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Simple linear regression using ordinary least-squares is the most common func-
tion applied in laboratories for analytical calibrations. The determination and/or
the correlation coefficients are usually the parameters applied for assessing
the goodness-of-fit of a simple linear calibration. However, these parameters
are unable to detect the highly biased results at low calibration levels that are
obtained with ordinary least-squares. In this study, the use of other parameters
based on the relative standard errors of the calculated contents is evaluated. It
has been found that these alternative parameters can detect the biased results
obtained at low calibration levels with ordinary least-squares, being the relative
standard error the one that seems to provide the most adequate results. Ordi-
nary least-squares should only be applied if the lower limit of quantification is
set to at least five times above the conventional limit of quantification. For trace
analysis, where the lowest possible limit of quantification is required, weighted
least-squares should be applied to obtain accurate estimates, especially at low
concentrations. One of the greatest advantages of the relative standard error is
that this parameter can be determined for all types of regression functions and is
not limited to calibrations with linear relationships between the variables.

KEYWORDS
analytical calibration, goodness-of-fit, lower limit of quantification, regression, relative stan-
dard error

1 INTRODUCTION

It has been argued that calibration is a key and critical
property of any analytical method [1]. The selection of the

Article Related Abbreviations: GOF, goodness-of-fit; LLOQ, lower
limit of quantification; OLS, ordinary least-squares; QC, quality
coefficient; RA, residual accuracy; RE, relative error; RSE, relative
standard error; SSE, sum-of-squares error; SSR, sum-of-squares
regression; SSTO, sum-of-squares total; WLS, weighted least-squares
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calibration model is one of the most important decisions
to be made when performing quantitative analysis and the
choice of an inappropriate regression function may easily
lead to the determination of biased results, which will
result in incorrect decisions being taken. For this reason, it
is required to determine a parameter that can assess ade-
quately the goodness-of-fit (GOF) of a calibration function.
The most common analytical methods used in labora-

tories are modeled using equations based on linear rela-
tionships between the independent and the dependent
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variables, being ordinary least-squares (OLS) andweighted
least-squares (WLS) the most used functions. Overwhelm-
ingly, the GOF of these models is determined by the corre-
lation coefficient (R) or the determination coefficient (R2),
which is the squared value of R only for linear relation-
ships:

𝑅2 =
SSR

SSTO
= 1 −

SSE

SSTO
= 1 −

∑𝑛

𝑖=1

(
𝑦𝑖,𝑒𝑥𝑝 − 𝑦𝑖,𝑝𝑟𝑒𝑑

)2
∑𝑛

𝑖=1

(
𝑦𝑖,𝑒𝑥𝑝 − 𝑦𝑎𝑣𝑔

)2
(1)

where SSR is the sum-of-squares regression, SSE is the
sum-of-squares error, SSTO is the sum-of-squares total
(SSTO = SSR+SSE), yi,exp is the experimentally measured
value for the dependent variable, yi,pred is the predicted val-
ues from the linear model, and yavg is the average experi-
mental values. However, the disadvantages of using R and
R2 for assessing the GOF of linear analytical calibrations
are well-known [2–7].
The most used linear regression function, OLS, is based

on the minimization of the SSE term (also known as resid-
uals) because this model was developed with the assump-
tion that absolute errors of the dependent variable (mea-
sured as SD or variance, SD2) are constant all along the
range studied (homoscedasticity). However, in analytical
and bioanalytical calibrations the most common situation
is that absolute errors are not constant (heteroscedastic-
ity) and the parameter that remains approximately con-
stant is the relative error (RE; RSD) [6,8–13]. In this situ-
ation, OLS regression overestimates the effect of calibra-
tors at high concentration ranges, and the higher varia-
tions at this level have a much greater influence on R2
than small deviations present at low ranges [14]. Logue and
Manandhar [7] showed, using a modeled geometric series,
with ratio ½, of seven calibrators covering two orders of
magnitude with a constant RSD of 10%, that 96% of the
SSTO value (Equation (1)) is based on the SSE results of the
largest two concentrations, and 99% on the largest three
concentrations. Therefore, the first four calibrators con-
tribute <1% to the calculated R2 value. Another limitation
of OLS with heteroscedastic data is that the values at high
concentrations are given toomuch weight and estimations
at this point work like a lever, which can easily lead to con-
siderable bias at low concentrations. It has been reported
that when the data have a proportional error, neglect of
weighting can increase the uncertainty by a factor ≥10 at
the lower concentration level [15,16]. For these reasons,
it has been reported that OLS should not be used when
samples are expected to be determined close to the LOQs
[1,6–9,12,13,15,17–19], as is very common in trace analysis.
When WLS is used, a weighting factor based on the

inverse of the variance of the measurement is applied for

each calibrator (wi = 1/SDi
2), which forces the regression

line to track closer to the points with the lowest variance
(higher weight). In this situation, the lower concentra-
tion standards become more important. In all the studies
that have compared OLS with WLS regression with het-
eroscedastic calibrations, it has been found that signifi-
cantly biased results with OLS regression were obtained
at low calibration levels [1,12,13,17,20], which are solved
applying WLS. However, at a certain level above the LOQ
of the method, both linear regression models tend to yield
equivalent results. This is due to the fact that OLS can han-
dle a certain level of heteroscedasticity, which allows OLS
regression results to be unaffected unless a severe devia-
tion from homoscedasticity is present [21].
Despite the great advantages when using WLS, espe-

ciallywhen the analytical results aremeasured at the lower
end of the calibration range, theR2 values obtained byWLS
and OLS regressions are very similar [7]. Therefore, the
R2 is unable to differentiate between a poor linear fitting,
OLS, and a good one, WLS, and cannot be considered as a
parameter to assess the GOF of the experimental calibra-
tions.
Another disadvantage of R2 is that it is based on abso-

lute errors of the dependent variable (signal measured,
yi). However, the most important function of a calibra-
tion curve is to accurately predict the concentration of
unknown samples. For this reason, GOF parameters based
on differences between the nominal and calculated con-
centrations are more desirable. Moreover, due to the com-
mon heteroscedasticity usually present in analytical cali-
brations, parameters based on REs are also preferred.
Some parameters have been proposed for assessing GOF

of calibration curves taking into account these considera-
tions, like the quality coefficient (QC) [22]:

QC (%) = 100 ×

√√√√√√∑𝑛

𝑖 = 1

(
𝑥𝑖,𝑡𝑟𝑢𝑒 − 𝑥𝑖,𝑐𝑎𝑙𝑐

𝑥𝑖,𝑡𝑟𝑢𝑒

)2

𝑛 − 1
(2)

the residual accuracy (RA) [7]:

RA (%) = 100 ×

∑𝑛

𝑖 = 1

(
1 −

||||𝑥𝑖,𝑡𝑟𝑢𝑒 − 𝑥𝑖,𝑐𝑎𝑙𝑐
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||||
)

𝑛
(3)

and the relative standard error (RSE) [17]:

RSE (%) = 100 ×

√√√√√√∑(
𝑥𝑖,𝑡𝑟𝑢𝑒 − 𝑥𝑖,𝑐𝑎𝑙𝑐

𝑥𝑖,𝑡𝑟𝑢𝑒

)2

(𝑛 − 𝑝)
(4)

where, xi,calc is the experimentallymeasured concentration
with the assessed regression, xi,true is the true value of the
concentration level, n is the number of calibration points,
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and p is the number of terms in the fitting equation (linear
p = 2 and quadratic p = 3).
These three parameters are equivalent and use the RE

in the predicted concentration values. The only difference
appears in the denominator of the equations. It has to be
noted that the only parameter that takes into account the
degrees of freedom of the equation function evaluated (n
– p) is the RSE. For this reason, this parameter has been
proposed for any type of regression model, linear or non-
linear. The use of the RSE has been recommended by the
National Environmental Laboratories Accreditation Con-
ference Institute [23] for the evaluation of calibrations in
environmental analysis and recent revisions of the US-
Environmental Protection Agencymethods for waters also
accept this methodology for assessing the acceptability of
the calibration curves [1,24].
It is clear that the use of the determination and cor-

relation coefficients should be avoided for assessing the
GOF of calibration and a different parameter should
be taken into account. As Burrows and Parr wrote [1],
“the combination of using unweighted linear regression
function with evaluating the correlation coefficient is
particularly pernicious” because this allows calibrations
yielding large bias at the low end of the calibration range
to pass typical method criteria.
In the present study, WLS regression, applying different

procedures for calculating the weighting factor, has been
compared against OLSwith different experimental calibra-
tions with linear relationships between the variables. In all
the models evaluated, the GOF, using the R2 and the other
parameters explained in this introduction are evaluated in
order to assess the efficiency of the proposed alternatives
as a substitute of the R2. The evaluated parameters are also
applied for the evaluation of calibrations with non-linear
relationships (i.e., curvature).
This work tries to reinforce what should be the current

practice for analytical laboratories and to assess whether
there is a parameter other than the R2 that can evaluate
the GOF of calibrations with linear relationships and any
other type of calibration equations, solving the limitations
and deficits of the R2.

2 METHODS

All the calibration data in this study have been obtained
from experimental calibrations. The detailed informa-
tion about the standards prepared, the individual signals
obtained for the independent replicates measured at each
concentration level, linearity assessment, and results of the
calibrations evaluated are shown in the Supporting Infor-
mation. The homogeneity/heterogeneity of the variances
in each calibration was evaluated using the Levene test
[25,26].

A total of six calibration models were assessed for each
calibration with linear relationships, one using OLS and
five with WLS regression (one using the inverse of the
experimental variance, 1/SDi

2, as theweight and the others
applying 1/xi, 1/yi, 1/xi2, and 1/yi2). In the case of calibra-
tions with non-linear relationships between the variables,
the quadratic regression was compared against OLS and
WLS (wi = 1/SDi

2).
The SD at blank level (SDbl) was determined from the

analysis of at least seven independent replicates of spiked
blanks. LOQ values were obtained taking into account the
determined precision at the blank level and calculated as
10 × SDbl, as proposed by different validation guidelines
[27,28].
IBM SPSS Statistics 27 was used for the statistical and

regression calculations. A differencewas considered as sig-
nificant when p < 0.05.

3 RESULTS AND DISCUSSION

The results obtained for all the evaluated calibrations
show that the variability associated with the depen-
dent variable ranges between 1 and 13% (Supporting
Information), whereas the variability associated with the
independent variables was always <0.1% (determined
from error propagation calculations taking into account
the variabilities of the stock solutions and material
used in the preparation of the standards). This con-
firms that the independent variable always had a signif-
icantly lower error than the dependent variable, which
allows classical calibration to be used (regression of y
on x) rather than inverse calibration (regression of x
on y).

3.1 Assessment of weighting factors
with calibrations with linear relationships

One of the main limitations argued by many researchers
against the use of WLS with routine calibrations is the
requirement for a large number of replicates to be per-
formed with each standard in order to obtain the weight-
ing factors since they are defined as the inverse of the vari-
ance for each calibrator, which requires the measurement
of independent replicates at each level.
As mentioned in the Introduction, the SD is not con-

stant with the concentration in many analytical and bio-
analytical methods and the parameter that tends to be
so is the RE (i.e., heteroscedasticity). In these conditions,
when classical calibration is applied, absolute errors tend
to increase proportionally to both the concentration of the
analyte in the sample and the measured response. The
results obtained in this study confirm this fact (Figure 1).
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F IGURE 1 Increase in the experimental SD with the concentration (A,C) and with the instrumental response (B,D). (A) and (B)
correspond to case study #1, whereas (C) and (D) correspond to case study #5. Seven independent replicates were measured at each
calibration level

Further confirmation was obtained statistically by apply-
ing the Levene test to evaluate the homogeneity of the vari-
ances in each calibration (Table 1). All calibrations yield
p < 0.05, confirming heteroscedasticity, except for case
study #10, which only covers one order of magnitude.
Due to the proportional increase of the absolute errors

to the two variables, different mathematical approaches
have been proposed for a simpler and more practi-
cal way to determine the weighting factors without the
need to analyze replicates, such as 1/xi, 1/yi, 1/xi2, and
1/yi2 [6,8,11,15,29,30]. The majority of these studies found
that 1/xi2 and 1/yi2 usually give the best results. These
approaches have been evaluated in the present study and
the results obtained, despite not being novel, confirm that
WLS is the most appropriate linear calibration for obtain-
ing accurate estimates at low levels (see RSE values in
Table 1). Moreover, the results obtained also confirm that
the need to measure replicate standards is not an absolute
requirement to perform WLS calculations and to obtain
good estimates of the slope, the intercept, and their SDs.
The five mathematical approaches evaluated for calculat-
ing the weighting factors have yielded equivalent results,
and it was confirmed that applying 1/xi2 and 1/yi2 as
weighting factors seems to give better estimates for the SD
of the intercept.
It has been reported thatWLSdoes not significantly alter

the slope estimate obtained by OLS, whereas the inter-
cept can be moderately affected [15,16,31,32]. In our case,
these trends were confirmed. In the case of the slopes,

although in some calibrations statistical differences were
found between the slopes calculated with the OLS and the
WLS models (ANOVA test, case studies #1 p < 0.001, #2
p= 0.006, #3 p= 0.004, #4 p= 0.007, and #5 p= 0.016), the
percentage of variation was always <5%, a value that from
a practical point of view can be considered as acceptable
and equivalent. In the case of the intercepts, no differences
were found between the results obtained for all weighted
regression models (p > 0.15). Interestingly, when the val-
ues obtained with OLS were assessed, two different behav-
iors were found. First, a significant difference between the
intercepts determined with the unweighted model and the
weighted models was usually found for those calibrations
where the first standard was set at a value close to the
LOQ, with 2–12 times higher values being obtained with
the OLS model (#1, #2, #3, #4 p < 0.001, #5 p = 0.027,
and #6 p = 0.135). Second, no significant differences were
found when the first standard was set at a value well above
the LOQ (#7 p = 0.959, #8 p = 0.431, #9 p = 0.228, and
#10 p = 0.132). The OLS estimates were <2 times higher
in these calibrations.
The SD values of the intercepts determined by OLSwere

always higher than those with the WLS functions. These
differences were significantly larger in 70% of the calibra-
tions, except in #7 p= 0.152, #8 p= 0.120, and #10 p= 0.154.
In these three calibrations, the first standard was set at a
level well above the LOQ of the method. F-tests were also
applied to compare the values of the experimental vari-
ance determined at the blank level and the variance of the
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TABLE 1 Relative standard error (RSE, %), quality coefficient (QC, %), residual accuracy (RA, %) and determination coefficient (R2)
calculated for the calibrations evaluated with linear relationship applying the six regressions evaluated

Calibration LOQ RSE QC RA
Study case range (10 × SDbl) Model (%) (%) (%) R2

#1 0.1–30 mg/L 0.05 mg/L OLS 147 134 52 0.9995
WLS (wi = 1/SDi

2) 4 3 98 0.9995
WLS (wi = 1/xi2) 3 3 98 0.9991

Levene test p = 0.002 WLS (wi = 1/yi2) 3 3 98 0.9991
WLS (wi = 1/xi) 5 5 97 0.9993
WLS (wi = 1/yi) 6 6 96 0.9993

#2 0.05–20 mg/L 0.05 mg/L OLS 96 89 59 0.9996
WLS (wi = 1/SDi

2) 4 4 97 0.9992
WLS (wi = 1/xi2) 4 3 98 0.9995

Levene test p < 0.001 WLS (wi = 1/yi2) 4 3 98 0.9988
WLS (wi = 1/xi) 5 5 97 0.9994
WLS (wi = 1/yi) 6 1 97 0.9994

#3 1–50 mg/L 1 mg/L OLS 47 42 83 0.9989
WLS (wi = 1/SDi

2) 6 6 97 0.9982
WLS (wi = 1/xi2) 5 5 97 0.9975

Levene test p < 0.001 WLS (wi = 1/yi2) 6 5 97 0.9976
WLS (wi = 1/xi) 8 7 95 0.9984
WLS (wi = 1/yi) 8 7 95 0.9985

#4 0.4–21 ppbv 0.2 ppbv OLS 52 46 77 0.9978
WLS (wi = 1/SDi

2) 11 10 92 0.9944
WLS (wi = 1/xi2) 10 9 93 0.9896

Levene test p < 0.001 WLS (wi = 1/yi2) 10 9 93 0.9909
WLS (wi = 1/xi) 15 13 91 0.9967
WLS (wi = 1/yi) 13 12 91 0.9967

#5 10–800 mg/L 10 mg/L OLS 19 17 93 0.9996
WLS (wi = 1/SDi

2) 4 3 98 0.9997
WLS (wi = 1/xi2) 2 2 99 0.9997

Levene test p < 0.001 WLS (wi = 1/yi2) 2 2 98 0.9997
WLS (wi = 1/xi) 3 3 98 0.9998
WLS (wi = 1/yi) 4 2 98 0.9998

#6 10–800 mg/L 9 mg/L OLS 34 31 86 0.9980
WLS (wi = 1/SDi

2) 3 3 98 0.9993
WLS (wi = 1/xi2) 3 3 98 0.9993

Levene test p = 0.002 WLS (wi = 1/yi2) 3 3 98 0.9993
WLS (wi = 1/xi) 3 3 98 0.9991
WLS (wi = 1/yi) 4 3 97 0.9990

#7 25–300 mg/L 5 mg/L OLS 3 2 98 0.9990
WLS (wi = 1/SDi

2) 3 3 98 0.9990
WLS (wi = 1/xi2) 3 2 98 0.9989

Levene test p = 0.042 WLS (wi = 1/yi2) 3 2 98 0.9989
WLS (wi = 1/xi) 3 3 98 0.9993
WLS (wi = 1/yi) 3 3 98 0.9993

#8 50–500 μM 10 μM OLS 4 3 97 0.9991
WLS (wi = 1/SDi

2) 3 3 97 0.9980
(Continues)
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TABLE 1 (Continued)

Calibration LOQ RSE QC RA
Study case range (10 × SDbl) Model (%) (%) (%) R2

WLS (wi = 1/xi2) 3 2 98 0.9988
Levene test p = 0.002 WLS (wi = 1/yi2) 3 2 98 0.9987

WLS (wi = 1/xi) 3 3 98 0.9991
WLS (wi = 1/yi) 3 3 98 0.9991

#9 50–500 μM 10 μM OLS 3 3 98 0.9991
WLS (wi = 1/SDi

2) 2 2 99 0.9997
WLS (wi = 1/xi2) 2 2 99 0.9995

Levene test p = 0.004 WLS (wi = 1/yi2) 2 2 99 0.9995
WLS (wi = 1/xi) 2 2 99 0.9995
WLS (wi = 1/yi) 2 2 99 0.9995

#10 11–92 mg/L 2 mg/L OLS 6 5 96 0.9975
WLS (wi = 1/SDi

2) 3 3 97 0.9984
WLS (wi = 1/xi2) 3 2 98 0.9990

Levene test p = 0.077 WLS (wi = 1/yi2) 3 2 98 0.9989
WLS (wi = 1/xi) 3 3 98 0.9986
WLS (wi = 1/yi) 3 3 98 0.9984

Abbreviation: OLS, ordinary least-squares; WLS, weighted least-squares.
ppbv = parts per billion by volume

intercept values for each calibration model evaluated. It
was found that in 80% of the calibrations the SD of the
intercept determined by OLS regression was significantly
higher than the experimental variance of the blank. On the
other hand, the variance of the intercept determined by
WLS was equivalent to the blank variance in 80% of the
cases. These results agree with those obtained by Vester-
lund and Ramebäck [16] on analyzing certified reference
materials at levels close to the LOQ and confirm that WLS
regression is better at reproducing the variability at the low
level of the calibration curves, near the LOQ.

3.2 Assessment of the GOF with
calibrations yielding linear relationships

In order to perform the evaluation of the linear calibra-
tions, an approximate LOQ for each method was deter-
mined by a conventional validation procedure, based on
10 × SDbl [27,28]. Taking into account the results found in
the previous section, the calibrationswere divided into two
groups. First, those calibrations where the first standard
was set at a level equivalent to the calculated LOQ (case
studies #1, #2, #3, #4, #5, and #6 in Table 1 and Supporting
Information). Second, calibrationswhere the first standard
was set clearly above the calculated LOQ (case studies #7,
#8, #9, and #10).
As can be seen from the results obtained (Table 1), all

linear calibrations evaluated were heteroscedastic (except

#10, p = 0.077), and gave appropriate values for R2 (>0.99)
for all the regression functions evaluated, also for OLS.
However, when the other GOF parameters were taken into
account, those calibrationswhere the first standardwas set
at a level equivalent to the LOQ only gave correct results
with theWLS regressions (set in this study at<15% for RSE
andQC, and>90% for RA). It was found in the calibrations
evaluated that when the first standard was set at≥5× LOQ
the results obtained with OLS and WLS regression did not
yield any significant difference for any of the GOF param-
eters evaluated.
To confirm the lack-of-fit of the OLS regressions at low

levels, theRE (%) for the back-calculated values for all stan-
dards was determined. In all cases, theWLSmodels always
yieldedRE< 10%, independently of the calibrator assessed,
whichwere considered acceptable (US-FDA sets RE accep-
tance criteria at <15% of nominal concentration, except at
LOQ level where should be<20% [33]). However, for those
calibrations where the first standard was set at the LOQ
level, the OLS model gave unsatisfactory results for the
lowest level standards, with RE values ranging from 25 to
328%. When the first standard was set at a level ≥5 × LOQ
RE values obtained with OLS regression were acceptable
(RE < 10%).
In those cases where the OLS model yielded unsatisfac-

tory results, calibrations were re-evaluated removing those
standards that had concentrations <5 × LOQ (Table 2).
It can be observed that once the lower standard is set at
a level >5 × LOQ, the OLS function yielded satisfactory
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TABLE 2 Goodness-of-fit (GOF) parameters (relative standard error [RSE], quality coefficient [QC], residual accuracy [RA]) calculated
for the calibrations with linear relationship evaluated with the first standard (lower LOQ [LLOQ]) set at different levels in the case of ordinary
least-squares (OLS) regression

LOQ RSE QC RA
Study case LLOQ (10 × SDbl) Model (%) (%) (%)
#1 0.1 mg/L 0.05 mg/L OLS 146.8 134.0 51.7

5 mg/L OLS 2.8 2.5 98.4
0.1 mg/L WLS (wi = 1/SDi

2) 3.6 3.3 97.8
#2 0.05 mg/L 0.05 mg/L OLS 95.9 88.5 58.8

0.1 mg/L OLS 45.8 41.8 83.1
1 mg/L OLS 5.0 4.5 97.3
0.05 mg/L WLS (wi = 1/SDi

2) 3.7 3.8 97.4
#3 1 mg/L 1 mg/L OLS 47.1 42.2 82.5

10 mg/L OLS 3.8 3.3 97.9
1 mg/L WLS (wi = 1/SDi

2) 6.2 5.5 96.5
#4 0.4 ppbv 0.2 ppbv OLS 51.8 46.3 76.5

0.8 ppbv OLS 15.3 13.2 91.9
1 ppbv OLS 6.0 4.9 96.2
0.4 ppbv WLS (wi = 1/SDi

2) 11.4 10.2 92.3
#5 10 mg/L 10 mg/L OLS 19.2 17.2 93.0

100 mg/L OLS 1.1 1.0 99.3
10 mg/L WLS (wi = 1/SDi

2) 3.6 3.2 97.9
#6 10 mg/L 9 mg/L OLS 34.5 30.8 85.9

100 mg/L OLS 4.7 4.0 96.7
10 mg/L WLS (wi = 1/SDi

2) 3.0 2.7 97.9

Abbreviation: WLS, weighted least-squares
ppbv = parts per billion by volume

results for all the GOF parameters evaluated. In case stud-
ies #2 and #4, two standards had to be removed because
the second standard was at<5 × LOQ, and at this level, the
results measured with the OLS function were still unsatis-
factory.
The results obtained clearly confirm that R and R2 fail

as GOF parameters. Using these coefficients, it is not pos-
sible to detect the highly significant bias resulting from
OLS when analyzing compounds at low concentration lev-
els. However, all the other parameters assessed were able
to detect this problem. From the three proposed parame-
ters, it seems that RSE gives better results. For example,
in case study #5, the RA parameter (93%) was unable to
detect the excessive bias for the first standard (38%) in this
calibration. In case study #4, RA (92%) and QC (13%) also
failed to detect the bias (25%) of the second standard used
(set at 4 × LOQ). The only parameter that was able to
detect all the excessive bias at low levels with OLS regres-
sion was the RSE, which might be associated with the
fact that it is the only parameter that takes into account
the degrees of freedom of the calibration model evaluated
(n – p).

3.3 Lower LOQ

Calibration results can be reported starting at the LOQ
of the proposed method. However, the most common
methodologies used in the experimental determination of
LOQ values are only based on the precision at a single
concentration, without taking into account the trueness
at this level. The conventional concept of LOQ is based
on a multiple of the experimental SD measured at blank
level (k × SDbl, usually k = 10), which is simply an exten-
sion of the methodology applied for determining the LOD
[28]. This procedure does not take into account the regres-
sion function applied and the variability introduced by
this model. The International Union of Pure and Applied
Chemistry has recommended modifying this concept [27].
In the new recommendations, the variability at the quan-
tification level (σQ) should not be only based on an esti-
mate of the SD at blank level, and the propagation of
uncertainties in slope and intercept must be considered.
Therefore, the regression model chosen has a significant
effect on the correct determination of the LOQ for any
analytical method, and its value can change for the same
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analytical method depending on the regression function
applied.
Some recent validation guidelines require the evalua-

tion of trueness in the determination of the LOQ [33–35].
However, the proposed methodologies require the anal-
ysis of a large number of replicates at each calibration
level, which is only possible during the validation of a
method and is not practical in the daily routine of a lab-
oratory. From a practical point of view, it is more appro-
priate to use the concept of lower LOQ (LLOQ), a crite-
rion already required for calibrations in the environmental
analysis [23]. It has been recommended that laboratories
establish the LLOQ at concentrations where both quanti-
tative and qualitative requirements can consistently bemet
[24].
The results obtained in this study show that probably

the most important parameter to be taken into account to
determine the linear calibration model that can be applied
is the level set for the first standard (i.e., LLOQ), inde-
pendently of whether the calibration is heteroscedastic or
not. Once a correct LLOQ level is determined after the
evaluation of the RSE values, the regression model cho-
sen can be applied with adequate trueness and precision.
As can be seen in Table 2, it is possible to specify appro-
priate LLOQ levels using the RSE parameter with any
type of regression model for each calibration. The limits
were found to change significantly for the same calibration
results depending on the regression function applied. For
example, in case study #1 the LLOQ can be set at 0.1 mg/L
using WLS regression but must be increased to 5 mg/L
with the used calibrators if OLS regression needs to be
applied.
Other authors have also evaluated the heteroscedastic-

ity effects on their analytical methods [10]. They found
their results to be heteroscedastic, used the data obtained
in recovery tests to assess the quality of both OLS and
WLS regressions, and found no significant effects on recov-
ery between the two calibration models. For this rea-
son, it was concluded that, in general, heteroscedastic-
ity should rarely affect accuracy. The calibration results
presented in that study have been evaluated to calcu-
late the RSE value of both regression methods. The
results obtained are RSE = 6% for the OLS regression
and RSE = 2% for the WLS model, which confirms that
the LLOQ used in that study (0.5 mg/L) is adequate for
applying the OLS regression. Therefore, no differences
between OLS and WLS should be found if there are no
measurements below this LLOQ. An approximation of the
LOQ value was determined using the SD of the inter-
cept determined by WLS, and LOQ = 0.08 mg/L was
found, confirming that the first standard (LLOQ) was set
at >5 × LOQ.

3.4 Non-linear relationships between
dependent and independent variables

The use of the RSE criterion has the advantage that it
can be applied to all types of regression functions, not
only those with linear relationships between the variables.
Therefore, the ability of RSE to assess functions with non-
linear relationships between the dependent and indepen-
dent variables (i.e., curvature) has also been evaluated
(Supporting Information, case studies #11, #12, and #13).
Case study #11 corresponds to an HPLC-UV method

where the curvature is questionable. In this case, the lack-
of-fit test suggests linearity (p = 0.131) but Mandel’s test
suggests non-linearity (p < 0.001). The lack-of-fit test is
more robust with heteroscedastic calibrations because it
takes into account the variability at the different levels
evaluated, whereasMandel’s test only uses themean value
for each standard without taking into account the variabil-
ities. However, the only test that can be applied with sin-
gle measurements usually performed in the daily routine
of laboratories is Mandel’s test. In such situations, this cal-
ibration could be considered non-linear.
The results obtained with the RSE test confirmed that

the lower value is obtained with the quadratic calibration
(RSE = 1%). The acceptable results obtained with the WLS
regression (RSE = 6%) may be associated with the ques-
tionable non-linearity of this calibration. The LOQ of this
method is 1 mg/L, for this reason when the first standard
(LLOQ)was set at 10mg/L, theOLS regression also became
satisfactory (RSE = 3%). These results also demonstrate
that the RSE calculation can be used to analyze whether or
not a linear model can be used with calibrations that seem
to present curvature. As can be seen, despite the best RSE
value being obtained with the quadratic regression, the
curvature is not experimentally significant and the results
obtained with the linear models, once the correct LLOQ
value is set, do not introduce significant deviations in the
REs calculated (RSE ≤ 5%).
The other two cases (case studies #12 and #13) corre-

spond to methods using calibrations ranges that yield sig-
nificant curvature in the response (Figure 2). In case study
#12, the two statistical tests to assess linearity, lack-of-fit
(p < 0.001) and Mandel’s test (p = 0.021), confirmed the
curvature in the calibration range evaluated. As expected
in this situation, the two linear regression models evalu-
ated give unsatisfactory results (OLS: RSE = 61%; WLS;
RSE = 47%). The only model that yields a satisfactory RSE
result is the quadratic regression (RSE= 6%). In case study
#13, the two tests for linearity also confirmed non-linearity
(lack-of-fit: p < 0.001, Mandel’s test: p = 0.002). As in the
previous example, the RSE values determinedwith the two
linear models confirm the non-acceptability of the linear
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B

F IGURE 2 Curves obtained for the non-linear calibrations evaluated. (A) Case study #12 and (B) case study #13

models (OLS: RSE= 211%;WLS:RSE= 53%). The quadratic
regression gives an acceptable RSE value (11%).

4 CONCLUDING REMARKS

Many people working in laboratories often perform lin-
ear regression based onOLS fitting without thinking about
the limitations of how it really works. It has been demon-
strated in many studies that WLS is the only linear model
that can yield good results when analyzing samples where
contents at low levels are expected. Despite this, it is possi-
ble to see comments in many internet forums dealing with
calibration such as it is not clear (or not easy to see) what
weights should be used and it is not clear if the WLS gives
any advantage. Moreover, the most widely used parameter
for assessing linear calibrations is still the correlation or
the R2s. However, it must be taken into account that when

R or R2 are used as acceptance criteria for calibrations with
linear relationships, they are irrelevant.
Here, the use of the RSE has been extensively evaluated

with experimental calibrations obtained in our laboratory.
First, it has been confirmed that it is not required to ana-
lyze replicates for each standard to perform WLS. Using
approximations such as wi = 1/xi2 or wi = 1/yi2 allows cor-
rect estimates of the slopes and intercepts to be obtained,
as well as of their SDs, equivalent to those obtained from
the experimental variance after measuring a large number
of independent replicates for each standard.
The use of the RSE calculation has proven to be a robust

tool for assessing the quality of the calibration regres-
sion used without the need to perform multiple replicates
for each standard. Another advantage of RSE is that it
is not necessary to take into account the R or R2 values
to assess linear regression models. Moreover, this calcula-
tion also permits calibrations with non-linear and linear
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relationships to be easily differentiated for those calibra-
tions where the curvature is questionable.
Although it has been extensively demonstrated that

OLS should not be applied as the regression model when
samples are expected to be determined close to the LOQ
[1,6–9,12,13,15,17–19], this function is still the most widely
applied in all types of laboratories. This fact can mainly be
associated with two factors. First, OLS is practically the
only regression model that almost everyone learns dur-
ing their training. A survey carried out at our university
of more than 500 biotechnology and chemistry students
over six academic years showed that none of the students
had received training about any regression model other
than OLS, only around 15% of the students answered that
they had heard something about WLS in some analytical
chemistry subjects. Given this situation, it is not surpris-
ing that OLS ends up being used practically for anything
and everything. Second, OLS has great mathematical sim-
plicity in comparisonwith other calibration functions. The
widespread use of OLS is also almost certainly attributable
to the fact that OLS calculations are included in popular
software packages such asMicrosoft Excel and in scientific
calculators. Other regression functions are more complex
mathematically and require the use of specialized statisti-
cal software to perform the calculations. It is true that some
modern instruments already include controlling software
that is able to perform other types of regression calcula-
tions but the generalized use of OLS has not decreased in
recent years.
Themost significant conclusion obtained in this study is

that OLS can be applied with any type of calibration with
linear relationships between the variables, but its LLOQ
will always be significantly higher than the convention-
ally measured LOQ. A minimum LLOQ ≥ 5 × LOQ seems
to be required to reach acceptable RSE values when OLS
regression is used. However, if we want to reach the small-
est possible LLOQ level, equivalent to the conventional
LOQ value, WLS regression must be applied, which is a
common situation in trace analysis. The need to set the
LLOQ≥ 5 × LOQ using OLS regression found in this study
was also suggested in studies using more complex calcula-
tions, such as accuracy profile plots [13,34], which require
many analyses to be performed, doing replicates at all cal-
ibration levels. The great advantage of RSE is that it does
not require any extra measurement to be performed other
than the conventional measurements required for a set of
calibration standards, as is done in the daily routine of a
laboratory.
Another significant characteristic of the application of

the RSE value in calibrations is that the evaluation of R
or R2 is not required to assess the GOF of the regression
function. As can be seen in Table 1, all the analyzed regres-
sion functions giveR2 > 0.99 (orR> 0.995), one of themost

common criteria for acceptance of calibrations in laborato-
ries. However, it is clear that this parameter is not adequate
to assess the quality of the regression functions because it
would lead to having to accept OLS regressions with >20%
of RE at low concentration levels. As was also suggested by
Burrows and Parr [1], necessary changes to remove the use
of the correlation coefficient and the coefficient of deter-
mination must be considered for methods and their use
as a criterion for the acceptance of a calibration equation
should be avoided.
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