 to obtain a desired mixed
ode ratio 𝐵. Neglecting the small term 𝛥𝜙:

𝑏 ≈ 𝛾(𝛾 − 2)
𝛼23𝛽1𝛾𝑅𝑏 + 4𝛼2𝑑𝐵(𝑑𝐵𝛾 + 2𝛽1)𝑅2

𝑎 + 4𝑅𝑎𝛽1𝛼3
√

−𝑅𝑏𝛽1𝛼2
4𝑅2

𝑎𝛼2(2𝛽1 + 𝑑𝐵𝛾)2 + 𝛼23𝛽1𝛾
2𝑅𝑏

here 𝑅𝑏 = (1 − 𝐵)∕𝐵.
The required crack length to have a stable propagation can be approximated as:

𝑎
𝐿

>

(

4𝐵(2 − 𝛾)2𝑑𝑇 𝛼2
𝛼23

)
1
3

(66)

6. Conclusions

In the present contribution the required equations to characterize the interface between different materials are presented
based on Timoshenko beam theory with elastic foundation. The solution is presented for beams that hold the following relation:
𝑑𝑈ℎ𝑈 − 2𝑏𝑈 = 𝑑𝐵ℎ𝐵 + 2𝑏𝐵 , this relation appears to be mandatory to obtain a consistent mixed mode; i.e. an independent mixed

ode with respect to the fracture toughness.
13
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Some useful expressions of the compliance and energy release of common specimens are defined. The energy release rate is
efined by the applied loads and also taking into account some rotation angles, the latter requires the measurement of rotations
y means of inclinometers but are almost independent of the foundation parameters that usually are fitted with numerical models.
inally, the conditions of stable test under displacement control are defined. The results presented are useful to characterize the
nterface fracture properties of bonded materials with beam-like geometry specimens.
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ppendix. Differential equations

From the derivative of 𝜙𝑈𝐵 in (4) and introducing bending constitutive Eqs. (6) and equilibrium Eqs. (1)
𝑑𝜙𝑈𝐵
𝑑𝑥

= −𝛽1𝑀𝑈 − 𝛽2𝑁𝑈 + 𝑑𝐵
(

𝐹𝑈 − 𝐹𝐵
)

𝑥 − 𝑑𝜙𝑅
𝑈𝐵 (A.1)

where

𝑑𝜙𝑅
𝑈𝐵 = 𝑑𝐵

(

𝑀𝐴𝐵 −𝑀𝐴𝑈 +𝑁𝐴𝑈
ℎ𝑈 + ℎ𝐵

2

)

+ 𝑏𝐵(𝑁𝐴𝑈 +𝑁𝐴𝐵) (A.2)

From the derivative of 𝑤𝐼 in (4) and introducing bending constitutive Eqs. (6) and equilibrium Eqs. (1)

𝑑𝑤𝐼
𝑑𝑥

= 𝛽0𝑉𝑈 − 𝜙𝑈𝐵 − 𝑘𝐵(𝐹𝐵 − 𝐹𝑈 ) (A.3)

By derivating twice and introducing equation (A.1)

𝑑3𝑤𝐼

𝑑𝑥3
= 𝛽0

𝑑2𝑉𝑈
𝑑𝑥2

+ 𝛽1
𝑑𝑀𝑈
𝑑𝑥

+ 𝛽2
𝑑𝑁𝑈
𝑑𝑥

− 𝑑𝐵
(

𝐹𝑈 − 𝐹𝐵
)

(A.4)

By means of bending equilibrium of Eq. (1)

𝑑3𝑤𝐼

𝑑𝑥3
= 𝛽0

𝑑2𝑉𝑈
𝑑𝑥2

+ 𝛽1

(

𝑉𝑈 −
ℎ𝑈
2

𝑑𝑁𝑈
𝑑𝑥

+
𝑑𝑀𝐶
𝑑𝑥

)

+ 𝛽2
𝑑𝑁𝑈
𝑑𝑥

− 𝑑𝐵
(

𝐹𝑈 − 𝐹𝐵
)

(A.5)

derivating again and with load equilibrium of Eq. (1) and the foundation Eqs. (3)

𝑑4𝑤𝐼

𝑑𝑥4
= 𝛽0𝐶𝐼

𝑑2𝑤𝐼

𝑑𝑥2
+ 𝛽1

(

𝐶𝐼𝑤𝐼 −
ℎ𝑈
2

𝐶𝐼𝐼
𝑑𝑤𝐼𝐼
𝑑𝑥

+ 𝐶𝜙
𝑑𝜙𝑈𝐵
𝑑𝑥

)

+ 𝛽2𝐶𝐼𝐼
𝑑𝑤𝐼𝐼
𝑑𝑥

(A.6)

𝜙𝑈𝐵 can be defined by means of Eq. (A.3)

𝑑4𝑤𝐼

𝑑𝑥4
=
(

𝛽0𝐶𝐼 − 𝛽1𝐶𝜙
) 𝑑2𝑤𝐼

𝑑𝑥2
+ 𝛽1𝐶𝐼

(

1 + 𝛽0𝐶𝜙
)

𝑤𝐼 + 𝐶𝐼𝐼

(

𝛽2 − 𝛽1
ℎ𝑈
2

)

𝑑𝑤𝐼𝐼
𝑑𝑥

(A.7)

To obtain the other differential equation it is necessary to derive 𝑤𝐼𝐼 in Eq. (4):
𝑑𝑤𝐼𝐼
𝑑𝑥

= 𝛼2𝑁𝑈 + 𝛼1𝑀𝑈 −
𝛼3
2

(

𝐹𝐵 − 𝐹𝑈
)

𝑥 − 𝑑𝑤𝑅
𝐼𝐼 (A.8)

where

𝑑𝑤𝑅
𝐼𝐼 =

𝛼3
2

(

𝑀𝐴𝐵 −𝑀𝐴𝑈 +𝑁𝐴𝑈
ℎ𝑈 + ℎ𝐵

2

)

+
(

𝑎𝐵 +
ℎ𝐵
2
𝑏𝐵

)

(𝑁𝐴𝑈 +𝑁𝐴𝐵) (A.9)

It is possible to determine its derivative and substitute the shear elastic foundation constitutive equation:

𝑑2𝑤𝐼𝐼

𝑑𝑥2
= 𝛼2𝐶𝐼𝐼𝑤𝐼𝐼 + 𝛼1

𝑑𝑀𝑈
𝑑𝑥

−
𝛼3
2

(

𝐹𝐵 − 𝐹𝑈
)

(A.10)

To eliminate the bending moment 𝑀𝑈 we can proceed as after equation (A.4)

𝑑3𝑤𝐼𝐼

𝑑𝑥3
= 𝐶𝐼𝐼

(

𝛼2 − 𝛼1
ℎ𝑈
2

)

𝑑𝑤𝐼𝐼
𝑑𝑥

+ 𝛼1

(

𝐶𝐼
(

1 + 𝐶𝜙𝛽0
)

𝑤𝐼 − 𝐶𝜙
𝑑2𝑤𝐼

𝑑𝑥2

)

(A.11)
14
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