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A B S T R A C T   

While most countries have networks of stations for monitoring pollutant concentrations, they do not cover the 
whole territory continuously. Therefore, to be able to carry out a spatial and temporal study, the predictions for 
air pollution from unmeasured sites and time periods need to be used. 

The objective of this study is to predict the air pollutant concentrations of PM10, O3, NO2, SO2 and CO in sites 
throughout Catalonia (Spain) and time periods without a monitoring station. Compositional data (CoDa) studies 
the relative importance of pollutants. A novel feature in this article is combining CoDa with an indicator of total 
pollution. Predictions are then made using a combination of spatio-temporal models and the Bayesian Laplace 
Integrated Approach (INLA) inference method. 

The most relevant results obtained indicate that the log-ratio between NO2 and O3 has the highest variance 
and the best predictive accuracy in time and space. Total pollution levels are second in variance but have low 
spatial predictive accuracy. Third in variance is the low temporal accuracy found in the log-ratio between SO2 
and the remaining pollutants. Globally, the combination of CoDa and the INLA method is suitable for making 
effective spatio-temporal predictions of air pollutants.   

1. Introduction 

Outdoor pollution caused around 249,000 premature deaths in 2016, 
and 83,000 of those deaths occurred as a result of the air pollution 
produced from the use of solid fuels in the home. What should also be 
borne in mind is that a close relationship exists between inequalities in 
development, non/compliance with environmental laws, regulations 
and policies and the exposure to pollution of different population groups 
(PAHO, 2017). 

Air pollution has gained recognition and prominence on global 
agendas. In September 2015, the United Nations General Assembly 
adopted the 2030 Agenda for Sustainable Development. The central 
references to air pollution in the 2030 Agenda are to be found in Target 
3.9 (Substantially reduce the number of deaths and illnesses caused by 
hazardous chemicals and air, water and soil pollution), Target 7.1 
(Guarantee universal access to affordable, reliable and modern energy 
services) and Target 11.6 (Reduce the negative per capita environmental 
impact of cities, including paying special attention to air quality and 
municipal and other waste management) (WHO, 2018). 

According to the European Environment Information and Observa-
tion Network, the main polluting gases and particles that most affect 
human health and the environment are coarse particles, (i.e., PM10 with 
a diameter of 10 μm (μm) or less), nitrogen dioxide (NO2), ozone (O3), 
carbon monoxide (CO) and sulphur dioxide (SO2) (EIONET, 2020; 
Sicard et al., 2021). 

Most countries have networks of stations for monitoring pollutant 
concentrations, but the main problem with these networks is that they 
do not cover the whole territory in a homogeneous way. Furthermore, 
the existing stations are not always in continuous operation which 
means they cannot provide data throughout the study period in ques-
tion. Therefore, to be able to carry out a spatial and temporal study, the 
predictions for air pollution in sites and time periods without a moni-
toring station need to be used. 

The scientific literature has provided a number of alternative 
methods and models to make this type of prediction. For instance, the 
hierarchical spatio-temporal models applied by Cameletti et al. focused 
on particulate matter (PM10) in the Piemonte Region (Cameletti et al., 
2011, 2013); the two-stage Bayesian model used by Blangiardo et al. to 
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estimate the monthly concentration of NO2 (Blangiardo et al., 2016); the 
Bayesian spatial-temporal analysis employed by Liu et al. (2020) to 
analyse the association between PM10, SO2 and NO2 in the Chinese 
province of Hubei (Liu et al., 2020), the several machine learning 
methods compared by Liang et al. (2020) to predict the Taiwanese air 
quality index, and the super-Gaussian geometry methods used by Jia and 
Kikumoto (2021), to cite just a few of the many studies on the subject. 

This article adds to the literature on prediction methods for air 
pollution in sites and time periods without a monitoring station by 
combining two novel approaches. On the one hand, it uses Bayesian 
inference with the Integrated Nested Laplace Approximation (INLA) 
(Rue et al., 2009, 2017; Lindgren and Rue, 2015) to take into account 
time, space, and covariates. On the other hand, it completes the classic 
approach of analysing relative concentrations of chemicals as Compo-
sitional Data-CoDa (Pawlowsky-Glahn et al., 2015a; Sánchez-Balseca 
and Pérez-Foguet, 2020), by adding a total pollution index by means of 
T-spaces (Pawlowsky-Glahn et al., 2015b). Compared to standard air 
pollution studies, CoDa makes it possible to study how the concentra-
tions of the different pollutants can increase or decrease with respect to 
one another. Furthermore, the novel introduction of T-spaces makes the 
computation of a global air quality index compatible with the compo-
sitional perspective. 

The structure of the article is as follows. First, we explain the 
compositional data approach to air pollutant concentrations. Second, we 
present a Bayesian approach; specifically, the INLA method to be able to 
make effective spatio-temporal predictions. Then, we make a predictive 
accuracy assessment and finally we discuss the results. 

2. Methods 

2.1. Design 

The research was conducted as an observational, quantitative, 
retrospective and longitudinal study. It took place in Catalonia, Spain 
from 2009 to 2019 and was based on the information concerning air 
pollutants that had been collected by 94 monitoring stations located 

throughout Catalonia (n = 10,081 records in total). The map in Fig. 1 
shows the location of the monitoring stations with respect to the areas in 
the Catalan health-zone system. We obtained information on the hourly 
levels of air pollution from the Catalan Network for Pollution Control 
and Prevention (XVPCA) (open data) (Departament de Territori i Sos-
tenibilitat, 2021). Less than a third of the health zones into which Cat-
alonia is divided, have at least one air pollution monitoring station (105 
from a total of 376). One health zone has five monitoring stations, six 
have three, 22 have two, and the remaining 76 have only one station. 
The pollutants included in the analysis are coarse particles (PM10), ni-
trogen dioxide (NO2), ozone (O3), sulphur dioxide (SO2) - all of which 
are expressed as μg/m3 -, and carbon monoxide (CO) - expressed in 
mg/m3. From the hourly data we obtained the daily data and from these 
we calculate the monthly data (in both cases, using an arithmetic mean). 

2.2. Compositional analysis 

2.2.1. Compositional data analysis of air pollutant concentrations 
We model air pollutant concentrations statistically assuming them to 

be compositional data - CoDa (AL-Dhurafi et al., 2018; Giber-
gans-Báguena et al., 2020; Jarauta-Bragulat et al., 2016; 
Sánchez-Balseca and Pérez-Foguet, 2019, 2020). CoDa is the standard 
approach to analysing the concentrations of parts of a whole (Aitchison, 
1986; Boogart et al., 2013; Filzmoser et al., 2018; Greenacre, 2018; 
Pawlowsky-Glahn et al., 2015a), which is the case not only for air 
pollution but also for soil, water, and smoke compositions (Bondu et al., 
2020; Hron et al., 2021; Karakan et al., 2021; Strbova et al., 2021; Weise 
et al., 2020). 

The usefulness of the CoDa approach lies not only the treatment of 
parts of a whole, but also in the analysis of data for which the relative 
importance of magnitudes is of interest, be they parts of a whole or not 
(Egozcue and Pawlowsky-Glahn, 2019). Since not all pollutants are 
equally harmful for health and the relative importance of pollutants 
differs for each health outcome, in the context of pollution studies CoDa 
makes it possible to identify patterns with differing relative importance 
of pollutants, and different health risks (Tepanosyan et al., 2021). 

Fig. 1. Distribution of the air pollution monitoring stations with respect to the health zones of Catalonia (Spain).  
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Opting for the CoDa approach, therefore, not only depends on the nature 
of the data, but also on the research questions being posed and the way 
in which the researcher wishes the analysis results to be presented, i.e., 
as absolute or relative. The term compositional analysis has even been 
coined as an alternative to the term CoDa to stress this fact (Bar-
celó-Vidal and Martín-Fernández, 2016). 

The five parts in the composition are the five air pollutants x1 = PM10 
(μg/m3), x2 = NO2 (μg/m3), x3 = O3 (μg/m3), x4 = CO (mg/m3), and x5 
= SO2 (μg/m3). In CoDa, the measurement units do not necessarily have 
to be the same for all parts. 

To perform the analysis, we use the program CoDaPack (Comas-Cufí 
and Thió-Henestrosa, 2011). 

The steps in the analysis using CoDaPack are as follows:  

1. Imputation of missing values with the log-ratio EM algorithm using 
the robust option. This is an adaptation of the common algorithm for 
the replacement of zeros below a detection limit (Palarea-Albaladejo 
and Martín-Fernández, 2015) implemented by removing the 
constraint that the imputed values should be below the detection 
limit. In our case, prior to this step, cases with two or fewer observed 
contaminants were dropped from the analysis. This resulted in 5498 
useable cases from 64 monitoring stations, which were then sub-
mitted to the imputation procedure. There were 2460 missing values 
in PM10, 1044 in O3, 2055 in CO, and 674 in SO2. NO2 had complete 
information.  

2. Outlier detection by means of Mahalanobis distances (Filzmoser 
et al., 2005), with the cut-off criterion adjusted for sample size, 
computed as 0.95(1/n) (Coenders and Saez, 2000). Here, 88 outliers 
were identified, resulting in a final sample size of 5410 cases.  

3. Exploratory analysis of the composition by means of CoDa biplots 
(Aitchison and Greenacre, 2002) and the variation matrix (Aitchison, 
1986). The variation matrix is a substitute for the correlation matrix 
in CoDa. As a standard biplot, the CoDa biplot is based on a principal 
component analysis and presents variables (in this case pollutants) as 
rays and observations (by place and time) as points and makes it 
possible to visualise the relationships among variables.  

4. Computation of interpretable balance coordinates according to the 
biplot. The biplot dimensions tend to be difficult to interpret because 
all dimensions are related to all parts (Martín-Fernández et al., 
2017). Balance coordinates obtained from a sequential binary 
partition of parts (Egozcue and Pawlowsky-Glahn, 2005) represent 
trade-offs between subsets of parts defined by the user and are much 
more readily interpretable. More particularly, balance coordinates 
are scaled log-ratios of the geometric means of the concentrations of 
two subsets of pollutants and indicate the relative importance of the 
pollutants in the numerator as compared to those in the denominator 
of the log-ratio. The easiest-to-interpret balance coordinates are 
those with one pollutant in the numerator and the rest in the de-
nominator, which can be understood as the relative importance of 
the pollutant in the numerator within the composition (Fǐserová and 
Hron, 2011; Filzmoser et al., 2018), and those with one air pollutant 
in the numerator and one in the denominator, which can be under-
stood as the trade-offs between two pollutants (Greenacre, 2018, 
2019; Hron et al., 2021). Besides their interpretation in themselves as 
trade-offs between pollutants, these balance coordinates play the 
role of variables in any further statistical analysis (Pawlowsky-Glahn 
et al., 2015a). Balance coordinates are thus the main outcome of the 
CoDa methodology in the sense that the spatio-temporal model uses 
them as the outcomes to be predicted. 

2.2.2. Introduction of total air pollution levels in CoDa 
We wanted to consider not only the relative importance of air pol-

lutants (as in standard CoDa) but overall air pollution, which is also an 
essential variable in health studies. In the following lines we suggest an 
analogous to the air quality indices which is coherent with the CoDa 
methodology. 

Implicitly, in an air pollutant concentration composition with D air 
pollutants, with D equal to 5, there is a residual part xD+1 which cor-
responds to “clean air”. Composition x1 to xD+1 may have a fixed sum, e. 
g., 1,000,000 if all parts are in ppm. However, subcomposition x1, x2 … 
xD can never have a fixed sum. 

One possible approach for the purpose of taking overall air pollution 
into account is to use the whole composition x1 to xD+1 (Sánchez-Balseca 
et al., 2020). Under this approach, the balance coordinates involving 
only the subcomposition x1 to xD are used to extract the relative 
importance of air pollutants to one another as in standard CoDa. An 
added balance coordinate comparing the geometric average of x1 to xD 
with clean air (xD+1) speaks of overall air pollution levels: 
̅̅̅̅̅̅̅̅̅̅̅̅

D
D + 1

√

ln
(
(x1…xD)

1
/D
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)
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(1) 

An alternative approach is to use a T-space (Pawlowsky-Glahn et al., 
2015b; Ferrer-Rosell et al., 2016; Coenders et al., 2017) on sub-
composition x1 … xD. A T-space is also known as CoDa with a total, and 
simply adds some form of total to the subcomposition, so that x1 … xD 
are used to extract the relative importance of air pollutants to one 
another as before, while the total T speaks of overall air pollution levels. 
The total is more appropriately defined from the geometric average of 
air pollutant concentrations than from their sum (Coenders et al., 2017) 
with a scaling constant to take the number of parts into account: 

̅̅̅̅
D

√
ln
(

(x1…xD)
1
/D

)

(2) 

It can be argued that the whole air is what is compositional data, thus 
favouring the whole-composition approach including xD+1 
(Sánchez-Balseca et al., 2020). However, this loses relevance if xD+1 is 
very large compared to x1 … xD. Then, ln (xD+1) is nearly constant 
(Jarauta-Bragulat et al., 2016), and Equations (1) and (2) are close to 
being linearly related (Martín-Fernández et al., 2020), thus having 
nearly identical relationships to any external variable. In this context, 
the advantage of the T-space approach is in avoiding the need to mea-
sure the clean air residual part, which may be challenging, especially if 
air pollutants combine gases, aerosols and particles or are measured in 
different units. In what follows, we use the T-space approach with total 
air pollution computed from a geometric mean, as in Equation (2). 

The use of the geometric mean of air pollutant concentrations as an 
overall air pollution measure was first suggested by Jarauta-Bragulat 
et al. (2016), but these authors did not take balance coordinates into 
account together with the total, which is our novel contribution. Once in 
a log-scale, as in Equation (2), changing the units of measurement of the 
concentration of any air pollutant only results in adding a constant, thus 
leaving the relationship of the total with any external variable invariant. 
It is thus not serious if, for instance, particles are measured with different 
units than gases. This property is not shared with sums or weighted sums 
of air pollutant concentrations. 

Balance coordinates and the total in Equation (2) are used as vari-
ables in the spatio-temporal model. 

2.3. Bayesian analysis 

2.3.1. Specification of the model 
We specify a hierarchical spatio-temporal model with the following 

measurement equation: 

y(si, t) = μ(si, t) + δ(si, t) (3)  

where y(., .), is the realization of the spatio-temporal process; μ(., .) de-
notes the large-scale component, depending on the covariates; and δ(., .)
is a spatio-temporal process, independent in time Gaussian field (GF) 
with zero mean and a Matérn covariance function (Saez and Barceló, 
2021). 

Due to its computational problems, we choose to represent the GF as 
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a Gaussian Markov Random Field (GMRF) (Rue et al., 2009). We link the 
GF and GMRF through the Stochastic Partial Differential Equations 
(SPDE) approach (Lindgren et al., 2011). Further details can be found in 
Saez and Barceló (2021). 

We specify the large-scale component, μ(., .), as a generalized linear 
mixed model (GLMM) with response from the Gaussian family: 

μi,t = β0 + β1altitudei + β2areai + sd yi,year + ηi + τmonth (4)  

where i denotes the air pollution monitoring station where the pollutant 
was observed (i = 1,2, …,64); t is the time unit (month in our case); 
μi,t = E(yit), yit denotes a balance coordinate or the total in Equation (2); 
sd yi,year,., ηi and τmonth denote random effects. 

In all models, we include the sd yi,year structured random effects, 
indexed on a standard deviation of the variable that is being predicted in 
the health zone where the monitoring station is located during a 
particular year (2009–2019). We choose a random walk of order 1 (rw1) 
as the structure of the random effect. In the integrated nested Laplace 
approximations (INLA) approach (Rue et al., 2009, 2017, 2017), the 
random walk of order 1 for the Gaussian vector z is constructed 
assuming independent increments (R INLA project, 2021a): 

Δzi = zi − zi− 1 ∼ N
(
0, σ2

z

)
(5) 

Following the INLA approach, when, as in our case, the random ef-
fects are indexed on a continuous variable, they can be used as 
smoothers to model non-linear dependency on covariates in the linear 
predictor. 

ηi denotes a random effect indexed on the air pollution monitoring 
station. This random effect is unstructured (independent and identically 
distributed) and captures individual heterogeneity; that is to say, un-
observed confounders specific to the station and invariant in time. 

We also include the τmonth, structured random effects indexed on time 
in order to control the temporal dependency associated to possible 
seasonal effects throughout the year. In this case, a model for seasonal 
variation with periodicity m (12 for long-term exposure, seven for short- 
term exposure), for the random vector (z1, z2, …,zn) (n > m) is obtained 
assuming that the sums are independent Gaussian with a precision τ. The 
probability density for z is derived from the n-m+1 increments (R INLA 
project, 2021b): 

τn− m+1
2 e−

τ
2

∑
(zi+zi+1+…+zi+m− 1 )

2
(6)  

2.3.2. Inference 
Inferences for GMRFs were made following a Bayesian perspective 

using the INLA approach (Rue et al., 2009, 2017, 2017). We started from 
the SPDE representation (Lindgren and Rue, 2011) Then, instead of 
projecting the subsequent mean of the random field onto mesh nodes to 
target locations where we do not have observed data, we performed a 
spatial prediction of the random field jointly with the parameter esti-
mation process (Krainski et al., 2020; Saez and Barceló, 2021). 

We used priors that penalize complexity (called PC priors). These 
priors are robust in the sense that they do not have an impact on the 
results and, furthermore, they have an epidemiological interpretation 
(Simpson et al., 2017). 

All analyses were carried out using the free software R (version 
4.0.3), through the INLA package. 

2.3.3. Out of sample predictive performance 
The INLA method provides the predictions for the balance co-

ordinates and total re-expressed as compositional data. Subsequently, 
two out-of-sample predictions are made, one for 2019 considering all 
pollutant monitoring stations and the other for the 2009–2019 period, 
randomly leaving out 30% of the stations. The measures of predictive 
accuracy are: 

Root mean square error (RMSE): 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
N
∑

i

∑

t
(y(si, t) − ŷ(si, t))2

√

(7)  

where y(si, t) denotes the observed balance coordinates and total; ŷ(si, t)
the predicted balance coordinates and total; N the number of predicted 
(observed) balance coordinates and total; i denotes the air pollution 
monitoring station where the pollutant was observed (i = 1,2, …,64) and 
t is the time unit (month in our case). 

The RMSE can be compared to the standard deviation of the original 
data. 

Product-moment correlation between the predictions and the orig-
inal data: 

r=

∑
i
∑

t

(
y(si, t) − y(si, t)

)(
ŷ(si, t) − ŷ(si, t)

)

(∑
i
∑

t

(
y(si, t) − y(si, t)

)2∑
i
∑

t

(
ŷ(si, t) − ŷ(si, t)

)2)1
2

(8)  

where y(si, t) denotes the mean of the observed balance coordinates and 
total and ̂y(si, t) the mean of the predicted balance coordinates and total. 

3. Results 

3.1. Compositional data results 

The elements in the variation matrix (Table 1) are the variances of 
the log-ratios between pairs of air pollutants. Low values indicate pairs 
of air pollutants which move proportionally (Pawlowsky-Glahn et al., 
2015a). 

We can see the highest log-ratio variance is between O3 and NO2. 
This means that monitoring stations and periods with high levels of O3 
tend to have low levels of NO2, and vice-versa. It is well known that NO2 
concentrations increase in urban areas and during the summer months 
while the opposite holds for O3. The lowest log-ratio variance is between 
CO and PM10, and for this reason we could say that these two air pol-
lutants move proportionally: monitoring stations and periods with high 
levels of CO tend to have also high levels of PM10. 

In the case of SO2 and NO2 or SO2 and O3, there are also high log- 
ratio variance values, though not as much as between O3 and NO2. 
Other cases with low log-ratio variances are NO2 and PM10 or O3 and 
PM10. 

The first two dimensions of the principal component analysis that are 
represented in the covariance CoDa biplot explain 86.3% of the vari-
ance. In the biplot in Fig. 2, distances between rays corresponding to air 
pollutants are approximately proportional to the square root of log-ratio 
variance. The high log-ratio variance between NO2 and O3 can be clearly 
observed as they are completely opposite in their respective directions, 
whereas PM10 and CO are closer together. The horizontal axis opposes 
O3 with NO2, while the vertical axis opposes S02 with all the remaining 
air pollutants. The presence of SO2 increases in industrial areas while 
most of the other air pollutants are related to the road traffic. 

Table 2 shows the sign matrix in the sequential binary partition 
leading to the balance coordinates. Values − 1 or 1 indicate whether the 
air pollutants are in the denominator or the numerator of the balance 
coordinates. Zeros indicate pollutants that are neither in the numerator 
nor in the denominator. According to the biplot, the first partition in the 

Table 1 
Variation matrix.  

Air pollutants PM10 NO2 O3 CO SO2 

x1: PM10  0.45 0.35 0.12 0.40 
x2: NO2 0.45  1.41 0.50 0.75 
x3: O3 0.35 1.41  0.66 0.73 
x4: CO 0.12 0.50 0.66  0.45 
x5: SO2 0.40 0.75 0.73 0.45   
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sign matrix (Table 2) places SO2 in the numerator and the remaining air 
pollutants in the denominator and is a simplification of the second 
dimension in the biplot. The third partition places NO2 in the numerator 
and O3 in the denominator and parallels the first dimension. 

The corresponding balance coordinates are the log-ratios of the 
geometric means of the involved numerator and denominator parts with 
a scaling constant taking into account the number of parts involved 
(Egozcue and Pawlowsky-Glahn, 2005) and are: 

x*
1 =

̅̅̅
4
5

√

ln
(

x5

(x1x2x3x4)
1 /

4

)

x*
2 =

̅̅̅
4
4

√

ln
(
(x2x3)

1 /

2

(x1x4)
1 /

2

)

x*
3 =

̅̅̅
1
2

√

ln
(

x2

x3

)

x*
4 =

̅̅̅
1
2

√

ln
(

x1

x4

)

(9) 

where x1 stands for PM10, x2 NO2, x3 O3, x4 CO and x5 SO2. 
The two main balance coordinates (x*1 and x*3) explain 85.6% of 

log-ratio variance, which compares quite well with the optimal 86.3% 
explained by the first two principal components in the biplot. They 
represent the main sources of variability in pollution concentrations, 
together with the total in Equation (2). High values of x*1 indicate a high 
relative importance of SO2 with respect to NO2, O3, PM10 and CO. High 
values of x*3 indicate high importance of NO2 as compared to O3. 

The four balance coordinates x*1 to x*4 in Equation (9) and the total 
in Equation (2) are the raw data in the Bayesian hierarchical spatio- 

temporal model used to predict air pollution in locations or time pe-
riods without pollution monitoring sites. Table 3 shows the descriptive 
statistical analysis and we can see that the highest variances are found in 
the balance coordinates x*1, x*3 and the total (T). 

Fig. 3 shows the boxplots of the relative importance of pollutants as 
expressed by x*1 and x*3 and total pollution (T), for the Barcelona 
County (Barcelonès) and other Catalan counties (referred to as Comar-
cas). If we look at the Barcelonès, apart from presenting a higher 
pollution globally, it highlights a lower relative concentration of SO2 as 
compared to the remaining pollutants, and also an exchange between O3 
and NO2. 

In Fig. 4, the total pollution is higher in the winter and during the rest 
of the quarters it is lower. On the other hand, if we look at x*3, the 
relationship between NO2 and O3 changes during the autumn-winter 
months in favour of NO2, and during the spring-summer months in 
favour of O3. 

Fig. 5 shows that the total pollution has substantially decreased be-
tween 2009 and 2019. If we look at the x*3 balance, in 2009 the ratio of 
NO2 to O3 was higher than in 2019. In addition, in the case of the x*1 
balance, the relationship between SO2 and the rest of the pollutants has 
stayed approximately constant over the two years plotted. 

3.2. Predictive accuracy 

Table 4 shows the root mean square error (RMSE, Equation (7)), the 
original standard deviation (SD) and the correlation (Equation (8)) of 
the respective balance coordinates, and the total when leaving out the 
final year (2019). x*3 and total air pollution have substantially lower 
RMSE than SD values and a high correlation coefficient, which argues 
for a very high predictive accuracy for out-of-sample future time pe-
riods. Predictive accuracy is very low for x*1. The remaining balance 
coordinates have a moderate predictive accuracy. 

In the following assessment, as mentioned above, the predictions are 
made throughout the 2009–2019 period but 30% of the pollutant 
monitoring stations have been randomly left out (Table 5). As in the 
previous case, what is interpreted is the reduction between the RMSE 
and the SD, as well as the correlation between the actual and predicted 
values for the respective balance coordinates and the total. The total 
now has the poorest predictive accuracy, while the balance coordinates 
have improved theirs, especially x*1. As an example, Table 6 shows six 
monitoring stations chosen at random with their respective raw data and 
out-of-sample predictions for 2018. 

4. Discussion 

Recently, the distribution in space and time of pollutants in Catalonia 
has attracted great interest and a variety of methods beyond the CoDa 
methodology and hierarchical Bayesian spatio - temporal models have 
been employed for a variety of scientific and policy-making purposes. To 
highlight but a few, this includes, for instance, the effects the COVID-19 
pandemic lockdown had on pollution (Baldasano, 2020; Tobías et al., 
2020), pollution in rural areas (Jaén et al., 2021), citizen science cam-
paigns to measure pollution (Perelló et al., 2021), or the effects of public 
transport strikes (González et al., 2021). 

From the approach we suggest in this article, the compositional 
analysis has made it possible to identify the main sources of log-ratio 

Fig. 2. Compositional covariance biplot.  

Table 2 
Sign matrix of the binary partition.  

x1: PM10 x2: NO2 x3: O3 x4: CO x5: SO2 

− 1 − 1 − 1 − 1 1 
− 1 1 1 − 1 0 
0 1 − 1 0 0 
1 0 0 − 1 0  

Table 3 
Descriptive statistics of balance coordinates and the total air pollution indicator.   

Mean Variance Min Q1 Q2 Q3 Max 

x*1 − 1.23 0.29 − 5.40 − 1.52 − 1.25 − 0.98 2.48 
x*2 2.50 0.11 0.75 2.38 2.54 2.68 4.07 
x*3 − 0.64 0.70 − 4.17 − 1.09 − 0.55 − 0.08 1.66 
x*4 2.98 0.06 1.72 2.88 3.00 3.11 4.18 
T 4.23 0.57 − 0.004 3.94 4.36 4.72 6.37  
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variance. Among all the pairs of air pollutants studied, the pair with the 
most variability is that formed by O3 and NO2. This variance explains 
that when high concentrations of O3 are given, low concentrations of 
NO2 are obtained and vice-versa. 

The log-ratio of SO2 over the remaining pollutants comes second in 
explained variance. This fact could be related to the strong presence of 
SO2 in industrial and non-urban areas. On the other hand, it shows that 
other pollutants are higher in areas where there is a high amount of road 
traffic. 

The CoDa methodology through log-ratios, with the corresponding 
balance coordinates, makes it possible to highlight trade-offs between 
pollutants or groups of pollutants and is used in other studies such as 
those carried out by AL-Dhurafi et al. (2018) and Sánchez -Balseca and 
Pérez-Foguet (2019, 2020). This focus on the trade-offs is compatible to 
an overall air quality index by means of which we have termed total. 
Gibergans-Báguena et al. (2020) and Jarauta et al. (2016) consider only 
the total. AL-Dhurafi et al. (2018); Sánchez-Balseca and Pérez-Foguet 
(2019); Gibergans-Báguena et al. (2020) and Jarauta et al. (2016) use 
time series models without spatial dimension. Thus, our article is most 
similar to Sánchez-Balseca and Pérez-Foguet (2020). The main differ-
ences are the use of the INLA approach instead of Markov Chain Monte 
Carlo (MCMC) and expressing total pollution with Equation (2) instead 
of (1). 

Regarding the Bayesian component, our innovations in this paper lie 
in, on the one hand, that the spatio-temporal approach we use requires 
data from fewer monitoring stations but yields a precision comparable to 
other approaches (Saez and Barceló, 2021). On the other hand, in the 
estimation we use the INLA approximation. Using MCMC implies a high 
computational model complexity that entails high computational costs. 
In addition, on some occasions this complexity prevents practical 

applications particularly when, as in our case, working with a 
spatio-temporal design with variability in both dimensions. In fact, the 
INLA approach is much more computationally effective than MCMC, 
producing accurate approximations to subsequent distributions, even 
for very complex models (Lindgren and Rue, 2015). 

The Bayesian analysis, using the INLA method to predict the 
pollutant balance coordinates and the total temporally during 2019 
confirms, in the present study, that the best correlation between the 
predicted and actual values occurs in the x*3 balance, which is that of 
NO2 with respect to O3, and the worst in the x*1 balance that takes into 
account the relationship between SO2 with respect to PM10, NO2, O3 and 
CO. Sánchez-Balseca et al. (2020) also obtain poor accuracy in relation 
to SO2. 

The INLA method has also enabled us to make spatial predictions 
during the period 2009–2019 by excluding 30% of the monitoring sta-
tions at random. As in the time-level analysis mentioned in the previous 
paragraph, the best correlation is in the x*3 balance of NO2 with respect 
to O3. This is fortunate as the x*3 balance alone explains 60.5% of the 
compositional variance. The accuracy for x*1 is adequate, but the ac-
curacy for total pollution is extremely poor. As Sánchez-Balseca et al. 
(2020) do not make spatial prediction, we cannot compare our results to 
theirs. 

Very recently, Saez and Barceló (2021) presented a hierarchical 
Bayesian spatio-temporal model to perform spatial predictions of air 
pollution levels. They used the SPDE representation of the INLA 
approximation to spatially predict in the territory of Catalonia both long 
and short-term exposure to four pollutants: PM10, NO2, O3 and PM2.5. In 
what is comparable (the balance coordinate between NO2 and O3), the 
predictive performance of our study is about the same as in Saez and 

Fig. 3. Boxplots of the balance coordinates x*1, x*3 and the total by location 
(Barcelonès versus other areas) during the period 2009–2019. 

Fig. 4. Boxplots of the balance coordinates x*1, x*3 and the total by quarters 
during the period 2009–2019, Note: First quarter: January to March; Second 
quarter: April to June; Third quarter: July to September; Fourth quarter: 
October to December. 
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Barceló (2021). Having said that, the aim of the CoDa approach is not to 
achieve higher precision and it is very important to note that this 
method allows variables to be presented differently by separating 
overall pollution from trade-offs between pollutants. 

The pollutant SO2 does not yield reliable or accurate predictions for 
new time periods but is well predicted in sites without a monitoring 
station. Thus, the SO2 concentration has hard-to-predict time variability. 
The main source of SO2 is from industry and their locations have been 
taken away from urban and peri-urban areas which, in any case, do not 
have nearby pollution monitoring stations. In addition, the fight against 
air pollution has meant filters and other decontaminating measures are 
being employed. In recent years there has been a sharp decrease in SO2 
emissions produced by combustion in energy production industries due 
to various factors; for instance, the 2007 Plan for the Reduction of 
Emissions from Large Combustion Facilities (Government of Spain), 
which forced the introduction of desulfurization technologies (Ministry 
for the Ecological Transition and the Demographic Challenge, 2021). On 
the other hand, the temporal distribution of SO2 levels is usually 
determined by the periods in which the emission industry that affects 
the station is in operation, which would imply great temporal variability 
(Ministry for Ecological Transition and Demographic Challenge, 2021). 

The total is well predicted in the case of new time periods but is 
difficult to make spatial predictions if there is no monitoring station 
nearby because of the high spatial variability of total pollution. On the 
contrary, the relationship between air pollutants contained in the bal-
ance coordinates is easy to predict in new monitoring sites because it 
depends on climatic and seasonal variations. 

The use of the CoDa method to analyse air pollution allows for a 
clearer understanding of the data because it shows trade-offs between 
air pollutants besides overall pollution. The balance coordinates and the 
total can be used as variables in the spatio-temporal analysis with the 
application of the INLA method to make effective predictions of air 
pollution. 

From among the Bayesian methods, we chose the INLA approach 
because using Monte Carlo Markov Chain (MCMC) methods implies a 
high computational model complexity that, in some cases, prevents the 
practical application of these methods or restricts the researcher to 
simpler model specifications. In fact, compared to MCMC, INLA allows 
spatial predictions of air pollution levels to be made in a more effective 
way and with considerably less computational cost. 

The limitations of the study are two-fold: the number of missing 
values at the various monitoring stations and the non-homogeneous 
distribution of the stations themselves as they are concentrated in 
certain geographical areas linked to higher population density or to 
more intense industrial activity (Fig. 1). Taken together, both limitations 
leave sizeable gaps in the monitoring-station map, and contribute to the 
poor spatial prediction of total pollution levels. 
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-Ambient/Qualitat-de-l-aire-als-punts-de-mesurament-autom-t/tasf-th 

Fig. 5. Boxplots of the balance coordinates x*1, x*3 and the total by 2009 
and 2019. 

Table 4 
Accuracy of temporal predictions for 2019.   

RMSEa SD b Correlationc 

xa
1 0.39 0.48 0.12 

xa
2 0.23 0.39 0.45 

xa
3 0.38 0.71 0.82 

xa
4 0.15 0.27 0.49 

T 0.32 0.65 0.83  

a Root mean squared prediction error. 
b Standard deviation of the raw data. 
c Correlation between the predictions and the raw data. 

Table 5 
Accuracy of spatial predictions for the period 2009–2019 for 30% of stations 
omitted.   

RMSEa SDb Correlationc 

xa
1 0.40 0.54 0.67 

xa
2 0.25 0.33 0.63 

xa
3 0.44 0.84 0.86 

xa
4 0.19 0.24 0.62 

T 0.82 0.76 − 0.28  

a Root mean squared prediction error. 
b Standard deviation of the raw data. 
c Correlation between the predictions and the raw data. 
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aries/cartografia/, accessed on March 14, 2021]. 
CoDaPack can be downloaded at http://ima.udg.edu/codapack/ 
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Comas-Cufí, M., Thió-Henestrosa, S., 2011. CoDaPack 2.0: a stand-alone, multi-platform 
compositional software. In: Egozcue, J.J., Tolosana-Delgado, R., Ortego, M.I. (Eds.), 
CoDaWork’11: 4th International Workshop on Compositional Data Analysis. Sant 
Feliu de Guíxols. https://www.researchgate.net/publication/266172921. 

Departament de Territori i Sostenibilitat, 2021. Generalitat de Catalunya [Available at: 
https://analisi.transparenciacatalunya.cat/en/Medi-Ambient/Qualitat-de-l-aire-al 
s-punts-de-mesurament-autom-t/tasf-thgu. (Accessed 11 May 2021). 

Egozcue, J.J., Pawlowsky-Glahn, V., 2005. Groups of parts and their balances in 
compositional data analysis. Math. Geol. 37, 795–828. https://doi.org/10.1007/ 
s11004-005-7381-9. 

Egozcue, J.J., Pawlowsky-Glahn, V., 2019. Compositional data: the sample space and its 
structure. Test 28, 599–638. https://doi.org/10.1007/s11749-019-00670-6. 

European Environment Information and Observation Network (EIONET), 2020. Air 
Pollutants [Available at: https://www.eionet.europa.eu/gemet/es/concept/263. 
(Accessed 30 April 2021). 

Ferrer-Rosell, B., Coenders, G., Mateu-Figueras, G., Pawlowsky-Glahn, V., 2016. 
Understanding low-cost airline users’ expenditure patterns and volume. Tourism 
Econ. 22 (2), 269–291. https://doi.org/10.5367/te.2016.0548. 

Filzmoser, P., Garrett, R.G., Reimann, C., 2005. Multivariate outlier detection in 
exploration geochemistry. Comput. Geosci. 31 (5), 579–587. https://doi.org/ 
10.1016/j.cageo.2004.11.013. 

Filzmoser, P., Hron, K., Templ, M., 2018. Applied Compositional Data Analysis with 
Worked Examples in R. Springer, New York. https://www.springer.com/gp/book/ 
9783319964201.  
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Examples of raw data and spatial predictions for six monitoring stations (2018).  

Monitoring Station x*
1  x̂*

1  x*
2  x̂*

2  x*
3  x̂*

3  x*
4  x̂*

4  
T  T̂  

Sant Domènec-Itàlia, Amposta − 1.198 − 1.199 2.654 2.655 − 1.074 − 1.075 3.112 3.111 3.849 3.850 
Gràcia-Sant Gervasi, Barcelona − 1.575 − 1.576 2.617 2.620 0.105 0.106 2.865 2.860 4.692 4.693 
CEIP Mare de Déu de Talló, La Cerdanya − 1.176 − 1.187 2.768 2.764 − 1.130 − 1.124 3.188 3.191 3.138 3.156 
Laboratori d’Aigües, Mataró − 0.781 − 0.782 2.816 2.817 − 0.648 − 0.650 2.906 2.910 4.489 4.490 
Zona Esportiva, Tona − 1.282 − 1283 2.474 2.475 − 2.353 − 2.354 3.130 3.131 2.350 2.351 
RENFE, Vila-seca − 0.993 − 0.994 2.788 2.789 − 0.791 − 0.792 3.158 3.159 4.043 4.044  
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