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Abstract: Inherited cardiomyopathies are frequent causes of sudden cardiac death (SCD), especially in
young patients. Despite at the autopsy they usually have distinctive microscopic and/or macroscopic
diagnostic features, their phenotypes may be mild or ambiguous, possibly leading to misdiagnoses
or missed diagnoses. In this review, the main differential diagnoses of hypertrophic cardiomyopa-
thy (e.g., athlete’s heart, idiopathic left ventricular hypertrophy), arrhythmogenic cardiomyopathy
(e.g., adipositas cordis, myocarditis) and dilated cardiomyopathy (e.g., acquired forms of dilated car-
diomyopathy, left ventricular noncompaction) are discussed. Moreover, the diagnostic issues in SCD
victims affected by phenotype-negative hypertrophic cardiomyopathy and the relationship between
myocardial bridging and hypertrophic cardiomyopathy are analyzed. Finally, the applications/limits
of virtopsy and post-mortem genetic testing in this field are discussed, with particular attention to
the issues related to the assessment of the significance of the genetic variants.

Keywords: cardiomyopathies; sudden cardiac death; forensic autopsy; post-mortem genetic test-
ing; virtopsy

1. Introduction

Sudden unexplained death (SUD) is a fatal event that encompasses several heart
disorders which lead to abrupt and unpredicted death. Normally, the victim has no known
history of heart disease. In adult population (16–64 years) the SUD rate is 11/100,000 per
year, while, in the young population (<16 years of age), it is 7.5/100,000 [1]. According to the
evidence of the last 15 years, most of the SUD cases (at least the 5–20% of them) are of cardiac
origin [2]. It is well known that Sudden Cardiac Death (SCD) is one of the most common
causes of death in developed countries, with a yearly incidence of 30–200/100,000. In young
population, SCD is a rare event, having an incidence of approximately 2–5/100,000 patients
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per year [3]. Coronary artery disease and acquired cardiomyopathies are the most frequent
causes of SCD in the adults, while in those younger than 35 years the main cause of SCD
is represented by non-ischemic diseases [4,5]. Cardiomyopathies are the main cause of
SCD in those younger than 35 years, while up to 40% of young cases of SCD are caused
by pathogenic alterations in the genes that code for ion channels or proteins associated
with their proper functioning [6,7]. Currently, nearly the 20% of total deaths in young
population remain without a conclusive explanation after a complete autopsy [8–11].
Inherited arrhythmogenic syndromes—channelopathies—account for most of the autopsy-
negative cases (if acute intoxications are excluded). On the other hand, cardiomyopathies
are generally thought to have distinctive macroscopic and microscopic features. However,
in the forensic field cardiomyopathies are often extremely challenging, mainly because of
two factors: (i) the phenotypes of cardiomyopathies gradually develop, and some of cases
of SCD occur in young victims, with only mild microscopic and/or macroscopic signs
of disease; (ii) when the diagnosis has not been made before the death, at the autopsy it
is often difficult to distinguish a cardiomyopathy from another pathological (or from a
physiological) condition.

In this paper, we review the main issues that the pathologist can encounter at the
macroscopic and microscopic examination of cardiomyopathies cases and we discuss the
contributions that can be given by virtopsy and post-mortem genetic testing, focusing on
the issues of medico-legal interest.

2. Hypertrophic Cardiomyopathy

Hypertrophic cardiomyopathy (HCM) has a prevalence of 1/500 [12]. It is macroscop-
ically characterized by abnormal left ventricular (LV) wall thickness and/or heart weight.
In HCM the LV hypertrophy is typically asymmetrical, but it can also be symmetrical and
can involve only delimited regions, like the apex. The LV wall thickness is considered a
strong predictor of sudden death [13]. However, the predisposition to SCD is multifactorial,
since it also depends on anamnestic factors (familiarity for SCD and history of syncope
and/or non-sustained ventricular tachycardia) [14]. At the autopsy, as said, an abnormal
heart weight can be suggestive of HCM, but there is little evidence on what the normal
range of this parameter is [15]. However, it is usually assumed that a weight > 500 g is
of pathological significance [16]. The diagnostic microscopic features are hypertrophy
and disarray (i.e., the loss of the normal parallel alignment of the myocytes), associated
with interstitial fibrosis (Figure 1). LV hypertrophy and/or myocardial fibrosis without
myocardial disarray are features of uncertain significance [17].
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Figure 1. Left ventricle: diffuse disarray and mild fibrosis (A). Hematoxylin and eosin stain, 4×
magnification), associated with focal and mild myocardial hypertrophy (B). Hematoxylin and eosin
stain, 40× magnification) in a 48-year-old man who suddenly died while playing sport.
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2.1. Differential Diagnosis

At the autopsy, the hypertrophy of the ventricular walls is the most misleading
feature: ventricular hypertrophy is an extremely common finding, but it must be carefully
evaluated to infer on its origin. In detail, the hypertrophy can be concentric or eccentric.
Concentric hypertrophy may be associated with both congenital (HCM) (Figure 2) and
acquired (hypertension, aortic stenosis, chronic abuse of anabolic steroids) conditions.
Eccentric hypertrophy is rarely found at the autopsy, since it does not reduce the volumes
of ventricular chambers, and thus the diagnosis can be easily missed. Eccentric hypertrophy
is usually caused by valvular anomalies, like aortic or mitral insufficiency.
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Figure 2. Macroscopic transversal section of the heart of a 48-year-old man affected by hypertrophic
cardiomyopathy (HCM) (the same case of Figure 1). Concentric hypertrophy is clearly visible.

Furthermore, several adaptive or idiopathic conditions can be misdiagnosed as HCM.
For instance, in obese individuals a state of chronically high cardiac output can cause the so-
called “obesity associated heart disease”, that can mimic HCM [18]. Moreover, competitive
athletes (in particular endurance athletes) frequently show an adaptive ventricular remod-
elling known as athletic heart syndrome (“athlete’s heart”). Because of the small increases
in the thickness of the ventricular walls, athlete’s heart can be easily misdiagnosed as a mild
HCM (a LV wall of 13–15 mm is typically considered a diagnostic grey zone) [19]. However,
differently from HCM, athlete’s heart is usually associated with left atrium enlargement
and, according to current evidence, does not increase the risk of supraventricular tach-
yarrhythmias [20,21]. Finally, in the young population (in both athletes and non-athletes)
an idiopathic left ventricular hypertrophy (ILVH) can be reported [22]. The ILVH is a
condition of uncertain significance, despite it has been associated with an increased risk of
sudden death, especially in presence of myocardial fibrosis [17].
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2.2. Diagnostic Issues in Young SCD Victims

In HCM the impaired mechanical function of myocytes progressively causes compen-
satory disarray, hypertrophy, and fibrosis. Therefore, in children this cardiomyopathy often
has no or extremely mild phenotype, with most of the patients developing clear hypertro-
phy only during or after the adolescence [22,23]. In case of young victims, since hypertrophy
is rarely found, it is very important to look for the myocyte disarray. This finding can be
physiological in the parts of the anterior and posterior walls of the right ventricle that are
near the septum, and thus it is very important to collect several samples in different areas
of the heart [23].

HCM is characterized by variable expressivity, and thus a carrier of a pathogenic vari-
ant could never develop macroscopic or microscopic signs of disease. However, genotype-
positive patients without hypertrophy of the LV walls still have altered cardiac dimen-
sions/function and a higher burden of early phenotypes [22].

2.3. HCM and Myocardial Bridging

Myocardial bridging (MB) (Figure 3) is a common congenital anomaly, that can be
found in up to the 85% forensic autopsies. It usually affects the middle trait of the left
anterior descending coronary artery [24,25].
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and eosin stain, 20× magnification).

Brodsky et al. found that variables like age, sex, body mass index, heart weight,
left ventricle wall thickness, and circumference of pulmonary/aortic valves do not have a
statistically significant relationship with MB [26].

MB is more frequently reported in forensic rather than in clinical scientific literature:
according to current evidence, it is found in up to the 16% of coronary angiographies and
in up to the 85% of forensic autopsies [26].
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It is a condition of uncertain clinical significance. However, despite very com-
mon, some authors have reported associations between MB and myocardial ischemia,
left ventricle dysfunction, arrhythmias, and sudden cardiac death [6,27,28]. In particular,
Schwarz et al. found that MB can cause a decrease in coronary flow reserve, which may be
responsible for myocardial ischemia [29]. Moreover, Mohiddin et al., found that thallium
perfusion is reduced by the LV hypertrophy of the area where the MB is, but they did not
find any significant association between this vascular anomaly and ventricular arrhythmias
or sudden death [30]. Despite some cases of SCD in young patients with MB have been
reported, the first clinical manifestation generally occurs in the adult age, and it is thought
to be related to a loss of elasticity of the coronary arteries (and thus to a reduction of
diastolic lumen) [6,23,31].

From a forensic point of view, one of the most interesting issues regarding MB is its
possible association with some features of HCM or with HCM itself [6,32–35]. Several
authors reported that the depth of the intramyocardial course (≥2 mm) is significatively
associated with a greater amount of myocardial fibrosis [28,32,36]. The fibrotic tissue is
due to an ischemic process in the territory of the MB, which consequently could predispose
the individual to an increased risk of sudden death [36,37]. As noted by Yetman et al.,
chronic ischemia can cause a myocardial damage characterized by disarray and diffuse
fibrosis, which can consequently predispose the subject to develop ventricular arrhythmias
and sudden death [32]. In general, the prevalence of MB among patients with HCM has
been reported to be of 21–41% [33]. This association is considered important by many
authors because the pathological substrate of HCM can increase the risk of MB clinical
manifestation. For example, Sharzhee et al. observed that the structure of MB is essentially
the same in HCM and non-HCM individuals, but the heart hypertrophy causes a greater
compression of the bridging, which is responsible for the decrease in the flow rate and for
a higher pressure drop coefficient [38].

2.4. Genetics

HCM normally has an autosomal dominant inheritance pattern, and it is usually
caused by rare variants in genes encoding cardiac sarcomeric proteins [39–41]. Variants
in two genes (MYH7 and MYBPC3) account for 60–70% of HCM patients with known
pathogenic variants, while pathogenic variants of TNNI3, TNNT3, TPM1 and MYL3 are
rarer [42–44]. Rare variants in the MYH7 gene are predominantly missense, so single
nucleotide-base variants result in a non-synonymous single amino acid substitution [45,46].
The majority of rare alterations in the MYBPC3 gene are caused by the introduction of a
premature stop codon (PTC), that results in a truncated protein transcript. This PTC may
be caused by nonsense mutations and insertions/deletions that alter the reading frame
(known as frameshifts) or splice-site variants [43,47].

HCM can also (rarely) be caused by mutations of non-sarcomeric genes, like CSRP3
(coding for a Z-disk protein), FHL-1 (coding for a sarcomere-associated protein) and PLN
(coding for a regulator of sarcoplasmic reticulum calcium) [48,49].

The penetrance of the pathogenic variants is variable, being relatively high for some of
them (in particular, MYH7 and MYBPC3) and low to moderate for many others [49]. More-
over, as said, HCM shows a significant variability in its phenotypic expression. Indeed,
the severity of the phenotype (and thus the risk of SCD) is thought to be increased, for ex-
ample, by an insertion/deletion variant in the angiotensin-1 converting enzyme gene (ACE)
and by relevant changes in loading conditions (like systemic arterial hypertension) [48].
Moreover, in the carriers of pathogenic sarcomere protein mutations, hypertrophy and
myocardial fibrosis tend to be more severe and the prognosis is generally poorer than in
patients in which no variant is found [50]. In particular, the phenotype is more severe in
those who carry multiple variants (about the 5% of the total carriers) [50].
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Finally, it should be noted that mutations of sarcomeric genes like MYH7 or TNNT2
may have pleiotropic effects, causing different cardiomyopathies within the same fami-
lies [48].

3. Arrhythmogenic Cardiomyopathy

Arrhythmogenic Cardiomyopathy (ACM) has a prevalence up to 1/2000 [51], being
particularly frequent in some geographical areas like Veneto region (Italy). It is character-
ized by the fibrofatty replacement of the myocardium, that progresses from the epicardium
towards endocardium and tends to be in the “triangle of dysplasia” (outflow tract of right
ventricle, inferior wall beneath the posterior tricuspid leaflet and the ventricular apex) [52].
Epicardial adiposity is supposed to have arrhythmogenic effects through different patterns
of action: structural barrier to electric impulse propagation, adipogenesis/fibrosis, in-
creased oxidative stress, and formation of cytokines [53]. However, the clinical significance
of this recurrent finding is still to be determined.

3.1. Differential Diagnosis

Fibrofatty replacement is not pathognomonic of ACM, since it can also be found,
for example, in PRKAG2 cardiac syndrome, Uhl’s anomaly, and HCM [54,55]. However,
the most important differential diagnosis is the normal (and sporadic) fatty infiltration of
the ventricles (i.e., “adipositas cordis”), that is often found (up to the 85% of the cases), es-
pecially in the elderlies and in the obese patients (Figure 4) [56,57]. Corradi et al., observed
that a normal heart contains an average amount of 205 g of ventricular myocardium and
54 g of ventricular fat [58]. In normal hearts, a certain amount of subepicardial fatty tissue is
often found in the ventricular walls (especially in the antero-lateral and apical areas), but it
is clearly separated from the inner myocardium [33,59]. Some authors, like Anumonwo
et al., reported that the volume and the thickness of epicardial fat are possible markers
of ACM, considering pathological a volume greater than 125 mL and a thickness greater
than 5 mm [53]. However, normal fatty infiltration can be easily distinguished from ACM
through the observation of myocytes atrophy, that gives the ventricular wall a translucent
appearance at the autopsy. Another important differential diagnosis is myocarditis, since in
ACM signs of recurrent, chronic myocarditis (inflammatory cells infiltrates with focal
myocyte necrosis) can often be observed [33].
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3.2. Genetics

ACM can be caused by deleterious alterations located in genes encoding mainly
desmosomal proteins but also proteins involved in electric signal transmission [60–64].
Currently, more than 1000 rare genetic variants have been identified in more than 15 genes
(ANK2, CTNNA3, DES, DSC2, DSG2, DSP, FLNC, ILK, JUP, LMNA, PKP2, PLN, PNPLA2,
SCN5A, TGFB3, TJP1, TMEM43, TP63, and TTN), but only about 400 rare genetic alterations
have been classified as certainly pathogenic [65]. All the other rare variants have an ambigu-
ous role and further data are needed to determine whether they are pathogenic for ACM or
not [66]. Most of the pathogenic variants affect desmosomal genes, like PKP2 (41.6% of the
pathogenic variants), DSP (21.2%), DSG2 (12.2%), DSC2 (9.7%), and JUP (3.6%) [65]. In up
to the 16% of the cases, a single patient carries multiple mutations, that can affect the same
gene (compound heterozygosity) or different genes (digenic heterozygosity) [65,67,68].
Furthermore, ACM can be caused by variants of extradesmosomal genes, like LMNA,
DES and TTN [65].

When a carrier of a pathogenic variant is found, his relatives should be carefully evalu-
ated [69]. ACM mainly follows an autosomal dominant pattern of inheritance, with incom-
plete and age-related penetrance as well as polymorphic phenotypic expression [70,71].
Autosomal recessive forms have also been reported, although in a smaller number of cases
(Naxos disease, caused by a deletion in the JUP gene, and Carvajal syndrome, caused by
mutations in the DSP gene) [72–74]. In addition, alterations in number of copies (Copy
Number Variation, CNV) were also associated with ACM [75].

Despite these recent advances, only in about the 50% of ACM patients a pathogenic
variant is found [76,77]. However, even when it is found, the patient could show no pheno-
type because of the variable expressivity and incomplete penetrance [78]. Therefore, clinical
translation should be done carefully, after a comprehensive personalized interpretation of
all the obtained data.

4. Dilated Cardiomyopathy

Dilated Cardiomyopathy (DCM) has a prevalence of 1/2500 [79]. Its mortality rate
is up to 20% [80]. Death is usually due to heart failure or ventricular arrhythmias. SCD
has an incidence of about 2–3%, can be the first manifestation of disease and is caused
by electromechanical dissociation or arrhythmias [81]. LV dilatation and contractile im-
pairment are the main risk factors for sudden death [82]. Greater left atrial volume also
increases the risk of adverse outcomes [83]. In the paediatric population, the predictors
of SD are the age at diagnosis, familiarity, and severe LV systolic disfunction [81]. At the
forensic autopsies, DCM is macroscopically characterised by the dilatation of the cardiac
chambers (greater in the ventricles than in the atria). These signs can be associated with
other common findings, like intracavitary thrombi and, in case of right heart failure, hep-
atomegaly, ascites and peripheral oedema [79]. At the histopathologic examination, diffuse
fibrosis with some areas of necrosis and atrophied and/or hypertrophied cardiomyocytes
is usually found (Figure 5). Fibrosis plays an important role in this disease since it causes
contractile impairment and ventricular re-entrant arrhythmias [84]. In DCM, two kinds
of fibrosis can be found: interstitial and replacement fibrosis. Fibrosis results from the
so-called “replacement”, which consists of myocyte cell death and scarring formation or
directly from an expansion of interstitial collagen [85]. Replacement fibrosis is of great
clinical significance because it is associated with sustained or inducible VT [86]. On the
other hand, interstitial fibrosis, that is almost always found in DCM cases, is thought to
cause focal tachycardias and to be involved in the maintenance of re-entry circuits [87].
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4.1. Differential Diagnosis

DCM has many possible causes. It is usually distinguished in primary (congenital) and
secondary (acquired). Secondary DCM can be caused by many factors, like toxic substances
(e.g., cocaine or a chronic alcohol intake > 80 g/day), pathogens (virus, bacteria, fungi,
spirochete, protozoans, rickettsia), endocrine or metabolic disfunctions (electrolyte distur-
bances, Cushing’s disease), inflammatory conditions, and autoimmune or neuromuscular
diseases [81]. It is important to note that DCM can be also a long-term toxic manifestation:
for example, it can occur even 10 years after chronic anthracycline exposure [81]. Therefore,
when DCM is found at the autopsy, the main tool for differential diagnosis is a complete
and accurate anamnesis. From a macroscopic point of view, at the autopsy it can be difficult
to differentiate DCM from ischemic cardiomyopathy, hypertensive heart disease, athlete’s
heart, and other cardiomyopathies [82]. In particular, the presence of significant coronary
stenosis allows to distinguish ischemic cardiomyopathy from DCM. Instead, the differential
diagnosis between DCM and left ventricular noncompaction is performed through the
identification of LV trabeculations, deep intertrabecular recesses, and a thin layer of normal
myocardium. Histopathological examination can be of great help to distinguish a DCM
from a viral or immune-mediated myocarditis thanks to the identification of a lymphocytic
infiltrate (Figure 6) and, in case of infective myocarditis, the post-mortem microbiological
testing (PCR) [81].
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4.2. Genetics

As already said, nearly the 60% of familial DCM cases show genetic alteration in one
of over 60 genes associated with DCM [88]. Most of the familial DCM cases are due to
pathogenic variants that follow an autosomal pattern of inheritance. These pathogenic
variants have been identified in several genes encoding proteins with different functions,
such as ion channels, transcription factors, and sarcomeric/desmosomal/nuclear proteins.
Currently, few DCM cases following an autosomal recessive pattern of inheritance have
been reported [89]. Recent studies reported pathogenic variants in the TTN gene as the
main causes of familial DCM [90]. Despite nearly the 30–35% of families affected by DCM
show alterations in this gene, most of the found variants are classified as of unknown
significance [90]. The second most prevalent gene in familial DCM is LMNA, responsible
for nearly 10–15% of cases [6]. Several other genes have been associated with this disease,
being responsible for nearly the 5–10% of all the familial DCM cases. Finally, other genetic
alterations such as Copy Number Variation (CNV) have been reported to (rarely) be causes
of DCM.

5. Molecular Autopsy

Molecular autopsy has been recommended as part of the autopsy process, for example,
by the Heart Rhythm Society and the European Heart Rhythm Association (HRS/EHRA) [91],
the European Society of Cardiology [92], the Canadian Cardiovascular Society/Canadian
Heart Rhythm Society [93], and the Swiss Society of Legal Medicine [94]. Recently,
the Trans-Tasman Response Against Sudden Death in the Young (TRAGADY), together
with the Royal College of Pathologists of Australasia and the National Heart Foundation of
New Zealand, have proposed a guide to standardize the autopsies in young cases of
SCD (http://www.rcpa.edu.au/Library/Publications/Joint-and-Third-Party-Guidelines)
(accessed on 3 April 2021). Despite these recent advances, these guidelines still only
recommend the analysis of the main genes associated with arrhythmogenic syndromes,
mainly because of economic reasons. Thanks to the recent advances in the field of genetics,
more than 100 genes (about 60 genes associated with cardiomyopathies and about 40 genes
associated with channelopathies) are currently known (Figure 7) [95]. The pathogenic
genetic variants have been discovered thanks to the Next Generation Sequencing (NGS),
that allows massive analysis of genes in a short time and in a cost-effective way [96]. Re-
cent studies reported that the yield of genetic testing in SCD cases with autopsy findings

http://www.rcpa.edu.au/Library/Publications/Joint-and-Third-Party-Guidelines
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suggestive of a cardiomyopathy is comparable with the yield in alive patients affected by
cardiomyopathies [96,97]. Despite this evidence, as said, performing molecular autopsy
(when indicated) is still discretionary.
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6. Discussion

Inherited cardiomyopathies (Table 1) are relatively common and SCD is often the first
manifestation of disease. When a correct diagnosis has not been made before the death,
identifying a cardiomyopathy at the autopsy is extremely important for forensic and public
health issues. From a public health point of view, diagnosing inherited cardiomyopathies
is essential to identify other carriers of the pathogenic variants within the family and
promptly adopt preventive measures. Indeed, it is very common that in the family of the
victim a post-mortem diagnosis of cardiomyopathy allows new diagnoses—that would
not have been otherwise made (since, as said, cardiomyopathies are generally autosomal
dominant and have incomplete penetrance and variable expressivity). From a medico-
legal point of view, the pathologist is often asked to determine whether the cause of
the death was a condition that, for example, the cardiologist of the victim should have
diagnosed. This issue is particularly relevant in countries, like Italy, where athletes have to
regularly undergo cardiologic evaluation to exclude diseases, like cardiomyopathies, that
contraindicate physical activity [98]. In these cases, especially when ECGs of uncertain
significance were obtained and no radiological procedures were indicated, finding that
the death was caused, for example, by a phenotype-positive cardiomyopathy is essential
to prove the liability of the physician. Moreover, as said, it is important to distinguish
inherited cardiomyopathies from myocarditis and infective cardiomyopathies. This issue
is of great medico-legal relevance because, in case of death of an inpatient, if a hospital-
acquired infection is suspected, it is important to assess whether the cause of the death
was a primary cardiomyopathy or a myocarditis/secondary cardiomyopathy. Currently,
this problem is particularly relevant, since in about one third of the critically ill COVID-19
patients a cardiomyopathy is found [99,100].
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Table 1. The main features of inherited HCM, Arrhythmogenic Cardiomyopathy (ACM) and Dilated Cardiomyopathy (DCM).

HCM ACM DCM

Prevalence 1/500 [12] 1/2000 [51] 1/2500 [79]

Typical macroscopic features Abnormal wall thickness (≥15 mm) of the LV
that cannot be explained by abnormal loading

conditions [48]

Fibrofatty replacement of the myocardium of
the right ventricle and/or the left

ventricle [54]

LV or biventricular dilatation that cannot be
explained by abnormal loading conditions or

coronary artery disease [101]

Typical histopathological features Myocytes hypertrophy, disarray, thickened
intramural arterioles with luminal narrowing,

myocardial fibrosis [102,103]

Fibrofatty replacement of the ventricular
myocardium with a subepicardial-mid-mural

or transmural distribution [54]

Replacement fibrosis, interstitial fibrosis,
atrophied and/or hypertrophied

cardiomyocytes, nuclear pleomorphism [82]

Differential diagnosis (examples) Athlete’s heart, hypertensive cardiomyopathy,
glycogen/lysosomal storage diseases,

amyloid/sarcoid cardiomyopathy [104]

Adipositas cordis, Uhl’s anomaly, PRKAG2
cardiac syndrome, myocarditis, HCM [54]

Acquired DCMs, ischemic cardiomyopathy,
hypertensive heart disease, athlete’s heart,

left ventricular noncompaction [81,82]

Main SCD risk factors LV wall thickness ≥ 30 mm, anamnestic
factors (personal history of cardiac arrest,

sustained ventricular arrhythmias, syncope),
familiarity for SCD, ejection fraction < 50%,

nonsustained ventricular tachycardia (NSVT),
LV apical aneurysm, extensive late

gadolinium enhancement, mutations of
troponin T gene [102,104]

Number of premature ventricular complexes
and of anterior and inferior leads with T-wave
inversion at 24-h Holter monitoring, younger

age, male sex [105]

Mutations of LMNA gene, personal history of
syncopes or nonsustained ventricular

tachycardia, delayed enhancement
identification, frequent premature ventricular

contractions, familiarity for SCD [106]

Genetics More than 50 genes coding for sarcomeric
proteins (e.g., MYH7, MYBPC3, TNNI3,

TNNT2, TPM1, MYL3) and non-sarcomeric
proteins (e.g., CSRP3, FHL1, PLN) [50]

More than 15 genes coding for desmosomal
proteins (e.g., PKP2, DSP, DSG2, DSC2) and
non-desmosomal proteins (e.g., TMEM43,

PLN) [54]

More than 60 genes coding for proteins with
different functions, such as ion channels,

transcription factors,
sarcomeric/desmosomal/nuclear proteins

(e.g., TTN, LMNA, MYH7, TNNT2, MYBPC3,
RBM20, MYPN, SCN5A, BAG3, PLN) [101]

Diagnostic rate of post-mortem genetic testing Nearly 80% [6,12] Nearly 50% [6,12] Nearly 30–40% [6,12,88]

Indicated technique for virtopsy MR (technically difficult) [107] MR [107] CT, MR [107]
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6.1. Importance of Good Practice

It is fundamental to carefully investigate any aspect of a SCD case (Table 1). Complete
autopsies must be performed. Dissection and sampling of the heart must be done by well-
trained pathologists in order to collect all the data useful for a correct diagnosis [48,54,101].
Inadequate sampling or interpretation of the microscopic features [54,82,102,103] can
easily lead to missed diagnosis or misdiagnosis, especially in cases with mild phenotypes
(children). Acquiring information on the clinical history of both the SD victim and his
relatives is often necessary to distinguish cardiomyopathies from their many differential
diagnoses [54,81,82,104] or, in case of negative autopsy, to correctly assess the significance
of a variant of a gene involved in a cardiomyopathy. It is important to carefully study the
clinical history of the victim and the circumstances of his death [102,104–106] also because,
in case of negative autopsy, the pathologist can promptly suspect an IAS and thus collect
fresh blood and samples of tissues for genetic testing [6,12,50,54,88,101]. This procedure is
important because the DNA extracted from formalin-fixed paraffin-embedded samples is
often low-template.

6.2. Virtopsy

In forensic practice, virtopsy (post-mortem CT and MR) has been proposed in combi-
nation with complete (or minimally invasive) autopsy, or even to replace it when the family
opposes it for psycho-emotional or religious reasons [108,109]. As stated by Femia et al.,
in cases of SCD, virtopsy can play a strategical role in identifying the phenotype of a
cardiomyopathy, in differentiating cardiomyopathies from other conditions (e.g., the asym-
metric hypertrophy of HCM from a post-mortem myocardial oedema) and in reliably
excluding any heart anomaly (thus orienting towards the indication to molecular au-
topsy) [107]. According to current evidence, both post-mortem CT and MR are accurate
for the diagnosis of cardiomyopathies, but in those younger than 35 years MR is superior
to CT, while, according to the current (few) evidence, in older SCD cases the concordance
of post-mortem CT to conventional autopsy is higher [107]. Since ACM is characterized
by a tissue replacement, virtopsy can be particularly useful when this cardiomyopathy is
suspected. Kimura et al. proposed some criteria for the diagnosis of clinical cases of ACM
at CT: “dilatation of the RV (RV body and outflow tract), abundant epicardial fat, myocar-
dial fat in the RV trabeculae and moderator band, conspicuous trabeculae, and scalloped
or bulging appearance of the RV free wall” [52]. Virtopsy is not only important for the
diagnosis of ACM but also for distinguishing it from other conditions. For example, in up
to the 62% of the CT-scans of patients with a history of myocardial infarction myocardial
fat can be observed in the left ventricle [52]. This fatty infiltration tends to be thin and
located in the subendocardial areas, near the occluded coronary artery, thus helping to
distinguish a post-ischemic modification from a sign of ACM [52].

6.3. Molecular Autopsy

As said, cardiomyopathies often show mild or ambiguous macroscopic/microscopic
signs of disease. This issue mainly affects young population, in which, at the same time,
most of the SCDs are caused by cardiomyopathies. When, after the autopsy, the pathologist
cannot make inference on the cause of the death, a molecular autopsy (post-mortem
genetic testing) should be performed. This procedure is not mandatory, but it is highly
recommended, since in cardiomyopathies the diagnostic rate is relatively good (80% for
HCM, 50% for ACM, 30–40% for DCM) [6,12,88]. It is important to remark that in the last
years rare variants in genes that code for structural proteins have been described as possible
inducers of heart arrhythmias in absence of structural alterations [110]. This is because
genes can affect the expression of nearby or distant genes, and some of these variants have
recently been associated with the development of cardiac pathologies [111]. Moreover,
as said, structural anomalies tend to be progressive and may cause arrhythmias in the
young even before the complete development of the phenotype [112–114]. Proper sampling
and storage of the blood and/or of the tissues (liver, spleen and/or heart) for the genetic
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testing is crucial for optimizing the results of the procedure. The choice of the source of
DNA (blood vs tissues) depends on the protocol that the forensic geneticist wants to adopt.
At the same time, high-throughput techniques (NGS) are particularly recommended, since
variants of many different genes can cause inherited cardiomyopathies [6].

Currently, the main challenge in this field is represented by the clinical interpreta-
tion of the NGS findings. The significance of the variants is assessed following clinical
guidelines, in particular those proposed by the American College of Medical Genetics
and Genomics (ACMG) and the Association for Molecular Pathology (AMP) [115–117].
In the forensic field, the assessment of the significance of the variants is mainly limited by
two issues: the absence of forensic guidelines (that take into account the peculiarities and
the limits recurring in forensic practice) and the fact that most of the variants cannot be
interpreted because of the lack of the necessary data. Indeed, in a forensic investigation
acquiring complete information on the clinical history of the victim (and of his family) and
performing a segregation analysis must be authorized by the competent authorities and
can be extremely time-consuming (because of the bureaucratic procedures) [6]. Moreover,
since relatively few molecular autopsies are performed, the lack of shared data can limit
the interpretation of a variant.

Another important issue is represented by the fact that, since the significance of a
variant depends on the data known at the time of the investigation, it can change over time.

In 2020, Campuzano et al. analyzed how many variants of genes involved in IAS had
to be reclassified after 10 years [118]. The authors found that the 69.23% and the 94.11% of
the variants found in, respectively, clinical and forensic cases had to be reclassified and that
many of the variants previously classified as likely pathogenic were re-classified as variants
of uncertain significance (VUS). In total, the prevalence of VUS was 18.75% in 2010 and
60.15% in 2020. Regarding the cardiomyopathies, while the prevalence of VUS in HCM and
DCM cases did not change after reclassification, in ACM cases it significantly increased.
The authors noted that the increase of the VUS prevalence in IAS cases depended on the
higher stringency of the diagnostic criteria of the ACMG/AMP guidelines.

In 2021 Vallverdù-Prats et al. reevaluated 39 rare variants of genes associated with
ACM that had already been classified according to the ACMG/AMP guidelines in 2016 [119].
In particular, the authors reported a 17.95% decrease in VUS and a 5.12% increase in likely
pathogenic variants [119]. They underlined that these variations were mainly due to the
updated global frequencies, thus underlying the importance of periodic reevaluations.

Hence, the assessment of the significance of a variant is an extremely critical step in
the forensic evaluation of a SCD case. For instance, in forensic field, finding only a variant
of uncertain significance means failing to find the cause of the death and thus making
impossible to draw medico-legal conclusions on a specific case, while, on the other hand,
misinterpreting a variant (e.g., a variant is classified as likely pathogenic and then, after ten
years, is re-classified as VUS) can severely jeopardize the reliability of a medico-legal report.
The communication of the results of a molecular autopsy to the competent authorities and,
if requested by the local law, to the family of the victim should stress that the significance of
a variant can be “dynamic”, largely depending on the data that are available at the time of
the investigation, and that, if not certain, should be periodically reevaluated. As said, it can
be particularly complex to explain the (absence of) diagnostic value of a VUS, especially
when it is the only finding in an autopsy-negative forensic case.

7. Conclusions

Autopsies of forensic cases of inherited cardiomyopathies are extremely challenging
when the phenotypes of these diseases are mild or difficult to be distinguished from
physiological or other pathological conditions. In these cases, if accurate microscopic
analysis is not diriment, virtopsy and (in particular) post-mortem genetic testing can be
of great help. The results of molecular autopsies should always be interpreted by a team
composed by (at least) a forensic pathologist and a forensic geneticist and, if uncertain,
should be always communicated stressing that the significance of a variant can be dynamic.
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