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A B S T R A C T   

Hemorrhagic stroke is the condition involving the rupture of a vessel inside the brain and is characterized by high 
mortality rates. Even if the patient survives, stroke can cause temporary or permanent disability depending on 
how long blood flow has been interrupted. Therefore, it is crucial to act fast to prevent irreversible damage. In 
this work, a deep learning-based approach to automatically segment hemorrhagic stroke lesions in CT scans is 
proposed. Our approach is based on a 3D U-Net architecture which incorporates the recently proposed squeeze- 
and-excitation blocks. Moreover, a restrictive patch sampling is proposed to alleviate the class imbalance 
problem and also to deal with the issue of intra-ventricular hemorrhage, which has not been considered as a 
stroke lesion in our study. Moreover, we also analyzed the effect of patch size, the use of different modalities, 
data augmentation and the incorporation of different loss functions on the segmentation results. All analyses 
have been performed using a five fold cross-validation strategy on a clinical dataset composed of 76 cases. 
Obtained results demonstrate that the introduction of squeeze-and-excitation blocks, together with the restrictive 
patch sampling and symmetric modality augmentation, significantly improved the obtained results, achieving a 
mean DSC of 0.86 ± 0.074, showing promising automated segmentation results.   

1. Introduction 

Stroke is one of the most common causes of death, holding the third 
position after ischemic heart disease and neonatal disorders (Roth et al., 
2018). It is a medical condition in which the brain tissues lose the ability 
to get oxygen due to a reduced or fully cut blood flow. This rapidly leads 
to the death of brain cells. There are two types of stroke: ischemic and 
hemorrhagic. Ischemic stroke is the most common type of stroke 
(around 87% of all strokes (Mozaffarian et al., 2016)) which is caused by 
a reduction of the blood supply to the brain tissues; other strokes are 
hemorrhagic, and they involve the rupture of a vessel inside the brain. In 
this case, brain cells get damaged due to the pressure of the leaked 
blood. Even though hemorrhagic stroke is less common, it is charac-
terized by high mortality rates (Kidwell and Wintermark, 2008). Time is 
the key factor in successful treatment of stroke, since early stroke 
diagnosis and treatment are related to positive patient outcome (Matsuo 
et al., 2017). Therefore, fast clinical actions are required in order to give 
the patient the most appropriate treatment. 

The most common imaging modalities for stroke diagnosis are 
Computed Tomography (CT) and Magnetic Resonance Imaging (MRI), 
CT imaging being the dominant modality for diagnosing hemorrhagic 
stroke (Heit et al., 2017). CT is widely available, inexpensive, rapid, and 
suitable for all patients. In general, when a patient arrives, CT is the first 
imaging performed. Subsequently, MRI can be used to diagnose other 
sub-types of hemorrhages. 

Hematoma segmentation plays an important part in clinical work-
flow. It allows tracking the hematoma volume growth quantitatively 
across several scans, and hence, detecting whether the hemorrhage is 
still actively bleeding. In addition, the segmentation can help to define a 
region of interest (ROI) and extract features that could be used for 
outcome prediction algorithms. In clinical practice the standard 
approach nowadays is manual delineation of the stroke lesion. However, 
this approach has disadvantages: it is both time-consuming and 
operator-dependent, which leads to subjective and non-reproducible 
results. To address these issues, automated segmentation algorithms 
have been suggested in recent years (Shahangian and Pourghassem, 
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2015). The initial attempts to segment hemorrhagic stroke lesions in CT 
images mostly relied on unsupervised approaches such as clustering 
techniques (Lončarić et al., 1995; Cosić and Lončarić, 1997), morpho-
logical operations (Lončarić et al., 1995; Perez et al., 2007), region 
growing or level sets (Bardera et al., 2009). 

In clinical practice, such automated tools can be used as comple-
ments in order to support a physician’s decisions. For instance, evalu-
ation of hematoma volume is significant and it has a strong independent 
association with outcome (De Oliveira Manoel et al., 2016), as it allows 
for improved prognosis when it is combined with physical examination 
to calculate the ICH (Intracranial Hemorrhage) score (Hakimi and Garg, 
2016). Besides hematoma volume, this score is based on other param-
eters, both patient-related factors and neuro-imaging findings (Hemphill 
et al., 2001). Nowadays, in clinical practice the ABC/2 method is 
commonly used to calculate hematoma volume, where A, B and C are 
dimensions derived from hemorrhage measurements from NCCT 
(non-contrast CT) images, assuming hematomas to be elliptical shaped 
(Chinda et al., 2018; Kidwell and Wintermark, 2008). Therefore, this 
quantification method has some limitations (including processing time, 
which is very important as stroke is a medical emergency) and intro-
duction of automated tools into clinical workflow could provide a 
necessary improvement in decision-making speed. Nowadays, 
commercially available solutions already exist and they help to optimize 
clinical workflow by accelerating the processing time and by improving 
diagnostic accuracy (Soun et al., 2020; Wismüller and Stockmaster, 
2020). 

The recent breakthrough and popularity of deep learning techniques 
has increased research interest and the number of proposed algorithms, 
especially Convolutional Neural Networks (CNN), which can be 
employed to segment stroke lesions. The proposed approaches included 
2D-methods, such as the work of Hssayeni et al. (2020), who used a 2D 
U-Net for segmenting intracranial hemorrhage. Chang et al. (2018) 
proposed a mask R-CNN algorithm, which used a custom hybrid 3D/2D 
variant of the feature pyramid network as a backbone to generate a 
shared set of image features for segmentation of different types of 
hemorrhagic stroke. 3D approaches were also proposed. For instance, 
Singh et al. (2019) presented a 3D CNN to segment several hematoma 
types, employing a novel thresholding method as a pre-processing step, 
while Hu et al. (2020) used an encoder-decoder CNN for segmenting 
intracranial hemorrhages. A patch-based 3D U-shaped network was 
proposed by Patel et al. (2019), although cases with sub-arachnoid and 
intra-ventricular hemorrhages were excluded from their dataset. The 
class imbalance issue was addressed by utilizing weighted maps for each 
patch. U-shaped architectures were also applied for hemorrhagic stroke 
(Wang et al., 2018). Kwon et al. (2019) used a Siamese U-Net with a 
healthy template to segment different sub-types of hemorrhagic stroke. 
Yao et al. (2020) proposed the use of multi-view CNN with a mixed loss 
function. This architecture shared some similarities with a U-Net, while 
the mixed loss function was designed to make the system robust to CT 
scans acquired in different medical centers, using different protocols. 
Other architectures such as a cascade CNN were built to detect and 
delineate several hemorrhage sub-types (Cho et al., 2019), including 
intra-ventricular hemorrhage. Kuang et al. (2020) presented a network 
named ψ-Net, where two attention blocks were used to suppress irrele-
vant information, and capture the spatial contextual information to 
refine the contours of the lesion. The method was evaluated on 2D-slices 
with different hematoma types. Finally, Kuo et al. (2019) proposed a 
patch-based FCN with Dilated ResNet 38 backbone, which performed 
both classification and segmentation tasks. 

In the present work, a deep learning approach for segmentation of 
hemorrhagic stroke lesions in non-contrast CT is proposed. In contrast to 
previous works, we introduced squeeze-and-excitation blocks to a U-Net 
architecture, similarly to the work of Woo et al. (2019) for ischemic 
stroke segmentation, but, in our case, using a 3D U-Net implementation. 
A balanced sampling technique is also proposed for patch extraction, 
restricting the sampling spatially and quantitatively to address the 

problem of intra-ventricular hemorrhage (i.e. blood flowing into the 
ventricles). To our knowledge, this is the first approach that deals with 
intra-ventricular hemorrhage as a background class, focusing only on 
the stroke lesion segmentation. Previous works utilized datasets either 
without this sub-type of stroke or having it segmented as another stroke 
class. In addition to standard data augmentation techniques, symmetric 
modality augmentation is also introduced to benefit from the brain 
hemispheres symmetry property to find more robust image features 
(Clèrigues et al., 2019). Our segmentation proposal is evaluated with a 
cross-validation strategy over a clinical dataset of 76 cases, analyzing in 
detail the impact of the different contributions introduced in our 
approach. 

2. Materials and methods 

2.1. Dataset 

The dataset used in this project consisted of 76 non-contrast head CT 
images acquired in the Hospital Dr. Josep Trueta, Girona, Spain. Some of 
the cases included also CT angiography and CT perfusion images. All the 
examinations were performed on a 128-slice CT scanner (Ingenuity; 
Philips Healthcare), whose image characteristics are summarized in 
Table 1. For non-contrast CT (CT NC) the slice thickness was 3 mm and 
the gap was 1.5 mm, whereas for CT angiography (CT Angio) the slice 
thickness was 0.9 mm with a gap of 0.45 mm. CT perfusion images 
consisted of 4 slices of 10 mm (Puig et al., 2017), but were not used in 
our work. The upper row of Fig. 1 shows an example of a non-contrast 
CT and CT angiography image used in our work. 

The gold reference standard consisted of the masks of the hemor-
rhagic stroke lesions manually delineated by expert radiologists on the 
non-contrast CTs. 

2.1.1. Intraventricular hemorrhage 
Intra-ventricular hemorrhage (IVH) or intra-ventricular bleeding is 

an extension of hemorrhage, which occurs within brain parenchyma, 
inside brain ventricles, where the cerebro-spinal fluid is produced. One 
of its sources can be the hemorrhagic stroke lesion adjacent to the 
ventricles. Since the source of signal in both pathologies is the same 
(blood leakage), the intensities of both regions on non-contrast CTs are 
also similar (Fig. 2). Such pathology is a bad prognosis sign, as expected 
mortality from it is between 50% and 80% (Hinson et al., 2010). Usually, 
IVH can be clearly confirmed from CT imaging from the presence of 
blood inside the ventricles. Therefore, the problem of segmenting 
intra-parenchymal hemorrhage (IPH) from IVH is not simple. 

Almost 15% of the cases in the Trueta dataset had IVH together with 
the stroke lesion. As the primary objective was the stroke lesion seg-
mentation, located only within brain tissues, the intra-ventricular 
hemorrhage was not delineated as a groundtruth. Thus, the developed 
method needs to be able to differentiate between IPH and IVH. As we 
will show later, the IVH is considered as part of the background class. 

2.1.2. Data preparation 
The initial preparation of non-contrast CT head scans requires 

removal of the coil and skull stripping (see Fig. 1) as those regions can 
confuse the algorithm and lead to undesired results. Both coil removal 
and skull stripping were done using morphological operations, like 
extracting the biggest connected component for coil removal. The skull 

Table 1 
Image characteristics of the dataset modalities used in our work: non-contrast CT 
(CT NC), CT angiography (CT Angio).  

Image modality Matrix Slice thickness, mm Gap, mm 

CT NC 512× 512  3 1.5 
CT Angio 512× 512  0.9 0.45  
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removal process is similar, it utilizes morphological operations to 
remove the borders of the skull and the final brain extraction is also 
based on extracting the biggest connected component. 

As stroke can appear in only one of the hemispheres of the brain, it 
could be useful to utilize features based on the mid-sagittal symmetry of 
those hemispheres, as proposed in Clèrigues et al. (2019). Therefore, a 
symmetric image of the brain was obtained from each image as follows. 
We flipped the brain CT and subsequently we registered this flipped 
image to the initial one using the FLIRT algorithm (from the FSL toolbox 
(Jenkinson and Smith, 2001; Jenkinson et al., 2002)). The overall 
pre-processing time including creation of symmetric modality took on 
average 4 min per image. Fig. 1 also shows one example of a flipped 
image. 

Additional pre-processing is necessary to use the angiography im-
ages. We cropped some images for cases that contained the upper body, 

and also registered the images to the non-contrast CT space so as to have 
the same voxel spacing. The final output of this processing is shown in 
the bottom row of Fig. 1. 

2.2. Proposed method 

Our proposed approach for segmenting the hemorrhagic stroke 
lesion is a 3D patch-based deep learning method based on a U-Net ar-
chitecture. As the lesion mostly occupies only a small volume inside the 
brain, class imbalance is a problem that has to be taken into account 
when training the network to avoid over-fitting to the negative class. 
Moreover, the dataset used assigned the IVH to background and there-
fore this has to be tackled within the developed algorithm. To address 
these issues we propose: (a) a balanced sampling technique to ensure 
equal distribution of both classes in the training set, and (b) restrictions 

Fig. 1. (a-b) Original image modalities and (c)–(e) pre-processed images used as input to the U-Net. (a) Non-contrast CT and (b) CT angiography, (c) pre-processed 
non-contrast CT, (d) symmetric version of (c), and (e) pre-processed CT angiography. 

Fig. 2. An example of intra-ventricular hemorrhage. Both IPH and IVH have similar intensities, even though the groundtruth provided only has IPH. Moreover, IVH 
deforms brain ventricles. 
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in regions to extract patches to distinguish between intra-parenchymal 
and intra-ventricular hemorrhages. At the training stage, to tackle 
these problems, regularization techniques are also applied, such as: (a) 
dropout, (b) data augmentation, and (c) early stopping. During testing, 
high overlap between extracted patches was used to improve the seg-
mentation results. 

2.2.1. Patch sampling 
The proposed approach is a patch based CNN architecture, which 

alleviate from computationally heavy load of large input images and 
also offers reduced training time (Long et al., 2015). For patch based 
methods, class imbalance can be an issue so it is important to control the 
process of patch extraction. In our work we used a balanced sampling 
strategy, ensuring that an equal number of patches representing both 
classes (lesion vs background) were extracted from each image. To avoid 
extracting a lot of patches from background and take more advantage of 
the dataset, the area to extract non-lesion patches was limited within the 
brain mask; in this way negative patches were uniformly extracted only 
from the region inside the brain. However, similarly to the work of 
Clèrigues et al. (2019), we utilized additional ways of controlling the 
patch extraction for specific aims. 

With the aim of improving the segmentation results on lesion bor-
ders, we extracted additional negative samples from the region around 
the hematoma border. Thus, we make the network learn more from 
these boundaries. This approach was inspired by Kushibar et al. (2018), 
who successfully used it for the segmentation of brain sub-cortical 
structures. 

As mentioned before, some images of the dataset contained intra- 
ventricular hemorrhage, which is not considered part of the intra- 
parenchymal lesion, but has a similar appearance. The first step to 
resolve this issue is taken during data preparation, when sampling the 
training patches. Voxels of IVH belong to the negative class, whereas the 
voxels of IPH belong to the positive (lesion) class. To make the network 
learn this dependence, we ensure that patches from the IVH area are 
represented in the training set. Since this abnormality occurs inside the 
brain ventricles, we use spatial information related to brain anatomy 
and we extract additional patches from the area of CSF ventricles. In the 
experimental section we will test two approaches for solving this issue. 
The first one comes from the observation that the brain ventricles are 
located in the medial area of the brain. Hence, we define a region of 
interest around the center of the brain volume. The coordinates of the 
brain center were calculated for each image separately. For each 
dimension we defined the first and last slice where the brain appears and 
took the coordinates of the middle slice. On the other hand, the second 
approach comes from the fact that intra-ventricular hemorrhage are 
hyper-intense voxels inside the brain (that do not belong to IPH). To 
define it automatically, we thresholded the whole image using an 
empirically found threshold that represented the intensity of the blood 
signal and then we excluded those voxels belonging to the lesion by 
using the available groundtruth. Moreover, some other hyper-intense 
structures such as brain borders and midlines were excluded by utiliz-
ing the fact that IVH has a bigger volume. Therefore, with the ROI 
defined in one of these two ways, we restrict the training patch sampling 
by assigning the fraction of negative patches forcibly extracted from this 
region. As the number of scans with IVH is not that huge, we may extract 
more training patches from this region by extracting the background 
patches only from the defined ROI. 

Hence, in the overall patch extraction pipeline, firstly, the target 
number of patches was set for each patient. 50% of patches were 
extracted uniformly from the whole volume of the brain, including a 
predefined fraction of them that were forcibly extracted from the area 
around the lesion boundary and the area related to the brain ventricles. 
Here, uniform sampling was done in order to make sure that all the parts 
of the brain were equally represented. In addition, 50% of patches were 
extracted from the lesion voxels. 

Furthermore, data augmentation techniques can be applied to the 

extracted patches, increasing the size of the patch dataset proportionally 
to the number of patches specified at the beginning. Reasonable trans-
formations are applied in terms of brain anatomy: horizontal and ver-
tical flip, and patch rotations of 90◦, 180◦, and 270◦. Therefore, in the 
training set, one patch was used six times, each time transformed with a 
different augmentation type. 

The patches were extracted from non-contrast CT scans but as we 
will see in Section 3, some experiments were complemented with their 
symmetric versions or angiography CT as additional input channels to 
the network. 

2.2.2. U-net with squeeze-and-excitation blocks 
As shown in Fig. 3, our work is based on a 3D U-Net architecture 

which incorporates squeeze-and-excitation blocks. We chose the U-Net 
considering its prevalence in medical imaging segmentation and the fact 
that it has been proven to work reliably with small datasets, while 3D 
patches provide more information than 2D. Similarly to what was done 
in the work of Woo et al. (2019) for the ischemic stroke segmentation 
problem, we propose to incorporate squeeze-and-excitation blocks into 
the 3D U-Net architecture, as they have shown improved performance 
for segmentation tasks. We use single 3× 3× 3 convolutions in both 
contracting and expansive paths and rectified linear unit (ReLU) as 
activation function. Down-sampling in each resolution step is performed 
by a 2× 2× 2 max pooling operation with a stride of 2, followed by 
dropout. In the expansive path, the up-sampling is performed with 
up-convolution of 2× 2× 2 with a stride of 2, followed by dropout. We 
introduce squeeze-and-excitation operations after encoder and decoder, 
as shown in Fig. 3. The goal of these blocks is to improve the quality of 
representations produced by a network by explicitly modeling the 
inter-dependencies between the channels. Structurally, this computa-
tional unit consist of: (a) a squeeze operator, which produces a descriptor 
for each of the channels of the image; and (b) an excitation operator, 
which aims to fully capture channel-wise dependencies. All this is done 
to enhance the informative features and suppress the weak ones. The 
effect of including these blocks will be evaluated in the experimental 
results section. The total number of parameters of the proposed network 
is 2,263,042. The overall configuration of network training and testing is 
described in the following section. 

2.2.3. Training and testing pipelines 
In the training stage, we composed the training and validation sets 

from the provided scans to train the weights of the network. As we will 
see in the experimental section, the effect of different numbers of 
patches and different patch sizes is analyzed. At the end, from each 
image in the training set 3,000 patches of size 32 × 32 × 16 were 
extracted following the patch sampling technique introduced previ-
ously, as presented in Fig. 4. Notice that the positive patches, shown 
with a green contour, are centered on lesion voxels, while negative 
patches, with red contours, are centered on the voxels not related to IPH. 

To take advantage of symmetry features, the symmetric image was 
added as another channel to each training image. Data augmentation 
was performed to increase the number of patches per image to 18,000, 
and its effect will be also analyzed in Section 3. 

Two different loss functions were also studied: focal loss and com-
bined Dice and Cross-entropy losses. Focal loss (Lin et al., 2017) gives 
less weight to easily classified examples and more weight to hard to 
classify examples, therefore it can be useful for the tasks involving class 
imbalance. On the other hand, a combination of Dice loss and 
Cross-entropy loss has also been popular for ischemic stroke segmenta-
tion tasks (Clèrigues et al., 2019). Adadelta was used as an optimizer 
since it did not require manual tuning of the learning rate (Zeiler, 2012). 
To prevent over-fitting, an early stopping technique with a patience 
tolerance of 15 was utilized when approaching the minimal loss on 
validation set. In addition, either the maximum number of epochs to 
train was set to 100 or else the training was performed until it met the 
early stopping condition. In practice, the number of epochs to train was 
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between 20 and 50. 
For the testing stage, given an image to segment, patches of the same 

size as in the training step were extracted uniformly from the whole 
image volume, as shown in Fig. 4. The extracted patches preserve a 
predefined degree of overlap between them, more than 50%, which was 

done to improve segmentation results (Bernal et al., 2019). Every patch 
was passed through the network, resulting in a predicted probability for 
each voxel. The output binary segmentation was produced by assigning 
the class label according to the maximum probability for each voxel. 

Fig. 3. The 3D architecture used in the proposed approach. The network is inspired by a 3D U-Net with incorporation of squeeze-and-excitation blocks. Blue blocks 
represent feature maps with a number of channels stated above or below them. Red triangles represent the location, where we incorporate squeeze-and-excitation 
operations. In the detailed description of these operations, C and r represent the number of input channels and reduction ratio, respectively. 

Fig. 4. Implemented patch sampling for training and testing 
stages. During training (upper figure), negative patches (red con-
tour) are extracted uniformly from the whole volume of the brain, 
and some fraction of them is extracted from the area around a 
lesion boundary and the area related to the brain ventricles. Posi-
tive patches (green contour) are centered on lesion voxels. During 
testing (bottom figure), the patches are extracted uniformly from 
the whole volume, preserving some degree of overlap.   
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2.2.4. Implementation details 
The proposed approach was implemented in Python using the 

Pytorch machine learning framework (Paszke et al., 2017). All experi-
ments were run on Ubuntu with 256GB RAM, and the network training 
was done on TITAN V GPU with 12 GB of memory. 

2.3. Evaluation 

All the experiments were performed with a 5-fold cross-validation 
across all 76 cases of the provided dataset, made up of 61 images in 
the training set and 15 images in the testing set. 

The Dice similarity coefficient (DSC) was used as an evaluation 
metric, as it is widely used to assess segmentation tasks as a measure of 
overlap between output segmentation and groundtruth: 

DSC =
2TP

2TP + FP + FN  

where TP, FP and FN refer to true positive, false positive and false 
negative voxels, respectively. 

To evaluate the statistical significance of differences between the 
obtained results, we used the dependent t-test for paired samples. 

3. Experimental results 

Experiments were performed to show the improvement of the pipe-
line through the development process. We analyzed the influence on the 
segmentation results for the different steps involved in the pipeline: 1) 
incorporation of squeeze-and-excitation blocks to the baseline U-Net 
architecture, 2) loss functions, 3) restrictive patch extraction to improve 
segmentation and to deal with the intra-ventricular hemorrhage, 4) use 
of different modalities, and 5) impact of data augmentation. 

3.1. Squeeze-and-excitation blocks 

The first experiment performed compared the performance of the 
proposed U-Net with the standard architecture. A balanced patch sam-
pling technique was used, extracting 3000 patches of size (32,32,16)
per patient, which empirically provided the best trade-off between 
performance and computational cost. The negative patches were 
extracted from the brain area only. The results are summarized in 
Table 2, detailed for the cases with and without intra-ventricular 
hemorrhages. 

From the table, we can see that incorporating the squeeze-and- 
excitation blocks into the standard U-Net architecture significantly 
improved the overall segmentation results of the dataset, increasing the 
average DSC and reducing the standard deviation (p < 0.01), although it 
does not help to break through the maximum segmentation DSC ob-
tained, changing only from 0.967 to 0.968. A qualitative comparison 
between using both architectures is shown in Fig. 5. 

3.2. Loss functions 

The second experiment relates to the performance of the loss func-
tions analyzed, focal loss and combined Dice and cross-entropy loss. The 
initial conditions for the experiment were using 3000 patches of size (32,

32,16) per image, and using brain mask and ROI around hematoma as 
restrictive conditions. 

The resulting segmentations of the model trained with the focal loss 
showed an average DSC of 0.796 ± 0.158, while using the combined 
cross-entropy and Dice loss, we obtained an average DSC of 
0.841 ± 0.108, improving the results significantly (p < 0.01). 

3.3. Patch size and restrictive patch extraction 

The third experiment performed was the study of the effect of the 
patch size and the sampling strategies. Considering the architecture used 
(with squeeze-and-excitation blocks incorporated) and the computa-
tional load, three patch sizes were tested: (24,24,8), (32,32,16), (48,48,
24). The obtained results are visually presented in the boxplots of Fig. 6. 
On the one hand, increasing patch size to (32,32,16) significantly 
improved mean DSC (p < 0.001) from 0.759 ± 0.183 to 0.842 ± 0.115, 
but, on the other hand, when the patch size was enlarged to (48,48,24), 
the average DSC was significantly decreased (p < 0.01) to 
0.805 ± 0.156. Moreover, we observed that none of the patch sizes 
helped to surpass the maximum DSC obtained (being 0.958, 0.968 and 
0.963 for each patch size, respectively). From Fig. 6 we noticed that the 
results obtained with patches of the size (32,32,16) were within the 
smaller range, which implies a lower dispersion. Therefore, for the rest 
of experiments we used the medium patch size of (32, 32, 16), that 
provided consistent performances. 

We also analyzed the effect of the different restricted sampling 
strategies, obtaining the results summarized in Table 3. Constraining the 
area to extract negative patches within the brain mask significantly 
improved segmentation results (p < 0.001). To improve and refine the 
lesion contours, we also defined a region of interest around the hema-
toma and a fraction of patches, which we defined empirically to be 30%, 
was extracted from this region. This ROI was represented as a cubic 
volume around the hematoma borders. Defining this region allowed the 
network to focus more on the area near the lesion borders and helped to 
significantly improve the obtained segmentation (p < 0.01). In addition, 
with this experiment, the minimum DSC obtained per case was notably 
improved, going from a DSC of 0.183 to 0.530. 

To tackle the problem of differentiating intra-parenchymal and intra- 
ventricular hemorrhage, we forced the network to learn more from IVH 
areas. Two different approaches were proposed: to define a cubic region 
of interest (ROI) around the central area of the brain or to define the ROI 
by just considering the IVH area (i.e. hyperintense voxels). The results of 
this experiment are shown in the two bottom lines of Table 3. Using the 
first approach, results increase by a small margin, although the standard 
deviation was also increased, meaning that more variability was added. 
The improvement was not significant (p > 0.05). Surprisingly, the 
improvement was larger in cases without IVH. In contrast, with the 
second approach, the results significantly decreased (p < 0.01). 

3.4. Usage of additional input channels 

The fourth experiment deals with the use of additional channels as 
input to the net. The first channel added is the symmetric non-contrast 
CT image, with the aim of exploiting brain symmetry. The experiment 
was performed, maintaining the same training parameters and patch 
sampling strategies defined above. The obtained results are presented in 
Table 4. Notice that adding the symmetric image with the fixed ROI 
around the lesion improved the mean DSC from 0.841 ± 0.108 to 
0.849 ± 0.099, being statistically significant (p < 0.01). The improve-
ment was also observed when segmenting the images with IVH, with a 
DSC increase of 2.8%, while also reducing the standard deviation. 
Qualitatively, this can be seen in Fig. 7, where yellow arrows indicate 
the areas that were correctly segmented as background after introducing 
the symmetric input. When extracting patches considering the cubic ROI 
around the brain center and using a symmetric image as additional input 
channel the segmentation results improved, although the improvements 

Table 2 
DSC obtained in the dataset in cross-validation experiment with and without 
incorporation of squeeze-and-excitation blocks (SE) into the 3D U-Net. The best 
results are highlighted in bold.   

DSC DSC of IVH 
samples 

DSC of samples with no 
IVH 

3D U-Net 0.765 ± 0.217 0.640 ± 0.217 0.787 ± 0.212 
3D SE U- 

Net 
0.828– 
± 0.127 

0.683–± 0.118 0.852–± 0.112  

V. Abramova et al.                                                                                                                                                                                                                             



Computerized Medical Imaging and Graphics 90 (2021) 101908

7

were not significant (p > 0.05). However, if symmetric modality 
augmentation was used and patches were forcibly extracted from IVH 
volumes, the obtained DSC results, especially for the images with IVH 
(see Table 4), significantly improved (p < 0.01) with an increase of 
4.9%. 

We also analyzed the inclusion of angiography CT as an additional 
input channel together with the original non-contrast CT. For a fair 
comparison, the cases without angiography were excluded (10 cases in 

total). However, we observed that when introducing angiography, the 
DSC significantly decreased (p < 0.001) from an average of 0.834 ±

0.120 to 0.795 ± 0.156. 

3.5. Data augmentation 

Finally, we studied the influence of data augmentation by applying 
the transformations presented in Section 2.2.1 to all the patches 
extracted within the experiment (i.e. for each patch, 5 additional 
patches were obtained). Results are shown in Table 5. Firstly, the 
number of extracted patches was reduced to 500 and applying data 
augmentation was augmented up to 3000. Compared to the baseline 
approach (first line of the Table), the segmentation results significantly 
decreased (p < 0.05). However, when increasing the number of extrac-
ted patches, the results applying data augmentation slightly improved, 
only decreasing when the initial number of patches was 1500. For the 
other cases, the changes were statistically significant (p < 0.01, p < 0.01 
and p < 0.005, respectively). However, the difference between the re-
sults obtained with 3000 patches and those with 3000 patches 
augmented to 18,000 was not statistically significant (p > 0.05). 

3.6. Final configuration 

Taking into account all the previous experiments, the final configu-
ration of the proposed method was chosen. The network architecture 
included squeeze-and-excitation blocks and was trained with 3000 
patches of size (32,32,16) using as a loss function the combination of 
Dice and cross-entropy losses. Even though results with data augmen-

Fig. 5. Two examples of the benefits of introducing squeeze-and-excitation blocks (right images) into the baseline 3D U-Net (left images). The yellow arrows show 
the areas of improvement. The upper image shows a better segmentation of the lesion borders, while the bottom image shows that introducing squeeze-and-excitation 
blocks helps in removing false positives lesions. 

Fig. 6. DSC values obtained within three experiments with different patch 
sizes: (24,24,8), (32,32,16), (48,48,24). 
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Table 3 
The resulting DSC for the whole dataset and its parts with and without hemorrhage using different patch restriction steps. The values in bold specify the approach with 
the highest metric value. The significance of adding each patch restriction step is shown with * and **.   

DSC DSC of samples with IVH DSC of samples without IVH max DSC min DSC 

No restrictions 0.599±0.284  0.546±0.239  0.608±0.291  0.946 0.028 
Brain mask 0.807±0.159**  0.664±0.188  0.831±0.141  0.959 0.183 
Brain mask + ROI around hematoma 0.841±0.108*  0.692±0.128  0.866±0.081  0.964 0.530 
Brain mask + ROI around hematoma + ROI around brain center 0.842±0.115  0.699±0.126  0.867±0.094  0.968 0.435 
Brain mask + ROI around hematoma + hyperintense ROI 0.823±0.136*  0.687±0.124  0.846±0.125  0.963 0.306  

* Significant at p < 0.01. 
** Significant at p < 0.001. 

Table 4 
The evaluation metrics of the experiment with and without symmetric modality as an additional input channel. Different patch restriction cases are compared. The 
values in bold specify the approach with the highest metric value. The significance of adding the symmetric modality as additional channel for each patch sampling 
strategy is shown with *.   

Input modalities DSC DSC of samples with IVH DSC of samples without IVH Max DSC Min DSC 

ROI around hematoma Original image 0.841±0.108  0.692±0.128  0.866±0.081  0.964 0.530  
With symmetric modality 0.849±0.099*  0.720±0.116  0.871±0.078  0.964 0.530 

ROI around hematoma + brain center original image 0.842±0.115  0.699±0.126  0.867±0.094  0.968 0.435  
With symmetric modality 0.856±0.088  0.728±0.112  0.878±0.061  0.956 0.553 

ROI around hematoma + IVH area original image 0.823±0.136  0.687±0.124  0.846±0.125  0.963 0.306  
With symmetric modality 0.857±0.085*  0.728±0.107  0.879±0.057  0.964 0.581 

ROI around hematoma OR IVH area with symmetric modality 0.862±0.074  0.777±0.101  0.876±0.059  0.957 0.632  

* Significant at p < 0.01. 

Fig. 7. Results of hematoma segmentation without (top) and with (bottom) the symmetric image as an additional input channel. Blue arrows indicate the IVH areas, 
that are wrongly segmented without using the symmetric image. Yellow arrows show the changes in the results achieved by incorporating the symmetry information. 
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tation improved the mean DSC, considering the computational cost 
versus the amount of improvement, data augmentation was not consid-
ered in the final approach. The original image together with its sym-
metric modality were used as input, and patches were extracted from 
them restrictively, limiting the area within the brain mask to extract 
patches, to the ROI around hematoma, and also the IVH volume. With 
this final design, we could achieve a mean DSC of 0.862 with an 
approximated segmentation time of 17 seconds per patient. For this final 
network configuration the average training time per one epoch was 5 
min 33 s. The qualitative example of one of the segmentation results is 
shown in Fig. 8. 

The quantitative comparison with the current state-of-the-art ap-
proaches is difficult for several reasons. Firstly, all state-of-the-art 
methods used different datasets (most of them private), which may 
include different levels of disease severity. Secondly, our goal was to 
segment intra-parenchymal hemorrhage only, however, some images in 
our dataset included cases with intra-ventricular hemorrhage, and our 
aim was to avoid segmentation of these areas. In contrast, in other state- 
of-the-art approaches, IVH cases were either not presented at all, or were 
excluded, or segmented as another class. This means that these works 
could train specifically IPH regions only, providing higher overall DSC 
values. Some of the proposed methods used datasets with more scans 
than our dataset had, which could also influence the resulting segmen-
tations. Table 6 shows the summary of all reviewed state-of-the-art ap-
proaches. For instance, the work of Chang et al. (2018), reported an 
average DSC of 0.931 with a dataset of 10159 CT scans where 8.9% of 
scans had IVH, while the approaches of Singh et al. (2019) and Kuang 
et al. (2020) provided mean DSC values of 0.932 and 0.864, with 
datasets composed of 399 and 150 scans, respectively. In the work of 
Patel et al. (2019) IVH cases were excluded, and they were able to 
achieve median DSCs of 0.91 and 0.90 on datasets of 51 and 100 scans. 
The approach of Yao et al. (2020) reported an average DSC of 0.697 with 
a dataset of 120 CT scans from different centers. One of the recent ap-
proaches by Sharrock et al. (2020) compared several configurations of 

V-Net, reporting the best DSC of 0.911. Their training dataset consisted 
of 112 CT scans with 3 stroke sub-types delineated, including IVH. 
Finally, the approach of Arab et al. (2020) proposed a CNN with deep 
supervision, reporting an average DSC of 0.840 with a dataset of 55 
scans. Note that most of the analyzed state-of-the-art approaches had 
more data and, additionally, all stroke sub-types were segmented as a 
lesion class. Nevertheless, the overall results obtained for IPH with our 
approach (DSC of 0.879) should be considered as very satisfactory, 
especially taking into account the challenges presented in our dataset, 
both the consideration of not including the intra-ventricular hemor-
rhage as a lesion, and the number of such cases in the whole dataset, 
being almost 15%. 

4. Discussion 

This study presented a deep learning approach for hemorrhagic 

Table 5 
The evaluation metrics of experiments checking the influence of data augmen-
tation and its size on the segmentation results.   

Number of patches DSC Std  

3000 0.862 0.074 
Augmentation 500 → 3000 0.845 0.092  

1000 → 6000 0.866 0.078  
1500 → 9000 0.846 0.092  
3000 → 18000 0.868 0.076  

Fig. 8. Example of a good segmentation result. The red overlay represents the resulting segmentation, while the white one represents groundtruth.  

Table 6 
Comparison between the proposed approach and existing deep learning 
methods.  

Author Method Dataset Groundtruth DSC for IPH 

Proposed 
method 

3D SE U-Net 76 3D CTs Annotated IPH 
masks, IVH is 
considered as 
background 

0.862 

Wang et al. 
(2018) 

3D CNN 243 3D CTs .csv files with 
hematoma 
annotation 

qualitative 
results 

Chang 
et al. 
(2018) 

Mask R-CNN 10159 CT scans 
for training; 
8.9% with 
hemorrhage 

3D masks with 3 
stroke subtypes 
delineated 

0.931 

Singh et al. 
(2019) 

3D CNN +
thresholding 

399 3D CTs 3D masks with 4 
stroke subtypes 
delineated 

0.932 

Hssayeni 
et al. 
(2020) 

2D U-Net 82 3D CTs; 36 
with ICH 

3D masks with 5 
stroke subtypes 
delineated 

0.280 

Kuang 
et al. 
(2020) 

ψ-Net  150 CT scans Annotated ICH 
masks 

0,950 0,894 

Yao et al. 
(2020) 

Multi-view 
CNN 

120 CT scans Annotated ICH 
masks 

0.697 

Sharrock 
et al. 
(2020) 

2D and 3D V- 
Net 

112 CT scans 3D masks with 3 
stroke subtypes 
delineated 

0.911 

Arab et al. 
(2020) 

CNN-DS 55 CT scans Annotated ICH 
masks 

0.840  
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stroke lesions segmentation, which appear as hyper-intense regions on 
CT images. As already shown in previous studies, promising perfor-
mance could be achieved. Using a baseline patch-based 3D U-Net ar-
chitecture with the only restriction of using the brain mask for sampling 
the negative class, we already achieved a mean DSC of 0.765 ± 0.217, as 
shown in Table 2. Notice that this result is better than the one reported 
by Yao et al. (2020), who achieved an average DSC of 0.697. Their 
approach was also inspired by a U-Net, but their dataset was more 
heterogeneous, with images acquired in different medical centers, and 
this may be the reason of such a lower performance. In addition, the 
incorporation of squeeze-and-excitation blocks helped to significantly 
improve the average segmentation DSC by 6.3%, as well as to reduce 
variability by reducing the standard deviation from 0.217 to 0.127 
(Table 2). Looking at the obtained results, the addition of 
squeeze-and-excitation operations helped to better segment small and 
irregular lesions, as can be seen in Fig. 5. This is in line with the results 
obtained by Woo et al. (2019) when segmenting ischemic lesions. 
Regarding loss functions, the combination of Dice and cross-entropy 
losses significantly outperformed the focal loss, increasing the average 
DSC by 4.5% while reducing the standard deviation by 5%. 

The experiments carried out with different patch sizes showed an 
unexpected behavior. Enlargement of patch size should have helped the 
network to capture more contextual information, however, our experi-
ments showed that increasing the patch size up to (48,48,24) worsened 
the mean DSC and introduced more variability to the samples, as shown 
in Fig. 6. Moreover, the large patch size was not able to help to capture 
dependencies between IPH and IVH. Individually, the most significant 
decrease of DSC happened with small lesions, which shows that for this 
particular dataset the patch size of (48,48,24) was too big to capture the 
small hematoma volumes. A similar behavior was observed in the work 
of Bernal et al. (2019) for tissue segmentation using MRI. In our case, 
increasing patch size from (24,24,8) to (32,32,16) led to better seg-
mentations, as expected initially. Therefore, the patch size of (32,32,
16) was chosen as the optimal one. 

A restrictive patch sampling strategy was used. The initial constraint 
of extracting patches only from the brain volume was performed in order 
to generally improve the segmentation. The obtained results showed 
that sampling patch centers only from brain voxels greatly increased the 
DSC over all cases of the dataset. The significant increase of the DSC in 
the case of fixing the region of interest around the lesion was also ex-
pected, since it was also shown in the work presented by Kushibar et al. 
(2018). In most cases introducing this condition helped to refine the 
lesion contours, as can be observed in the qualitative example provided 
in Fig. 8. However, for some images improper outputs were produced. 
See for instance the yellow arrows of the qualitative examples shown in 
Fig. 9. Notice that less patches were extracted from the overall brain 
volume, therefore some voxels were mistaken for lesions. In contrast, the 

attempts to solve the issue of intra-ventricular hemorrhage by estab-
lishing another region of interest around CSF ventricles did not signifi-
cantly change the hemorrhage lesion segmentation, introducing more 
variability to the data (Table 3). This was possibly due to the fact that the 
network received more patches with IVH and from the ventricles, and 
the overall distribution of patches was not enough to successfully 
distinguish between IPH and IVH. 

Symmetric modality augmentation showed an interesting behavior. 
Even without extra guidance to ventricle areas, it could improve seg-
mentation results of both groups of scans, with and without IVH, 
exploiting the fact that hemorrhage occurs in only one of the brain 
hemispheres. Even though fixing the ROIs related to brain ventricles did 
not help to achieve better results, they were successfully used together 
with symmetric modality augmentation. As can be observed in Table 4, 
fixing these ROIs in the ventricles improved the results compared to 
fixing only the ROIs around the hematoma. Notice that these constraints 
were exploiting the information about ventricle shapes and their 
deformation in the presence of intra-ventricular hemorrhage. Qualita-
tively, Fig. 7 shows that incorporating the symmetric modality as an 
additional input channel could reduce segmentation of voxels located to 
the other hemisphere of the brain damaged by stroke. Moreover, seg-
mentation of voxels of the same hemisphere, but related to intra- 
ventricular hemorrhage was also reduced. In contrast, we noticed a 
decrease in the DSC results after introducing CT angiography as addi-
tional input channel. This could be due to the fact that these images were 
more noisy than non-contrast CT scans. 

Regarding the artificial expansion of the dataset using data 
augmentation techniques, we observed that the results did not provide a 
breakthrough in the performance of the algorithm. Moreover, aug-
menting the patches from 3000 to 18,000 did not introduce much 
improvement compared to the results obtained using 3000 original 
patches without any augmentation (see Table 5). The overall difference 
in the obtained results was not significant (p>0.05). Considering the 
mean DSC and standard deviation values from the different experiments, 
one can see that the general behavior of the DSC distribution was 
similar. 

Finally, as can be seen from Table 4, the minimum DSC achieved 
with the final configuration of the proposed approach is 0.632. If we 
analyze DSCs of all the cases we studied, only 4 have DSC less than 0.7, 
and 3 out of these 4 have IVH presented, which was expected, as IVH is 
the main challenge of our dataset. However, from Table 4 we notice that 
our final approach could maximally increase the minimal DSC if 
compared with previous experiments. 22% of the dataset is composed of 
the images with irregular lesions, and for these cases only 3 out of 17 
images have DSC < 0.8. Moreover, 14 CT scans had small lesions, which 
were challenging to accurately segment without proper adjustment of 
patch size and use of a patch restriction strategy. With our final strategy, 

Fig. 9. Example of miss-segmentation. Even though ROI helped to refine contours (green arrow), voxels not related to the lesion were also segmented (yel-
low arrows). 
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almost all of them achieved the DSC > 0.8, except for one case (pt030) 
with DSC = 0.742 due to the beam hardening artifact presented on this 
CT image. However, we consider it as a big improvement compared to 
the initial experiments, where the DSC for this case could be as low as 
0.08. In total, 85% of all cases reached the threshold of DSC > 0.8 and 
33% of all cases have a DSC > 0.9. 

5. Conclusions 

In this work we proposed a deep learning method for hemorrhagic 
stroke lesions segmentation in CT images. The proposed approach, based 
on a patch based 3D U-Net architecture with integration of squeeze-and- 
excitation blocks, was tested on a clinical dataset of 76 cases. The ob-
tained results were qualitatively and quantitatively evaluated on the 
whole dataset using a 5-fold cross-validation strategy. Our experiments 
demonstrated that such an architecture significantly improved seg-
mentation results compared to the baseline 3D U-Net approach. More-
over, we showed also that data preparation is a key step to obtain good 
segmentation results. By using a restrictive balanced sampling tech-
nique, we successfully tackled the class imbalance problem as well as the 
problem of intra-ventricular hemorrhage present in some of the cases in 
the dataset. In addition, the inclusion of the symmetric modality as 
additional input channel helped to improve the results, obtaining a 
mean DSC segmentation result of 0.862 ± 0.074 with an approximated 
segmentation time of 17 s per patient. 
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