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Novel Relationship Between Plasmalogen Lipid Signatures
and Carnosine in Humans

Jordi Mayneris-Perxachs, Peter Meikle, Aya Mousa, Negar Naderpoor,
José Manuel Fernández-Real, and Barbora de Courten*

Introduction: Carnosine is a naturally occurring dipeptide abundant in the
skeletal and cardiac muscle and brain, which has been shown to improve
glucose metabolism and cardiovascular risk. This study showed that
carnosine supplementation had positive changes on plasma lipidome. Here,
this study aimed to establish the relationship of muscle carnosine and serum
carnosinase-1 with cardiometabolic risk factors and the lipidome.
Methods and Results: This study profiles >450 lipid species in 65
overweight/obese nondiabetic individuals. Intensive metabolic testing is
conducted using direct gold-standard measures of adiposity, insulin sensitivity
and secretion, as well as measurement of serum inflammatory cytokines and
adipokines. Muscle carnosine is negatively associated with 2-h glucose
concentrations, whereas serum carnosinase-1 levels are negatively associated
with insulin sensitivity and positively with IL-18. O-PLS and machine learning
analyses reveal a strong association of muscle carnosine with ether lipids,
particularly arachidonic acid-containing plasmalogens. Carnosinase-1 levels
are positively associated with total phosphatidylethanolamines, but negatively
with lysoalkylphosphatidylcholines, trihexosylceramides, and gangliosides. In
particular, alkylphosphatidylethanolamine species containing arachidonic acid
are positively associated with carnosinase-1.
Conclusion: These associations reinforce the role of muscle carnosine and
serum carnosinase-1 in the interplay among low-grade chronic inflammation,
glucose homeostasis, and insulin sensitivity.
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1. Introduction

Type 2 diabetes (DM2) is a major public
health challenge because of its high and
increasing prevalence and significant
adverse effects on health.[1] DM2 con-
tributes to high morbidity and mortality
through diabetes complications, primar-
ily cardiovascular disease (CVD), which
is the leading cause of death worldwide,
including in those with DM2.[2] Together,
DM2 and CVD impose a heavy financial
and patient burden across the entire
healthcare system.[1–3]

Carnosine (𝛽-alanyl-L-histidine), a nat-
urally occurring dipeptide and over-the-
counter food supplement, has recently
emerged as a potential strategy for reduc-
ing DM2 and CVD risk factors.[4,5] Carno-
sine is mainly found in human skeletal
muscle and carnosine supplementation
is shown to improvemuscle performance
and exercise endurance.[6] Lower concen-
trations of carnosine are also found in
other tissues and cells such as the brain,
stomach, and erythrocytes.[7] Male gen-
der, younger age, and meat consumption
are associated with higher muscular con-
centrations of carnosine in humans.[8] In
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addition to previously known benefits of carnosine for muscle
function, more recent animal studies have shown that carnosine
reduces obesity and improves glucose metabolism, chronic low-
grade inflammation, lipid levels and peroxidation, atheroscle-
rotic plaque instability, blood pressure, insulin resistance, and
insulin secretion, along with increasing 𝛽-cell mass.[4,9–15] We
and others have also shown beneficial effects of carnosine sup-
plementation on glucose and lipid metabolism in humans.[5,16,17]

Molecular and animal research suggests that the beneficial ef-
fects of carnosine on these risk factors occur, at least in part,
through its anti-inflammatory, anti-oxidative, and anti-glycating
properties.[5,11,12,16,17]

Dietary carnosine is usually rapidly degraded to 𝛽-alanine and
histidine upon absorption. However, carnosine catabolism is less
pronounced in individuals with low serum carnosinase-1 (CN-1)
activity, resulting in increases in circulating carnosine.[18] CN-
1 is the only dipeptidase with substrate specificity for carno-
sine, anserine and homocarnosine.[19] Therefore, potential ben-
efits from carnosine supplementation may be counteracted by
high serum CN-1 activity. Due to their abundance in human
skeletal muscle and serum, respectively, skeletal muscle carno-
sine and serum CN1 are two key players involved in carnosine
metabolism.
One of the key metabolic disturbances associated with the de-

velopment of DM2 and CVD is dyslipidemia. While conventional
lipid profiling is helpful for the diagnosis and management of
dyslipidemia, recently developed lipidomics approaches can pro-
vide new insights into lipid metabolism by offering more de-
tailedmeasures of lipid classes and species in plasma. Lipidomics
enables the comprehensive identification and quantification of
all lipids from serum, plasma, tissue, whole organism, or cell.
Lipidomics techniques have shown promising results in the iden-
tification of metabolic biomarkers, understanding the mecha-
nisms of lipid metabolism underlying disease pathogenesis, as
well as in determining responses to therapeutic interventions.
Recent studies have demonstrated associations between plasma
lipid classes and species and DM2 and CVD.[20,21] In particular,
plasmalogens are a special class of lipids with unique properties.
They contain a vinyl-ether alkyl chain in the sn-1 position and
a long-chain n-3 or n-6 PUFA at the sn-2 position. Due to this
unique structure, they modulate membrane fluidity, possess an-
tioxidant properties, and act as reservoirs of inflammatory active
lipid mediators.[22] Indeed, plasmalogen deficiency has been as-
sociated with cardiometabolic disorders such as obesity[23] and
DM2[20] in humans.
Our previous pilot clinical trial investigated the effects of

carnosine supplementation on DM2 risk factors, including the
human plasma lipidome and showed beneficial effects on trihex-
osylceramide and phosphatidylcholine as well as an association
between serum CN-1activity and trihexosylceramide.[24] Given
the compelling evidence from animal studies, and the paucity
of human data on the benefits of carnosine in glucose and lipid
metabolism, further exploration of carnosine in relation to car-
diometabolic risk factors and lipidomic profiles is warranted.
Hence, this study aims to explore whether human muscle carno-
sine content and CN-1 (an enzyme hydrolyzing carnosine into
its amino acids) may be associated with metabolic and cardio-
vascular risk factors including the plasma lipidome in a well-
characterized cohort of overweight or obese individuals.

2. Results

Baseline characteristics of the participants are described in
Table 1. The study population included 65 overweight or obese
participants aged 18–57 years old. Obese participants had lower
carnosine and insulin sensitivity and higher serum leptin con-
centrations compared to overweight individuals. After control-
ling for age, sex, and fat mass, muscle carnosine levels were sig-
nificantly associated with 2-h glucose concentrations after the
75g OGTT (r = 0.27, p = 0.05). In particular, participants in
the higher quartile of carnosine levels had the highest 2-h glu-
cose concentrations (Figure 1A). The serum concentration of
CN-1 was positively associated with IL-18 (r = 0.30, p = 0.02),
but not with other inflammatory cytokines (Figure S1, Support-
ing Information). Conversely, it was negatively associated with
adiponectin levels (r = -0.32, p = 0.013) and insulin sensitivity (r
= -0.31, p = 0.017) (Figure 1B and Figure S1, Supporting Infor-
mation).
O-PLS regression models were built using the lipid classes

and species to identify lipids associated with muscle carno-
sine levels. Significant O-PLS models were obtained after per-
mutation testing (B). Based on O-PLS correlation-scaled load-
ings, seven lipid classes were selected (Figure 2C). Notably, all
the lipid classes and subclasses associated with muscle carno-
sine levels were ether lipids. They constitute a subset of glyc-
erophospholipids where the ester-carbonyl group in the sn-1 po-
sition has been substituted by an ether-alkyl [indicated by (O)]
or vinyl ether-alkenyl [indicated by (P)] bond, with the latter
known as plasmalogens.[25] Specifically, PC, PE, LPC, and LPE
plasmalogens had the strongest positive associations with mus-
cle carnosine, followed by their alkyl ethers. These results were
further validated using machine learning. The random forest-
based vita algorithm also identified the above plasmalogens as
the most important features associated with muscle carnosine
levels. However, we were not able to identify their alkyl coun-
terparts using this technique, although total TG was identified
as being positively associated with carnosine. A significant O-
PLS model was also obtained when using the lipid species as
predictor variables (Figure 2B), which identified 33 lipid species.
In line with the previous results, the lipid species most associ-
ated with muscle carnosine levels included several plasmalogen
species [mainly PE(P), PC(P), but also LPE(P)] and some alkyl-
ether species [mainly PE(O)] (Figure 2E). The sn-2 position of
all these lipid species was enriched mainly with long-chain n-
6 fatty acids, mainly arachidonic acid (C20:4 n-6, AA) and do-
cosapentaenoic acid (C22:5 n-6, DPA). Other lipid species posi-
tively associated with muscle carnosine levels included PI, PC,
PE, LPC, LPI, and DG that contained mainly AA chains. Rel-
evant lipid species were also identified using machine learn-
ing techniques. As observed from the analysis (Figure 2F), the
lipid species most associated with muscle carnosine included
mainly PC(P) plasmalogens with AA in the sn-2 position. Con-
sistent with the O-PLS results, several AA-containing PI, PC,
LPC, LPI, and DG were positively associated with muscle carno-
sine. Using this method, we were also able to identify several
ceramide and TG species linked to increased muscle carnosine
levels.
No significant O-PLS models were able to predict serum CN-1

levels from either the lipids classes or lipid species. However,
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Table 1. Baseline characteristics of the participants.

Overweight (N = 30) Obese (N = 35) Total (N = 65) p

Carnosine [mmol kg-1 WW] 5.64 (5.05, 7.33) 4.39 (3.89, 5.28) 4.81 (4.08, 6.02) 0.002

CN-1 activity [μmol mL-1 h-1] 1.53 (1.25, 1.81) 1.55 (1.24, 1.77) 1.54 (1.24, 1.79) 0.967

Age [years] 31.5 (24.2, 36.7) 29.0 (25.0, 35.5) 30.0 (25.0, 36.0) 0.911

Female 5 (16.7%) 19 (54.3%) 24 (36.9%) 0.002

BMI [kg m-2] 27.72 (26.72, 28.95) 33.18 (30.72, 36.98) 30.15 (27.79, 33.31) < 0.001

Body fat (%) 35.00 (29.73, 38.80) 47.70 (37.65, 50.50) 38.50 (33.80, 48.00) < 0.001

WHR 0.95 (0.91, 0.98) 0.93 (0.90, 0.99) 0.94 (0.90, 0.99) 0.869

SBP [mmHg] 119.53 (12.00) 122.34 (12.87) 121.05 (12.46) 0.369

DBP [mmHg] 77.70 (8.71) 82.51 (7.97) 80.29 (8.60) 0.023

Glucose metabolism

Fasting glucose [mmol L-1] 4.55 (4.29, 4.97) 4.48 (4.29, 4.73) 4.52 (4.29, 4.85) 0.558

2-h Glucose [mmol L-1] 5.25 (4.54, 6.29) 5.39 (4.44, 6.07) 5.30 (4.48, 6.19) 0.911

M-value [mg kg-1 min-1] 7.79 (2.87) 5.48 (2.32) 6.55 (2.82) < 0.001

Fasting Insulin [mIU L-1] 8.10 (6.71, 9.70) 10.45 (6.67, 16.15) 8.85 (6.65, 12.80) 0.061

Lipid metabolism

TC [mmol L-1] 4.85 (0.76) 4.98 (0.95) 4.92 (0.87) 0.608

TG [mmol L-1] 1.35 (1.08, 2.28) 1.30 (1.00, 1.80) 1.30 (1.00, 1.90) 0.633

HDL [mmol L-1] 1.10 (1.00, 1.35) 1.10 (1.10, 1.30) 1.10 (1.00, 1.33) 0.496

LDL [mmol L-1] 2.98 (0.61) 3.11 (0.77) 3.06 (0.71) 0.525

LDL/HDL 2.67 (0.72) 2.70 (0.85) 2.69 (0.80) 0.900

Diet

Energy [kJ] 7800.4 (6950.9, 9190.8) 8356.3 (6759.0, 9925.3) 8243.2 (6763.9, 9668.3) 0.390

Protein [g] 86.80 (61.09, 105.19) 89.37 (74.81, 104.93) 88.98 (70.03, 105.02) 0.590

Total fat [g] 72.06 (54.38, 80.74) 82.65 (60.75, 91.70) 74.31 (56.13, 89.34) 0.066

Saturated fat [g] 23.21 (18.30, 31.32) 29.57 (22.00, 40.18) 26.57 (20.62, 33.45) 0.045

Carbohydrate [g] 222.99 (59.59) 233.99 (84.99) 228.79 (73.62) 0.585

Adipokines

Adiponectin [ng mL-1] 3366.6 (1532.4, 11 453.2) 5135.9 (3258.2, 11 013.8) 4749.3 (2348.0, 11 243.4) 0.236

Inflammatory markers

hsCRP [mg L-1] 2.50 (1.00, 5.80) 1.70 (0.90, 4.30) 1.95 (0.90, 4.45) 0.594

TNF𝛼 [pg mL-1] 32.02 (14.20, 75.88) 32.36 (21.80, 62.69) 32.36 (16.93, 63.47) 0.787

MCP-1 [pg mL-1] 542.1 (385.2, 1129.8) 761.1 (481.9, 967.3) 631.6 (425.43, 98.8) 0.286

IL-6 [pg mL-1] 22.59 (11.83, 44.04) 22.13 (14.09, 42.43) 22.13 (13.05, 44.38) 0.911

IL-10 [pg mL-1] 8.43 (6.30, 16.91) 9.66 (6.71, 14.85) 8.72 (6.45, 16.34) 0.767

IL-18 [pg mL-1] 175.25 (103.71, 259.40) 174.60 (121.19, 264.92) 174.74 (108.7, 264.7) 0.844

Values are expressed as means ± SD for normally distributed variables, median (IQR) for non-normally distributed variables, and counts (%) for categorical variables. p were
obtained using a one-way ANOVA, a Kruskall-Wallis test, or 𝜒2 test for normally-, non-normally distributed, and categorical variables, respectively. BMI, bodymass index; CN-1,
carnosinase-1; WHR, waist to hip ratio; hsCRP, high-sensitivity C-reactive protein; TC, total cholesterol; TG, triglycerides; HDL/LDL, high/low-density lipoprotein cholesterol;
SBP/DBP; systolic/diastolic blood pressure; MCP-1, monocyte chemoattractant protein-1; TNF, tumour necrosis factor; M-value, insulin sensitivity by hyperinsulinaemic-
euglycaemic clamp; TC, total cholesterol; IL, interleukin.

due to the high-dimensionality of the data, usually a large
proportion of the features are uninformative in relation to the
biological question under study, leading to decreased model
performance efficiency. Therefore, we applied a random-forest
based machine learning variable selection approach. The vita
algorithm selected four lipid species associated with serum CN-1
concentrations (Figure 3A). Specifically, total PE were signifi-
cantly positively associated with CN-1, whereas total LPC(O),
Hex3Cer, and GM were negatively associated. In line with these
results, machine learning analyses selected several PE species
positively associated with CN-1 levels. In addition, some PE(O)

alkyl ethers containing AA in the sn-2 position were also posi-
tively associated with serum CN-1 concentrations. Selected lipid
species which were negatively associated with CN-1 included
LPC(O) alkyl-ethers containing long-chain saturated fatty acids
(C20:0-C24:0), several LPC containing C18:1, C18:2, and C20:2
fatty acids, and GM3 and Hex3Cer with C18:0, C22:0, and C24:1
fatty acids. Notably, LPC(P) and LPC(O) containing eicosanoic
acid (arachidic acid) were among the most important features
associated negatively with CN-1.
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Figure 1. Associations ofmuscle carnosine and plasmaCN-1with glucose and insulinmetabolism.A)Violin plots for the associations of 2-h glucose from
the oral glucose tolerance test according to the muscle carnosine quartiles. B) Insulin sensitivity measured with the by hyperinsulinaemic-euglycaemic
clamp according to the plasma CN-1 levels

3. Discussion

Carnosine has recently emerged as a promising new approach to
tackle DM2 and CVD risk factors.[4,5] In a previous pilot study by
our group involving 24 overweight and obese adults, we found
that carnosine supplementation maintained total Hex3Cer, PC,
and free cholesterol compared to placebo.[24] Here, we found
strong associations among plasmalogens, specifically those con-
taining mainly AA chains, and muscle carnosine levels. To our
knowledge, this is the first study to examine muscle carnosine
in relation to lipidomics and report relationships between mus-
cle carnosine and plasmalogens. We also found that serum CN-1
was negatively associated with LPC(O) and total Hex3Cer. This
supports the results of our pilot study, where we also found that
Hex3Cer was inversely related with CN-1 activity.[24]

One of the most remarkable findings of this study was that
all the lipid classes and subclasses associated with muscle carno-
sine levels were ether lipids. Unlike conventional glycerophos-
pholipids that have fatty acyl chains in the sn-1 and sn-2 positions
of the glycerol backbone by an ester linkage, ether lipids are char-
acterized by an ether bond, usually in the sn-1 position, and an
ester bond in the sn-2 position. PC, PE, LPC, and LPE plasmalo-
gens had the strongest positive associations followed by their
alkyl ethers. Plasmalogens are critical for human health and have
established roles in neuronal development, immune responses
and as endogenous antioxidants, while they also take part in the
development of insulin resistance and atherosclerosis.[26,27]

The long chain fatty acid alcohols in the sn-1 position of ether
lipids are mainly restricted to C16:0, C18:0, or C18:1. In the
particular case of plasmalogens, the sn-2 positions are enriched
with polyunsaturated fatty acids, mainly AA (C20:4, AA n-6) or
docosahexaenoic acid (C22:6 n-3, DHA).[26,28] Of note, the lipid
species that had the strongest associations with serum CN-1
were PE(O-38.5) and PE (16:0/22:6), while with muscle carno-
sine were PC(P-16:0/20:4) and PC(P-15:0/20:4), both containing
AA in the sn-2 position, a precursor for eicosanoid biosynthe-
sis (prostaglandins, thromboxane, leukotrienes), which are im-

portant inflammatory mediator molecules.[29,30] Interestingly, we
also found positive associations between CN-1 and serum IL-18
levels, but not with other cytokines. This is consistent with pre-
vious that found positive correlations between IL-18 serum lev-
els and serum ferritin, but not with CRP, IL-6, or IL-1𝛽 levels.[31]

In fact, the IL-1Β/IL-6/CRP and IL-18/ferritin inflammatory pro-
grams have been recently proposed as two different inflamma-
tory responses mechanism.[32] In a study of twin pairs discor-
dant for obesity, obese twins had increased levels of adipose tissue
PE(P) containing AA, making adipocytes more prone to inflam-
matory responses.[33] As both the vinyl ether bond in plasmalo-
gens and the long-chain PUFA are particularly susceptible to oxi-
dation, plasmalogens are also suggested to play an important role
as antioxidants, protecting other lipids from oxidative stress.[26,28]

Therefore, the strong association between PC(P-16:0/20:4) and
muscle carnosine could be related to an off-set mechanism due
to the antioxidant properties of carnosine and reflect an antiox-
idant response to increased oxidative stress in individuals with
insulin resistance. In fact, muscle histidine-containing dipep-
tides (such as carnosine) are known to be elevated by glucose
intolerance in both rodents and men, implying that increased
muscle carnosine could constitute a compensatory mechanism
aimed at preventing cell damage in states of impaired glucose
tolerance.[34]

The main limitation of the present study is its cross-sectional
design, which means that we cannot establish causality or rule
out reverse causality. Moreover, the sample size may have been
too small to detect relationshipswith some lipid species or classes
and our resultsmay not be generalized to other populations as we
only included overweight/obese individuals. The findings should
be confirmed in longitudinal studies with larger cohorts of partic-
ipants including lean individuals. Despite these limitations, this
is the first study to examine associations between muscle carno-
sine and CN-1 with human lipidomic profiles. We report a com-
prehensive assessment of the human lipidome (>450 species) in
a well-characterized cohort with gold-standard measures of adi-
posity and insulin sensitivity and with no confounding factors
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Figure 2. Associations of lipidomics profiles with muscle carnosine. A) Goodness of fit (R2) and goodness of prediction (Q2) parameters obtained
from a leave-one-out cross-validated O-PLS regression model predicting muscle carnosine from the lipidomic classes and (B) species profiles. C) O-
PLS correlation loading weights for the lipid classes associated with the muscle carnosine levels. D) Cross-validated permutation variable importance
(CVPVI) measure × sign of the correlation between each lipid class associated with muscle carnosine levels. E)O-PLS correlation loading weights for the
lipid species associated with the muscle carnosine levels. F) Cross-validated permutation variable importance (CVPVI) measure × sign of the correlation
between each lipid species associated with muscle carnosine levels
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Figure 3. Associations of lipidomics profiles with plasma CN-1. A) Cross-validated permutation variable importance (CVPVI) measure × sign of the
correlation between each lipid class and (B) lipid species associated with the plasma CN-1. C-E) Associations of selected lipid species according to CN-1
quartiles

from disease status or the use of medications or supplements. In
addition, we employed rigorous statistical multivariate and ma-
chine learning analyses.
In summary, muscle carnosine and serum CN-1 showed

notable associations with the plasma lipidome that reinforce
their possible role in the interactions between low-grade chronic
inflammation, glucose homeostasis, and insulin sensitivity.
Further studies are needed to confirm these findings and to
establish whether manipulation of carnosine concentrations

using supplementation would influence lipid metabolism and
subsequent metabolic disease risk.

4. Experimental Section
Study Population: The study population consisted of 65 overweight

or obese (body mass index > 25 kg m-2) community-dwelling individuals
from the Melbourne area (Australia) aged 18–57 years. The study protocol
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was approved by the Monash University Human Research Ethics Commit-
tee (Protocol ID: CF13/3874-2013001988) and conducted according to the
Code of Ethics of the World Medical Association (Declaration of Helsinki).
All participants provided written informed consent.

Based on medical history and laboratory and physical examination,
participants were excluded if they had CVD, diabetes, respiratory, gas-
trointestinal, kidney, endocrine, hematological, or central nervous system
diseases, as well as active cancer or cancer within the five preceding
years. Exclusion criteria also included psychiatric disorders, acute inflam-
mation, smoking, high alcohol use, and use of medications, vitamins,
or supplements. Pregnant, lactating, or menopausal women were also
excluded.

Anthropometric, Clinical, and Biochemical Measurements: De-
tailed methods for data collection and analysis have been previously
described.[35,36] Body weight (kg) and height (m) were measured and
used to calculate the body mass index (BMI) (kg m-2). Dual-energy
X-ray absorptiometry was used to measure fat mass. Systolic (SBP) and
diastolic blood pressure (DBP) were derived from three measurements
using an automated sphygmomanometer (M6 Automatic BP monitor,
Omron) after at least 5 min rest. A 2-h 75g oral glucose tolerance test
(OGTT) was performed after a 12-h overnight fast to assess fasting, 1
and 2-h glucose as well as fasting insulin. Insulin sensitivity (M-value)
was assessed by hyperinsulinemic-euglycemic clamps as previously
described.[35] Lipid profiles, including total cholesterol (TC), low-density
lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol
(HDL-C), and triglycerides (TG), were analyzed using commercial enzy-
matic immunoassays. Serum high sensitivity C-reactive protein (hsCRP)
was measured by highly sensitive near-infrared particle immunoassays on
Synchron LX analyzers (BC, Australia). Serum pro- and anti-inflammatory
cytokines and adipokines were measured using commercial bead-based
multi-analyte assays (LEGENDplex, Biolegend, CA, USA) and acquired on
a BD LSR II flow cytometer as previously described.[37]

Lipidomics: Targeted lipidomics analyses were performed as previ-
ously described.[23] Detailed information can be found in the supplemen-
tary methods and supplementary Table 1 (Supporting Information). We
were able to identify 459 lipid species across 26 different lipid classes
and subclasses. These included major sphingolipid, phospholipid, glyc-
erolipid, and sterol classes and the major species within each of these
classes, which represent the major species present in circulation.

Muscle Carnosine and Carnosinase Measurements: Skeletal muscle tis-
sue was obtained from the vastus lateralis by percutaneous muscle biopsy
under local anesthetic. Samples were frozen immediately using liquid
nitrogen and were stored at −80°C for later batch analysis.[35] Skele-
tal muscle carnosine levels were quantified using reversed-phase high-
performance liquid chromatography (HPLC). Skeletal muscle samples
were dissolved in phosphate buffer (1mg ww muscle/15 μL PBS) for ho-
mogenization. Muscle homogenates were deproteinized using 35% sul-
fosalicylic acid (SSA) and centrifuged (5 min, 14 000 g). 100μL of depro-
teinized supernatant was dried under vacuum (40°C). Dried residues were
resolved with 40 μL of coupling reagent: methanol/ triethylamine/ H2O/
phenylisothiocyanate (PITC) (7/1/1/1) and allowed to react for 20 min at
room temperature. The samples were dried again and resolved in 100 μL of
sodium acetate buffer (10 mM, pH 6.4). The same method was applied
to the standard solution of carnosine (Flamma). The derivatized samples
(20 μL) were chromatographed on a Waters HPLC system with an ODS2
guard column (80Å, 5 μm, 4.6 mmX 10mm), a Spherisorb C18/ODS2 col-
umn (4.6 × 150 mm, 5 μm), and UV detector (wavelength: 254 nm). The
columns were equilibrated with buffer A (10 mM sodium acetate adjusted
to pH 6.4 with 6% acetic acid) and buffer B (60% acetonitrile-40% buffer
A) at a flow rate of 0.8 mL min-1 at 25°C.

Serum carnosinase concentrations (CN-1) were determined by a
sandwich ELISA (enzyme-linked immunosorbent assay) developed by
Adelmann.[38] High absorbent 96-well plates (Lab NUNC-Immuno Plate
Maxi Sorp F96, Fisher Scientific GmbH) were incubated overnight with
100 μL of goat polyclonal anti-human CN-1 (10 μg mL-1) (R&D, Wies-
baden Germany). Afterwards, the plates were extensively washed (200
μL Tween20 in 100 mL PBS) and incubated with a blocking buffer (0.05
% W/V of dry milk powder) for 40 min on a shaker (350 rpm), followed by

extensive washing. Next, 100 μL of sample (dilution: 1/300) and standard
(recombinant human CN-1, R&D Systems; serial dilution) were added.
The plates were placed on a shaker for 1 h and subsequently extensively
washed. Thereafter, ATLAS anti-human CN-1 antibodies (Sigma PA) were
added for 1 hour followed by extensive washing. Goat anti-rabbit IgG HRP
(horseradish peroxidase) (Santa Cruz) was added for 30 min. Again, ex-
tensive washing was performed. By adding deep-blue peroxidase (POD)
(Roche diagnostics) a color change was generated. This reaction was gen-
erally stopped after 10 min by addition of 50 μL of 1 M H2SO4. The plates
were directly read at 450 nm. CN-1 protein concentrations were assessed
in the linear part of the dilution curve.

Statistical Analysis: Univariate statistical analysis was performed
using version 23 of the Statistical Package for the Social Sciences (IBM
SPSS Statistics) and R. Before analysis, data normality and homogeneity
of variances were evaluated visually and using the Shapiro-Wilk and
Levene’s tests, respectively. Results are expressed as counts and fre-
quencies (%) for categorical variables, means and standard deviations
(SD) for normally distributed continuous variables and medians and
interquartile ranges (IQR) for non-normally distributed continuous
variables. Between-group differences were assessed using the 𝜒2 test
for categorical variables, unpaired Student’s t test for normal contin-
uous variables, and Mann-Whitney U test for non-normal continuous
variables. The associations of muscle carnosine and serum CN-1 with
anthropometric, clinical, and biochemical variables were evaluated using
partial Spearman correlations adjusting for age, sex, and fat mass. The
relationships among quartiles of muscle carnosine and serum CN-1
with the other cardiometabolic risk factors were assessed using gener-
alized linear models (GLM) with a gamma distribution and a logarithm
link function to account for normality, adjusting for age, sex, and fat
mass.

The identification of significant relevant features (lipid species or
classes) associated with muscle carnosine and serum CN-1 levels was
performed combining multivariate supervised projection methods and
machine learning-based variables techniques. Before supervised analyses,
principal component analyses were performed to identify strong outlying
samples containing extreme lipid values. Then, supervised orthogonal par-
tial least squares (O-PLS) regression models were built using in-house
Matlab scripts to identify those lipidomic features that were associated
with muscle carnosine and serum CN-1 levels. Here, the lipid species or
classes were used as the descriptor matrix (X) and carnosine or CN-1 were
used as response variables (Y). Themodels’ performance and validity were
calculated using a leave-one-out cross-validation approach and permuta-
tion testing (1000 permutations), respectively. Significant features were
selected based on the O-PLS regression loadings adjusted for multiple
testing using the Benjamini-Hochberg procedure for false discovery rate
(FDR). A pFDR < 0.05 was used as the reference feature selection crite-
rion. Usually, in high-dimensional omics datasets, many variables do not
carry information and only a small set of variables is associated with the
outcome. Adding all variables in the model can thus decrease the global
model predictive performance. Therefore, we further analyzed the results
adopting a random forest-based machine learning variable selection strat-
egy based on the Variable Importance Testing Approach (vita) algorithm as
implemented in the vita R package.[39] In addition to performing variable
selection, tree-based methods can capture complex nonlinear and com-
plex interactions between the predictor variables, which are common in
omics datasets. The variable importance measure (VIM) in the vita algo-
rithm is based on cross-validated permutations. The method randomly
splits the data in k-folds of equal size. For each i-fold, a random forest
is trained using all samples that are not part of the i-test set, and the
response variable is predicted for the samples in the i-test set. The pro-
cedure is repeated after permutating n times the values of the predictor
variables. The VIM is calculated as the average difference in the predic-
tion errors between the original data and permutations, and the CV-VIM
is the average overall k-fold-specific permutation VIM. For non-relevant
features, the change in accuracy is only due to random variations and
thus it does not change (zero VIM) or slightly increases (negative VIM)
when not using the variable for prediction in the random forest. p-values
are then calculated approximating the null distribution of VIM scores
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based on the observed non-positive scores of non-relevant variables.
p-values were then corrected using the Benjamini-Hochberg procedure
for FDR.
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the author.

Acknowledgements
The authors thank the volunteers who took part in this study. This study
has been funded by Instituto de Salud Carlos III through the project
“PI18/01022” (Co-funded by European Regional Development Fund “A
way to make Europe”). This work was supported by the National Health
andMedical Research Council (NHMRC) of Australia (APP1047897). Jordi
Mayneris-Perxachs is funded by the Miguel Servet Program from the Insti-
tuto de Salud Carlos III (ISCIII CP18/00009), co-funded by the European
Social Fund “Investing in your future.” A.M. is supported by a Peter Do-
herty Biomedical Research Fellowship provided by the NHMRC. N.N. is
a Monash Partners Health Services Research Fellow. B.dC. is supported
by a Royal Australasian College of Physicians Fellows Career Development
Fellowship. and is the recipient of the NHMRC grant, which funded this
study.

Conflict of Interest
The authors declare no conflict of interest.

Author Contributions
J.-M.F.-R. and B.d.C. are senior authors. J.M.P. performed data analysis and
interpretation and wrote the first draft of the manuscript. W.D. performed
the muscle carnosine analysis and contributed to writing and editing the
manuscript. A.M. and N.N. performed data collection and contributed to
writing and editing the manuscript. P.M. supervised the lipidomics lab-
oratory analysis and contributed to writing and editing the manuscript.
J.-M.F.-R. supervised the data analysis and contributed to writing and edit-
ing the manuscript. B.d.C. conceptualized this study, is the chief investi-
gator of the original study, obtained funding, oversaw data collection and
analysis, and contributed to data interpretation and writing and editing
the manuscript. J.-M.F.-R. and B.d.C. are the guarantors of this work and
takes responsibility for data integrity and accuracy. All authors meet the
ICMJE criteria for authorship and have approved the final version of the
manuscript for publication.

Data Availability Statement
The data that support the findings of this study are available from the cor-
responding author upon reasonable request.

Keywords
carnosine, iron, lipidomics, muscle, obesity

Received: February 22, 2021
Revised: June 25, 2021

Published online: August 27, 2021

[1] L. Chen, D. J. Magliano, P. Z. Zimmet, Nat. Rev. Endocrinol. 2012, 8,
228.

[2] C. S. Fox, M. J. Pencina, P. W. F. Wilson, N. P. Paynter, R. S. Vasan, R.
B. D’Agostino, Diabetes Care 2008, 31, 1582.

[3] B. Saunders, K. Elliott-Sale, G. G. Artioli, P. A. Swinton, E. Dolan, H.
Roschel, C. Sale, B. Gualano, Br. J. Sports Med. 2017, 51, 658.

[4] K. Menon, C. Marquina, P. Hoj, D. Liew, A. Mousa, B. de Courten,
Nutr. Rev. 2020, 78, 939.

[5] K. Menon, C. Marquina, D. Liew, A. Mousa, B. de Courten,Obes. Rev.
2020, 21.

[6] J. Y. Culbertson, R. B. Kreider, M. Greenwood, M. Cooke, Nutrients
2010, 2, 75.

[7] K. Chmielewska, K. Dzierzbicka, I. Inkielewicz-Stȩpniak, M. Przy-
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